V§V21 Version 2.0
Programmer’s Guide
AA-FV67B-TC

March 1986

This manual describes how the VSV2t graphics peripheral is pro-
grammed. It provides an overview of the system software, a description
of the programming language and a description of commands for
controlling the VSV21.

This guide is part of the VSV21 Version 2.0 document set that
supersedes the VSV21 Version 1.0 document set.

Operating Systems: RSX-11M-PLUS Version 3.0
Micro/RSX Version 3.0
MicroVMS Version 4.2

Software: RSX-11M-PLUS VSV21 Version 2.0

Micro/RSX VSV21 Version 2.0
MicroVMS VSV21 Version 2.0

digital equipment corporation ¢ maynard, massachusetts

First Edition, July 1985
Second Edition, March 1986

Copyright © 1985, 1986 by Digital Equipment Company Ltd.

All Rights Reserved
Using Digital's networked computer systems, this book was produced electronically by the

Media, Publishing and Design Services department in Reading, England.

The information in this document is subject to change without notice. Digital Equipment
Company Lid. assumes no responsibility for any errors herein.

Printed in U.K.

The foliowing are trademarks of Digital Equipment Company Ltd.

dlilglilt

DEC P/OS VAX

DECmate Professional VMS

DECUS Rainbow V5V21i
DECwriter RSTS VT

DIBOL RSX Work Processor
MASSBUS RT

PDP UNIBUS

CONTENTS

PREFACE

PART I INTRODUCTION

CHAPTER 1 OVERVIEW OF VSV21 SYSTEM SOFTWARE

11 Graphics Display Lists ... 2
1.2 Programminginterfaces ... 4
1.3 VST1H/VSVITEmuUlation ... 5
1.4 System Software Components ... 6
141 HostSoftware ... 7
1.4.1.1 VEV21 Device Driver ... 8
1.4.1.2 VSV21 Control Program (VCP) ... 8
1.4.13 Subroutine Libraries ... 9
1.4.2 ResidentOn-board Software ... 10
1.4.3 Downloaded On-board Software 10
PART Il PROGRAMMING IN VIVID

CHAPTER 2 OVERVIEW OF VIVID

21 Using the VIVID Instruction Set ... 13
2.2 INSHUCHON TS oot 14
2.3 Accessto VIVIDInstructions ... 15
2.3.1 DISplaY Lists . 15
23.2 VIVID Subroutine Library (VSLY oo 16
2.4 Control INSUCHONS ... 17
25 The Viewing Transformation ... 19
251 Transforming Input Datato VAS Units ... 20
252 Transforming VAS Units to Screen Display Units 21
26 Global Attribute Instructions 22
2.7 Drawing Instructions ... 23
2.8 Filled Figure Instructions ..o 24
2.9 TextInstructions ... 25
2.10 Area OperationInstructions ... 26

v CONTENTS

2.1
212

interactive Instructions
Report Handling Instruction

CHAPTER 3 DISPLAY LISTS

3.1

3.2

3.2.1
3.22
3.2.3
3.2.4
3.3

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6

Identifying Segments
Storing and Deleting Segments

Storing Segmentsinthe HostMemoryco i,
Storing Segmentsinthe VSV21 Memory ...,

Deleting Segmenis
The VIVID DefaultFont
Segment TYPeS ..o,
InstructionSegment
FontSegment
PixelDataSegment
Keyboard InputSegment
ReportSegment
AttributeSegment ...

CHAPTER 4 VIVID /O FUNCTIONS

41 The QIO Functionsand Parameters ...
411 Attach VSV21 Device—10.ATT ..,
412 DetachVSV21 Device—IO.DET ...
413 Allocate Display Area— 0. ADAand 0% ALLOCATE
414 Release Display Area—I0.RDAand 0% RELEASE
415 Define Segment—10.DFSandI0$__DEFSEG
4.1.6 Load Segment-10.LSGand10$__ LOADSEG
4.1.7 Delete Segment—10.DSGandlO$_DELSEG
4.1.8 Start Segment Execution—10.SSE and 0% STARTSEG
4.1.9 Stop Display List Execution—10.STP and 0% STOP
41.10 Resume Execution—10.REX and 0% CONTINUE
4.1.11 Define Reporting—10.DRPand10$_ DEFREP
4112 Read Data—I0.REDandi0$_ READDATA
4.1.13 Write Data—10.WRTand 10$_ WRITEDATA
4.2 QIO Status Replies ..o
4.2.1 QIO Replies from RSX-11M-PLUS and Micro/RSX
4.2.2 QIO RepliesfromMicroVMS ...
4.2.3 VIVID Error/WamingCodesoooovv i
CHAPTER 5 THE VIVID SUBROUTINE LIBRARY (VSL)

5.1 GeneralFunctions ...
511 Initialize Display Processing—VVXINI ...
5.1.2 End Display Processing—VVXEND ...
5.1.3 Assign VEBV21 Device—-VVXASS ..
5.1.4 Release VSV21 Device—VVXREL ...
5.1.5 Get VIVID Version Number—VVXVER ...
5.2 Segment Manipulation Functions ...
5.2.1 Save Segmentson Disk—VVMSAY ..

27
28

32
33
33
33
34
35
35
35
36
36
37
37
38

40
40
41
41
42
42
43
44

45
46
46
48
48
49
49
50
51

55
55
55
56
57
57
57
57

CONTENTS

522 Restore Segments from Disk— VVMGET ...
523 Copy Segment—VVMCPY
52.4 Load Segments fromFile—VWMDLDcocoieeiieon
525 Load SegmentfromHost—VVMMLD ...,
526 Delete Segment—VVMDELccoiii
527 Create Segment—VVMCRS
5.3 Segment Execution Subroutines ...
5.3.1 Execute Segment—VVEEXE
5.3.2 Resume Segment Execution—VVERES
533 Stop Segment Execution—VVESTP ...
5.4 Reporting Functions ...,
54.1 Get Status —VVRSTA .
54.2 GetReport—VWRREP .. .
543 GetKeyboardInput—VVRKBD ...
54.4 GetSegmentBlock—VVRSEG ...
5.5 Segment Building Functions ...
551 Start Segment—VVBBGN ...
5.5.2 EndSegment—VVBEND
553 SetDrawing Mode—VVBMOD ...
554 Setlinstruction Parameter Mode—VVBPMD
5.6 Instruction Generation Functions
5.6.1 Control Functions
56.2 TransiormationFunctions
5.6.3 Global Attribute Functions ...
56.4 Drawing FUunctions ...
56.5 Filled Figure FUNCHIONS ...,
56.6 TextFUNCHONS (.
56.7 Area Operation FUNGHONS ... e,
56.8 Interactive FUNCHONS ..o
569 Report Handling FUNCHionsccooer e
5.7 Calling VO
5.7.1 Passing Parametersto VSL ...
5.7.2 VSL Word Length on MicroVMS Systems ...
CHAPTER 6 CONTROL INSTRUCTIONS

6.1 START _INSTRUCTION _LIST ...
6.2 START FONT L e,
6.3 START _PIXEL_ _DATA .,
6.4 START _KEYBOARD _ DATA ...,
6.5 START _REPORT _DATA .,
6.6 INITIALIZE
6.7 CALL_ SEGMENT ...
6.8 SAVE ATTRIBUTES,
6.9 RESTORE__ATTRIBUTES ...,
6.10 START ATTRIBUTES DATA
6.11 DUMP__ATTRIBUTES
6.12 RECOVER ATTRIBUTES,
6.13 DASPLAY WAIT

v

58
59
59
60
61
61
62
62
63
63
64
64
64
65
66
66
66
67
67
67
68
69
69
70
70
71
71
ral
72
72
72
73
73

75
75
76
77
78
79
79
80
80
81
81
82
83

vi

6.14
6.15
6.16
6.17
6.18
6.19
6.20

CONTENTS

NO__OPERATION ...
STOP__DISPLAY L.
CREATE__ SEGMENT ...
SEGMENT__RETURN ...
JUMP_ RELATIVE L
DISPLAY _REPEAT ..
DISPLAY__END_ REPEAT ...

CHAPTER 7 TRANSFORMATION INSTRUCTIONS

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

DRAWING MAGNIFICATION ...
DRAWING TRANSLATION ..o
DRAWING _ TRANSFORM ...
DRAWING. VAS ..o
SCREEN_ DIMENSIONSooovooooo oo
WINDOW ORIGIN ..ot
ZOOM FACTOR ..o.oioieioe e
SET VIEWPORT ..o
SET WINDOW ..o

CHAPTER 8 GLOBAL ATTRIBUTE INSTRUCTIONS

8.1
8.2
8.3
8.4
85
8.6
8.7
8.8
89
8.10
8.11

SCREEN__BLINK ..o
BLINK_ TIMING ..ot
SCREEN_ BLANK ..ot
FOREGROUND _COLOR\o\ oo
BACKGROUND _ COLOR ...oovoovooeooeoe
NORMAL COLORS ..o
BLINK_ COLORS ..o
BLINK _ COUNT oot
DRAWING MODE ...
LINE TEXTURE ..ooooooeoeee oo
AREA TEXTURE ..ot

CHAPTER 9 DRAWING INSTRUCTIONS

91
9.2
9.3
9.4
895
9.6
9.7
9.8
89
9.10
9.11
9.12
9.13

MOVE ABS ...t
MOVE REL .\.oooo oo oo
MOVE TO CURSORooooooo oo
LINES ABS ..ot
LINES REL ©ooovioiooe oo
POLYMARKS ABS ...\t
POLYMARKS BEL .ottt
ARCS_ ABS .\t
ARCS REL ..ot
ELLIPSE__ARCS ABSoivoieeoroeeoeeoe o
ELLIPSE__ ARCS REL .oo0oovoioeoooe oo
RECTANGLE. ABS ...ooooo oo
RECTANGLE REL ...0oivoviiees oo

83
84
84
85
85
86
86

87
88
88
89
89
80
9
I
92

9.14
9.15
89.16

CONTENTS

ELLIPSE
CIRCLE L

CHAPTER 10 FILLED FIGURE INSTRUCTIONS

10.1
10.2
10.3
10.4

FILLED RECT ABS ..ottt
FILLED RECT BEL oo
FLOOD AREA ..o
PAINT AREA ..o

CHAPTER 11 TEXT INSTRUCTIONS

11.1
1.2
11.3
11.4
11.5
11.6
1.7
11.8
11.9
11.10

INITIALIZE. FONT ..ot
SET FONT oo
LOAD CHAR_ CELL ..ot
CELL_ OBLIQUE ..o\ oo
CELL ROTATION ..ot
CELL. SIZE .o\ oo,
CELL MAGNIFICATION ..o
CELL MOVEMENT ..o
DRAW CHARS ..o
DRAW PACKED _CHARSooooioet oo

CHAPTER 12 AREA OPERATION INSTRUCTIONS

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11

CLEAR SCREEN ..
CLEAR VIEWPORT . el
SCROLL VIEWPORT ... s
PIXEL READBACK
PIXEL WRITE
FAST PIXEL WRITE .
FAST PIXEL MODIFY
SELECTIVE CLEAR ...
COPY ABS
COPY REL e,
Notesonthe COPY Instructions ...

CHAPTER 13 INTERACTIVE OPERATION INSTRUCTIONS

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

CURSOR_STYLE .,
POSITION__CURSOR ...,
CURSOR_VISIBILITY ..,
RUBBER__BAND ...
SWITCH__REPORT_ENABLE ...
SWITCH__DISABLE ...,
AUTOSWITCH L,
WAIT SWITCH L,
MATCH ENABLE ...

vii

viit

13.10
13.11
13.12
13.13

CONTENTS

MATCH _ DISABLE ..ot
ACCEPT_KEYBOARD__INPUT ..o
START_KEYBOARD _INPUTocooooooo
STOP_KEYBOARD _ INPUTocoiioviieeee o

CHAPTER 14 REPORT HANDLING

141
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11
1412
14.13
14.14
14.15
14.16
1417
14.18
14.19

PART Ill

REQUEST__REPORT Instruction
DRAWING__POSITION ReportPacket
CURSOR__POSITIONReportPacket
CELL_ PARAMETERS ReportPacket
GLOBAL__ATTRIBUTES ReportPacketcoooiiiii.
TRANSFORMATION Report Packet
SCREEN__FORMAT ReportPacket
FREE_ SPACEReportPacketcoooooi
VSV21__ SEGMENTSReportPacketoooii oL
HOST _SEGMENTS ReportPacket
VIVID__VERSION ReportPacketcocooiic
SEGMENT_TRACE ReportPacketcooooveiiviiinn
VIVID WARNING ReportPacket ...
VIVID__ERRORReportPacketccoocoiiii
MATCH__ INTERRUPT ReportPacketo .
SWITCH__INTERRUPT ReportPacketcc.o.e..
KEYBOARD__INPUTReportPacket
VIVID_ INTERRUPT ReportPacket
MAXIMUM__MATCHES ReportPacket

PROGRAMMING IN VSV11 EMULATION

CHAPTER 15 BUILDING PICTURES USING FORTRAN DRAW

15.1
15.1.1
15.1.2
15.1.3
15.2
15.3

Using FORTRANDrawcooouvin
Coordinate SYstem ...
Common Block Definitioncoc
Reserved Logical UnitNumbers

ProgrammingMethod ...

FORTRAN Draw Subroutingescooccovviviieec

CHAPTER 16 BUILDING DISPLAY LISTS

16.1
16.1.1
16.1.2
16.1.3
16.1.4
16.2

VSV11 Display ListContents ...
GraphicMode instructions ...
Graphic Datainstructions ...
ControlInstructions ...
Special Graphicinstructions ...

Generating and Processing VSV11 Display Lists

CONTENTS ix

CHAPTER 17 VSVit I/0 FUNCTIONS

171 QIC Functions for RSX-11M-PLUS and Micro/RSX 190
17.1.1 Attachthe VSV21 Device—10ATT ... 190
17.1.2 Detach the VSV21 Device—IO.DET ... 191
17.1.3 Connectand Display—I10.CON 191
17.1.4 Connectto Auxiliary Memory —IO.AUX ... 194
17.1.5 Stopthe Display—10.5TP ..., 194
17.1.6 Conttinue the Display—1O.CNT ... 194
17.1.7 Cancel l’ORequests—IOKIL ... 195
17.1.8 ReadJoystick—I0.RJS ... 195
17.1.9 ReadData—IO.RED ... 196
17.1.10 Write Data—IOWRT ... 196
17.2 QIO FunctionsforMicroVMS ... 196
17.2.1 Start Display—10$__START ... 197
17.2.2 SetTimeout Period—-10$__ TOUT ... 198
17.2.3 Stop Display—10$__STOP ... 198
17.2.4 Resume Execution—10$_ RESUME_................ 198
17.2.5 Read Status—10$__READSTATUS ... 199
17.2.6 Wait for Switch Interrupt—10$_ WAITSWITCH 199
17.2.7 ReadData—i0%_ READDATA ... 200
17.2.8 Write Data—10%_ WRITEDATA ... 200
17.3 QIOStatus Returns ... 201

PART IV CONFIGURING AND CONTROLLING THE VSV21

CHAPTER 18 THE VYSV21 CONTROL PROGRAM (VCP)

18.1 Calling VCP 204
18.1.1 Installing VCP on RSX-11M-PLUS and Micro/RSX Systems 204
18.1.2 Installing VCP on MicroVMS Systems 205
18.1.3 Calling VCP fromaUserProgram 205
18.2 TheVCP Commands ... 208
18.2.1 Typesof VCPCommands ... 209
18.2.2 Command Syntax ... 210
18.3 Downloading Code or Display Lists fromaHostFile 211
18.3.1 DownloadingCode ... 211
18.3.1.1 Downloading Procedure ... 211
18.3.1.2 Memory Management ... 212
18.3.1.3 The LOADCommand ... 213
18.3.2 Downloading VIVID Segments ... 214
18.4 Setting VSV21 Display Parameterscocoiivie . 214
18.5 Settingupthe Graphics Display ...l 218
18.5.1 The Color Look-up Table (CLUT} ... 218
18.5.1.1 Default Colors ... 219
18.5.1.2 Settingupthe CLUT 219
18.5.1.3 CLUTEXamples ... 220
18.5.2 DefiningBlinkColors ..., 221

18.5.3 Forming Pairsof Blink Colors 222

X CONTENTS

18.5.3.1 Definingthe Range of BlinkColors ... 222
18.5.3.2 Selecting Blink Colorsfromthe Range 222
18.5.4 Setting Menitor Characteristicsocoe e, 223
18.6 Selecting VT220 Emudation ... 224
18.6.1 Splittingthe Screen ... 225
18.6.2 Choosing Colors for VT220 Emulation ... 225
18.7 Configuring the Host Serial Connection 226
18.7.1 Setting Up the Host Line Characteristics 226
18.7.2 Setting Pointing Device Characteristics 228
18.7.3 Setting Peripheral Device Characteristics 228
18.7.4 SettingUptheHostDevice ... 229
18.8 Setting up Keyboard Characteristics ..., 230
18.8.1 KeySound ... 231
18.8.2 TerminalBell ... 231
18.8.3 Autorepeat ... 231
18.8.4 Mode ..o 231
18.8.5 NUmMberofBIS ... 232
18.8.6 CharacterSets 232
18.9 Setting up Pointing Device Characteristics 233
18.9.1 SensitIVIY ..o, 233
18.9.2 Sensitivity Factors ... 234
18.9.3 ShiftCounts ... 234
18.10 Displaying Configurationand Status ... 234
18.11 Dumping VSV21 MemorytoaFile ... 235

CHAPTER 19 GETTING STARTED WITH VIVID

19.1 Downloadingthe Software ... 237
19.2 Defining and Executinga Displaylist ... 238

APPENDIX A THE QIO CALL MECHANISM

APPENDIX B DEFINITION OF THE DEFAULT FONT
APPENDIX C EXAMPLE OF A VSV11 EMULATION PROGRAM
APPENDIX D VIVID ATTRIBUTE MASK VALUES

APPENDIX E DEFINING A CURSCR IN ViVID

GLOSSARY

INDEX

FIGURES

1-1
1-2
2-1

3-1
3-2
4-1
4-2
4-3
8-1
9-2
9-3
12-1

13-1
13-2
14-1
14-2
14-3
14-4
14-5
14-6
14-7
14-8
14-9
14-10
14-11
14-12
14-13
14-14
14-15
14-16
14-17
14-18
15-1
15-2
16-1
17-1
17-2
17-3

17-4
18-1

CONTENTS Xi

How Pictures are Createdand Displayed 3
VEV21 System Software Block Diagram 7
Relationships between VIVID Address Space, Window, Viewport

AndSCreen ... 20
VSV2TMemory Space ..o 34
Contents of the First Three WordsofaSegment 35
Format of the First Three Words of a Defined Segment 43
Contentsof RSX /O StatusBlock ... 49
Contents of MicroVMS /O StatusBlock 50
Error areas for End Points of Circular Arcs ... 109
Error areas for End Points of Elliptical Ares 113
Quantities UsedtoDefineanEllipse 116
Effects of Parameter Values and Signs on Crientation of Copied

PN 147
LinearRubberBandoco 151
RectangularRubberBand ... 152
Format of Drawing Position Report Packet 163
Format of Cursor Position Report Packet 163
Format of Cell Parameters Report Packet 164
Format of Global Attributes Report Packet 165
Format of Transformation Report Packet 166
Format of Screen Format Report Packet 167
Format of Free Space ReportPacket 167
Formatof VSV21 Segments ReportPacket 168
Format of Host Segments ReportPacket 168
Formatof VIVID Version ReportPacket 169
Format of Segment Trace ReportPacket 170
Format of VIVID Warning ReportPacket 170
Formatof VIVID Error Report Packet ..., 171
Format of Match Interrupt Report Packet 172
Format of Switch Interrupt Report Packet 173
Format of Keyboard Input Report Packet 173
Formatof VIVID Interrupt Report Packet 174
Format of Maximum Matches Report Packet 175
FORTRAN Draw Coordinate Systemco.oo. 178
Programming Method for FORTRANDraw 180
VSV11 Display List Instruction Format 186
Contents of GLUNS Buffer ... 193
Joystick Data Returned by IO.RJS ... 195
Format of IO Status Block under RSX-11M-PLUS and

MiCrO RS 201
Formatof I/0 Status Block underMicroVMS 201
Userand Program Interfacesto VCP 204

xii CONTENTS

TABLES

12-1
17-1

17-2
18-1
D-1

Order of Pixel Write to Destination Areaby amod Value 145
VSV11 Emulation QIO Functions for RSX-11M-PLUS and

IO R S X L 190
VSV 11 Emulation QIO Functions forMicroVMS ... 197
Parameter Valuesfor SET PARAMETER Commands 204
VIVID Attribute Mask Values ... 257

PREFACE

MANUAL OBJECTIVES

The VSV21 Programmer’s Guide explains how to create pictures for the VSV21
graphics system and how to display the pictures using the available Digital software.
This manual is designed as a guide for programmers who are developing graphics
applications for the VSV21,

INTENDED AUDIENCE

The audience is intended primarily to be application programmers who are
developing low-level or high-level programs for a wide range of graphics

applications.

This manual describes how to build graphics display lists and write programs to
execute them. A display list may be either of the following types:

e VIVID (VSV21 Instructions for Visual Display)

e VSV11 emuiation
Programmers should be familiar with programming in a language supported by the
host operating system.
STRUCTURE OF THIS DOCUMENT

The VSV21 Version 2.0 Programmer’s Guide is divided into four parts, each
containing cne or more chapters.

e Part | (Chapter 1) provides an overview of programming for the VSV21.

e Partli(Chapters 2-14) describes how to build segmented display lists using
the VIVID instruction set, and use of the VIVID Subroutine Library functions.

e Part lll (Chapters 15-17) desctibes building and processing display lists in
VSV11 emulation, and use of the FORTRAN Draw library.

xiit

Xiv

PREFACE

Part IV (Chapters 18 and 19) provides an account of the YSV21 Control
Program (VCP}, used for configuring and controlling the VSV21 to run hoth
VIVID and VSV11 emulation. ft includes a description of how to get started
with VIVID, and an example of a program.

ASSOCIATED DOCUMENTS

The VSV21 Version 2.0 Programmer's Reference Card (AV-FVE8B-TC}is a
quick-reference guide to the programming functions covered in this manual.

The VSV21 Version 2.0 Software Installation Guide (AA-FV66B-TC)
describes the process of installing the software on the host operating
system, and of running the Installation Verification Program (IVP).

The VSV21 Version 2.0 User's Guide (AZ-FV70B-TC) describes all the
VSV21 facilities that are provided to the user.

The VSVIH/VSIT Option Description (YM-C183C-00) describes the
method of creating display lists for the VSV11 and VS 11 graphics systems.

The VSVT1-MIM-PLUS Software Driver Guide (AA-J287D-TK) describes
the contents of the FORTRAN Draw package.

The RSX-1TMIM-PLUS Executive Reference Manual (AA-LB75A-TC) and
the RSX-TIMIM-PLUS and Micro/RSX Executive Reference Manual
(AA-Z508A-TC) describe how to call system services to perform
input/output requests.

The VAX/VMS System Services Reference Manual (AA-DO18C-TE)
describes how to call system services to perform input/output
requests under MicroVMS.

CONVENTIONS USED IN THIS DOCUMENT

Convention Meaning

UPPERCASE Uppercase letters in a command or call format indicate data that must

be entered as shown.

lowercase Lowercase letters in a command or cail format indicate that the data is

variable,

Brackets in a command or call format indicate that the argument is
optional.

Angle brackets in a calf format indicate that the parameters are device-
specific.

CHAPTER 1
OVERVIEW OF VSV21 SYSTEM SOFTWARE

The VSV21 is a single-board graphics module for use on Q22-bus processors. The
VEV21 system software is supported by the following host processors and operating
systems:
e MicroPDP-11, running
- RSX-11M-PLUS Version 3.0 or later
— Micro/RSX Version 3.0 or later
¢ MicroVAX, running MicroVMS Version 4.2 or later
The V8V21 Version 2.0 can run any one of three processes:

e VIVID interpreter

VIVID (V5V21 Instructions for Visual Display) is the VSV21 instruction set.
It allows the VSV21 to run applications written specifically for it.

Part It of this Guide describes how to develop applications for VIVID.
e V5V11 Emulator

This provides emulation of a V811/VSV1t system. VSV 11 emulation allows

the VSV21 to run applications written for VS11 and VSV11 systems. The

V311 and VSV11 processors can be regarded as identical for emulation

purposes. In the rest of this guide VS11/VSV11 emulation is referred to as

VSV11 emulation.

Note that the VIVID and VSV11 instruction sets are not compatible.

Part 1l of this Guide describes how to develop applications for the VSV21 in
VS8V11 emutation,

2 OVERVIEW OF vSVv21 SYSTEM SOFTWARE

e VT220 Emulator
This provides emulation of a subset of V1220 capabilities, giving the user
access to the DCL or MCR command language and to standard program
development tools. The VSV21 runs fuli screen VT220 emulation on power-
up. Refer to the VSV21 User's Guide (AZ-FV70B-TC) for the method of
using VT220 emulation.
1.1 GRAPHICS DISPLAY LISTS
A graphics application for the VSV21 consists of one or more programs. These
programs can be written in any fanguage supported by the host operating system.
System software and layered products are available to help programmers to create
pictures and output them to the VSV21 for display. These include the VIVID
Subroutine Library (VSL), described in Chapter 5.
The graphics picture is described by a list of instructions and data. The instructions
control output to the display and the data describes or refers to screen coordinates,
colors, other instructions or peripheral devices. Some examples of what the
instructions do are as follows:
e |dentify subsequent data as being of a particular type, such as:
— other instructions
— font data
— pixel data
— keyboard data

— report data

attribute data

e Describe an action, such as:
-~ drawing a straight line or curve
— drawing a character
— filling an area with color

e Control display magnification, colors and other attributes

OVERVIEW OF VSV21 SYSTEM SOF TWARE 3

@& Control input from peripheral devices

The list of instructions and data is known as a display list. The VSV21 supports two
different types of display list:

e VIVID Display Lists

These are defined by the VIVID command set and the ViVID Subroutine
Library {VSL}. Segmentation is a feature of VIVID display fists. They are
described in Chapter 3.

e VS11/VSV11 Display Lists

These are defined by the VSV11 instruction set and the FORTRAN Draw
library. They are described in Chapter 16.

USER

>HUN DEMO

APPLICATION
PROGRAM

DISPLAY
LIST

170 REQUEST

ON-BOARD
SOFTWARE

GRAPHICS
CONTROLLER
CHiP

VIDEQ MONITOR

knzr03

Figure 1-1 How Pictures are Created and Displayed

4 OVERVIEWOF V5V21 SYSTEM SOFTWARE

Display lisis may be created and executed by a program running on the host
processor. A program can also execute display lists which another program has
created. Display lists can be stored in the host memory. VIVID display-list segments
can also be stored in the memory on the VSV21 module, for faster access by the
program.

The host program sends the display list to the VSV21 module, where it generates a
picture in the pixel memaory. The program controls the processing of display lists by
issuing input/output requests. Figure 1-1 shows how an applications program
creates and displays a picture using display lists and inpu¥/output requests.

1.2 PROGRAMMING INTERFACES

The system software provides two methods of building display lists and sending
them to the VSV21 for display:

@ Library Routines

A high-level programming interface is provided through calls to a library of
graphics subroutines. In VSV11 emulation, the FORTRAN Draw library
supplied with VS11/VSV11 systems can be used. In VIVID, the VIVID
Subroutine Library (VSL) can be used.

VSL is described in Chapter 5. The method of using the FORTRAN Draw
package is described in Chapter 15.

e QIO Calls
Display lists can also be created by combining the individual components of
the picture. The display listis then processed by issuing an output requestto
the device driver. If display lists are 1o he processed in VIVID, only VIVID
instructions may be used. If the display list is to be processed in VEVi1

emuiation, onty VSV 11 primitives may be used.

This low-level method is recommended for applications in which display
speed and program efficiency are critical.

Both the library routines and QIO calls also allow programs to handle input from the
pointing devices which are supported by the VEV21. The VSV21 supports the
following painting devices:

Joystick

@ Trackbal

e Dgitizing tablet

OVERVIEWOF VEV21 SYSTEM SOFTWARE 5

The interfaces to these devices are described in Chapter 2.
The method of creating display lists is described in Chapter 3 (VIVID) and Chapter
16 (VSV11 emulation). The input/output requests used to control display list
processing are described in Chapter 4 (VIVID) and Chapter 17 (VSV11 emulation).
A guide to getting started with VIVID is given in Chapter 19.
1.3 VS1T1/VSVii EMULATION
The VSV21 is provided with VSV11 emulation software which enables it to run
applications that have been developed for the VS11 and VSV11 systems. The
V5V21 can emulate a minimum-configuration single-channel V8V11 system. The
VSV11 emulation software supports the following VS11/VSV11 features:

& QIO format, identical to the VS11

® Main and auxiliary dispfay lists

@ The FORTRAN Draw package

& Joystick control
These features allow most VS11/VSV11 applications to run on the VSV21 without
modification or recompilation.
The VSV21 does not support the following V511/VSV11 features:

e Multiple channels

@ 8-bit pixel data

® Hardware register programming

6 OVERVIEW OF v8V21 SYSTEM SOFTWARE

1.4 SYSTEM SOFTWARE COMPONENTS
Most of the VSV21 system software is supplied on a distribution kit and must be
installed on the host system before any applications can be run. The procedure for
performing and verifying the software installation is described in the VSVZ27?
Software Installation Guide (AA-FVB6B-TC).
Three categories of system software are provided. They are as follows:
@ Host Software
— VS8V21 device driver
— VS8V21 Control Program {(VCP)
— Subroutine libraries
— Diagnostics
& Resident VSV21 Software
— Initialization and self-test
—~ V8V21 system software
— VT220 emulator
¢ Downloaded VSV21 Software
— Kernel
— Pointing device drivers
- VIVID interpreter
— VSV11 emulator
- VYT220 emulation code
- VIVID default font
The relationship between the software components and the application user is

shown in Figure 1-2. The following sections in this chapter describe the major
components and their importance to the programmer.

OVERVIEW OF VSV21 SYSTEM SOFTWARE 7

RUN APPLICATION
USER PROGRAM

VCP
COMMAND

VSV21 CONTROL
PROGRAM CALL
{VCP)

SUPPCRT
LIBRARY CALL
(VSL OR FORTRAN DRAW]

VIRTUAL DEVICE INTERFACE

HOST SYSTEM

Vo
70 REQUEST DISPLAY

REQUEST LIST

0
f REQUEST

VEV21
DEVICE
DRIVER

VIVID '
INTERPRETER

EMULATOR

POINTING
DRIVERS

DMA TRANSFER

TRANSFER
N v

022-BUS
COMMAND ———-—i)

PACKET

L~ on-Boanrp <:
/1 SOFTWARE

P

VEV21 MODULE

DEVICE
HARDWARE

y

"

62194

Figure 1-2 VSV21 System Software Block Diagram

1.4.1 Host Software

This consists of the programs which reside and run on the host system. These are
the following:

e VSV21 device driver
e VCP (VSV21 Control Program)
e Subroutine libraries

@ Diagnostics

8 OVERVIEW OF VSV21 SYSTEM SOFTWARE

1.4.1.1 VSV21 Device Driver — The device driver handles all communications
between application programs and the VSV21 device. It receives input/output
requests from programs in the form of QIO calls to system service routines in the
operating system executive. The driver passes the requests to the VSV21 processor
in the form of command packets, using a programmed /O mechanism and DMA
(Direct Memory Access). The QIO mechanism is described in more detail in
Appendix A.

The functions provided by the YSV21 device driver are of the following types:

e Configuration

& |nitialization

e Diagnostic and self-test

e Device control

e Drawing control
Before an application is run, the VIVID interpreter or V5V11 emulator must be
downloaded to the VSV21 module. This process also sets the device driver to
accept the VSV11 or VIVID QIO functions. The VSV11 functions are not compatible
with the VIVID instruction set.
Two or more tasks can share a device under any of the operating systems in either
VSV1t1 emudation or VIVID. The tasks can issue QIOs to the same device

concurrently, and the QiOs are queued to the driver in alternating packets if
necessary.

1.4.1.2 VSV21 Control Program (VCP) — The VSV21 Control Program (VCP} is
a ulility program which enables users, system managers and application
programmers to configure and control the VSV21 device. It provides facilities to:

e Select the operating mode (VIVID, VSV11 emulation or VT220 emulation)
by ioading the appropriate software into the VSV21 module.

® Set the device configuration parameters, for example, to describe the
peripheral devices currentty attached to the serial ports.

e Show the current settings of the device configuration parameters.

& Show the current status of the device.

OVERVIEW OF V5V21 SYSTEM SOFTWARE 9

The VCP commands enabie you to configure the VSV21 system, and to set the
device into a specified operating state before running an application. By
incorporating these same commands into a graphics program, you can develop self-
contained applications. Users of these applications do not have to make sure that
the device is set up correctly before running the application. The VCP commands
are described in Chapter 18.

1.4.1.3 Subroutine Libraries - In VSV 11 emulation, the FORTRAN Draw library
supplied with VS11/VSV11 systems can be used. The VIVID Subroutine Library
(VSL) provides a high-levei interface to VIVID.

1.4.2 Resident On-board Software

The VSV21 is controlled by on-board software. This consists of software
permanently stored in ROM and software downloaded from the host.

The following software is stored permanently in ROM:
@ [nitialization and self-test routines
& On-board driver
This provides controlied access to the host.
e \VT220 emulator
This provides a subset of the VT220 functionality, allowing the V3V21 to be
used as a system console. At system power-up, full-screen VT220
emulation is automatically provided.
1.4.3 Downloaded On-board Software
This consists of the programs and fonts which are stored on the host, but are
downioaded to the VSV21 module by the VCF. They are then run by the on-board
microprocessor. The following software is downloaded:

Kemel Routine

This conirols the operation of the VSV21 and provides diagnostic facilities.

10 OVERVIEWOF V5V21 SYSTEM SOFTWARE

e Pointing Device Controllers
The VSV21 uses the following pointing device controllers:
— MSI driver, controfiing the MSH trackball, joystick and mouse

— Penny and Giles driver, controlling the Penny and Giles trackball and
mouse

— Digitizing tablet driver, controlling the digitizing tablet
e TTransparent Port Driver
This controls /O at the fourth VSV21 port.
e VIVID Interpreter
This enables the VSV21 to interpret VIVID instructions in display lists.
e VSV11 Emulator

This provides emulation of a minimum-configuration single-channel VSV 11
system

& VT220 Emulation Code

This renews fuli-screen VT220 emuiation if it has been replaced by
downloading VIVID or VSV11 emulation.

e VIVID Default Font
The VIVID default font is the DIGITAL muliinational character set. its cell
size is 10 (vertical) x 8 (horizontal). The top row and righthand column are
empty.
The default font is automatically downloaded with the VIVID interpreter. ftis
stored in VSV21 memory as a segment with a segment 1D of 10FF, [f it has

been deleted from the VSV21 memory, it can be downloaded separately by
using either a library routine (Chapter 5} or the VCP (Chapter 18).

The following downloaded routines can be simultaneously available to an
apptfication on the VSV21:
@ One pointing device driver

® The transparent port driver

OVERVIEW OF VSV21 SYSTEM SOFTWARE 11

@ The VIVID interpreter, VSV11 emulator or VT220 emulator. Only one of
these processes can run on the V8V21 at any time. The last interpreter or
emulator loaded replaces the interpreter or emulator on board.

The VCP can download software with individual commands or a command
procedure. For a description of the method of downloading software and fonts, refer
to Section 18.3.

CHAPTER 2
OVERVIEW OF VIVID

VIVID is a set of instructions used to develop graphics applications on the VSV21
system.

The VIVID interpreter receives commands and data from application programs
which run on the host processor under RSX-11M-PLUS, Micro/RSX or MicroVMS.
The programs make calls to stored graphical information (display lists, described in
Chapter 3) and fibrary routines (VSL, described in Chapter 5}.
VIVID is implemented as a software package running on the VSY21 processor.
VIVID communicates with the host processor by means of the Q-bus interface, using
VSV21 registers and DMA (Direct Memory Access).
VIVID is particularly suited to applications of the following types:

e Applications requiring high-speed execution

e Applications requiring efficient storage of images

e Implementation of graphics subroutine libraries for specific applications

21 USING THE VIVID INSTRUCTION SET
You can use the instruction set to program VIVID for the following range of tasks:
e Controf the general operation of the VSV21 system
e Perform drawing and viewing transformations
e Set screen, color and drawing attributes
e Draw straight lines and arcs
e Fill areas

e Select text fonts

13

14
@
]
@
[:]
&
&
@

2.2

OVERVIEW OF VIVID

Clear specified areas of screen

Read and write pixel data

Scroll, pan and zoom

Control cursor style and visibifity

Control rubber band

Enable interaction with Kkeyboard and pointing devices

Handle report packets

INSTRUCTION TYPES

Each VIVID instruction is defined in the form of a mnemonic instruction name and
accompanying arguments. The number of argumenis can he fixed or variable.
Some instructions require no arguments. The set is made up of instructions of the
following types:

Controlinstructions initialize the VIVID interpreter, begin and end display list
segments and control the general Operation of VIVID (Chapter B8).

Transformation instructions control the magnification of the display and the
position of the window and viewport (Chapter 7).

Global Attribute instructions set the drawing and screen display characteristics
{Chapter 8).

Drawing instructions generate the individual lines that make up an image
(Chapter 9).

Filled Figure instructions are used to paint or flood specified areas {Chapter
10).

Text instructions control the selection of character fonts, the magnification
of characters and output of text to the screen (Chapter 11).

Area Operation instructions control such operations as scroll, clear screen,
copy and pixel read (Chapter 12).

Interactive instructions control cursor positioning and keyboard operation
{Chapter 13).

Report Handling instructions place a report packet in the current report
segment (Chapter 14).

OVERVIEW OF VIVID 15

The chapters referenced in this section describe the use of each instruction and its
parameters and provide a MACRO-32 exampie.

A brief description of each VIVID instruction is given in this chapter (Sections 2.4
through 2.12).

2.3 ACCESS TO VIVID INSTRUCTIONS
An application program can use VIVID instructions in either of the following ways:
e Display lists, called by Queue Input/Output (QIO) instructions.

e VSL functions and subroutines, called directly by the pragram.

231 Display Lists

A display list is a list of VIVID instructions and data which defines a picture. AVIVID
display list consists of a number of segments.

A segment is a list of VIVID instructions and data which has one of six specific
functions, depending onthe segmenttype. The segmenttypeis identified by the first
instruction in the segment.

The instructions in a segment are in the form of opcodes. This first instruction in &
segment is one of the first six control instructions listed in Section 2.4. ltidentifies the

segment as one of six types:

e Instruction segment, consisting of VIVID instructions, stored as opcodes
and parameters.

e Font segment, consisting of a set of character cell definitions.
e Pixel segment, consisting of a pixel data map.

e Keyboard segment, consisting of data input from the keyboard.
s Report segment, consisting of report packets.

e Aftribute segment, consisting of global attribute information.

Display lists and segments are described in Chapter 3.

16 OVERVIEW OF VIVID

QIO calls are used to control the processing of display lists. The QIO calls perform
the following functions:

@ Allocate a segment area on the host

¢ Define a segment in a host-allocated area

® Download a segment to the VSV21 processor

¢ Delete a segment from the host memory or VSV21 memory
@ Start, stop and resume segment execution

® Define report brocessing requirements

The use of QI0s is described in Chapter 4.

2.3.2 VIVID Subroutine Library (VSL)
VSL is a library of functions and subroutines (see Chapter 5). VSL functions and
subroutines control the segments, execute segment or drawing commands and
handle replies from VIVID. VSL automatically generates VIVID drawing instructions
and parameters from the VIVID instruction set. You can also call VSL functions and
subroutines to do the following:

® Initiakize display list brocessing

® Startor end a segment

® Execute a segment

® Save or restore a segment on disk

® Load a segment to VSV21 from a disk or the host memory

¢ Delete a segment

® Get keyboard input

@ Geta report

¢ End display list processing

OVERVIEW OF VIVID 17

2.4 CONTROL INSTRUCTIONS

Control instructions regulate the operation of the VIVID interpreter. The set of controi
instructions is as follows:

@

START INSTRUCTION LIST

Identifies the contents of the segment as display instructions.
START__FONT

identifies the segment contents as a font.

START _PIXEL_ DATA

identifies the segment contents as pixel data.

START _KEYBOARD_ DATA

Identifies the segment contents as keyboard input.

START REPORT__DATA

\dentifies the segment contents as yeports.

START ATTRIBUTES_ DATA

Identifies the segment contents as global attributes data.
INITIALIZE

Causes one or more graphics control item to be reset to a default value,
CALL__ SEGMENT

Transfers execution to the identified segment in host memory or VSV21
memory.

SAVE__ATTRIBUTES

Writes the current attributes to a stack in VSV21 memory.
RESTORE__ATTRIBUTES

Reads the latest attributes from the stack in the VS5V21 memory.
SAVE_ ATTRIBUTES and RESTORE__ATTRIBUTES allow attributes in a

nested segment to be changed and recovered before control is returned to
the calling segment.

18

OVERVIEW OF VIVID

DUMP__ATTRIBUTES

Saves the current set of global attributes in a segment.
RECOVER__ATTRIBUTES

Recovers specified attributes from a segment,
START__ATTRIBUTES _DATA

Identifies the segment as holding saved attributes.

DISPLAY WAIT

Delays execution of the next display instruction for a specified time.

NO_ OPERATION

Causes no operation to be performed. This instruction may be used during
program testing. Patching a segment may result in gaps that can be filled
with NO__ OPERATION instructions.

STOP DISPLAY

Stops the processing of segments and returns controf to the application
program.

CREATE _ SEGMENT
Creates an empty segment in the VSV21 memory.
SEGMENT__RETURN

Marks the end of a segment. Control is returned to the user program or to
the invoking segment level.

JUMP - RELATIVE
Causes a jump in segment execution by a specified relative ofiset.
DISPLAY__REPEAT

Defines the start of a loop in the segment. Loops can be nested up fo 32
levels deep.

DISPLAY END_ REPEAT

Defines the end of a loop in the segment.

OVERVIEW OF VIVID 19

25 THE VIEWING TRANSFORMATION

To display a stored picture, VIVID uses the following areas of screen and memaory:

@

VIVID Address Space

VIVID defines picture data in virtual coordinates space called VIVID
Address Space {VAS). VAS holds a picture in the form of Cartesian (X,Y)
coordinates. The range of both X and Y is + 32K.

The Screen Dimensions

You can define the scale and aspect ratio of the display by defining the
screen dimensions. These are the number of VAS units to be displayed in
hoth X and Y directions.

The VIVID Window
The VIVID window is the area of VAS which will be mapped to the viewport.
You can set the origin {lower left corner) of the window. The extent of the

window can be input as a parameter ot determined by the screen
dimensions.

The Viewport

The viewport is an area of the screen into which the window is projected.

The relationships between these areas are summarized in Figure 2-1.

Images can be entered into VAS in either of the following ways:

Untransformed

The picture data in the segment is preceded by a DRAWING_ VAS
instruction. This identifies the data as actual VAS units and disables the
current magnification and translation factors.

Transformed

The picture data in the segment is preceded by a DRAWING _TRANSFORM
instruction. This indicates that the data is in units which require
transformation before display, and enables the magnification and transiation
factors.

20 OVERVIEW OF VIVID

+32K
VIVID ADDRESS
SPACE
APK - 0.0 —» 432K
WINDOW
/!
, i
; !
-32K / d
/ /
+
/
7 ,'"‘
T Xagax Ymax
VIEWPORT
Xptine YamiN
SCREEN

RE4T7

Figure 2-1 Relationships between VIVID Address Space, Window, Viewport and
Screen

The VIVID drawing transformation can be regarded as being in two stages:
1. Transforming the units given in the segment to VAS units.

2. Transforming the VAS units to screen dispfay units.

2.5.1 Transforming Input Data to VAS Units

You can transform the input data to VAS units by using the following VIVID
instructions: '

¢ DRAWING_ MAGNIFICATION

Defines the magnification of the elements being entered to VAS, in both
absolute and refative drawing operations.

¢ DRAWING TRANSLATION

Defines the point which corresponds to (0,0} in subsequent drawing
instructions.

OVERVIEW OF VIVID 21

DRAWING__ TRANSFORM

Applies the current magnification and translation to subsequent drawing
instructions.

DRAWING__VAS

Disables the current magnification and transiation. Subsequent drawing
instructions have VAS units and origin.

252 Transforming VAS Units to Screen Display Units

You can project the picture data stored in VAS to the screen by using the following
VIVID instructions:

SCREEN__ DIMENSIONS

Defines the number of logical pixels displayed in each dimension of the
screen. This allows you 1o define the aspect ratio and resolution of the
display.

WINDOW _ORIGIN

Sets the window origin to a VAS coordinate. This position is the lower left
corner of the window.

7ZOOM_ FACTOR

Defines magnification factors for zoom magnification of the window in X and
v directions. This allows you t0 magnify the picture.

SET_ VIEWPORT

Defines the area of the screen used to display the image. The window
is mapped to the viewport using this instruction, along with either
the WINDOW _ORIGIN and ZOOM_ FACTOR instructions or the
SET_ WINDOW instruction.

SET_ WINDOW
Defines a window in VAS to pe projected on to the viewport. This is

equivalentto a combination of WINDOW _ORIGIN and ZOOM _FACTOR
instructions.

22

OVERVIEW OF VIVID

2.6 GLOBAL ATTRIBUTE INSTRUCTIONS

Globat attribute instructions describe how objects will be drawn. The commands are
as follows:

SCREEN_BLINK

Enables or disables blinking.
BLINK _TIMING

Sets the blink timing.
SCREEN_ BLANK

Enables or disables screen blanking. Drawing is faster when the screen is
blank.

FOREGROUND COLOR

Sets the foreground color to be used for drawing and text.
BACKGROUND COLOR

Sets the background color to be used for drawing and text,
NORMAL _COLORS

Sets up to 16 colors in terms of Color Look-up Table (CLUT) index and relative
intensities of red, green and blue. The CLUT is described in Chapter 18.

BLINK__COLORS
Defines CLUT indices and alternate colors for the blink colors,
BLINK _COUNT
Defines the number of colors that blink when blink is enabled.
DRAWING_ MODE
Sets the drawing mode as follows:
— foreground and background, foreground only or background only

— conditional replacement of display image

OVERVIEW QF VIVID 23

e LINE_TEXTURE
Defines the line texture as a string of foreground and background bits.
e AREA TEXTURE

Defines the area texture as a matrix of foreground and background bits.

27 DRAWING INSTRUCTIONS
Many drawing instructions operate in two modes:
e Absolute

This specifies a position as an absolute location in VAS. Absolute
instructions have the suffix _ ABS.

e Helative

This specifies a relative position, defined in terms of displacement from the
current position. Relative instructions have the suffix _ REL.

The set of drawing instructions is as follows:

e MOVE_ABS
MOVE__REL

Moves to the specified position. Nothing is drawn.
e MOVE_TO_CURSOR
Moves the current drawing position to the cursor position.

e LINES ABS
LINES REL

Draws lines from the current position to specified points.

s POLYMARKS_ ABS
POLYMARKS__REL

Draws the specified marker character at the specified points.

e ARCS_ABS
ARCS_ REL

Draws the specified sequence of circular arcs.

24

OVERVIEW OF VIVID

ELLIPSE__ARCS _ABS
ELLIPSE _ARCS_ REL

Draws the specified sequence of elliptical arcs.

RECTANGLE ABS
RECTANGLE REL

Draws a rectangle defined by a vertex at the current position and the
specified diagonal vertex.

ELLIPSE

Draws an ellipse with a specified aspect ratio and major axis whose center
is the current position.

CIRCLE

Draws a circle of a specified radius whose center is the current position.
DOT

Draws a dot at the current position. The point defined by the terminating

position in the instructions in this section is not drawn on the screen. You
must draw it explicitly with a DOT instruction.

2.8 FILLED FIGURE INSTRUCTIONS

Afitled figure is an area of the screen which is fifted by a pattern. The instruction used
to fill the area determines the boundary conditions, and may be as follows:

FILLED_RECT _ABS
FILLED RECT REL

Draws a filed rectangle from a vertex at the current position to the diagonal
vertex you specify. The rectangle is filled with the area texture pattern,

FLOOD__AREA

Uses the area texture pattern to fill the area defined by a specific edge color
and containing the current position.

PAINT _AREA

Uses the area texture pattern to filt an area of specific color containing the
current position.

OVERVIEWOF VIVID 25

2.8 TEXT INSTRUCTIONS

The VIVID text instructions deal with setting up and using fonts to display
alphanumeric characters. A VIVID font is a set of indexed cells which contain
pictorial information coded by pixel. The set of text instructions is as follows:

INITIALIZE_ FONT

Initializes the specified segment as a font.

SET _FONT

Seis the current font.

LOAD CHAR_ CELL

Loads a numbered character cell into the font using pixel data.
CELL OBLIQUE

Defines whether subsequent cells are to be written normally or in italic
(sloped) form.

CELL__ROTATION
Defines the angle at which cells are to be written to the display.
CELL_ SIZE

Defines the display image size and the displacement of the stored font cell
within the display cell.

CELL MAGNIFICATION

Defines the factors by which the cell is to be magnified vertically and
horizontally.

CELL _MOVEMENT

Defines the vertical and horizontal disptacement from the end of one
character cell to the final position.

DRAW CHARS
Displays the characters specified by the accompanying cell numbers. The

cell number is specified by one parameter word. This allows 16-bit
addressing, providing address space for a font of up to 64K characters.

26

OVERVIEW OF VIVID

DRAW_PACKED CHARS

Displays the characters specified by the accompanying cell numbers. Two
cell numbers are specified by a parameter word. This provides 8-bit
addressing, so a font of up to 256 cells may be referenced,

2.10 AREA OPERATION INSTRUCTIONS

Area operation instructions perform operations on pixel memaory.

@

CLEAR__SCREEN

Clears the displayed image.
CLEAR_ VIEWPORT
Clears the viewport.
SCROLL_ VIEWPORT

Moves the data vertically, horizontally or diagonally to the position you
define within the viewport. Data moved outside the viewport is lost.

PIXEL__READBACK

Reads a display image area to a specified segment. The segment may be
used for pixel write operations.

PIXEL_WRITE

Writes a specified segment containing pixel data to the display. The imageis
clipped by the viewport.

FAST__PIXEL WRITE

Writes a specified segment containing pixel data to the display from the host
or YSV21 memory. The viewport is ignored.

FAST__PIXEL_MODIFY

Performs a specified logical operation between the contents of a specified
pixel data segment and the image data. The viewport is ignored.

SELECTIVE_ CLEAR

Clears a defined area, depending on the outcome of a logical operation
between a parameter and defined fmage data.

QVERVIEW OF VIVID 27

e COPY ABS
COPY _REL

Copy a specified areato a differentarea with a specified vertex and attitude.

211 INTERACTIVE INSTRUCTIONS

Interactive instructions determine cursor characteristics, switch interrupt facilities
and keyboard input.

The set of interactive instructions is as follows:

e CURSOR__STYLE
Sets the cursor style to the shape specified by the parameters, or to one of
the default cursor styles. The default styles are small cross-hair and full-
screen cross-hair. The parameters define pixel data.

e POSITION CURSOR
Sets the cursor to the position defined by the parameters.

e CURSOR_VISIBILITY |
Defines whether or not the cursor is visible.

¢ RUBBER__BAND

Defines rubber-band characteristics (none, linear or rectangle) and the
base point.

e SWITCH REPORT__ENABLE

Enables a facility for sending a pointing device report {o the host processor.
e SWITCH REPORT__DISABLE

Disables switch reports.
e AUTOSWITCH

Simulates a switch interrupt after a specified time. Display list processing
continues.

e WAIT SWITCH

Causes the processor to wait for one of a specified range of switch
interrupts before executing the next VIVID instruction.

28

212

OVERVIEW OF VIVID

MATCH_ ENABLE

Enables a report facility. When subsequent drawing meets the cursor
position, a report including the ID of the segment and the display iist
instruction which caused the pixel at the current position to be drawn is sent
to the report segment.

MATCH_ DISABLE

Disables the maich report facility.

ACCEPT _KEYBOARD_ INPUT

Passes input from the keyboard into a specified segment. Input from the
keyboard can continue until one of the following ecours:

— the specified termination character is received

— the buffer is full

— aspecified number of characters has been read
input may be echoed to the screen.
START _KEYBOARD INPUT
Begins keyboard input for asynchronous processing. Input is directed to the
AST on RSX-11M-PLUS and Micro/RSX systems, and to the mailbox on
MicroVMS systems. The input is echoed to the screen.

STOP__KEYBOARD _INPUT

Disables keyboard input for asynchronous processing.

REPORT HANDLING INSTRUCTION

The appilication program can request reports on the following:

Current drawing position in VAS
Current cursor position in VAS
Current text parameters

Current global attribute parameters

Current transformation parameters

OVERVIEW OF VIVID 29

e Screen format

e Space available for downloaded segments

e |Ds of segments in the VEV21 or host memory
e VIVID version number

e Nested segment calls to the current segment

VIVID can be programmed to ignore certain classes of report, or to direct themto a
mailbox in VMS or to a report segment. This allows you to optimize the performance
of the VSV21 and to accept input from peripheral devices.

If a report segment has been defined, the VIVID interpreter will initialize it at the start
of segment processing. If a report is generated during the processing of a QIO
request, it is written to the current report segment. Hf no report segment, AST or
mailbox is defined, the report is fost. The report segment includes details of events
occurring during display segment processing, such as input from peripheral
devices.

CHAPTER 3
DISPLAY LISTS

A display listis a list of VIVID instructions and data which defines a picture. AVIVID
display list consists of a number of segments.

A segment is a list of VIVID instructions and data which have one of six specific
functions, depending on the segment type. The instructions in a segment are in the
form of opcodes. The segment type is identified by the first instruction in the
segment,

The first word of a segment defines the segment type. A segment can be one of six
ypes:

e Instruction segment, consisting of VIVID instructions, stored as opcodes
and parameters

e Font segment, consisting of a set of character cells

e Pixel data segment, consisting of a pixel data map

e Keyboard segment, consisting of data input from the keyboard
e Report segment, consisting of report packets

e Attribute segment, consisting of global atiributes data

The segment types are described in Section 3.2.
You can pass segments to the task by one of the following means:

e Using a QIO cali io communicate directly with the VIVID interpreter. The
VIVID 1O functions are described in Chapter 4.

e Calling functions from the VIVID Subroutine Library (VSL) described in
Chapter 5.

31

32 DISPLAY LISTS

Do not mix these methods in an individual application; use only QIO calls or only
VSL.

3.1 IDENTIFYING SEGMENTS

When you are building a segment, you give it an 1D number. This allows VIVID to
access the segment individually. The segment ID is stored in the second word of the
segment.

VIVID instructions can identify segments in two ways:

@ ID number — segments stored on the host are given an ID number as a
parameter within a QIO call.

® Address - each segment downloaded to the VSV21 is given an address as

@ parameter in the downloading QIO call.

The segment ID is in two parts: class and number within class. This structure allows
Yyou to group similar segments in a class to facilitate storing and deleting groups of
segments (Section 3.2).

It occupies two bytes, as folfows:

BYTE CONTENTS RANGE

MSB Class Host: 110 32
VSV21:1to 16

LSB Number 1to 255

Two segment class numbers are reserved as follows:
¢ Class 16 is used for multinational font segments

® Class 32 is used for VSL segments

You should avoid using these class numbers when building your own segments.

You can delete segiment D numbers. Deleting the IDs of host segments makes them
inaccessible to the VSV21 but does not otherwise affect the segments,

DISPLAY LISTS a3

3.2 STORING AND DELETING SEGMENTS
321 Storing Segments in the Host Memory
VIVID allows storage of up 512 segments in the host memary. Host-resident
segments are stored in a contiguous area of memory, known as the display area.
You use a QIO or a VSL function to identify the display area to the host device driver
for the duration of the task. When a VSL function transfers segments to the host
memory, VSL automatically defines the display area.
It may be convenient to store segments in the host memory it they are not used
frequently enough to justify downloading them tothe VSV21, or if they would not fitin
the VSV21 memory space (Section 3.2.2).
322 Storing Segments in the VEV21 Memory
You can download segments from the host to the VSV21 by three methods:

e Issuing QIOs {Chapter 4)

e Calling VSL functions (Chapter 5)

e Using VCP (Chapter 18}

A downloaded segment remains accessible to all tasks until you delete it.
The advantages of downloading a segment to the VSV21 are as follows:

¢ The VSV21 can access the segment mare quickly

e The load on the Q-bus is reduced

e Space may be released in the host memory
The space available for storing downloaded segments is part of a linear memory of
64K words. This space is also occupied by the VIVID interpreter, downloaded drivers
and their data areas, and saved atiributes. The space available for segments is the
29K words remaining when the drivers and attributes have been stored (Figure 3-1).

The procedure for downloading the VIVID interpreter and the drivers is given in
Section 18.3.

34 DISPLAYLISTS

HIGH
KERNEL
G.5K
POINTING DEVICE DRIVER
TRANSPARENT PORT DRIVER
first
APPROX
SAVED ATTRIBUTES 100 WORDS
EACH
last
f i
' FREE !
1 SPACE i
F
last
SEGMENTS
first
ABOUT
VIVID INTERPRETER } 30K WORDS
Low

REBS?

Figure 3-1 VSy21 Memory Space

It you delete a segment, no extra Space is effectively created unless the segment
was at one end of the memory space. If the space available is not enough for the
segment you are downloading, the VSv21 automatically compresses the stored
segments to rmaximize the free space. However, to minimize compression delays,
you should download segments of long-term requirement before those of short-term
requirement.

About 29K words of memory are avaifable for storing segments and saved
attributes. If this is not enoughto store all the segments you have defined, it is best to
download the segments which the program references most frequently. This
maximizes processing speed.

3.2.3 Deleting Segments

You can delete an specified segment from VSV21 memory or host memory by using
a QIO calf or a VSL subroutine and the segment iD. To delete all segments of a
particular class from memory, use a delete command with that class number and a
segment number of zero. The use of this command fs described in Chapter 4.

DISPLAY LISTS 35

Deleting a host segment makes the segment inaccessible to the V8V21, but does
not delete the data from the host memory.

Deleting on-board segments allows the VYSV21 to recover memory space. A
segment can be deleted from the VSV21 memory in two ways:

e Deletethe addresses ofthe segment. This frees the VSV21 memoty space.

e Define or download a segment which has the same number as the existing
segment. This replaces the existing segment.

3.2.4 The VIVID Default Font

The VIVID default font is downioaded automatically with the VIVID interpreter. ltis
stored in VSV21 memory asa segment, with segment D of 10FF. ltcanbe deletedto
free VSV21 memory space.

3.3 SEGMENT TYPES

There are six types of segment. The first word of the segment defines the segment
type. The second word contains the segment identifier. The third word contains the
segment length in bytes (Figure 3-2). The contents of the remaining words depend
on the segment type.

‘ IDENTIFIER WORD O

iD NUMBER WORD 1
NUMBER OF BYTES WORD 2

Redd?

Figure 3-2 Contents of the First Three Words of a Segment

33.1 Insiruction Segment
Identifier: STARTﬁ!NSTRUCTlON#LIST

Each instruction segment holds VIVID instructions and associated data. The first
word of a VIVID instruction has the instruction code in the most significant byte and
the length (number of words) of the associated parameter listin the feast significant
byte.

if the number of parameters exceeds 254 or is variable, set the number of
parameters to 255 and terminate the parameter list with the END_ PARAMETERS
delimiter (value hex 8000, decimal 32768).

36 DISPLAY LISTS

3.3.2 Font Segment
Identifier: START _FONT

The START _FONT instruction and parameter list are set up automatically when a
fontis created with the INITIALIZE_ FONT instruction. You must include it if you are
setting up a font segment for transmission to the VSV21 in any other way.

Specify the number of words used to define each cell in the font with a START FONT
parameter. There may be up to 16 words. Each word represents a row of 16 pixels.
Each bit represents one pixel. The pixel state (foreground or background) is
indicated by setting the bitto 1 or 0 respectively. If the cell is to be legs than 16 pixels
wide, the unused pixels are ignored.

Pixel rows in a celf are represented by words in inverse order: the first word in the
segment represents the bottom pixel row on the display, and bit 0 represenis the
leftmost pixel of the cell,

The default font {segment ID 10FF) is stored in VSV21 memory automatically when
the VIVID interpreter is downloaded. The Segment which defines the defautt font is
listed in Appendix B.

3.3.3 Pixel Data Segmeni
Identifier: START_ PIXEL_ DATA

The START‘PIXEL‘DATA instruction is set up automatically when pixel data is
written using the PIXEL._READBACK instruction.

The pixel data map is the form in which a rectangular area of the display image is
stored. The rectangle is defined in terms of a vertex origin (X,Y) and the
displacement {DX,DY) from that vertex.

Example: DX and DY positive

if both DX and DY are positive, the defined vertex is at the lower left corner of the
rectangle. The pixel data is stored in the segment beginning with the left pixelin the
bottom row and continuing left to right and bottom to top. In the folfowing examples,
the position of each number corresponds to the pixel position: the number itself
refers to a storage position in the data segment. The defined vertex is at the asterisk (.

DISPLAY LISTS 37

19 20 21 22 23 24 —~
10 1% 12 13 14 15 16 17 18

128456789

Example: DX negative, DY positive

If DX is negative and DY is positive, the vertex is at the lower right corner of the
defined rectangle, and the pixels are stored in the segment as follows:

e 24 23 22 21 20 19
48 17 16 15 14 13 12 11 10
g 8 7 6 5 4 3 2 1
3.3.4 Keyhoard Input Segment
identifier: START__KEYBOARDﬁDATA

The START_KEYBOARD(DATA instruction is initialized when keyhoard data
input is initiated by an ACCEPTQKEYBOARDlePUT instruction.

The end pointer and completion flags are parameters of the START KEYBOARD__
INPUT instruction. As the keyboard data is written to the segment, the end pointer is
updated. When input is complete, the completion flag is set.

Two keyboard input characters are stored in each word. Characters are represented
as they are in VT220 emutation,

The extent of the segment is stored in a STAF{T_KEYBOARD‘DATA parameter.

33.5 Report Segment
identifier: START_REPORT;DATA

The START’REPORTHDATA instruction is set up automatically by a Define
Reporting QIO. 1t can be set up by the Start Segment Exection QIO if the report
segment is already defined. Reports are written to the segment during display list
processing.

38 DISPLAY LiSTS

A segment can be defined as a reporting segment and initialized by any of three
methods:

e Define a new Segment as a reporting segment as follows:
1. Define a segment using the Define Segment QIO.

2. Define the segment as a report segment and set up the
report mask using the Define Reporting QIO.

3. lInitialize the segment by issuing a Start Segment Execution

call without any reporting parameters.
® Define a new Segment as a reporting segment as follows:

1. Define a segment using the Define Segment QIO,

2. Define the Segment as a reporting segment and initialize it
by issuing a Start Segment Execution QIO with the optional
reporting parameters,

® [nitialize a previously-defined reporting segment as foifows:

If a segment has already been defined as & report segment a

Start Segment QIO without the optional reporting parameters is

sufficient to initialize it.

3.3.6 Attribute Segment

Identifier: START_ATTFHBUTES‘DATA

The STAF{TkATTF%IBUTES¥DATA instruction is automatically set up in a segment
by a DUMP_ ATTRIBUTES instruction specifying the segment ID.

if the segment does not already exist, it is created on board the VSv21.

If the segment exists and is big enough to hold the attributes, the START
ATTRIBUTES DATA instruction is written to the beginning of the segment.

if the segment exists but is too smaif to hold the atiributes, an error results.

CHAPTER 4
VIVID 1/0O FUNCTIONS

The application program running on the host processor uses QIO calls to
communicate with the VSV21 device driver. The QIO calls described in this chapter
may be used to carry out the following operations:

e Atiach and detach the VSV21 device

e Allocate and release display areas on the host

e Define, delete and load segments

@ Stari, stop and resume execution of segments
vou can download segments from the host memory to the VSV21 memory by using
QIO calls. An individual segment is identified for access by its segmen! address
(Section 3.1).
VIVID allows storage of up 10 512 defined segments in the host memory. The
number of segments which can he stored in the VSV21 memory is limited by the
memory space occupied by downloaded drivers and saved attributes. A total of
about 29K words of VSV21 memory i available for segmenis. The VSV21 memory
is described in Section 3.2.
You can delete individual segments on the VSV21 by using QlOs. This process frees
the VSV21 memory space if the segments remaining were downioaded before the
deleted segments. If there i insufficient space, the download operation performs a

compress. 10 minimize processing time, download the long-term segments first.

An introduction to the QIO call mechanism is given in Appendix A.

39

40 VIVID /O FUNCTIONS

You can issue a VIVID QIO call from a program running under RSX-11M-PLUS or
Micro/RSX or Microvivs. The format of a VIVID QiQ call depends on:

% The host Operating system:
~ RSX-11M-PLUS or Micro/RSX
- MicrovMms

® The programming fanguage

This can be MACRO-11 or MACRO-32, or any high-level language for
which the host has a compiler.

Each call includes a function and a kst of parameters. The error and warning return
codes are described in Section 4.3.

4.1 THE QIO FUNCTIONS AND PARAMETERS

Each of the VIVID QIO functions is described in this section. For each function, the
version for RSX-11M-PLUS and Micro/RSX is given first, followed by the MicrovMs

An example of a VIVID MACRO-32 program which includes QIO calls is given in
Chapter 19,

4.1.1 Attach VSV21 Device - [0.ATT

This function attaches a VSV21 unit to the task.

RSX-11M-PLUS ang Micro/RSX
Function: I0O.ATT
Octal value: 1400

Parameters: None

MicrovMs

This function is not used under MicroVMS.

VIVID /O FUNCTIONS

442 Detach VSV21 Device — 10.DET

This function detaches the vav21 unit from the task.

RSX-11M-PLUS and Micro/BSX
Function: I0.DET
Octal vaiue: 2000

Parameters: None

MicroVMS

This function is not used under MicroVMS.

4.4.3 Allocate Display Area— 10.ADA and 10$_ALLOCATE

This allocates a display area for segments in the hostmemory. Only one display area
can be allocated to the device. A later Allocate call releases the already-allocated

arca and allocates the newly-defined area.

If shared device access is required under MicroVMS, the allocated display is a
shared global section. Applications using this allocated display area must map the

section in identical virtual address space.

RSX-11M-PLUS and Micro/RSX
Function: iO.ADA
QOctal value: 7400
Parameters: p1 = virtual address of area
p2 = number of bytes in display area

p3 = partition name (RADS0) characters 1103
p4 = partition name (RAD50) characters 4106

Two of these parameters, either p1 and p2 or p3 and p4, can be

specified. The remaining two must be setto zero.

41

42 VIVID I/O FUNCTIONS

MicroVMS
Function: I0$_ ALLOCATE
Hex Value: 3C
Parameters: p1 = virtual address of areg
P2 = number of bytes in area
4.1.4 Release Display Area — I0.RDA and i0$_ RELEASE
Thisreleases a display list area which has been allocated using the Allocate function
(Section 4.1.2). References to host segments are deleted and ail display list
processing stops.
RSX-11M-PLUS and Micro/RSX
Function: IC.RDA
Octat value: 10000

Parameters: None

MicrovMs
Function: 10$__ RELEASE
Hex value: 3D

Parameters: None

4.1.5 Define Segment — I0.DFS and 10$ DEFSEG

This function defines a segmentwhich is already in the host display area by entering
its details on the VSv21 segment map. No download takes place,

The segment ID number must be set up in word 1 of the segment before the QIO is
issued. The number of bytes in the segment is stored in word 2 of the segment
(Figure 4-1). In general, this should be maintained by the application program. VIVID
writes the length in bytes given by this function into word 2 of the segment. if you
want to change the segment length, you must redefine the segment.

VIVID /O FUNCTIONS 43

IDENTIFIER WORD O
ID NUMBER WORD 1

L_NUIVIBER OF BYTES l WORD 2

RE4BZ

Figure 4-1 Format of the First Three Words of a Defined Segment

1SX-11M-PLUS and Micro/RSX
Function: 10.DFS
Octal value: 5400

Parameters: None

MicroVMS
Function: I0$_ DEFSEG
Hex value: 3A

Parameters: pt = virtual address of segment
p2 = length of segment in bytes

4.4.6 Load Segment—Ii0.LSG and 10$__ LOADSEG

This function downloads a segment trom the host to the VSV21 device and enters
segment details into the segment map. Any segment with the same 1D as the new
segment is automatically deleted.

The complete segment must be downloaded without the intervention of any other
QIO. The system recognizes the end of the transfer when the number of words
transferred is equal to, or greater than, the segment length stored in the third word of
the segment. The length stored here determines the total amount of space allocated
to the segment.

44 VIVID /O FUNCTIONS

RSX-11M-PLUS and Micro/RSX
Function: 10.L5G
Octal vaiue: 6000
Parameters: p1 = virtual address of segment
P2 = number of bytes in transfer block
p3 = block sequence number
MicrovMs
Function: I0$_ LOADSEG
Hex value: 3B
Parameters: pt = virtual address of segment
P2 = number of bytes in transfer block
P3 = block sequence number
4.1.7 Delete Segment - 10.DSG and i0$ _DELSEG
This deletes a segment from the host memory. If the segment has been downtoaded
to the VSV21, the space there is freed.
RSX-11M-PLUS and Micro/RSX
Function: 10.DSG
Octal value: 11000

Parameters: p1 = segment iD

MicroVMS
Function: I0$__DELSEG
Hex value: 2F

Parameters: p1 = segment ID

VIVID /O FUNCTIONS 45

41.8 Start Segment Execution — 10.8SE and 10$ STARTSEG
This function starts the execution of a single predefined segment. The time-out
parameter is optional; the defautt value is five seconds.
RSX-11M-PLUS and Micro/RSX
Function: 10.SSE
Octal value: 11400
parameters: p1 = segment D
p2 = time-out period in seconds
p3 = report segment ID. This segment must already be defined. See
Saction 3.3.5 for the definition procedure.
pd = reporting mask. This is described in Section 4.1.11.
MicroVMS
Function: 10$ STARTSEG
Hex value: 3E
Parameters: pl = segment ID
p2 = time-out period in seconds
p3 = report segment ID
p4 = reporting mask
4198 Stop Display List Execution — 10.STP and 10$_ STOP
This function stops display list execution when the current display list instruction is
completed. Processing a display list instruction is not interrupted, except for
DISPLAY _WAIT, WAIT__SWITCH and ACCEPT_KEYBOAHDﬁINPUT
instructions.
RSX-11M-PLUS and Micro/RSX
Function: 10.5TP

Qctal value: 3400

Parameters: None

46 VIVID IO FUNCTIONS

MicroVMS
Function: 10$ _STOP
Hex value: 135

Parameters: None

41.10 Resume Execution — 10.REX and 10$ _ CONTINUE

Using this function, display list execution is resumed at the next instruction. The

parameter p1 is optional: the default value is five seconds. If display list processing
terminates with an error condition, resumption of processing causes an error.
RSX-11M-PLUS and Micro/RSX
Function: HO.REX
Octal value: 12400
Parameters: p1 = time-out period in seconds
P2 = report segment ID
P3 = reporting mask
MicroVivs
Function: 10$__CONTINUE
Hex value: 3F
Parameters: p1 = time out period in seconds (default = 5)
p2 = report segment ID
P3 = reporting mask
4.1.11 Define Reporting - 10.DRP ang 10$__DEFREP

This function defines the reporting requirements by the report class and tnitiatizes
the report segment.

VIVID /O FUNCTIONS

47

One of the parameters required is a reporting mask. This is & set of bit pairs, as

follows:
BIT CONTENTS
NUMBERS
15t0 10 unassigned
9and & {imeout/stop
7and 6 match
5and 4 switch
3and 2 errors
1and 0 warnings
The bit pair values have the following effects:
BIT PAIR ACTION
VALUES REQUIRED
0 as previously
1 to report segment
2 to maitbox
3 ignore

In the case of MicroVMS, the application program
Assign Channet System Service if any reports are to
to be handled asynchronously. The mailbox should be e
AST. This means that the processing AST routine is ac

driver makes an entry.

The method of defining report segments is given in Section

RSX-11M-PLUS and Micro/RSX
Function: 10.DRP

Octal vatue: 10400

Parameters: p1 = reporting segment 1D

p2 = reporting mask
p3 = AST address

3.35.

must assign a mailbox on the
be directed to a mailbox, that s,
nabled for Write Attention
tivated when the VSV21

48 VIVID O FUNCTIONS

MicroViMs

Function: 10% _DEFREP

Hex value: 34

Parameters: p1 = reporting mask ID

p2 = reporting mask
p3 = mailbox channel

4.1.12 Read Data — [0.RED and i0$_ READDATA

RSX-11M-PLUS and Micro/RSX
Function: I0.RED
Octal value: 6400
Parameters: pt = buffer address
P2 = buffer length
p3 = table ID
MicrovMs
Function: 10$__READDATA
Hex value: 39
Parameters: p1 = buffer address
P2 = buffer length
p3 = table ID
4.1.13 Write Data — 10.WRT and 10$_ WRITEDATA
RSX-11M-PLUS and Micro/RSX
Function: IO.WRT
Octal value: 7000
Parameters: p1 = buffer address

p2 = buffer length
p3 = tahle ID

VIVID YO FUNCTIONS 49

MicroVMS
Function: 10$__ WRITEDATA
Hex value: 6400
Parameters: p1 = buffer address
p2 = buffer length
p3 = table 1D
4.2 QIO STATUS REPLIES
This section describes the information returned from QiOs and the error and
warning codes in the report packets.
4.2.1 QIO Replies from RSX-11M-PLUS and Micro/RSX

The contents of the /O status block are shown in Figure 4-2.

vsv21 COMPLETION CODE| QIO COMPLETION CODE

COUNT OF REPCRTS 1N REFORY SEGMENT

AEA52

Figure 4-2 Contents of RSX I/O Status Block

The QIO reply byte contains the following octal codes and decimal equivalents:

OCTAL DECIMAL REPLY CODE

001 -1 1S.8UC — Success

361 -15 IE.ABQ — QIO sborted

372 —6 [E.SPC — Hlegal user buffer

376 -2 IE.IFC — lllegal function code

254 -84 IE.ALC — Aliocation failure (define segmeni)
366 -8 |E.DAA — Device already attached

242 —94 |E.PNS — Partitior/Region not in system

50 VIVID YO FUNCTIONS

The VIVID reply byte contains the following decimal codes, where relevant:

0 — Normal completion

128 — Stop acknowledge

129 — Maximum matches reached

130 - VIVID error
The number of reports indicates the total number of reports entered to the report
display segment. f no report display segment has been defined, then the number of
reports that would have been written 1o the report display segment is given,

4.2.2 QIO Replies from MicroVMS

The contents of the I/O siatus block are given in Figure 4-3.

WORD
31 16 15 00
QIO REPLY VIVID REPLY O AND 1
NUMBER OF REPORTS 2 AND 3

RE480

Figure 4-3 Contents of MicroVMS 1/0 Status Block

The QIO reply word may contain one of the following:

HEX CODE MEANING

0001 SS_$%_ NORMAL Successful completion
030C SS_$_ BUFBYTALI Buffer byte aligned
oc2C 55 3 ABORT _QIO aborted

018C S5_$ LENVIO Buffer length violation
022C S5_§ TIMEQUT QIO time-out

0334 88§ DEVREQERR Device request error
02C4 SS_§ DEVACTIVE Device active

032C SS_$_DEVCMDERR Device command error

VIVID /O FUNCTIONS 51

The VIVID reply word contains one of the following decimat codes:

0 — Normal completion

128 — Stop acknowledge

129 — Maximum matches reached

130 - VIVID error
The number of reporis indicates the total number of reports entered to the report
segment. If no report segment has been defined. then the number of reports that
would have been written to the report segment is given.
423 VIVID Error/Warning Codes

The following decimal error/warning codes are used in VIVID_WARNING and
VIVID__ERROR report packets:

100 — Memory protection error

101 - Reserved instruction

102 - Invalid segment type

103 — Invalid segment 1D

104 — Maximum number of segments reached
105 — Instruction sequence error

106 — Segment not defined

107 — No report segment defined

108 — Segment stack overflow

109 — Attribute stack overflow

110 — No attributes saved

111 — Parameter ou& of range

112 — Incorrect number of parameters

113 — No space in segment for output

52 VIVID /O FUNCTIONS

114 - Total magnification exceeds 127.996

115~ 8TART_FONT in instruction list

116 - START__PIXEL DATA in instruction fist

117 -- START_KEYBOARD‘DATA in instruction list
118 - START‘REPORT_DATA in instruction list
119 - Total magnification less than 1/256

120 — Eliiptic aspect ratio out of range

121 - FLOOD/PAINT_AREA shape is too complex
122 - Segment too small for desired use

123 - Segment is not a font

124 — Download segment ID mismateh

125 - Download block sequence error

126 — Mermory allocation efror

127 — No font is currently defined

128 — Specified segment is not pixel data

129 — Pixel data written has been truncated

130 — Switch interrupts not enabled

131 - Segment ID in segment is incorrect

132 — Segment length in header is incorrect,

CHAPTER 5
THE VIVID SUBROUTINE LIBRARY (VSL)

VSL is a library of functions and subroutines which can be called from a high-level
language. VSL controls the display list segments, executes display fist or drawing
commands and handles replies from VIVID. !t automatically generates VIVID
instructions and parameters.

A class number of 32 is reserved tor V5L segments. You should not use this class
number when building other segments.

There are five groups of functions and one group of subroutines in VSL. Each
function or subroutine has a six-character name of the form VVbaaa where:

e The third letter ‘b’ of the name identifies the VSL function or subroutine
group

e The last three letters denoted by ‘aaa identify the individual function or
subroutine.

The functions and subroutines are categorized as follows:

e General functions (VVXaaa), used to:
_ jnitialize and end display processing
_ execute VIVID instructions defined as parameters
— set the drawing mode

e Segment Manipuiation tunctions (VVCaaa), used to:
— initialize segment building
_ save and restore segments to and from disk
— load segments to the VSV21 from disk and from the host memory

— delete segments

53

54 THE VIVID SUBROUTINE LIBRARY (VSL)

Segment Execution subroutines (VVEaaa), used to:
— start, stop and resume segment execution
Reporting functions (VVRaaa), used to:
~ control input from pointing devices and keyboard
— getstatus and reports
Segment Building functions (VVBaaa), used to:
— start and end segment building
— set the drawing mode
Instruction Generation functions
Each instruction generation function corresponds to a VIVID instruction.
The functions are categorized in the same way as the VIVID instruction set
and have corresponding identifiers as follows:
VVCaaa - Control
VVVaaa — Transformation
VVGaaa — Global Attributes
VVDaaa — Drawing
VVFaaa — Filled Figure
VVTaaa — Text
VVAaaa — Area Operation
VViaaa — interactive
VVQaaa — Report Handling

where “aaa” identifies the individual function.

VSL creates a display area in the host memory with the VVXINI function (Section

5.1.1)

. The display area contains segments and a segment control table. VSL uses

the table to control memory aliocation for segments entered to the display area.

THE VIVID SUBROUTINE LIBRARY (VSL) 55

The display area is a region in RSX-11M-PLUS and Micro/RSX systems. Access o
the region is by means of a window, which you must define when you are building the
task. The window must be mapped into the program space at 28K. The window
characteristics are as follows:

Window name: VV21RG
Window size: 4K words

The display areais & 2 Mbyte global sectionin MicroVMS. Access to the sectionis by
array element. Each element is a two-word integer in the array.

The call formats given are for FORTRAN. All parameters are integers unless
otherwise stated. All the VSL functions return a status value istat. Reply values are

additive: if two different errors are detected, the reply is the sum of the efror codes.

Use the /NOOP gualifier when compiling programs which contain calls to VSL.

51 GENERAL FUNCTIONS
5.1.1 [nitialize Display Processing — VVXINI

Sets up the display area and initializes VIVID processing.

Call format: istat = VVXINI ([dlen [,maxnol})

Parameters: dlen = size of VSL display area in bytes
0 : default of 16K

maxno = maximum number of segments
0 : default of 640

= already initialized
= completed successfully
= gould not create area
= could not create window
{(Micro/RSX and RSX-11 M-PLUS only)

Reply value:

[+ o =S an

5.1.2 End Display Processing — VVXEND

Releases the VSV21 processor and frees the VSV21 buffers. To restart processing,
you must call the VVXINI and VVXATT functions.

56 THE VIVID SUBROUTINE LIBRARY (VSL)

Call format: istat = VVXEND
Parameters: None

Reply value: 0 = completed successfully
1 = unsuccessful

5.1.3 Assign VSV21 Device - VVXASS

Assigns and attaches a VSV21 device to VSL processing.

Call format: istat = VVXASS (dev, lun [, rsien f, clarr]])

Parameters: dev = ySy2q device name

iun = device logical unit number

rslen = length of report segment. If rslen = 0, a default report buffer

size of 1 Kbyte is assumed.

clarr = array containing host classes accessible to unit
Repiy value: 0 = not initialized

1 = completed succesfully

3 = invalid segment class

16 = device afready assigned

32 = could not assign device

64 = could not attach device

256 = more than 512 segments sent to logical unit

512 = VSL region full

1024 = report segment setup failed
2048 = invalid segment class
Notes: You must attach the VSV21 device before using it. You can attach a

maximum of four devices under RSX-11M-PLUS and Micro/RSX and
a maximum of eight under MicroVMS. A unique report segment 1D for
each device is generated in display segments of class 32

The clarr parameter is an array of host classes, nulf terminated, that

are explicitty available to the unit. |f it is omitted, al segments
previously set up on the host are available to the unit.

The numbers of devices which may be attached are as follows:
RSX-11M-PLUS : 4 devices

MicroVMS : 8 devices

THE VIVID SUBROUTINE LIBRARY (VSL) 57

51.4 Release VSV21 Device - VVXREL

Releases the VSV21 device from VSL processing.

Call format: istat = VVXREL (lun)

Parameters: lun = device logical unit number
Reply value: 0 = not initialized
1 = completed successfully
4 = device not assigned
Notes: To detach all the devices when display processing is complete, use

VVXEND (Section 5.1.2).

515 Get VIVID version number - VVXVER

Gets the VIVID version number.

Call format; istat = VVXVER (len, vnarr)

Parameters: len = length of array in bytes (minimum 6}
vnarr = character array for version number

Reply value: 0 = array length too short {<6)
1 = completed successfully

5.2 SEGMENT MANIPULATION FUNCTIONS

These functions provide movement of segments between disk, host and VSV21,
and create segments for input from VSV21 devices.

5.2.1 Save Segments on Disk — VVMSAV

Writes up to eight specified segments on ho

st memory to a disk file.

58 THE VIVID SUBROUTINE LIBRARY (VSL}

Cali format: jstat = VVMSAV (filn, idarr, nseg)

Parameters: filn = name of disk file
idarr = array containing segment IDs
nseg = number of segments to be written
Reply value: 0 = not initialized
1 = completed successfully
4 = segment not found

5.2.2 Restore Segments from Disk — VVMGET

Reads segments to the host memory from a specified disk file. The segments must
already have been saved using VVMSAV or be one of the following types:

@ |Insfruction
& Font

@ Pixel data

Call format: istat = VWMGET (lun, fun, filn)

Parameters: lun = V8V21 logical unit number
—1 : all units for which segment class is valid

fun = FORTRAN unit number for file
filn = name of disk file
Reply value: 0 = not initialized
1 = completed successfully
4 = segment exists on host
16 = device not assigned
32 = define segment failed
256 = over 512 segments for lun
512 = display area full
1024 = too many host segments
2048 = invalid segment class
Notes: if the segment is already in the host memory, no display segments are

created. If any segments have been created already, the success bit
will also be set.

The segment IDs assigned are those appearing in the segments in the
file.

THE VIVID SUBROUTINE LIBRARY (V5L) 59

5.2.3 Copy Segment — VVMCPY

Copies a segment to the VSL disptay area. The segments must have already been
saved using VVMSAV or be of one of the following types:

e Instruction
e Font

e Pixel data

Cali format: istat = VVMCPY (lun, arr)

Parameters: lun = logical unit number
_1 - all units for which segment class is valid
arr = array containing segment
Reply value: 1 = completed successfully
0 = not initialized
4 = segment exists on host
16 = device not assigned
32 = segment download failed
512 = display area fufl
1024 = too many host segments
2048 = invalid segment class
Notes: If a segment already exists, no segment is created or updated.

The segment ID and length are derived from the array.

524 Load Segments from File — VVMDLD
This function reads segments to the VvSV21 memory from a specified disk file. if the
segment s already in VSV21 memory, no segmentis read. The segments must have
been already saved using VVMSAV or be of one of the following types:

e Instruction

e Font

e Pixel data

60 THE VIVID SUBROUTINE LIBRARY (VSL)

Call format: istat = VVMDLD {lun, fun, filn)

Parameters: filn = name of disk file
fun = FORTRAN unit number
lun = device logical unit number

=1 :all units for which segment class is valid

Reply value: 0 = not initialized
1 = completed successfully
4 = segment exisis on host
16 = device not assigned
32 = segment download failed

512 = display area full
1024 = t00 many host segments
2048 = invalid segment class

Notes: If a segment already exists on the VEV21, it is replaced.

It one or more segments have been successfully downloaded when

the error occurs, the success bit is also set in the reply.

The assigned segment IDs are those appearing in the segments in the

file,

The transfer uses a 512-byte work buffer in the display area.

5.25 Load Segment from Host — VVMMLD

Loadtothe VSV21 g segment which has been generated by the application program

between VVBBGN and VVBEND or read from fite using VVMGET.
The segment is downloaded to the indicated logical unit number.

If the segment has been downloaded to all units to which it is defined,
from the display area.

Call format: istat = VVMMLD (fun, segid)

Parameters: lun = logical unit number
—1 rall units for which segment class is valid

segid = segment D

it is deleted

THE VIVID SUBROUTINE LIBRARY (VSL) 61

Reply vatue: 1 — completed successfully
0 = pot initialized
4 = gegment not found
16 — device not assigned
32 — download segment failed
2048 = invalid segment class.
Notes: The segment ID format may be found in Section 3.3.1.

526 Delete Segment— VVMDEL

Deletes a segment on the host or VSV21 memory. The segment may have been
generated by any means.

If the segment is in the display area and has been deleted from alf units to which itis
defined, it is deleted in the display area segment control and the space becomes
free.

Calf format: istat = VVMDEL (lun, seqid)

Il

logical unit number
—1 - alt values for which segment class is valid

Parameters: lun

segid = segment D

Reply value: 1 = completed successfully
4 = gsegment not found
16 — device not assigned
Notes: The segment D format is described in Section 3.3.1.

527 Create Segment— YVMCRS

Creates a segment in the VSL display area for keyboard or pixel data map data input
from the VSV21, or for subsequent use for VIVID instruction generation.

The segment is defined to the indicated togical unit number.

Call format: istat = VVMGCRS (lun, segid, len)

Parameters: iun = VSV21 logical unit number
-1 : alf units
segid = segment ID

len = length of segment in bytes

62 THE VIVID SUBROUTINE LIBRARY (VSL)

Reply value: 0 = not initiafized
1 = completed successfully
4 = segment exists already
16 = device not assigned
32 = define segment failed
256 = over512 segments for lun
512 = display area full
1024 = too many host segments
2048 = invalid segment class
Notes: The segment ID format may be found in Section 3.1.

This facility is also a useful performance tool. The display execution
subroutines only initiate output of a segment. For voiatile top-level
segments, a double buffering system may be implemented.

3.3 SEGMENT EXECUTION SUBROUTINES
These subroutines initiate VSV21 output operations. The operation initiated is
completed only when a further Segment Execution call is made or a Reporting

Function is accessed for the same logical unit.

If status and reports are required, no segment Execution call should intervene
before Reporting calls have been completed.

While the output operation is in progress, the segment is locked and the segment
cannot be written to or deleted.,

9.3.1 Execute Segment — VVEEXE

Initiates output of the specified segment.

Call format: CALL VVEEXE (fun, segid [,tout [.rsegid]])

Parameters: lun = logical unit number
segid = segment ID
fout = time out in seconds

i

rsegid = reporting segment ID

Notes: The segment ID format may be found in Section 3.1.

lfthe time-out value is zero, or omitted, a default value of 10 secondsis
used. If pointing device activity and/or keyboard activity is to occur
during execution of the segment, a considerably longer time-out value
is required.

THE VIVID SUBROUTINE LIBRARY (VSL) 63

If ime-out occurs, there will be a VIVID INTERRUPT packet on the
report segment for the logical unit.

The reporting segment is optional if a reporting segment size was
given to VVXASS. Otherwise any reporis will be fost if no reporting
segment is identified.

if the segment is currently being built, VVBEND is actioned
automatically first.

5.3.2 Resume Segment Execution — VVERES

Resumes execution of the last segment executed or resumed for the indicated
logical unit.

Call format: CALL VVERES (lun [,tout [,rsegid]})

Parameters: lun = |ogical unit number
tout = time out in seconds
0 : default to 5
resegid= reporting segment D

Notes: If the time-out value is zero, or omitted, a default of 5 seconds is used.
If pointing device activity and/or keyboard activity is to occur during
execution of the segment, a considerably longer time out value is
required.

If time out occurs, thete will be a VIVID_ INTERRUPT packet on the
report segment for the logical unit.

The reporting segment is optional it a reporting segment size was
given 1o VVXASS. Otherwise any reports will be lost if no reporting
segment is identified.

5.3.3 Stop Segment Execution - VVESTP

Stops execution of the last segment executed or resumed for the indicated logical

unit.

Call format: CALL VVESTP (lun)

Parameters: [un = logical unit number

Notes: There will be a VIVID _INTERRUPT packet on the report seg ment for
the logical unit.

64 THE VIVID SUBROUTINE LIBRARY (VSL)

54 REPORTING FUNCTIONS
54.1 Get Status — VVRSTA

Provides the status of the preceeding display output for the unit.

Call format: istat = VVRSTA (lun, giost, nrep)

Parameters: lun = logical unit number
giost = QIO status reply (output)
nrep = total report count {output)
Reply value: 0 = not initialized
= completed successiully
16 = device not assigned
Notes: The QIO status replies are given in Section 4.1,

The report count is the total number of reports issued for a previous
call invoking display fist processing. See VVEEXE (Section 5.3.1 }and
VVERES (Section 5.3.2) for further details.

The report formats may be found in Chapter 14,

When status is fequested, any initiated output to the fogical unit is
completed before return from the function.

5.4.2 Get Report - VVRREP

Obtains a report from the report segment for the indicated logical unit number. The
report may be of any type or of a specified type.

Call format: istat = VVRREP (lun, rtype, arr, alen [.rsegid])

il

Parameters: fun togical unit number
nype = report type required

=1l any type
arr = array for report (output)
alen = array length

rsegid = report segment ID

Reply value:

Notes:

THE VIVID SUBRQUTINE LIBRARY {VSL)

0 = not initialized

1 = completed successfully
4 = segment not found

8 = not report segment

16 = device not assigned

32 = report segment overflow
129 = area too short

—32768 = all reports read
See Chapter 14 for details of report requests.

if the area is not long enough, transfer of the report data continues until
the area is full.

Reports may be requested before the Q10 is completed. The bufferis
polled, so QIO completion is not forced.

5.4.3 Get Keyboard Input — VWRKBD

Obtains the contents of the keyboard input segment in the specified string.

Call format:

Parameters:

Reply value:

Notes:

istat = VVRKBD (segid, charralen [dlen], segst])

segid keyboard input segment 10

chary char array to contain input (output)
alen = size of array in bytes

dlen length of data in bytes (output)
segst = segment status {output)

completed successfully

not initialized

segment not found

not keyboard input segment
6 device not assigned

32 report segment exception

129 = area too short

- 0 kO —
T U T

The string entered to the array by the function is a standard ASCII
string, nult terminated (unless overflow occurs).

85

66 THE VIVID SUBROUTINE LIBRARY (VSL)

5.4.4 Get Segment Block - VVRSEG

Get a block of data from a segment in the VSL display area. This is intended
specifically for access to pixel data maps, but may be used to access any segment.

Call format: istat = VVRSEG (segid, start, ilen, barr, olen)

Parameters: segid = segment ID

start = segment start byte offset
ilen = block fength in bytes
barr = array to receive block (output)
olen = length in bytes transferred {output)
Reply Value: 1 = completed successiulty
0 = not initialized
4 = segment not found
32 = start byte offset out of range
129 = area too short
Notes: The blocked transfer aliows processing of farge pixel data maps for

screen printing.

5.5 SEGMENT BUILDING FUNCTIONS
5.5.1 Start Segment — VVBBGN

Starts a new segment. If the segment currently exists in the VSL display area,
initialize it for entry of a new set of VIVID instructions.

The segment header START__INSTRUCTION _LIST {Section 3.3.1) is set up.
Subsequent calls to VIVID Instruction Generation Functions cause VIVID
instructions to be put in this segment.

Call format: istat = VVBBGN {segid)

Parameters: segid = segment ID

Reply value: 1 = 5Uccess
0 = not initialized
4 = segment not found
Notes: The segment ID format may be found in Section 3.1.

if a segment is currently being built, a call to VVBEND (Section 5.5.2)
is implied for that segment.

THE VIVID SUBROUTINE LIBRARY (VSL) 67

5.5.2 End Segment— VVBEND

Ends the segment currently being built. Subsequent calls to VIVID Instruction
Generation Functions are ignored until a call to VVBBGN is encountered.

Call format: istal = VVBEND

Parameters: None

Reply Value: 1 = compieted successfully
0 = not initiakized
8 = no segment build in progress
16 = segment overflow has occurred
Notes: If no display segment is currently being built, no action is performed.

VIVID instructions which overflow an existing display area are lost.

553 SetDrawing Mode — VVBMOD

Sets the mode required for subsequent VIVID Instruction Generation calls to
absolute or relative.

Call format: istat = VVBMOD {(dmode)

Parameters: dmode = drawing mode
0 : absolute (this is the default)

1 : relative
Reply Value: 1 = completed successfully
0 = invalid parameter
Notes: If the mode parameter is not zero, relative drawing is assumed.

554 SetInstruction Parameter Mode — VVBPMD
Sets the parameter mode for subsequent VIVID Instruction Generation functions to

“parameter list” or “array list”. This only affects certain functions. For further details
of the action performed, see Section 5.6.

Call format; istat = VVBPMD (pmode)

68 THE VIVID SUBROUTINE LIBRARY (VSL)

Parameters: pmode = parameter mode:
0 : parameter list (this is the default)

1 : array list
Reply Value: 1 = completed successfully
0 = invalid parameter
Notes: If the mode parameter is not 1, parameter list is assumed.

5.6 INSTRUCTION GENERATION FUNCTIONS

Each VSL instruction generation function generates an instruction from the VIViD
instruction set. An instruction generation function has the same parameters as its
corresponding VIVID instruction.

VSL operates in either of two modes, depending on the most recent call to VVBPMD.
The modes are as follows:

® Parameter list mode
e Array list mode

in parameter list mode (Section 5.5.4) the number of parameters declared on the
function call is variable. All the parameters and the parameter count are passed in
the opcode word to the VIVID instruction. Thus, the list delimiter END _ PARAMETERS
is not required and must not be used. VSL checks that the number of parameters is
within the permitted range for each instruction.

In array list mode (Section 5.5.4) an alternative call format is used for some
functions. These functions are marked “*” in Sections 5.6.1105.6.8. In this case, the
first parameter is an array containing the actual parameter list. The parameler list
may be terminated by END__ PARAMETERS, or a second parameter indicating the
number of parameters in the list may be provided on the function call. The functions
to which this facility applies correspond to the VIVID instructions for which
END__ PARAMETERS may be used.

Where the VIVID instruction has the forms ABS and REL, the mode used is
dependent on the last calt to VVBMOD {Section 5.5.3) encountered.

The function call should occur between VVBBGN and VVBEND calls (Section 1.6).
The call then causes the appropriate VIVID instruction to be added to the segment
being built. Reply values from the function are:

0 = no segment active

1 = completed successfully

2 = segment overflow

THE VIVID SUBROUTINE LIBRARY (VSL) 69

If there is an error reply, no VIVID instruction is generated. However the reply
information is available when the VVBEND instruction is executed so when the
segment is completed, these functions may be accessed as subroutines with
general status information.
5.6.1 Control Functions

VVCINI — INITIALIZE

VVCCAL — CALL_ SEGMENT

VVCSAY — SAVE_ ATTRIBUTES

VVCRES — RESTORE_ ATTRIBUTES

VVCDMP — DUMP_ ATTRIBUTES

VWCRCY — RECOVER__ATTRIBUTES

VVCDWT — DISPLAY_ WAIT

VVCSTP — STOP_ DISPLAY

VVCCRS — CREATE_ SEGMENT

VVCJMP — JUMP_ RELATIVE

VVCREP — DISPLAY__REPEAT

VVCERP - DISPLAY _END_ REPEAT

5.6.2 Transformation Functions
VVVDIM —~ SCREEN_ DIMENSIONS
VVVWOR — WINDOW__ORIGIN
VVVZMF — ZOOM__FACTOR
VVVDRM — DRAWING _MAGNIFICATION
VVVDRT — DRAWING _TRANSLATION
VVVTRN — DRAWING _TRANSFORM

VVVVAS — DRAWING _VAS

70

5.6.3

5.6.4

THE VIVID SUBROUTINE LIBRARY {VSL)

VVVSVU ~ SET VIEWPORT

VVWWND - SET WINDOW

Global Attribute Functions

VVGBLK — SCREEN _BLINK
VVGBLT — BLINK_ TIMING
VVGSCB - SCREEN BLANK
VVGFCL — FOREGROUND _COLOR
VVGBCL - BACKGROUND COLOR
VVGNLC — NORMAL COLORS *
VVGBLC - BLINK__COLORS *
VVGBCT - BLINK__COUNT
VVGMOD — DRAWING MODE
VVGLTX — LINE TEXTURE

VVGATX — AREA TEXTURE

Drawing Functions

VVDMOV — MOVE _ABS, MOVE_ REL
VVDMTC — MOVE TO_ CURSOR

VVDLIN - LINES_ ABS, LINES REL *

VVDPMK — POLYMARKS _ABS, POLYMARKS_ REL *
VVDARC - ARCS_ ABS, ARCS REL *

VVDEAR - ELLIPSE _ARCS_ABS, ELLIPSE ARCS_REL *
VVDREC - RECTANGLE ABS, RECTANGLE REL

VVDELL - ELLIPSE

56.5

5.6.6

5.6.7

THE VIVID SUBROUTINE LIBRARY (VSL)

VVDCRC - CIRCLE

vvDDOT — DOT

Filled Figure Functions
VVFRCT — FILLED_RECT__ABS, FILLED_RECT REL
VVFFLD — FLOOD__AREA

VVFPNT — PAINT_AREA

Text Funciions

VVTIET — INITIALIZE_ FONT
VVTSFT — SET_ FONT

VVTLDG — LOAD _CHAR_ CELL”
VVTOBL - CELL _OBLIQUE
VVTROT — CELL_ ROTATION
VVTSIZ — CELL__SIZE

VVTMAG — CELL_ MAGNIFICATION
VVTMOV — CELL_ MOVEMENT
VVTDRC — DRAW _CHARS*

VVTDRP — DRAW)PACKED_CHARS *

Area Operation Functions
VVACLS — CLEAR__SCREEN
VVACLV — CLEAR_ VIEWPORT
VVASCV — SCROLL_ VIEWPORT
VVAPXR — PIXEL_ READBACK

VVAPXW — PIXEL__WRITE

71

72 THE VIVID SUBROUTINE LIBRARY (VSL)

VVAFPR — FAST__PIXEL WRITE
VVAFPM — FAST__PIXEL MODIFY
VVASCL — SELECTIVE _CLEAR

VVACPY — COPY_ ABS, COPY REL

5.6.8 Interactive Functions
VWVICUS - CURSOR STYLE *
VVIPCU - POSITION CURSOR
VVICUV - CURSOR_ VISIBILITY
VVIRUB - RUBBER__BAND
VVISWE — SWITCH__REPORT _ ENABLE
VVISWD - SWITCH_ REPORT _ DISABLE
VVIASW - AUTOSWITCH
VVIWSW — WAIT _SWITCH
VVIMTE — MATCH_ENABLE
VVIMTD — MATCH_ DISABLE

VVIAKI - ACCEPT_KEYBOARD_INPUT

5.6.9 Report Handling Functions

VVQREP - REQUEST REPORT

5.7 CALLING VSL

The call formats given in Sections 5.1 through 5.6 are for FORTRAN. The following
constraints must be observed when programming in high-level languages other
than FORTRAN:

THE VIVID SUBROUTINE LIBRARY (VSL) 73

5.7.1 Passing Parameters to VSL

A program cali to VSL must pass the parameters to VSL by reference. This means
that the program passes the parameter by giving its address, not its value.
FORTRAN automatically passes parameters by reference. Calls in other high-level
languages must specify the reference method.

EXAMPLE

The FORTRAN call to the Assign function (Section 5.1.3) might be as follows:
istat = VVXASS (0, 1,1024)
Since the C language passes parameters by value, the equivalent cail in C is as

follows:

extern short vwxass {);

device = 0;

tun =1;

size = 1024;

reply = vvxass (&device, &lun, &size);

The equivalent PASCAL call is as follows:

FUNGCTION vvxass { device, lun, size : INTEGER) : INTEGER; EXTERN;

BEGIN

device = O

lun =1;

size = 1024;

reply 1= vvxass (%ref (device), %eref (lun), %ref (size)
END;

Note the use of the “%ref” o force the passing of an address.

74 THE VIVID SUBROUTINE LIBRARY {VSL)

If VAR parameters are declared in the PASCAL function, “%ref” can be omitted:

FUNCT!ON vvxass { VAR device, lun, size : INTEGER) : INTEGER:

EXTERN;
BEGIN

device = 0;

un =1;

size = 1024;

reply := vvxass (device, un, size)
END;

57.2 VSL Word Length on MicrovMs Systems

VSL works mainly in units of 16-bit words. As MicroVMS uses 32-bit words, arrays
must define word length as 16 bits. Other parameters passed to VSL may be 16-hit
or 32-hit. However, 32-bit variables must be within the 16-bit integer range (- 32768
to +32767).

A VSL function returns a 32-bit integer to the parameter jstat. Attempts to return
variables of other types have unpredictable results,

EXAMPLE

The VVICUS function (Section 5.6.8} is used to describe a cursor style. The number

of parameters is variable.

PROCEDURE cursor:

TYPE
word = —-32768..32767:
VAR
arr : PACKED ARRAY [x_.y] OF word;
BEGIN
arr[1]:= a;
arr[2]:=b;
arr[n]:=nm
reply = wvicus (arr)
END;

Note the use of PACKED in the definition of this PASCAL example array. If PACKED
is not included, the cursor type is stored in a 32-bit word and the VSL routine fails.

CHAPTER 6
CONTROL INSTRUCTIONS

This chapter contains a description of each VIVID control instruction. Opcodes are
given in decimal. A MACRO-32 example of each instruction is provided.

6.1 START INSTRUCTION LIST

Identifies the segment contents as display instructions.

Opcode: 01
Format:

Parameters:

End Position:

Errors:

MNotes:

Example:

Length: 2
START _INSTRUCTION__LIST segid, slen

segid = segment ID
slen = total segment size in bytes

The current drawing position is not changed.

Warning if this instruction is encountered after the start of the
instruction segment.

This must be the first instruction in a VIVID instruction segment.

.BYTE 2.,1. ;length and opcode
.WORD "X010A jsegnent ID 1, class 10
.WORD 2048. ;2K butes of segmeni area

6.2 START FONT

Identifies the segment contents as a font.

Opcode: 02

Format:

Length: 6

START_ FONT segid, slen, ncc, xdim, ydim, dfft

75

76 CONTROL INSTRUCTIONS

Parameters:

End Position:

Errors;

Notes;

Example:

segid = segment ID
slen = total segment size in bytes
nce = total number of character cells in the font
xdim = cell width in bits (range 1-16)
ydim = cell height in bits (range 1-18)
dfit = default row value. Defines whether unspecified rows are
drawn in foreground or background color,
0 : background
=1 : foreground

The current position is not changed.

Warning if this instruction is encountered during an instruction
segment.

This instruction is set up automatically by the INITIALIZE_ FONT
instruction. When a font is accessed, this must be the first instruction
in the font segment.

LBYTE 6. ,2. ilength and opcode

WORD "X0104. ;segment ID 1, class 10
-WORD 66. ;segnent length in bytes
-KORD 26, ;26-cell font

-WORD 12, 12-bit width

-WORD 10. i10-bit height

.WORD -~1. ;foreground color

6.3 START_ PIXEL DATA

Identifies the segment contents as pixel data.

Opcode: 06
Format:

Parameters:

End Position:

Errors:

Length: 4
START _PIXEL DATA segid, slen, xdis, ydis, xrat, yrat

segid = segment ID

slen = total segment size in bytes

xdis = Xdistance to opposite vertex in words. May be negative.
ydis =Y distance to opposite vertex in pixels. May be negative.
xrat = X pixel screen to monitor ratio

yrat =Y pixel screen to monitor ratio

The current drawing position is not changed.

Warning if this instruction is encountered during an instruction
segment.

CONTROLINSTRUCTIONS 77

Notes: This instruction is set up automatically by the PIXEL_READBACK
instruction. When a pixel data map display segment is accessed, this
must be the first instruction in the display segment.

A pixel data word contains four pixels.

The screen to monitor ratio is the ratio of the logical screen
dimensions to the physical monitor dimensions. The most significant
byte (MSB) holds the integer part and the least significant byte (LSB)
the fractional part of a fixed-point number.

Example: .BYTE 4. ,3. ;length and opeode
_MORD "X080C ;seguent class 8, number 12
WORD 66. jsegnent length in bytes
CWORD 20. ;X distance 20 words t0 right
_WORD 32. ;Y distance 32 pixels

;leight words) downwards
7
;Tupical ratio for a low
;resolution monitor defined
;as a high-resclution logical

;screen
.BYTE {.,0. ;logical X dim = monitor X dinm
.BYTE 2.,0. ;logical X din = 2.0 times
;manitor X din

6.4 START KEYBOARD_ DATA

Identifies the segment contents as keyboard input.

Opcode: 04 Length: 4

Format: START KEYBOARD__DATA segid, sien, istat, icnt

parameters: segid = segment D

slen total segment size in bytes

istat = current buffer status

0 : transfer in progress

- transfer ended at termination character
- transfer completed on maximum length
- transfer completed on time out or stop
- transfer completed on buffer full

oW D

iont = count of bytes entered to segment

End Position: The current drawing position is not changed.

78 CONTROLINSTRUCTIONS

Errors:

Notes:

Example:

Warning if this command is encountered during an instruction
segment.

Thisis setup automaticalty by the ACCEPT

__KEYBOARD__ INPUT
instruction {Section 13.1 2).

The termination character is not entered to the segment.

-BYTE 4. ,4. ;length and opeode

.WORD "XOCOE. isegment class 12, number 14

-WORD 66, isegnent length in bytes

JWORD 2. itransfer completed on max.
;length

-WORD 45, 45 bytes entered to segment

6.5 START_REFORT DATA

Identifies the segment contents as report data.

Opcode: 05
Format:

Parameters:

End Position:

Errors:

Notes:

Length: 4
START__REPORT__DATA segid, slen, istat, nextb

segid = segment ID

slen = total segment size in bytes
istat = current buffer status:
0 : active

1 tinitialized/complete
2 : segment overflow

nextb = byte offset of next entry processed. This is a pointer to the
next free byte in the segment, counting from the start of the
segment. It is always word-aligned.

The drawing current position is not changed.

Error if other display segment type expected. Warning if encountered
during instruction display segment.

This is set up automatically by QIOs which execute a segment or
resume segment execution.

The parameter istat gives the status of the report segment activity.
The application program may poll istat to check if the the segment is
being written to by VIVID (active status) oris full (segment overflow).

Example:

CONTROL INSTRUCTIONS 79

.BYTE 4.,5. ;fength and opcode

LHORD "X030A ;segment class 3, number 10
.WORD 66. ;seguent length in bytes
JWORDE 1. ;buffer initialized

.WORD 10. ;start of free space

6.6 INITIALIZE

Restores VIVID download status 1o oné or more graphics-control facets
(addressing, global atiributes, text or alf).

Opcode: 06

Format:

Parameters.

End Position:

Errors:

Notes:

Example:

Length: 1

INITIALIZE mask

mask = sum of values indicating requirements
—1: all values

See Appendix D for values.

i transformations are initialized, the current position is set to the
origin. Otherwise the current position is not changed.

None

Initialization values may be found in Appendix D. The values
required should be summed to determine the value of the mask
parameter.

.BYTE 1.,6. ;length and opcode
.WORD 4. ;initialize drawing colors

6.7 CALL SEGMENT

Executes the identified segment from the host or VSV21 memoty.

Opcode: 07
Format:
Parameters:
End Position:
Errors:

Notes:

Length: 1

CALL SEGMENT segid

segid = segment ID

The current position is not changed.
Error if the segment is not found.

The segment must already be defined as a host segment or be
downloaded.

80 CONTROL INSTRUCTIONS

Example: JBYTE 1. ,7. ;length and opeode
JMORD "X0104. ;segment class 1, number 10

6.8 SAVE ATTRIBUTES

The current attributes are added to an attribute stack. This atlows you to change

attributes in a nested segment and to recover attributes before returning 1o the

calling segment (see also RESTOHEkATTFifBUTES, Section 6.9},

Opcode: 08 Length: 0

Format: SAVE_ ATTRIBUTES

Parameters: None

End Position: The current position is not changed.

Errors: Terminal error if stack would overflow.

Notes: The space available for the stack depends on the number of
downioaded segments and on the number and order of deletions. No

implicit compress is performed.

The attributes stacked are identified in Appendix D. This includes
drawing and cursor positions.

Example: -BYTE 0. ,8. ilength and opeode

6.9 RESTORE ATTRIBUTES

The last attributes saved by SAVE_ ATTRIBUTES are removed from the stack and
set up as the current attributes. The previous attributes are fost.

Opcode: 09 Length: 1

Format: RESTORE_ ATTRIBUTES mask

Parameters: mask = mask value indicating requirements: see Appendix D for
vatues.

—1: all values are restored

End Position: As given by the stacked parameters. If the drawing position is not
restored, it is not changed. The cursor position is handled sirnilarty.

Errors: Fatal error if no parameter value is supplied.

Warning if there are no stacked attributes,

CONTROL INSTRUCTIONS 81

Notes: Mask values entered indicate these attributes are to be resiored.

The attributes that will be restored from ihe stack for each mask
value are identified in Appendix D.

Example: JBYTE 1.,85. ;length and opcode
.WORD 100 ;octal mask value io
;restore text atiributes
6.10 STARTﬁATTRiBUTESQDATA
identifies the segment contents as attributes data.
Opcode: 127 Length: 2

Format: START_ATTRIBUTES‘DATA segid, slen

Parameters: segid = segment D
slen = total length of segment in bytes

End Position: The current position is not changed.

Errors: A warning is issued and the instruction is ignored if itis encountered
in an instruction segment.

Notes: START;ATTRIBUTES)DATA is used only as the first instructionin
a segment containing aftributes data,

This instruction is generated automatically by the DUMP__
ATTRIBUTES instruction.

Example: (BYTE 2.,127. ;length and opcode
_WORD %0404 ;sequent class 4, number 10
.WORD 120. ;segment length

6.11 DUMP_ ATTRIBUTES

Saves the current set of attributes in a specified segment.
Opcode: 121 Length: 1

Format: DUMP__ATTRIBUTES segid

Parameters: segid = segment P

End Position: The current position is not changed.

8z CONTROL INSTRUCTIONS

Errors: A warning is issued and the instruction is ignored in the following
situations:

® Segment ID outside the valid range
® Segment too small to contain the attributes

@ Insufficient on-board Space to create the attribute dump
segment

Notes: A minimum size of 256 bytes is recommended for the attributes
dump segment.

The atiributes dump segment must start with a START
ATTRIBUTES_ DATA instruction,

H the specified segment does not exist, it is created on the VSV21
module.

The user has no read access to on-board segments.

If the contents of the attributes dump segment are to be saved, the
segment must be defined already on the host.

Example: LBYTE 1,421, ;tength and spcode

-WORD "X030A isegment class 3, number 10
6.12 RECOVER ATTRIBUTES
Reads the specified attributes from the specified segment.
Opcode: 122 Length: 2
Format: RECOVERLATTRIBUTES segid, mask

Parameters: segid = segment ID
mask = bit-mask value defining attributes to be recovered

End Position: As given by the recovered drawing position if it is specified in the
mask. Otherwise unchanged.

Errors: A warning is issued and the instruction is ignored in the following
cases:

® Specified segment does not exist

® Specified segment does not start with a START _
ATTRIBUTES _DATA instruction

CONTROL INSTRUCTIONS 83
Notes: Details of the mask are given in Appendix D.
Example: JBYTE 2., 121, ;length and opeode
_KORD "X03Z0A ;Segment class 3, number 10
.WORD 10 ;octal mask for drawing
6.13 DISPLAY_ WAIT
Waits for a specified time before executing the next display instruction.
Opcode: 10 Length: 1
Format: DISPLAY WAIT nfram
Parameters: nfram = number of video frames delay required.
There are sixty frames per second.
End Position: The drawing position is not changed.
Errors: None
Notes: Execution is interrupted by a Stop Execution QIO, ora QIO time-out.

Processing resumes at the next instruction.
Example: .BYTE 1.,10. ;length and opcode
.WORD 300. ;=5 gseconds delay
6.14 NO_ OPERATION
No operation is performed and nothing is changed.
Opcode: 11 Length: 0
Format: NO OPERATION
Parameters: None
End Position: The drawing position is not changed.
Errors: Error if length is not equal to zero.

Example: JBYTE 0.,11. ;length and opcode

84 CONTROL INSTRUCTIONS

6.15 STOP_ DISPLAY

Stops display list processing. Control is returned to the application program, with a

status value.
Opcode: 12
Format:
Parameters:
End Pasition:
Errors:
Notes:

Example:

Length: 0
STOP__DISPLAY

None

’The drawing position is not changed.

None
Segment processing stops and the invaking Q1O is completed.

.BYTE 0. ,12. ;fength and opcode

6.16 CREATE SEGMENT

- Creates a segment in the VSV21 memory.

Opcode: 13
Format:

Parameters:

t£nd Position:

Errors:

Notes;

Example:

Length: 2
CREATE__ SEGMENT segid, sien

segid = segment ID
slen = total segment size in bytes

The current drawing position is not changed.

Terminal error if space is insufficient. Warning if segment already
exists.

The segment ID format may be found in Chapter 3.
.BYTE 2. ,13. ;length and epcode

.WORD "X010A isegnent class 1, number 10
.WORD 54. ;94 bytes in segment

CONTROL INSTRUCTIONS

6.17 SEGMENT_RETURN

Marks the end of an instruction segment.

Opcode: 14 Length: O

Format: SEGMENT_RETURN

Parameters: None

End Position: The drawing position is not changed.
Errors: None

Notes: Control is returned as follows:

85

e Foranested display segment, control returmns to the instruction

following the invoking CALL__ SEGMENT instruction.

® For a top-level segment, display list processing stops and
the invoking QIO is completed. Control returns to the

application program, with a status value.

SEGMENT _RETURNor STOP DISPLAY must appear as the last
instruction in the segment. Otherwise a memory protection violation

or other error will occur.

Exampie: CBYTE 0., 44. ;length and opcode

6.18. JUMP_ RELATIVE

Adds the specified number of words to the display list pointer.
Opcode: 120 Length: 1

Format: JUMP__ RELATIVE nwords

Parameters; nwords = number of words

End Position: The current drawing position is not changed.

Errors: None

Notes: This instruction is useful for patching display lists. It operates only
within the current segment. A parameter value of zero causes a jump

to the JUMP__RELATIVE instruction.

86 CONTROL INSTRUCTIONS

Example: -BYTE 1.,120. ilength and opecode
.WORD 17. sdurp 17 words

6.19 DISPLAY REPEAT

Marks the start of a loop.

Opcode: 15 Length: 1

Format: DISPLAY__REPEAT nloop

Parameters: nloop = number of times the loop is to be repeated.
0 :loop is repeated infinitely

End Position: The current drawing position is not changed.

Errors: If loops are nested more than 32 levels deep or the parameter nloop
is negative, a warning is issued and the instruction is ignored.

Notes: This instruction must have a corresponding DISPLAY END
REPEAT instruction in the same segment to terminate the loop.

Example: .BYTE 1.,15, ;length and opeode
.WORP 3. ;repeat loop 3 times

6.20 DISPLAY END REPEAT

Marks the end of a repeatable loop.

Opcode: 16 Length: 0

Format: DISPLAY END__REPEAT

Parameters: None

End Position: The current drawing position is not changed.

Errors: If no corresponding DISPLAY REPEAT instruction in the same
segment has been executed, a warning is issued and the instruction

is ignored.

Example: .BYTE 1.,16. ;length and opcode

CHAPTER 7
TRANSFORMATION INSTRUCTIONS

This chapter describes the instructions used in drawing and viewing transformations
of VSV21 data. The transformation process is described in Section 2.5.

Opcodes are given in decimal. A MACRO-32 example of each instruction is
provided.
71 DRAWING MAGNIFICATION

This instruction defines the magnification of the drawing elements being entered to
VAS. This applies to both absolute and relative drawing operations.

Opcode: 21 Length:0or2
Formal: DRAW!NGkMAGNlFECATION [xmag, ymag]

Parameters: xmag = magnification along X axis
ymag = magnification along Y axis

End Position: The current position in VAS is not changed.

Errors: Fatal error if total magnification is outside the valid range (see
ZOOM__ FACTOR, Section 7.7). Display processing stops. The start
and resume QIOs do not reset the transformation. Drawing can be
continued. The magnification is truncated to the nearest valid value.

Notes: The parameters are input as follows:

e Enter zero values or omit the parameters for no magnification.

e Enter positive parameters 1o multiply the existing magnifica-
tion by the absolute value of the parameters.

e Enter negative parameters to divide the existing magnifica-
tion by the absolute value of the parameters.

87

88 TRANSFORMATION INSTRUCTIONS

The parameters are specified in fixed binary point format. The L.SB
represents the fractional part of the number and the MSB represents
the integer part.

Example: -BYTE 2.,21. ilength and opcode
-WORD "X800 imagnify times 8 in horizontal
HORD "X400 imagnify tikes 4 in vertical

7.2 DRAWING_ TRANSLATION

This defines the coordinates by which the transformation origin is shifted relative to
the previous transformation origin.

Opcode: 22 Length: 2

Format: DRAWING TRANSLATICN XY
Parameters: x = X coordinate of translation
y =Y coordinate of translation

End Position: The current drawing position is not changed.
Errors: None
Notes: No drawing occurs.

The viewport is not changed.

Exampie: .BYTE 2.,17, ;length and opcode
-WORD 50. jrelative X coordinate of origin
-WORD 200, irelative Y coordinate of origin

7.3 DRAWING TRANSFORM

This enables the DRAWING _MAGNIFICATION and DRAWING_ TRANSLATION
instructions. The instruction can be used with the DRAWING _ VAS instruction to
turn the transformations on or off ag required.

Opcode: 130 Length: 0

Format: DRAWING__ TRANSFORM

Parameters: None

End Position: The current drawing position is not changed.

Errors: None

TRANSFORMATION INSTRUCTIONS 89

Notes: The transformations are disabled by DRAWING__VAS.
No drawing occurs.
The viewport is not changed.

Example: .BYTE 0.,130. ;length and opcode

7.4 DRAWING _VAS

This disables DRAWING _MAGNIFICATION and DRAWING _TRANSLATION.
Subseguent input is in VAS units.

Opcode: 131 Length: 0

Format: DRAWING VAS

Parameters: None

End Position: The current drawing position is not changed.

Errors: None

Notes: The transformations are reenabled by DRAWING TRANSFORM.
No drawing occurs, The viewport is not changed.

Example: JBYTE 9.,134. ;length and opcode

7.5 SCREEN_ DIMENSIONS

Defines the screen dimensions in logical pixels.
Opcode: 18 Length: 2

Format: SCREEN__DIMENSIONS width, height

Parameters: width = width of display in logical pixels
height = height of display in logical pixels

End Position: The current position in VAS is the window origin. The drawing
position in screen terms is at the bottom left-hand corner.

Errors: Error if a parameter is invalid and display processing stops.

Ervor if total magnification exceeds maximum (see ZOOM__FACTOR,
Section 7.7} and display processing stops.

90 TRANSFORMATION INSTRUCTIONS

Notes: The valid sets of values for the parameters xd, yd are;

512, 256
640, 240
512,512
640, 480

if the screen X dimension is changed from 512 to 640 or from 640 to
512, the display image and the screen are cleared to the current
background color. The screen contents are not affected otherwise.

The viewport is reset to the full screen image. The magnification
factors remain the same. The window origin is unchanged. The

window extent is adjusted to reflect the change in the viewport.

The default screen is 640 x 480 logical pixels.

Example: .BYTE 2.,14. ilength and opcode
.MORD 640. ;set width to 640
.HORD 240, ;set height to 240

7.6 WINDOW ORIGIN

Sets the window origin to a VAS position. This defines a window which may be
projected into the VSV21 viewport in conjunction with the ZOOM_ FACTOR and
SET__VIEWPORT instructions (Sections 7.7 and 7.8).

Opcode: 17 Length: 2

Format: WINDOW _ ORIGIN x, y
Parameters: x = X coordinate of the window origin in VAS
y =Y coordinate of the window origin in VAS

End Position: The current drawing position is set to the window origin,

Errors: None
Notes: No drawing occurs. The viewport is not changed.
Example: .BYTE 2.,17. ;length and opcode

-WORD 50. iX coordinate of window origin

JHORD 200. ;Y coordinate of window origin

TRANSFORMATION INSTRUCTIONS 91

7.7 ZOOM_FACTOR

This defines the horizontal and vertical magnification factors for the zoom facility. It
defines the mapping between the window and the viewport. The window extent is
defined by the relationship between the viewport extent and the zoom factors.
Opcode: 19 Length: 2

Format: ZOOM _ FACTOR xmag, ymag

Parameters: xmag = X direction magnification factor
ymag = Y direction magnification factor

End Position: The current position in VAS is set {0 the window origin.

Errors: Error if total magnification exceeds 127. Display processing stops.
The start and resume QIOs do not reset the transformations, so
subsequent drawing is unpredictable until magnification returns to
within the permitted limits.

Notes: No drawing occurs.

The viewport is not changed. The window extent is adjusted

accordingly.
Example: JBYTE 2.,18. ;length and opcade
.WORD 100. ;magnify times 100 in
;harizontal
.WORD 50. jmagnify times BO in vertical

7.8 SET__VIEWPORY

This instruction defines a screen area to which drawing is restricted. The area units
are as defined by the SCREEN__DIMENSIONS instruction {Section 7.5).

The default viewportis the display image. However, the viewport may be reduced so
that the segment contents generate the image only to a reduced area defined by the

viewport.

Opcode: 20 Length: O or4

Format: SET _VIEWPORT [xmin, ymin, width, height]
Parameters: xmin = X coordinate of lower left corner
ymin =Y coordinate of lower left corner

width = width of viewport in logical pixels
height = height of viewport in logical pixels

9z TRANSFORMATION INSTRUCTIONS

End Position:

Errors:

Notes:

Example:

The current position in VAS becomes the window origin.
Warning if coordinates are out of range.

If no parameters are supplied, or all the parameters are zero, the
viewport is set to the boundaries of the screen. The viewport is
restricted to the screen display area. The viewport origin is mapped
to the window origin. The window is unchanged and the zoom factor
is adjusted accordingly.

.BYTE 4, .20, jopeode and non-default
ilength

HORD 50, ;lower left X value

.WORD 40, jlower left Y value

JHORD 200, jviewport yidth

-HORD 300. jviewport height

79 SET _WINDOW

This instruction defines a window in VIVID Address Space. The window is mapped
automaticaily to the viewport.

OCpcode: 23
Format:

Parameters:

End Position:
Errors:

Notes:

Example:

Length: 4
SET__WINDOW xw, yw, width, height

XW = X coordinate of lower left corner of window in VAS
YW =Y coordinate of lower left corner of window in VAS
width = width of window in VAS

height = height of window in VAS

The current position in VAS is set to the window origin.

Warning if co-ordinates are out of range.

This instruction provides an alternative to ZO00M__FACTORS for
mapping the viewport.

No drawing occurs. The viewport is not changed and the zoom factor
is adjusted accordingly.

.BYTE 4,.23. ;length and opeode
-WORD 50, jlower left X value
.WORD 40, ;lower left Y value
LHORD 200, jwidth

LWORD 100. jheight

CHAPTER 8
GLOBAL ATTRIBUTE INSTRUCTIONS

This chapter contains a description of each VIVID global attribute instruction.
Opcodes are given in decimal. A MACRO-32 example of each instruction is
provided.
8.1 SCREEN _BLINK
This instruction enables or disables screen blinking.
Opcode: 256 Length: 1
Format: SCREEN_ BLINK bmod
Parameters: bmod = blink mode (orvoff)
0 : screen blink off
non-zero : screen blink on
End Position: The current position is not changed.
Errors: Fatal error if length is incorrect.
Notes: When this command is executed, the colors specified in the
NORMAL COLORS command (Section 8.6) are alternaied with
those specified in the BLINK_ COLORS command {Section 8.7).
The interval is specified by the BLINK_ TIMING instruction {Section

8.2). Blinking continues for the whole screen until it is disabled.

Example: JBYTE 1.,25 ;length and opcode
LWORD . ;sereen blink off

93

94 GLOBAL ATTRIBUTE INSTRUCTIONS

8.2 BLINK TIMING

This sets screen blink timings.

Opcode: 35 Length: 2

Format: BLINK__TiMING norm, bink

Parameters: norm = number of frames of normal colors (range 8-64)
blink = number of frames of blink colors (range 8-64)

End Position: The current position is not changed.
Errors: Fatal error if length is incorrect.

Warning if either norm or blink is outside the range 8-64. The
instruction is ignored.

Notes: No screen blink occurs untit it is enabled by the SCREEN__ BLINK
instruction (Section 8.1). If screen blink is currently enabled, the
timing changes apply immediately. Until a BLINK _TIMING instruction
is encountered, blink on/off occurs at 0.5 second intervals.

The frame counts are rounded down to multiples of four,

Example: .BYTE 2.,35. ;length and opcode
.WORD 48. ;48 frames of normal colors
LWORD 24. ;24 frames of blink colors

8.3 SCREEN BLANK
This instruction enables or disables screen blanking. Screen blanking gives priority
to drawing rather than display. This allows drawing speed to increase by a factor of
up to 4,
Opcode: 26 Length: 1
Format: SCREEN__BLANK bmod
Parameters: bmod = screen mode (blank/not biank)
0 : screen not blank. Display has priority.
non-zero : screen blank. Drawing has priority.

End Position: The current position is not changed,

Errors: None

Notes:

Exampie:

GLOBAL ATTRIBUTE INSTRUCTIONS 95

The screen is blanked and drawing speed is increased by a factor of
up to 4 on a high-resolution system. This is useful for drawing a new
picture quickly. On low-resolution monitors, the gain in speed is
negligible.

The screen remains blank until ancther SCREEN _ BLANK instruction
with bmod = 0 is encountered.

.BYTE 1.,26. ;length and opcode
LWORD 1. :sereen blank

8.4 FOREGROUND_ COLOR

This sets the foreground color to be used for subsequent drawing.

Opcode: 27
Format:
Parameters:
End Position:

Errors:

Notes:

Example:

Length: 1

FOREGROUND _COLOR ind

ind — color index number in color look-up table
The current position is not changed.

If the index is outside the range 0 to 15, a warning is issued and the
foreground color is not changed.

The index to the Color Look-up Table {(CLUT) identifies which of the
16 available colors are used. Color 15 is the default. The CLUT is
briefly described in Section 8.6. For a fuller description of the GLUT,
see Section 18.5.1.

.BYTE {.,27. ;length and opeade
LWORD 12. ;color 12 from the CLut

8.5 BACKGROUND_ COLOR

This instruction sets the background color 0 be used for subsequent drawing.

Opcode: 28
Format:

Parameters:

End Position:

Length: 1
BACKGROUND COLOR ind
ind = color index number in color look-up table

The current position is not changed.

96 GLOBAL ATTRIBUTE INSTRUCTIONS

Errors:

Notes:

Example:

If the index is outside the range O to 15, a warning is issued and the
foreground color is not changed.

The index to the color look-up tabte (CLUT) identifies which of the 16
available colors are used. Color 0 is the default. The CLUT is
described briefly in Section 8.6. For a full description of the CLUT,
see Section 18.5.1.

LBYTE £.,28. ;length and opcode
WORD 10 ;eolor 10 from CLUT

8.6 NORMAL COLORS

This sets up to 16 colors {interms of index and red, green and blue intensities) in the
color look-up table (CLUT).

Opcode: 29

Format:

Parameters:

End Position:
Errors:

Notes:

Length: 2 x number of colors or 255

NORMAL _COIL.ORS indy, inty [, ind, int, .. ind,, int,]
wheren = 1-16

ind, = color index number in CLUT
int, = intensities of red, green and blue

The current position is not changed.
Fatal error if the index or intensity is out of range.

The cofor look-up table (CLUT) contains 16 entries with indices 0 fo
15. Each color is stored in terms of red, green, and blue intensities in
the range 0 — 15, specified by the parameter int. CLUT entries not
referenced in the parameter list are not changed.

If you wantto use other colors, itis recommended that you use a VCP
command file or a segment to initialize the CLUT, blink table and blink
count and to set up your. own standard table. The method is
described in Section 18.5.1.

The new colors are applied to all previous drawing on the monitor
screen. Only one NORMAL COLORS update occurs per frame, so
it is quickest to include the commands for all the required CLUT
updates in a single instruction.

Where the maximum command length of 255 is used, the parameter
tist must be terminated with an END__PARAMETERS delimiter
(Section 3.3.1).

GLOBAL ATTRIBUTE INSTRUCTIONS 97

The CLUT is described in detail in Section 18.5.1.

Example: The color values used in this example are those used in the CLUT
example given in Section 18.5.1.

JBYTE 10.,29. ;length and opcode - B colors

LWORD 1. ;CLUT entry #1

.WORD "XOF0 jgreen = red 0, green maximum,
sblue 0

.WORD 2. ;CLUT entry #2

.WORD X088 ;cyan

.MORD 3.

.UORD "X0&C :turquoise

LWORD 4.

_WORE "XFOO jred

.WORD 5.

.WORD "XAOA ;magenta

8.7 BLINK _COLORS

This defines CLUT colors (normal colors) and alternate cotors {blink colors) for
blinking.

When a SCREEN _BLINK command has enabied blinking, the normal colors are
alternated with blink colors from the blink color look-up table (BCLUT) described in
Section 18.4.2, as defined by BLINK _COLORS and by BLINK COUNT (Section
8.8).

This command lists the indices of the normal colors which are to be alternated while
blinking. For each normal color it provides a blink color, defined interms of red, green

and blue intensities.

The number of colors blinked is determined by BLINK _COUNT. You can change
the number of colors blinking by changing the BLINK__ COUNT parameter.

Opcode: 30 Length: 3 x number of entries ot 255

Format: BLINK__COLORS bindy, indy, inty, bindg, inds, int, ... bindy, indq, int,
wheren = 1-16

Parameters: bind, = color index in blink colors look-up table (BCLUT)
ind, = corresponding CLUT index
int,, = red, green and blue intensity code (range 0-15)

End Position: The current position is not changed.

Errors: Fatal error if parameter out of range.

98 GLOBAL ATTRIBUTE INSTRUCTIONS

Notes: The maximum number of entries in the BCLUT is 16.

There are no default BCLUT settings in VIVID, It is recommended
that you set these up using a VCP command fite or segment,

If a length of 255 is used, the parameter list must be terminated with
END_ PARAMETERS (Section 3.3.1).

Example: The color values used in this example are those used in the CLUT
example given in Section 18.5.1.

.BYTE 5.,30. ;length and opcode - 2 colors

CWORD 1. ;BCLUT entry i

.WORD 3. ;alternating CLUT entry
;{turquoise in example)

.WORD "XOOF ;BCLUT color blue

LWORD 2. ;BCLUT entry #2

JWORD 5. ;alternating CLUT entry
;{black)

.UDRD "X880 ;BCLUT calar yellow

HORD 3, ;BCLUT entry 3

.WORD 4, ;alternating CLUT entry
;(red)

MORD "X06C ;turquoise

8.8 BLINK COUNT

This defines the number of colors that blink when blink is enabled.
Opcode: 31 Length: 1

Format: BLINK__ COUNT ncol

Parameters: ncol = number of colors to blink

End Position: The current position is not changed.

Errors: If the count is outside the range 0 to 16, a warning is issued and the
command is ignored.

Notes: VIVID has no default blink colors. It uses whatever CLUT and
BCLUT colors exist when it is loaded. VCP command file or display
segment is recommended for setting up your own defaults {Section
8.6).

Example: .BYTE 1.,3%. ;length and opeade
JHORD 2, ;tuwo colors can blink

GLOBALATH%BUTE\NSTRUCTK)NS 99

8.9 DRAWING WMODE

This instruction sets the drawing mode so that subsequent drawing operations do
one of the following:

e Replace the display image unconditionally

¢ Replace the display image depending on the outcome of a logical operation
on the frame buffer contents

e Replace the display image depending on the outcome of a logical or
arithmetic compatison between the frame buffer and the drawing or
comparison color

The image may be drawn in either the foreground colot or the background color, or
both.

Opcode: 32 {ength: 2 or 3
Format: DRAWING MODE cmod, pmod [, ccol]

Parameters; cmod = color mode:
0 - draw foreground and background
1 - draw foreground only; this is the default
2 - draw background only
pmod = operational mode:
0 : replace display image; this is the default

1 : OR to display image

2 - AND to display image

3 : EOR to display image

4 - replace if display color = ccol
5 ; replace if display color # ccol

6 : replace if display color < draw color
7 - replace if display color = draw color
ccol = comparison color for pmod values of 4 and 5. A ccol value
provided for any other pmod value is ignored.

End Position: The current position is not changed.

Errors: If a parameter is outside the specified range, a warning is issued and
the parameter is ignored.

Example: JBYTE 3.,32. ;length and opcode
JMORD 0. ;drau furegruund and
;backgruund
.WORD 4. ;replace if

;display color = ccol
LWORD 4. ;CLUT eolor nunber 4

100 GLOBALATTHBUTEfNSTHUCﬂONS

8.10 LINE TEXTURE

This instruction defines the line texture. This is a bit pattern that is repeated in the
drawn lines.

Opcode: 33 Length: 2
Format: LINE_ TEXTURE nbit, fbcod

Parameters: nbit = number of bits in bit patltern
focod = bit pattern for background or foreground colors

End Position: The current position is not changed.

Errors: If nbit is outside the range 1 to 16, a warning is issued and the
instruction is ignored.

Notes: The bit pattern represents foreground and background colors to be
used in line drawing instructions. The line begins at bit 0 and
continues for the number of bits specified, after which bit 0 is used
again. A bit set to 1 is drawn in the foreground color and a bit set to
zero Is drawn in the background color.

Each tine drawing instruction continues from the point reached by
the previous line drawing instruction. To reset to the beginning of the
bit pattern, a further LINE_ TEXTURE instruction must be issued.
The default line texture is solid foreground color.

The fine texture is magnified by the drawing magnification defined at
the time of the LINE_ TEXTURE instruction. Later changes to the
relative magnification must be followed by another LINE _ TEXTURE
instruction if the new drawing magnification is to be applied.

Example: -BYTE 2.,33, ilength and opcode
.WORD {2 712 bits in pattern
.WORD "B100110010011 isets up bit pattern
;line pattern is
;i "o oo o ao"

8.11 AREA_ TEXTURE
This defines a cell containing the area texture pattern.

Opcode: 34 Length: 1 + number of rows

Format: AREA TEXTURE nbit, patt, [, patt,, ... patt,]
where n = 1-18

GLOBAL ATTRIBUTE INSTRUCTIONS 99

8.9 DRAWING__MODE

This instruction sets the drawing mode so that subsequent drawing operations do
one of the following:

® Replace the display image unconditionally

e Replace the display image depending on the outcome of alogical operation
on the frame buffer contents

e Replace the display image depending on the outcome of a logicai or
arithmetic comparison between the frame buffer and the drawing or
comparison color

The image may be drawn in either the foreground color or the background color, or

both.
Opcode: 32
Format:

Parameters:

End Position:

Errors:

Example:

Length: 2 0r 3
DRAWING MODE cmod, pmaod [, ccol]

cmod = color mode:
0 : draw foreground and background
1 : draw foreground only; this is the default
2 : draw background only
pmod = operational mode:
0 . replace display image; this is the default
. OR to display image
: AND to display image
: EOR to dispiay image
: replace if display color = ccol
: replace if display color # ccol
: replace if display color < draw color
7 : replace if display color > draw color
ccol = comparison color for prmod values of 4 and 5. A ccol value
provided for any other pmod value is ignored.

SR W =

The current position is not changed.

If a parameter is outside the specified range, a warning is issued and
the parameter is ignored.

LBYTE 3.,32. ;length and opcode

LWORD 0. ;draw foreground and
;background

LWORD 4. ;replace if

;display color = ceal
.WORD 4. ;CLUT color number 4

100 GLOBALATTRIBUTE INSTRUCTIONS

8.10 LINE TEXTURE

This instruction defines the line texture. This is a bit pattern that is repeated in the
drawn lines,

Opcode: 33 Length: 2
Forrmat: LINE _TEXTURE nbit, fbcod

Parameters: nbit = number of bits in bit pattern
fbcod = bit pattern for background or foreground colors

End Position: The current position is not changed.

Errors: If nbit is outside the range 1 to 16, a warning is issued and the
instruction is ignored.

Notes: The bit pattern represents foreground and background colors to be
used in line drawing instructions. The line begins at bit 0 and
continues for the number of bits specified, after which bit 0 is used
again. A bit set to 1 is drawn in the foreground color and a bit set to
zero is drawn in the background color.

Each line drawing instruction continues from the point reached by
the previous line drawing instruction. To reset to the beginning of the
bit pattern, a further LINE_ TEXTURE instruction must be issued.
The default line texture is solid foreground color.

The line texture is magnified by the drawing magnification defined at
the time of the LINE__TEXTURE instruction. Later changes to the
relative magnification must be followed by another LINE_ TEXTURE
instruction if the new drawing magnification is to be applied.

.BYTE 2._,33. ;length and opcode
LWORD 12. ;12 bits in pattern
.MORD "B100110010044 ;sets up bit pattern
;line pattern is
; "o oo @ op"

Example:

8.11 AREA__TEXTURE
This defines a cell containing the area texture pattern.
Opcode: 34 Length: 1 + number of rows

Format: AREA__TEXTURE nbit, patt; [, patty, ... patt,]
where n = 1-16

Parameters:

End Position:

Errors:

Notes:

Example:

GLOBAL ATTRIBUTE INSTRUCTIONS 101

nbit = number of bits in bit pattern
patt, = bit pattern of row n

0 : background

1 : foreground

The current position is not changed.

if nbit is outside the range 1 to 16, a warning is issued and the
instruction is ignored. If the number of parameters is outside the
range 2 to 186, there is a fatal error.

This instruction is similar in function to the LINE TEXTURE
instruction (Section 8.10). Rows in the pattern are ascending; the
first row appears at the bottom of the screen. The number of rows is
given by the instruction length.

The pattern is replicated evenly throughout the filled area, and the
start point in the pattern is reset for each filled area instruction
processed. The current drawing magnification and zoom factors are
applied. The default area texture is solid foreground color.

The area texiure is magnified by the drawing magnification defined
at the time of the AREA_ TEXTURE instruction. Later changes to
the magnification must be followed by another AREA TEXTURE
instruction if the new drawing magnification is to be applied.

.BYTE 4. ,34. ;length and opcode (3 rouws)
-WORD 12. ;12 bits in pattiern
.WORD "B10011001001100 ;sets up bit pattern

; line pattern is "o oo o o0
JWORD "BO100£100100110 jsets bit pattern

; line pattern is "o @0 o o0 °
.WORD "B00100110010041 ;set bit pattern

; line pattern is " 0 oo o oo”

HORD "B10010011001004 ;set hit pattern
; tine pattern is "0 o0 oo o0 ©

;

;texture is

; 0 OO O 00D O OO B 00 O

; O 00 O OD O 0O QO 0O O

; 0 O0 0O GO O 00 O OO 0
; 0 0 0D O OD O OO O 0O O

CHAPTER 9
DRAWING INSTRUCTIONS

This chapter contains a description of each VIVID drawing instruction. Opcodes are
given in decimal. A MACRO-32 example of each instruction is provided.

Many of the instructions described in this chapter can be supplied with 255 in the
instruction length byte. This is a code which indicates that the instruction tength is
undefined and that the parameter list will be terminated by the END PARAMETERS
delimiter (hex 8000).

The line drawing instructions do not draw the last point in the line. This is so that this
point can be the first point in the next drawn line. Use the DOT instruction {(Section
9.16) to draw the last pixel.

9.1 MOVE__ABS

This moves the current drawing position to the absolute location specified.
Opcode: 38 Length: 2

Format: MOVE ABS X,y

Parameters: x = X coordinate in VAS
=Y coordinate in VAS

End Position: As defined by x, y
Errors: None
Notes: The position may be outside the screen image boundaries.

No drawing is performed.

Example: .BYTE 2.,38. ;length and opcode
.WORD 100. ;X coordinate
.WORD 200. ;Y coordinate

103

104 DRAWING INSTRUCTIONS

9.2 MOVE_REL
This instruction moves the current drawing position to the relative position specified.

Opcode: 39 Length: 2

Format: MOVE__REL dx, dy
Parameters: dx = X displacement from the current position
dy =Y displacement from the current position

End Position: As defined by the previous position and the new coordinates.
Errors: None
Notes: The position may be outside the viewport boundaries.

No drawing is performed.

Example: LBYTE 2.,39. ;length and opcode
.WORD 1i5. ;X displacement
.WORD 60. ;Y displacement

9.3 MOVE_TO CURSOR

This instruction gives a move to the current cursor position.

Opcode: 53 Length: 0

Format: MOVE__TO_CURSOR

Parameters: None

End Position: The current cursor position.

Errors: None

Notes: - The position is always within the screen boundaries.
No drawing is performed.

Example: .BYTE 0.,53, ;length and opeode

DRAWING INSTRUCTIONS 105

9.4 LINES__ABS
This draws the specified sequence of lines, starting from the current position.

The first line begins at the current position. Subsequent lines are drawn from the end
of the previous line to the next position specified in VAS.

Opcode: 40 Length: 2 x number of lines, or 255

Format: LINES ABS x4, vi[, X2, V2, - Xn, Y0
where n has no defined limit

Parameters: x, = X coordinate for the end of the line
Vi =Y coordinate for the end of the line

End Position: As defined by the final coordinates

Errors: None

Notes: The lines are drawn in the current drawing mode with the current line
texture. No drawing occurs outside the current viewport, although
the drawing position may move outside the viewport.

The last pixel is not drawn.

Where a command length of 255 is used, the parameter list must be
terminated by END__ PARAMETERS (Section 3.3.1).

Exampile: JBYTE 4.,40. ;length and opcode
.WORD €0. :X coordinate and
.WORD 20. ;Y coordinate
;for end of first line
.KORD 45. :X coordinate and
.HORD 50. ;Y coordinate

;for end of second line

9.5 LINES_ REL

This instruction draws the specified sequence of lines, starting from the current
position.

The first line begins at the current position. Later lines are drawn from the end of the
previous line to the next position specified as a dx, dy displacement pair of
coordinates.

Opcode: 41 Length: 2 x number of lines or 255

o 106 DRAWING INSTRUCTIONS

Format: LINES _REL dx4, dyy [, dxo, dys ... dx,, dy,]
where n has no defined limit

Parameters: dx, = X displacement for the next end vector
dy,, =Y displacement for the next end vector

End Position: As defined by the final coordinates.

Errors: None

Notes: The lines are drawn in the current drawing mode with the current fine
texture. No drawing occurs outside the current viewport, aithough
the drawing position may move outside the viewport.

The last pixel is not drawn.

Where a command length of 255 is used, the parameter list must be
terminated by END PARAMETERS (Section 3.3.1).

Example: (BYTE 6.,41. ;length and opcode
JWORD 10, ;X displacement
CWORD 26. ;¥ displacewent
-WORD {5, ;X displacement
-WORD 490, ;Y displacement
.WORD -358. ;X displacement
HORD =5, ;¥ displacement

9.6 POLYMARKS ABS

This draws the specified character from the current font at each point given by a list
of X, ¥ coordinate pairs.

The character cell specified by CELL SIZE is used and centered at the specified
position. The parameters given with the CELL_ MOVEMENT command are ignored,
but the CELL__OBLIQUE, CELL__ROTATION and CELL__MAGNIFICATION
parameters are applied. These commands are described in Chapter 11.

Where a length of 255 is used, the parameter list must be terminated with
END__PARAMETERS (Section 3.3.1).

Opcode: 42 Length: 1 + (2 x number of points), or 255

Format: POLYMARKS__ABS ichar, X1, Y1 [, X2, You... Xn, Yl
where n has no defined limit

Parameters: ichar = index of character required
Xn = X coordinate in VAS
Yn =Y coordinate in VAS

End Position:

Errors:

Notes:

Example;

DRAWING INSTRUCTIONS 107

The finai position specified. if there is an error, no drawing occurs and
the final position is unchanged.

Error if index of character is out of range.
No drawing occurs outside the viewport.
The character cell is centered on the specified position, No marker is
drawn at the starting position. If this is required, the initial

displacement must be (0, 0).

Where a fength of 255 is used, the parameter list must be terminated
with END__ PARAMETERS (Section 3.3.1)

JBYTE 255. ,42. ;length {(undefinad) and opeode
.WORD . ;index of character

CWORD 100, ;X coordinate of izt position

JHORD 200, ;Y coordinate of isi position

.WBRD 300. ;% coordinate of 2nd position

-WORD 200. ;¥ coerdinate of 2nd position

.WORD 32768, ;END_PARAMETERS

9.7 POLYMARKS REL

This draws the character specified from the current font at each of the poirts
specified by a list of X, Y displacements.

The character cell specified by CELL__SIZE is used and centered at the specified
position. The parameters given with the CELL MOVEMENT command are ignored,
but the CELL_ OBLIQUE, CELL_ROTATION and CELL MAGNIFICATION
parameters are applied. These commands are described in Chapter 1.

Opcode: 43

Format:

Parameters:

End Position:

Length: 1 + (2 x number of points), or 255

POLYMARKS REL ichar, dxy, dy4[, dx,, dys ... dx,, dy.]
where n has no defined limit

ichar = index number of character required
dx,, = X displacement
dyn =Y displacement

The final position specified. If there is an error, the final position is
unchanged.

108 DRAWING INSTRUCTIONS

Errors:

Notes:

Example:

Error if index of character is out of range.
No drawing occurs outside the viewport.

No marker is drawn at the starting position. If this is required, the
initial displacement must be (0, 0). Where a length of 255 is used, the
parameter list must be terminated with END_ PARAMETERS
(Section 3.3.1)

BYTE 4. ,43. ;length and opcode
UWORD 100. ;X displacement
LWORD 200. ;Y displacement
LHORD -50. ;X displacement
LHORD 20. ;Y displacement

9.8 ARCS_ABS

This draws the specified sequence of circular arcs starting from the current position.

Each arc continues from the last. It is defined interms of its center and end position in
X, Y coordinates in VAS. The arcs are drawn in the current drawing mode with the
current line texture.

The radius of the arc is the distance between its center and the starting position. The
specified end point should be on the circumference of the arc. If it is not, a straight
line is drawn from the circumference to the end point.

Opcode: 44

Format:

Parameters:

Length: 5 x number of arcs, or 255

ARCS __ABS diry, xceny, yceny, xend,, yend,
[dirs, Xcen,, ycen,, xend,, yends ...
dir,,, Xcen,, ycen,, xend,, yend,]
where n has no defined limit

dir, = drawing direction

0 : counterclockwise

1 : clockwise
xcen, = X coordinate of center in VAS
ycen, =Y coordinate of center in VAS
xend,, = X coordinate of end position in VAS
yend, = Y coordinate of end position in VAS

End Position: As defined by the final coordinates.

DRAWING INSTRUCTIONS 109

Errors: A fatal error occurs if the transformed (pixe!) values of the
parameters do not have the following relationship:

SQRT (XC? + YC?) < 4095 / (MAX(A,B))?

where A = transformed relative X length in pixels
B = transformed relative Y length in pixels
XC = transformed value of xcen, — xc
YC = transformed value of ycen,, — yc
where (xc,yc) are the coordinates of the current position

These transformed values A and B are calculated as follows:

1. Take the total magnifications in X and Y directions respectively
to obtain A and B.

2. Divide both A and B by the fargest integral power of two such
that A =1 and B =1,

A fatal error occurs if the end point of a circular or elliptic arc falis
within any of the shaded areas of Figure 9-1. The points A,B,C and D
are points at which fines of gradient +1 and —1 are tangential to the
arc. Figure 9-1 shows a circle of which the arc is a part. The same
principte applies to elliptic arcs.

RESTR

Figure 9-1 Error areas for end points of circular arcs

110 DRAWING INSTRUCTIONS

Notes: No drawing occurs cutside the current viewport, though the drawing
position may move outside the viewport.

The parameters should be chosen such that they specify a circular
arc; the distance from the current position to the center should equal
the distance from the end point to the center. The radius should be
positive and no greater than 4K VAS units after all transformations
have been applied.

The last pixel is not drawn.

Where a length of 255 is used, the parameter list must be terminated
with END PARAMETERS (see Section 3.3.1)

Exampie: CBYTE £0.,44. ;length and opcode
;first are
WORD 0. ;direction counterclockwise
WORD 200, :X coordinate of center
LWORD 30. ;Y coordinate of center
.WORE 70. ;X coordinate of end position
.WORD 10, ;¥ coordinate of end position

i

jsecond are

JWORD 1. ;direction clockuise

JWORE 10. ;X coordinate of center

.WORD 300. ;Y coordinate of center

JWORD 300. ;X coordinate of end position
.WORD 360. ;Y coordinate of end pusition

9.9 ARCS_ REL

This instruction draws the specified sequence of circular arcs, starting from the
current position.

The first arc is defined in terms of its center and the displacement of its end from the
current position. Each later arc is defined in terms of its center and of the
displacement of its end from the end position of the previous arc. The arcs are drawn
in the current drawing mode with the current line texture.

The radius of the arc is the absolute distance between its center and the starting
position. If the specified end point is not on the circumference of the arc, a straight
line is drawn from the circumference to the end point.

Opcode: 45 Length: 5 x number of arcs, or 255

Format: ARCS REL diry, xceny, yceny, xend,, yend,
[,dirs, xcens, ycens, xends, yends ...
diry, xcen,, ycen,, xend,, yend,
where n has no defined limit

DRAWING INSTRUCTIONS 111

Parameters: dir, = drawing direction
0 : counterclockwise
1 : clockwise
xcen, = X displacement of center
ycen, = Y displacement of center
xend, = X displacement of end position
yend, = Y displacement of end position

End Position: As defined by the final coordinates.

Errors: As for ARCS__ABS (Section 9.8).

Notes: No drawing occurs outside the current viewport, although the
drawing position may move outside the viewport. The last pixel is not
drawn. If necessary, you can draw it by using the DOT instruction.
The parameters must be chosen s0 that they define an arc with a
positive radius. The radius should not exceed 4K VAS units after all

the transformations have been applied.

Where a length of 255 is used, the parameter list must be terminated
with END__ PARAMETERS (see Section 3.3.1).

Example: BYTE 10.,45. ;length and opcode
;first are
JWORD 0. ;direction counterclockuise
.WORD 10. ;X displacement of center
.WORD -30. ;¥ displacement of center
JWORD -20. ;X displacement of end point
.WORD -20. .Y displacewent of end point
;second arc
LWORD 0. ;direction clockwise
.WORD 50. ;X displacement of center
.WORD 30. ;Y displacement of center
LWORD 100 ;X displacement of end point
JWORD © ;¥ displacement of end point

910 ELLIPSE ARCS__ABS
This draws the specified sequence of elliptic arcs, starting from the current position.

Each arc is described in terms of an x:y aspect ratio, and of its center and end
position in VAS coordinates. The aspect ratio relates to VAS coordinates and defines
the width:height relationship. The arcs are drawn in the current drawing mode with
the current line texture.

The specified end point should be on the circumference of the arc. I it is not, a
straight line is drawn from the circumference 1o the end point.

112 DRAWING INSTRUCTIONS

Opcode: 46

Format;

Parameters:

End Position:

Errors:

Length: 7 x number of arcs or 255

ELLIPSE_ ARCS ABS dirq, axy, ay4, xcen,, yceny, xend;, yend,
[dirs, axa, ay,, xcen,, yeen,, xends, yend, ...
diry,ax,, ay,, xcen,, ycen,, xend,, yend,
where n has no defined limit

diry, = drawing direction
0 : counterclockwise
1 : clockwise

ax, = relative X length

bx, = relative Y length

Xeen, = X coordinate of certer in VAS
ycen, = Y coordinate of center in VAS
xend, = X coordinate of end position in VAS
vend, =Y coordinate of end position in VAS

As defined by the final coordinates.

A fatal error occurs if the transformed (pixel} values of the
parameters do not have the following relationship:

SQRT (XC® + YC?) < 4095 / (MAX(A,B))?

where A = transformed relative X fength in pixels
B = transformed relative Y length in pixels
XGC = transformed value of {xcen - cpx)
YC = transformed value of (ycen - cpy)
where (cpx,cpy) are the coordinates of the current
position

These transformed values A and B are calculaied as follows:

1. Multiply ax and bx by the total magnifications in X and Y
directions respectively to obtain A and B.

2. Divide both A and B by the largest integral power of two such
that A =1 and B =1.

A fatal error occurs if the end point of an elliptic arc falls within any of
the shaded areas of Figure 9-2. The points A,B,C and D are points at
which lines of gradient +1 and —1 are tangential to the ellipse.

DRAWING INSTRUCTIONS 113

Notes: No drawing occurs outside the current viewport, though the drawing
position may move outside the viewport. The last pixel is not drawn
(see the DOT instruction).

Where a length of 255 is used, the parameter list must be terminated
with END PARAMETERS (see Section 3.3.1)

Example: LBYTE 14.,46. ;length and opcode
;first arc
LWORD 0. ;direction counterclockuise
.WORD 3. ;relative X length
.WORD 1. ;relative Y length
.WORD 50. ;X coordinate of center
.WORD 30. ;Y coordinate of center
.WORD -10. ;X coordinate of end position
.WORD 30. ;Y coordinate of end position

r

;second arce

LWORD 1. ;direetion clockwise

LWORD 4. ;refative X length

LWORD i ;relative Y length

.WORD -50. ;X eoordinate of center

.WORD 30. ;Y coordinate of center

.HORD -50. ;X coordinate of end position
.WORD 20. ;Y coordinate of end position

RE8SH

Figure 9-2 Error Areas for End Points of Elliptic Arcs

114 DRAWING INSTRUCTIONS

9.1 ELLIPSE ARCS_REL

This instruction draws the specified sequence of elliptic arcs, starting from the
current position.

Each arc is defined in terms of three parameters, as foliows:

® Aspect ratio

® Position of its center

& Displacement of its end from the end of the previous arc
The first arc is drawn from the current position. The aspect ratio relates to VAS
coordinates and defines the width:height refationship. The arcs are drawn in the

current drawing mode with the current line texture.

The specified end point should be on the circumference of the arc. If it is not, a
straight line is drawn from the circumference to the end paint.

Opcode: 47 Length: 7 x number of arcs, or 255

Format: ELLIPSE__ARCS REL dir,, axy, ayy, dxcy, dycy, dxey, dye,
[dirs, ax,, ays, dxc,, dycs, dxes, dye,,
-dirg,axn, ayn, dxc,, dyc,, dxe,, dye,,
where n has no defined limit

Parameters: dir, = drawing direction
0 : counterclockwise
1. clockwise
ax, = relative X fength
bx, = relative Y length
dxc, = Xdisplacement of center in VAS
dyc, =Y displacement of center in VAS
dxe, = Xdisplacement of end position in VAS
dye, =Y disptacement of end position in VAS

End Position: As defined by the final coordinates.
Errors: As for ELLIPSE__ARCS__ABS (Section 9.10).

Notes: No drawing occurs outside the current viewport, though the drawing
position may move outside the viewport. The last pixelis not drawn.

Where a length of 255 is used, the parameter list must be terminated
with END__PARAMETERS (see Section 3.3.1)

Example:

DRAWING INSTRUCTIONS

LBYTE 14, ,47. ;length and opcode
;first arc
LWORD 0. ;direction counterclockwise
LWORD 7. ;relative X length
LWORD 1. ;relative Y length
LWORD © ;X displacement of center
WORD -10. ;Y displacement of center
LWORD -70. ;X displacement of end point
LWORD -10. ;Y displacenent of end point
;second arc
LWORD 4 ;direction clockuwise
LWORD 1. srelative X length
JWORD 5. ;relative Y length
LWORD 0 ;X displacement of cenier
JWORD 50. ;Y displacement of center
.WORD 10, ;% displacement of end point
.WORD 50, ;¥ displacement of end point

9.12 RECTANGLE_ ABS

115

This instruction draws a rectangle from a vertex at the current position to the
diagonal vertex specified.

The rectangle is drawn in the current drawing mode with the current line texture.

Opcode: 48
Format:

Parameters:

End Position:
Errors:
Notes:

Example:

Length: 2
RECTANGLE__ABS x, v

X = X coordinate in VAS of opposite vertex
y = Y coordinate in VAS of opposite vertex

The current position is not changed.
None

No drawing occurs outside the current viewport.

CBYTE 2. ,48. ;length and opcade
.WORD 250. ;X coordinate
.WORD 1%0. ;Y coordinate of opposite

;vertex

116 DRAWING INSTRUCTIONS

9.13 RECTANGLE REL

This draws a rectangle from a vertex at the current position to the diagonal vertex
specified.

The rectangle is drawn in the current drawing mode with the current line texture.

Opcode: 49 Length: 2

Format: RECTANGLE REL dx, dy
Parameters: dx = X displacement of opposite vertex
dy =Y displacement of opposite vertex

End Position: The current position is not changed.

Errors: None
Notes: No drawing occurs outside the current viewport.
Example: CBYTE 2.,49. ;length and opecode
-WORD 150. ;X displacement
-WORD -30. ;Y displacement of opposite
;vertex
9.14 ELLIPSE

This instruction draws an ellipse of a specified VAS aspect ratio and major axis, with
its center on the current position.

Y

| X
CENTER

REAS4

Figure 9-3 Quantities Used to Define an Ellipse

An ellipse is defined by three quantities (Figure 9-3). These are as follows:
& Center, given by the current drawing position

® Agpect ratio. This is the ratio between the lengths of the two axes of the
allipse (X:Y)

& Radius along the X axis

DRAWING INSTRUCTIONS 117

The ellipse is drawn in the current drawing mode with the current line texture.

Opcode: 50 Length: 3
Format: ELLIPSE ax, by, rad
Parameters: ax = relative horizontal length
by = relative vertical length
rad = radius along X axis in VAS
End Position: The current position is not changed.
Errors: A fatal error occurs if the transformed ({pixel) values of the
parameters do not have the following relationship:
R < 4095 / (MAX(A,B))
where A = X length in pixels
B =Y length in pixels
R = radius along X axis in pixels
These transformed values are calculated as follows:
1. Multiply ax and bx by the total magnifications in X and Y
directions respectively to obtain A and B.
2. Divide both A and B by the largest integral power of two such
that A =1 and B =1.
Notes: No drawing occurs outside the current viewport.
Example: .BYTE 3.,50. ;length and upende
.WORD 4. ;jrelative horizontal
;dimension
LWORD 1. ;relative vertical dimension
WORD §0. ;absolute radius along X axis
9.15 CIRCLE

This draws a circle with specified radius, centered on the current position.

The X and Y relative magnifications and zoom factors are applied independently. i
the two zoom factors are not equal, the VAS circle appears on the screen as an

ellipse.

118 DRAWING INSTRUCTIONS

The circle is drawn in the current drawing mode with the current line texture.
Opcode: 51 Length: 1

Format: CIRCLE rad

Parameters: rad = radius

End Position: The current position is not changed.

Errors: A fatal error occurs if the transformed (pixel) values of the
parameters do not have the following relationship:

R < 4095/ (MAX(A,B))?
where A = Xiength in pixels
B =Y length in pixels
R = radius along X axis in pixels

These transformed values are calcutated as follows:

1. Take the total magnifications in X and Y directions respectively
o obtain A and B.

2. Divide both A and B by the largest integral power of two such
that A =1 and B =1.

Notes: No drawing occurs outside the current viewport.
Example: LBYTE 1.,54. ;lengih and opeode

LWORD B0O. ;radius of circle
9.16 DOT

A dot is drawn at the current position, in the current drawing mode.
Opcode: 52 Length: 0

Format: DOT

Parameters: None

End Position: The current position is not changed.

Errors: None

Notes:

Example:

DRAWING INSTRUCTIONS 119

The point designated by the terminating positionin the preceding line
and arc drawing instructions is not drawn automatically. It must be
drawn explicitly with a DOT instruction. This permits the line to be
continued with other drawing instructions when in drawing modes
such as EQR, where overwriting would cancel the point.

No drawing occurs outside the current viewport,

LBYTE 0.,582. ;length and opcode

CHAPTER 10
FILLED FIGURE INSTRUCTIONS

This chapter contains a description of each VIVID filled figure instruction. Opcodes
are given in decimal. A MACRO-32 example of each instruction is provided.

101 FILLED RECT ABS

A rectangle is drawn from a vertex at the current position to the diagonal vertex
specified as an absolute position in VAS. The rectangle is then filled with the area
texture pattern.

Opcode: 56 Length: 2

Format: FILLED RECT__ABSx,y

Parameters; X = X coordinate in VAS of opposite vertex
=Y coordinate in VAS of opposite vertex

End Position: The current position is not changed.

Errors: None

Notes: No drawing occurs outside the current viewport. After all the
transformations have been applied, the extent of the rectangle
should not exceed + 16383 in the X or Y direction.

Example: .BYTE 2.,56. ;length and opecode

LWORD 100. ;x=100
-WORD 200. ;9=200

121

122 FILLED FIGURE INSTRUCTIONS

10.2 FILLED RECT_ REL
A rectangle is drawn from a vertex at the current position to the diagonal vertex and
filed with the area texture pattern. The diagonal vertex is specified as a

displacement from the current position.

Opcode: 57 Length: 2

Format: FILLED RECT_ REL dx, dy
Parameters: dx = horizontal displacement of opposite vertex
dy = vertical displacement of opposite vertex

End Position. The current position is not changed.
Errors: None
Notes: No drawing occurs outside the current viewport. After all the

transformations have been applied, the extent of the rectangle
should not exceed + 32767 in the X or Y direction.

Exampie: .BYTE 2.,57. ;length and opecode
-WORD 200. Frd=200
LWARD 100, ;yd=100

10.3 FLOOD AREA
This instruction fills the area which includes the current position to the defined edge
color, or current foreground color, with the area texture pattern. The area texture

pattern is written in Replace mode, irrespective of the current drawing mode.

Opcode: 58 Length: O or 1

Format; FLOOD AREA [ind]
Parameters: ind = CLUT index of edge color to which filling occurs. Range
Oto 15.

—1: defaults to current foreground color
End Position: The current position is not changed.

Errors: A warning is issued if the color parameter is invalid {outside the
range —1 to 15}, and no flooding occurs.

FILLED FIGURE INSTRUCTIONS 123

Notes: The foreground and background colors are also edge colors, and it
may be necessary to set them. H the foreground or background color
can appear in the area to be filled, # is safer to use the following
procedure:

1. Save attributes.

2. Setforeground and background to the same color. This color is
otherwise unused.

3. Flood the area to the foreground color.
4. Restore color attributes.
5. Paint the area containing the unused color as selected in step 2.
If the edge color parameter is omitted or is — 1, filling occurs to the
current foreground color.
No matches are generated by this instruction.
No drawing occurs outside the current viewport.
Example: .BYTE 1.,58. ;length and opcode
CWORD 10, ;color £0 from CLUT
10.4 PAINT__AREA

This instruction fills the area of the specified color which includes the current position
with the area texture pattern.

The current foreground and background colors cannot be used as the specified
color. The area texture pattern is written in Replace mode, irrespective of the current
drawing mode.

Opcode: 58 Length: 1

Format; PAINT _AREA ind

Parameters: ind = index of color to be replaced

End Position: The current position is not changed.

Errors: Warning if parameter invalid.

Warning it the color to be replaced is the current foreground or
background color.

124 FILLED FIGURE INSTRUCTIONS

Notes: No matches are generated by this instruction.
No drawing oceurs outside the current viewport.

Example: .BYTE 1.,59. ;length and opcode
.WORD 11. scolor 14 from CLUT

CHAPTER 11
TEXT INSTRUCTIONS

This chapter contains a description of each VIVID text instruction. Opcodes are
given in decimal. A MACRO-32 example of each instruction is provided.

The instructions DRAW CHARS and DRAW__PACKED _ CHARS (Sections 11.9
and 11.10) are used to draw characters. The altributes of these characters are
defined by the other instructions in this chapter.

The CELL_ MAGNIFICATION instruction specifies one of the following character
modes:

e Pixel mode

in this mode, anly the cell magnification factors are applied. All dimensions
and movements are defined in terms of pixels on the display surface.
Consequently, the aspect ratio of the characters will vary according to the
resolution of the monitor, as follows:

— High resolution monitor gives a pixet aspect ratio of 1:1
— Low resolution monitor gives a pixel aspect ratio of 1.2

This variation can be corrected by using a Y magnification factor which is
twice that of the X factor when a high-resolution monitor is used. The default
values used implement this principle. See CELL__MAGNIFICATION
{Section 11.7).

When cells are drawn at angles of 45, 135, 225 or 315 degrees, they appear
larger by a factor of 1.414 than those drawn in a horizontal plane. in pixel
mode, the current point is maintained true in terms of pixels on the display
surface, but not in VAS units.

125

126 TEXTINSTRUCTIONS

® Relative mode

The current point is rnaintained true in terms of VAS units. This is because
the parameters entered with the SET__ WINDOW, SET__VIEWPORT and
ZOOM__FACTORInstructions (Chapter 7) are taken into account. Cells are
always drawn to the size nearest the ideal, so the characters drawn at
angles which are multiples of 45 degrees will be nominally the same size as
those drawn horizontally. This may result in ceils overlapping, but this effect
can be corrected with the CELL _MOVEMENT instruction. Within the
limitations imposed by the moniiors, characters are displayed at the same
size on monitors of both types.

11.1 INITIALIZE_ FONT

This instruction initializes the specified segment as a font, irrespective of the
segment contents.

Opcode: 63 Length: 4 or 5
Format: INITIALIZE_ FONT segid, width, height, ncell [,init]
Parameters: segid = segment ID

width = cell width in pixels (1 to 16)
height = cell height in pixels (1 to 16)

ncell = number of cells in the font (>0)
init = initialization style for cells:
0 : blank; this is the default
—1 : solid

End Position: The current position is not changed.
Errors: An error occurs in the following cases:
® Parameter is out of range
® Segment is not large enough
e Segment has not been defined

If there is an error, the segment is notinitialized as a font. It retains its
original identity.

Example: .BYTE 5.,63. ;length and opcode
.WORD "X0FO1 ;segment class 15, number 1
LWORD 10. ;eell width 10 pixels
-WORD 12, ;cell height 12 pixels
JHORD 36. ;36 cells in font
LWORD -1, ;foreground initialization

;styte

TEXTINSTRUCTIONS 127

1i.2 SET__FONT

This sets the current font to the identified font segment. This font is used for
subsequent VIVID instructions which access fonts.

Opcode: 84
Format:
Parameters:
End Position:

Errors:

Notes:

Example:

Length: 1
SET__FONT segid
segid = font segment ID
The current position is not changed.
An error oceurs in the following cases:
e Segmentis not found
e Segment is not a font segment
If there is an error, the current font remains unchanged.
If no SET__ FONT has been encountered, the following rules apply:
@ The supplied multinational font is used if it has not been
deleted. It has a segment ID of hex 10FF, decimal 4351,
Fonts may be downloaded by a VCP command (Section

18.3).

e |f the supplied font has been deleted, the current font is
undefined. A font reference other than SET__ FONT causes

an error.
.BYTE 1.,64. ;length and opcode
.WORD 3500. ;font number 3500

11.3 LOAD_CHAR_ CELL

A character cell is loaded to the current font from the pixel data given as parameters.

Opcode: 65

Format:

Parameters:

End Position:

Length: 255 or number of rows + 1

LOAD CHAR CELL ind, irow, [, irows, ... irow,]
where n = 1-16

ind = cell index
irow, = image value for a pixel row

The current position is not changed.

128 TEXTINSTRUCTIONS

Errors:

Notes:

Example:

A warning is issued if there are too many rows; excess rows are
discarded.

Rows are in sequence, the first being the bottom row of the cell.
Details of the format within a row may be found in Section 2.2. Any
rows at the top of the cell not provided are filled solid or blank,
depending on font initialization {Section 171.1).

Where a length of 255 is used, the parameter list must be terminated
with END__PARAMETERS (Section 3.3.1).

LBYTE 11.,65. ;length and opeode
.4ORD B2. ;eell index 82
.WDRD "B0O0DODO0 ;bottom row of cell
MORD "HOO000000
;letter "R”
.WORD "Bi0000010
.HORD "BO10G0010
HORD "BO0100010
MORD "BO£1111£0
.WDRD "B100D00LO
.WORD "B40000010
.WORD "BOL111110
JHORD "B0O0000000 ;top row of cell

1.4 CELL OBLIQUE

This defines whether subsequent cells are to be drawn rectangutarty, or in italic (45-
degree siope) form.

Opcode: 66
Format:

Parameters:

End Position:

Errors:

Notes:

Example:

Length: 1

CELL OBLIQUE ital

ital = parameter for rectangular or italic character
0 : rectangular character
1 :italic character

The current position is not changed.

If the parameter is invalid, a warning is generated and oblique is
assumed.

No drawing is performed.

.BYTE 1.,66. ;length and opcode
.WORD {. ;italic character

TEXTINSTRUCTIONS 129

11.5 CELL_ ROTATION

This instruction defines the angle at which cells are written to the display image. The
angle is defined in 45-degree counterclockwise units.

Opcode: 67 Length: 1
Format: CELL__ROTATION ndeg

Parameters: ndeg = number of 45-degree units of rotation
0 : horizontal
1:45 degrees
2 : 90 degrees
3: 135 degrees
4 : 180 degrees
5 : 225 degrees
6 270 degrees
7

: 315 degrees

End Position: The current position is not changed.

Errors: A warning is issued if the parameter is out of range, and zero rotation
is assumed.
Notes: Cells rotated at 45, 135, 225 and 315 degrees are distoried on

presentation.
No drawing is performed.
Example: .BYTE 1.,67. ;length and opcede
.WORD &. jrotate cell 270 degrees
jeounterclockuwise

11.6 CELL_SIZE

This defines the length and width of the display image cell and the disptacement of
the stored font cell within the display image cell.

Opcode: 68 Length: 4

Format: CELL SIZE width, height, xdis, ydis

Parameters: width = width of display cell in pixels (range 1-16)
height = height of display cell in pixels (range 1-16}
xdis = horizontal displacement of font call (range 0-15)

ydis = vertical displacement of font cell {range 0-15)

End Position: The current position is not changed.

130 TEXTINSTRUCTIONS

Errors: Error if parameter out of range. The currently-defined value remains
unchanged.
Notes: Any part of the font cell whose dimensions or displacement would

place it outside the display cell is truncated. Any part of the display
cell not covered by the font cell is set to the font defauit cell value; that
is, alt foreground or all background.

Ifno CELL SIZE instruction has been encountered, the display cell
for any font corresponds to the font dimensions.

Units are applied to the dimensions by CELL MAGNIFICATION
(Section 11.7).

No drawing is performed.

Example: .BYTE 4.,68. ;length and opcode
.WORD 10, ;width 10 pixels
CWORD 12, sheight 12 pixels
JWORD 1. ;horizontal displacesent
LWORD 2. ;vertical displacewment

11.7 CELL_ MAGNIFICATION

This instruction defines the horizontal and vertical cell magnification, in terms of
pixels or relative magnification.

Opcode: 69 Length: 3

Format: CELL_ MAGNIFICATION utyp, xmag, ymag
Parameters: utyp = code for magnification unit type
0 : pixels

1 : relative (this is the defaulf)

xmag = magnification in the cell X direction {range 1-18). The
defaultis 1.

ymag = magnification in the ceil Y direction (range 1-16) The
default is 2.

End Position: The current position is not changed.

Efrors: Awarning is issued if the maximum magnification of 16 is exceeded.
A default magnification of 16 is then used.

TEXTINSTRUCTIONS 131

Notes; Cell magnification operates in addition to other magnification factors.
The maximum total magnification on either axis is 16.

For pixel magnification, the magnification indicates the number of
replications of each pixel on subsequent text-outputting instructions.

For relative magnification, the units correspond 16 the units used in
relalive drawing (Chapter 8) and viewport/window mapping and
zoom factors are mulliplied by the cell magnification factors to give
the total magnification. Cells are displayed at the nearest size
available to the ideal size calculated. If the calculaled size is less
than 0.5 ineither the X or Y direction, the value is rounded to zero and
there is no visual output. However, the current pointis moved by the
appropriate amount.

This can be used to reveal information as the screen is zoomed; text
which under certain conditions would not appear may be revealed as

the overall magnification factor is increased.

No drawing is performed.

Example: JBYTE 3.,65. ;length and opcode
.WORD 1. irelative magnification
.WORD 4. jmagnification in cell X direction
.WORD §. jmagnification in cell Y direction

11.8 CELL MOVEMENT

This defines a relative movement from the end of one character cell to a final current
position.

The relative movement rotates and the distances are allered, as in CELL
ROTATION (Section 11.5).

Opcode: 70 lLength: 2

Format: CELL__MOVEMENT xd, yd

It

haorizontal displacment
vertical displacement

Parameters: xd
yd

f

End Position: The current position is not changed.

Errors: None

132 TEXT INSTRUCTIONS

Notes:

Example:

Untit a CELL _MOVEMENT instruction is encourtered, the default
movement sets the drawing position to the start point for a following
cell with no gap, irrespective of the rotation.

The distances xd, yd have units as defined by CELL
MAGNIFICATION (Section 11.7).

No drawing is performed.

CBYTE 2.,70. ;length and opeode
LWORD 1. 1X movement
JHORD 2. ;Y movenent

1.8 DRAW__CHARS

This displays the characters specified by each index in the parameter list. There is
one index per word.

Opcode: 71

Format:

Parameters:

End Position:

Errors:

Notes:

Example:

Length: number of characters, or 255

DRAW CHARS ind4, ind,, ... ind,]
where n has no defined limit

ind, = index to cell in font

Defined by the CELL__MOVEMENT instruction (Section 11.8). if no
CELL MOVEMENT instruction has been encountered, the instruction
“CELL_ MOVEMENT 0, 0" is implied. The final end position follows

the last valid index for which a celi has been written to the display
image.

Error if index is out of range ot if font is not currently defined.
Warning if total cell magnification exceeds 16.

The output uses the current foreground and background colors and
the current drawing mode.

Where a length of 255 is used, the parameter
list must be terminated with END__ PARAMETERS
{Section 3.3.1).

No drawing occurs outside the viewport. Match may be detected.

.BYTE 3.,7¢. jlength and opcode
LWORD 1. ;draw character |
LWORD 20. ;draw character 20

.WORD i6. joraw character 16

TEXT INSTRUCTIONS 133

11.10 DRAW PACKED CHARS

This instruction displays the characters specified by each index in the parameter list.
tndices are packed two per parameter word.

Opcode: 72

Format:

Parameters:

Errors:

MNotes:

Example;

Length: (number of chars+1)/2 or 255

DRAW PACKED CHARSIy i Liz Jz, --n nl
where n has no defined limit

in in = any two characters from byte string

Error if index is out of range or if font is not currently defined.
Warning if total cell magnification exceeds 16.

Except for the parameter format, processing is as for DRAW_ CHARS
{Section 11.9). If the number of characters to be output is odd, use a
final END PARAMETERS index of 255. This will be ignored.

The character defined by the low byte is drawn first.

CBYTE 2, ,72. ;length and opcode

.BYTE 11..5. ;character 11,5
.BYTE 6.,12. :characters 6,12

CHAPTER 12
AREA OPERATION INSTRUCTIONS

This chapter contains a description of each VIVID area operation instruction.
Opcodes are given in decimal. A MACRO-32 example of each instruction is

provided.

i2.1 CLEAR_SCREEN

This instruction clears the display.

Opcode: 76
Format:
Parameters:
End Position:
Errors:

Notes:

Example:

Length: 0 or 1

CLEAR SCREEN [patt]

patt = list of color indices for screen
The current position is unchanged.
MNone

If ho parameter is supplied, the screen is cleared to the current
background color.

The color indices define a repeating four-pixel pattern from left to
right along each screen raster. In display order, the indices are in bits
0-3, 4-7, 8-11 and 12-15. See the NORMAL__COLORS command
(Section 8.6) for a description of these indices.

The viewport is ignored.

.BYTE 1.,76. ;length and opcode
JWORD "¥ift1 ;efear to color i

135

136 AREA OPERATIONINSTRUCTIONS

12.2 CLEAR_ VIEWPORT

This clears the viewport to the current background color,

Opcode: 77
Format:
Parameters:
End Position:
Errors;

Example:

Length: 0

CLEAR_ VIEWPORT

None

The current position is set to the window origin.
None

LBYYE 1.,77. ;length and opcade

123 SCROLL_ VIEWPORT

This moves the data within the viewport. The data is moved by the indicated

displacement.

Opcode: 79
Format:

Parameters;

End Position:
Errors:

Notes:

Example:

Data falting outside the viewport is lost.
Length: 2

SCROLL VIEWPORT dx, dy

dx = horizontal displacement of data. Positive values indicate
displacement to right
dy = vertical displacement of data. Positive values indicate

upward displacement
The current position is set to the window origin.
None
The display data bounded by the viewport is moved by the
displacement specified. The new data replaces the previous display

data. The viewport itself is not moved.

The area of the viewport not overlaid by the move is cleared to the
current background color.

LBYTE 2.,79. ;length and opecode
.WORD 59, ;displace B0 VAS units te right
.HORD -100. ;and 100 dounwards

AREA OPERATIONINSTRUCTIONS 137

i2.4 PIXEL__READBACK

This reads a display image area to a specified segment. This segmentis normally in
host memory. The segment may be used for subsequent pixel write operations.

Each row of pixel data is an integer number of frame buffer words. A frame buffer
word contains four pixels. The start position of the transfer is the frame buifer
{(display image) word containing the current position.

Opcode: 80 Length: 3

Format: PIXEL READBACK segid, dxw, dyp
Parameters: segid = pixel data map segment 1D
dxw = area width in words (of 4 pixels each). Positive values

indicate displacement to right
area height in pixets. Positive values indicate upward

displacement

dyp

End Position: The current position is not changed.
Errors: Error if segment is not found or is too smail.

Notes: The segment is initialized as a pixel data segment, irrespective of its
former identity.

The area read back to the segment is rectangular.

The pixel data is organized in the segment as specified in Section

3.3.3.

Example: .BYTE 3.,80. ;length and opcede
.WORD "XDo1 ;segment class 13, number |
LWORD 25. ;28 words wide = 100 pixels
.WORD 50. ;50 pixels high

125 PIXEL__WRITE

This instruction writes a specified segment containing pixet data to the display image
at the current drawing position.

The pixel data is organized as specified in Section 3.3.3. The data runs a number of
words (of four pixels each) right or left and a number of pixels upward or downward,
depending on the sign. These size parameters are held in the segment header. The
data is displayed starting at the current position.

Current magnification factors are applied 1o the output.

138 AREA OPERATION INSTRUCTIONS

The actual display image output is restricted to the viewport. This feature may be
used to remove unwanted pixels in the pixel data map segment.

Opcode: 81 Length: 1

Format: PIXEL_ WRITE segid, mag

Parameters: segid = pixel data map segment ID

End Position: The current position is not changed.

Errors: Error if one or more of the following is true:

Segment is not found

® Segment is of the wrong type

e Segment is too small for its defined contents
Warning if output would exceed dispiay image bounds.

Notes: Data written to the display with this instruction is subject to window
and viewport mapping or to zooming. Consequently, the output is
independent of the physical dimensions of the monitor; it is
controlled by the sprx and spry values entered with the START _
PIXEL__DATA instruction (Section 8.3).

Matches may be detected,

Example: .BYTE 2.,B1. ;length and opeode
(WORD "xpO2. jsegment class 13, number 2

12.6 FAST_ PIXEL WRITE

This instruction writes a specified segment containing pixel data from the host or

VSV21 memory to the display image, starting at the word {a unit of four pixeis)

containing the current position.

i the display bounds in the Y axis are exceeded, output is truncated to the screen
bounds.

The pixel data is organized as specified in Section 3.3.3 and runs a number of words
{of four pixels each) right or left and a number of pixels upward or downward
depending on the sign. Positive values denote movement upward or to the right.
These size parameters are held in the segment header.

No matches are detected. The viewport is ignored.

Opcode: 82
Format:
Parameters:
End Position:

Errors:

Notes:

Example:

AREA OPERATION INSTRUCTIONS

Length: 1

FAST PIXEL WRITE seqid

segid = pixel data map segment |D

The current position is not changed.

Error if one or mere of the fotfowing is true:
e Segment is not found
& Segment is the wrong type

e Segment is loo small for its defined contents

Warning if output would logically exceed display image bounds.

139

The area written is logically rectangular. However, if the display

image X range is exceeded, the display is wrapped around.
The current position must be within the screen bounds.

JBYTE 1. ,82. ;length and opcode
JHORD "XDOt ;seguent class 13, number 1

12.7 FAST_PIXEL MODIFY

This writes a specified segment which contains pixel data from the host or VSV21
memory to the display image by performing a specified logical operation. It is done
starting at the word {a unit of four pixels) containing the current position.

If the display bounds in the X axis are exceeded, wraparound occurs. If the display

bounds in the Y axis are exceeded, output is truncated to the screen bounds.

The pixel data is organized as specified in Section 3.3.3 and runs a number of words
(of four pixels each) right or ieft and a number of pixels upward or downward
depending on the sign. Positive values denote movement upward or to the right.
These size parameters are held in the segment header.

140 AREA OPERATION INSTRUCTIONS

Opcode: 83
Format;

Parameters:

End Position:

Errors:

Notes:

Example:

Length: 3
FAST PIXEL MODIFY segid, mode, mask
segid = pixel data map segment |D
mode = operational mode;
0 : replace display image
1 : OR with display image
2 : AND with display image
3 : EOR with display image
mask = word bit mask
The current position is not changed.
Error if one of the following is true:
® Segment is not found
e Segment is of the wrong type

® Segment is too small for its defined contents

Warning if output would exceed the address range of the display
image frame buffer.

The parameter mask selects the bits in each word for use in the
operation (1 = on, 0 = off). This enables overlays to be written, for

example.

The area written is logically rectangular. However, if the display
image X range is exceeded, the display is wrapped around.

The current position must be within the screen bounds.

No matches are detected. The viewport is ignored.

.BYTE 3.,83. ilength and opcode
.HORD "¥Do1 ;segment class 13, number 1
JYORD 1. ;O0R with display image

.WORD "XD447 ;mask 1104 0100 1010 0111

AREA OPERATION INSTRUCTIONS 141

12.8 SELECTIVE_CLEAR

The specified logical operation is performed on the rectangular area whose opposite
vertices are defined by the current position and the specified displacement.

ff the display bounds in the Y axis are exceeded, the selective clear is truncated to
the screen bounds.

No matches are detected. The viewport is ignored.

Opcode: 84
Format:

Parameters:

End Position:
Errors:

Notes:

Length: 4 or 5
SELECTIVE CLEAR mode, mask, [patt,] dxw, dyp

mode = operational mode:
0 : replace display image
1 : OR withdisplay image
2 . AND with display image
3 : EOR with display image
mask word bit mask
patt color bit pattern for 4 pixels
dxw = signed area width in words (of 4 pixels each)
dyp signed area height in pixels

]

il

il

The current position is not changed.
Warning if the selective clear is truncated to the screen bounds.

Positive values of dxw and dyp indicate movement to the right and
upward from the current position.

This instruction performs word operations on the image. The logical
operation specified by the mode parameter is performed between
the image data and the parameter pattern. Section 3.3.3 describes
how the image is stored.

The mask parameter selects the bits in each word to be used in the
operation (1 = used, 0 = not used). For example, this enables
overlays to be maintained while the rest of the data is cleared, or the
reverse.

If the pattern parameter is omitted, the current background color is
assumed for each of the four pixels making up the word.

142 AREA OPERATION INSTRUCTIONS

Example:

The area cleared is logically rectangular. However, if the display
image X range is exceeded, the display wraps around on the screen.

The current position must be within the screen bounds.
No matches are detected. The viewport is ignored.

LBYTE 5,84, ;length and opcode

.WORD 1. ;0R to display image

JWORD "XD4A7 ;mask 1101 0100 1010 0111

.WORD "X4A6D ;colors 4, 10, & and 13 from CLUT
.WORD 20. jwidth 20 words = 80 pixels

.WORD 100. jheight 100 pixels

129 COPY_ABS

The specified source area is copied to an area with a vertex at the current position
and a defined orientation. The origin of the source area is expressed as an absolute
position in VAS.

Opcode: 85
Format:

Parameters:

End Position:

Errors:

Notes:

Length: 5
COPY__ABS amod, xs, ys, xdim, ydim

amod = aftitude mode

XS = X position of the source area origin in VAS
ys = Y position of the source area origin in VAS
xdim = X dimension of the source copy area in VAS
ydim =Y dimension of the source copy area in VAS

The current drawing position is not changed.

Warning if amod is out of range 0 to 15. The parameter is masked into
range.

The effects of the parameter amod and the signs of xdim and ydim
are described in Section 12.11.

Movement may be simulated by overtapping copies so that each
new copy performed deletes the pictorial body of the previous copy. I
the pictorial element copied has a border, simpie dynamics may be
effected.

No drawing occurs outside the viewport. The current drawing mode
applies.

AREA OPERATION INSTRUCTIONS 143

Exampte: LBYTE 5.,85. ;length and opeode
LBORD 1. ;attitude mode
JWORD 10. ;X position of source area origin
JWORD 20. ;Y position of source area origin
JWORD 200, ;width of seource copy area
-WORD 400. jheight of source copy area

12.10 COPY_ REL

The parameter-defined source area is copied to an area with a vertex at the current
position with a defined attitude. The origin of the source area is expressed relative to
the current position.

No drawing occurs outside the viewporl. The current drawing mode applies.
Opcode: 86 Length: 5

Format: COPY REL amod, dxs, dys, xdim, ydim

Parameters: amod = attitude mode

dxs = X VAS displacement of the source area origin
dys =Y VAS displacement of the source area origin
xdim = X VAS dimension of the source copy area
ydim = Y VAS dimension of the source copy area

End Position: The current drawing position is not changed.

Errors: Warning if amod is out of range 0 to 15. The parameter is masked into
range.
Notes: The effects of the parameter amod and the signs of xdim and ydim

are described in Section 12.11.

Movement is simulated by overlapping copies so that each new copy
performed deletes the pictorial body of the previous copy. If the
pictorial element copied has a border, simple dynamics may be

effected.
Example: .BYTE 5.,86. ;length and opcode

LHORD 1. ;attitude mode

JHORD 25, ;X displacenent of source area
;origin

.WORD &60. ;Y displacenent of sourece area
;arigin

.WORD 200, ;width of source copy area

.WORD 400, ;height of source copy area

144 AREA OPERATION INSTRUCTIONS

12,11 NOTES ON THE COPY INSTRUCTIONS

The COPYﬁABS and COPY__REL instructions copy part of a picture from one area
on the screen to another. Attention to the scan directions is necessary to avoid
corruption of the destination area when it overlaps the source area.

The picture is copied pixel by pixel. The instruction parameters define the arder in
which the pixels are read from the original area and the order in which they are
written to the new location. This, for exampie, allows you to transform the picture by
rewriting it as a mirror image or upside down.

The parameter amod defines two things:

® The order of the source scan, as follows:

amod Scan direction
0-7 row by row, bottom to top
8-15 column by column, left to right

@ The direction of the destination scan

Unlike the source scan, the destination scan is not restricted to any basic
directions. The pixels may be written to the destination in a total of eight
ways (Table 12-1). The conventions adopted in Tabie 12-1 are as follows:

+X = left to right
—X = right to left
+Y = upwards

—Y = downwards

AREA OPERATION INSTRUCTIONS

145

Table 12-1 Order of Pixel Write to Destination Area by amod Value
Value of Scan direction
amod first second
Oor8 +X +Y
1or9 +X -Y
20r10 —X +Y
3or il —X =Y
4or12 +Y +X
5o0r13 =Y X
Gor14 +Y -X
7or15 =Y —X

The parameters xdim and ydim define two things:

@ The size of the area to be scanned

e The direction of the source scan. The order of the scan is hasically row,
column until it is modified by the parameter amod. The direction is specified

as follows:

Sign Direction
xdim ydim
+ + left to right, bottom o top
+ - left to right, top to bottomn
— + right to left, top to bottom
- - right to left, bottom to top

Exampie: Set amod = 6
xdim >0

ydim < 0

146 AREA QOPERATION INSTRUCTIONS

The following happens:

1. The source area is scanned left to right, top to bottom as follows:

first direction
second
direction 1 2 3 4 5 6
7 8 9 10 11 12
i3 14 15 16 17 18
19 20 21 22 23 24

2. The destination area receives data in the following order:

24 18 12
23 17 11
22 16 10
21 15 9
20 14 8
19 13 7

first direction

N W koo

second direction

Figure 12-1 iliustrates the effects of the amod value and the signs of the parameters
xdim and ydim on the orientation of a simple right-angle figure when it is copied. The
source and destination area origins are indicated by “0” and the opposite vertex
defined by xdim, ydim is indicated by **". Scan directicns are indicated by “>" and
“>>" characters. The first direction is shown by “>>", and the second direction by

wen
=

S0URCE
SCAN

DESTINATION
CONTENTS
AND SCAN
BY armad
VALIE

SIGN
xdimn
ydim

Q0

m

0z

03

04

05

06

07

Figure 12-1a

AREAOPERATION INSTRUCTIONS 147

+ - + -
+ + - -
* * [a} (]
bew LK X] LR bee
° - L L
® L] * .
L3 L] - e
- - o -
o o * +
[R apo (2 L
L - ° a
® L] L] ©
L] - .)
® ° LN se e
Q o] o] o
[o] Q o]
. L [wae
L] Ll o [
- - L L
L L L] L
L.) 00 ® Kl
ceo cco e ®
w e @ ®
- L] L3 -
- - L] L
- - LN 0.
Qo < Q o3
Q o] o o
[® L] oo
L o L L
L] o - L]
o] L L]
as 0 a0 o L]
- 080 - eewaw
L3 L L -
LR N N o aco e -
o] [s] o o]
(=] Q o a
[ER XN . NN R NI .
- L (]
. (XX EN] ° X RN
» LR N R - [R NN
- -] L)
(XX K] L] [N NN .
[o] [o} o Q
[»] o] o 8]
LN - cowoé® L
e L. L] L3
(2 [E X XN . (NN
RE45S

Effect of Parameter Values and Signs on Orientation of Copied
Picture; amod range 0 — 7

148 AREA OPERATION INSTRUCTIONS

SIGN
xdim + - + =
ydim + * * + [o] - - o
LR-X] 6o see ewe
SOURCE : . M :
SCAN ° M . o
9 a a L
o O * *
DESTINATION
CONTENTS . saesse ® se0cwn
AND SCAN [o]:] © ® M e
BY amod eweee “ seess y
VALUE o o) o
o] o] [&] o
0o eo a eeqod L
09 ® ® ° °
) eveee o LI -
@ coeesq L L
10 e ° .
esee e - sCeo0en 2
o [s] [o] (o]
O o] s} a
eeoqp L] L) a
11| @ ¢ ® s
L] eceod o L a0 6Q6
ces LR L e
° b4 ® d
2] e . : .
@ L o L]
a 3 see L]
o o [s] [}
[} o o o
) L] X X L
@ [o e
13) = e M .
L @ © e
oea LR LS e
©ao 6ce ° e
L] ® & L] A
14 ° : : :
a - L @
& . oew e 60
o o o o
o [s) o) <
e » LR een
L] L] L] L]
15 'Y ry - <
= p ° °
coe LY L b

AE4RE

Figure 12-1b Effect of Parameter Values and Signs on Orientation of Copied
Picture; amod range 8 — 15

CHAPTER 13
INTERACTIVE OPERATION INSTRUCTIONS

This chapter contains a description of each VIVID interactive operation instruction.
Opcodes are given in decimal. A MACRO-32 example of each instruction is
provided.

i3.1 CURSOR_ STYLE
Sets the cursor to the specified pixel data, or to one of the default cursor styles.

Opcode: 90 Length: 1 or 3 + number of rows, or 255

Format: CURSOR STYLE ccode [, dxp, dyp, row,, rows ... row,]
where n is in the range 1-16

Parameters: ccode = cursor style code:
—1 : full screen cross-hairs
0 : small cross-hairs
>0 : width of cursor in pixels

dxp = cell pixel X displacement from cursor point
dyp = celi pixel Y displacement from cursor point
row, = cursor cell row bit pattern

End Position. The current position is not changed.
Errors: An error occurs in the following cases:
e length out of range 1to 19

e ccode outof range —1to 16

149

150 INTERACTIVE OPERATION INSTRUCTIONS

Notes:

Example:

For a defauit cursor, only the parameter ccode should be presentand
the length must be 1.

Rows are in sequence, the first being the bottom row of the cursor
cell.

Details of the format of a row may be found in Section 3.3.2.

To center the cell at the cursor position, use the following parameter
values:

dxp = ccod/2
dyp = (length — 3)/2

Setting the cursor style has no effect on cursor visibility. If the cursor
is currently visible, itis replaced immediately by the new cursor style.

Where a length of 255 is used, the parameter list must be terminated
with END__ PARAMETERS (see Section 3.3.1).

For optimum rendition, it may be necessary to adjust the pointing
device sensitivity factors by using the VCP (Chapter 18).

An example is given in Appendix E.

CBYTE 1.,50. ilength and opcode
.HORD 0. ;small cross-hairs

An example of a user-defined cursor is given in Appendix E.

13.2 POSITION__CURSOR

Sets the cursor to the specified position. The cursor is restricted by the screen

boundaries.

Opcode: 91

Format:

Parameters:

Length: 0 or 2
POSITION__CURSOR [x, y]

X = cursor X position in VAS
y = ¢ursor Y position in VAS

End Position: The current drawing position is not changed.

Errors:

None

INTERACTIVE OPERATION INSTRUCTIONS 151

Notes: If no parameters are provided, the cursor is moved to the current
drawing position.

This instruction does not change cursor visibility.
Example: .BYTE 0.,51. ;length and opcode
jmove cursor to current drawing
;position
13.3 CURSOR_ VISIBILITY
Detines whether or not the cursor is visible.
Cpcode; 92 Length: 1
Format: CURSOR_ VISIBILITY cmod
Parameters: cmod = cursor visibility
0 : cursor invisible

1 : cursor visible

End Position: The current pesition is not changed.

Errors: None
Notes: Even when invisible, the cursor is restricted to the screen bounds.
Example: BYTE 1.,52. ;length and opeode
.WORD 1. ;eursar visible
-
XY

RE4A73

Figure 13-1 Linear Rubber Band

152 INTERACTIVE QPERATION INSTRUCTIONS

AE4 7S

Figure 13-2 Rectangular Rubber Band

13.4 HUBBER_ BAND

Defines the rubber band characteristics and base point.

RUBBER__BAND defines two points either as the ends of a line (linear rubber band,
Figure 13-1) or as the ends of the diagonal of a rectangle (rectanguiar rubber band;

Figure 13-2).
Opcode: 93
Format:

Parameters:

End Position:

Errors:

Notes:

Length: 1 or3
RUBBER__BAND rcod [,x.y]

rcod = rubber band code:

0 no rubber band

1 : linear rubber band

2 : rectangular rubber band
X = X position of base point in VAS
y =Y position of base point in VAS

The current position is not changed.

if rcod is out of range, a warning is issued and no rubber band
assumed.

if no X, Y parameters are provided, the current drawing position is
assumed as the base point of the rubber band.

In Figures 13-1 and 13-2, x,y is the base point and two successive
cursor positions are shown.

This instruction does not change cursor visibility. If you use the
combination of long cross-hair cursor and rectangular rubber band,
two sides of the curser or band will not be seen.

For optimum rendition, it may be necessary to adjust the pointing
device sensitivity factors by using the VCP (Chapter 18).

INTERACTIVE OPERATION INSTRUCTIONS 153

Example: JBYTE I.,53. ;length and opcode
LWORD 1. ;linear rubber band
.WORD 100. ;X pusition of base point
-WORD 50. ;Y position of base point

13.5 SWITCH REPORT ENABLE
Enabies a pointing device so that when a specified swiich activity occurs, a reportis

sent to the host. The condition “No Switch Activity” is aiso covered, so reporis are
provided for all cursor movements. Report handling is described in Chapter 14,

Opcode: 94 Length: 1
Format: SWITCH _REPORT__ENABLE mask
Parameters: mask = switch mask

End Pasition: The current drawing position is not changed. The cursor position is
moved according to calculation from pointing device input.

Errors: None

Notes: A logical AND operation is caried out between the switch mask and
the pointing-device switch input data. A non-zero result determines
that a report shall be sent to the host. A zero switch mask indicates
that reporis on all pointing device input, including movement only,
are directed to the host. For details of reporting, see Section 14.16.

Example: .BYTE {.,94. ;length and opcode
.MORD "BO1t0 smask value

13.6 SWITCH_DISABLE

Disables pointing device reporting.

Opcode: 95 Length: O

Format: SWITCH DISABLE

Parameters: None

End Position: The current drawing position is not changed.

Errors: None

Example: .BYTE 0.,95, ;length and opcode

154 INTERACTIVE OPERATION INSTRUCTIONS

13.7 AUTOSWITCH

Defines a wait time after which a switch depression will be assumed at a given cursor

position.
Opcode: 96
Format:

Parameters:

End Position:

Errors:

MNotes:

Example:

13.8 WAIT

Length: 2

AUTOSWITCH tout, sval

tout = wait time in seconds
sval = the switch value returned if switch is not depressed within
the wait time

Current drawing and cursor positions are not changed.
None

Reporting to the host is as for SWITCH REPORT__ENABLE
{Section 13.6).

The switch value need not be supported by the pointing device in
use.

LBYTE 2.,96. ;length and opcode

.WORD §. ;wait § seconds

.WORD 1. ;jswiteh value to be returned
SWITCH

Waits for a switch interrupt before continuing with the next VIVID instruction.

Opcode: 103
Format:
Parameters:
End Position:
Errors:

Notes:

Length: 1

WAIT__SWITCH mask

mask = switch mask

Current drawing and cursor positions are not changed.

None

Segment processing waits at this instruction for pointing device input
where the switch input is non-zero when masked with the supplied
value.

This instruction execution is interrupted by a Stop Execution QIO, or

inthe case of QIO time-out. Subsequent resumption of processing is
at the following instruction.

Example:

INTERACTIVE CPERATION INSTRUCTIONS 155

.BYTE 1.,103 ;length and opcode
.WORD 12. ibits {100 enable switches 2
;and 3

13.9 MATCH ENABLE

When subsequent drawing intersects the cursor position, a report (Section 14.16) is
sent to the host. Following this instruction, drawing continues untit the maximum
number of matches have been detected.

Opcode: 97
Format:-
Parameters:
End Position:
Errors:

Notes:

Example:

Length: 1

MATCH_ ENABLE nmax

nmax = maximum number of matches
Drawing and cursor positions are not affected.
None

After drawing a picture, the same segments may be processed with
match enabled, to determine which instruction caused the pixel at
the cursor position to be drawn. Each match corresponding to the
cursor position may be be identified until match is disabled.

The parameter nmax determines the maximum number of matches
reported before segment processing is terminated. It may be used to
provide a single match, after which each further match might be
accessed by issuing a Resume Execution QIO, or to limit the number
of matches detected for program or report segment size reasons. A
value of 32767 implies an unlimited number.

After resuming, if nmax has been decremented to zero, each match
detected terminates processing of the segment. '

.BYTE 1.,57, ilength and opcode
.WORD 10. ;report up to 10 matches

156 INTERACTIVE OPERATION INSTRUCTIONS

13.10 MATCH_DISABLE
Disables a match.

Opcode: 98 Length: 0

Format: MATCH_ DISABLE
Parameters: None

End Position: Drawing and cursor positions are not affected.

Errors: None
Notes: See notes for MATCH__ ENABLE (Section 13.9).
Example: .BYTE 0.,58. ;length and opecode

13.11 ACCEPT KEYBOARD INPUT
Keyboard input to the identified segment begins. Input continues until the specified
termination character is received, a specified maximum number of characters has

been read, or the buffer is full.

The keyboard input may be automatically echoed to the screen in the current font
with the current text attributes applied from the current drawing position.

Opcode: 102 Length: 3 or 6

Format: ACCEPT__KEYBOARD__INPUT segid, chend, chmax
[, cind, cfore, chack]

Parameters: segid = the segment ID for writing the data
chend = input termination character

chmax = maximum input number of characters
cind = cursor index in current font

cfore = cursor foreground color index

cbhack = cursor background color index

End Position: The current drawing position is as for DRAW CHARS (Section
11.9). The cursor position is not changed.

Errors:

Notes:

INTERACTIVE OPERATION INSTRUCTIONS 157

Error if segment not found.

Warning if the cursor parameters are out of range. In this case, the
defaults are as follows:

e cind=40

e cfore and cback values are taken from the current
foreground and background colars

If no input termination character is required, the parameter cend
should be set to zero.

if only three parameters are provided, aulomatic echo is not
performed.

If split screen toggling is enabled, host serial input causes the display
to switch to split screen mode, connecting the keyboard to the host
port. The keyboard is disabled until <F4> is pressed. This is to avoid
ambiguity about the destination of keyboard input during toggling.

Pressing <F4> a second time replaces the full screen and
reconnects the keyboard to VIVID. The <F4> key is not accessible
to the display application.

In split screen mode, input from the keyboard is directed to the host
serial port,

The segment identified for keyboard input is initialized by this
instruction and any previous contents are lost. The segment format
is given in Section 3.3.4.
The delete key is interpreted as follows:

e Any previous character written is erased

e For echo, the data entry cursor character is repositioned.

No drawing occurs outside the viewport.

The next display instruction is not performed until input has
completed.

The instruction execution is interrupted by a Stop Execution QIO, or
inthe case of QIO time-out. Subsequent resumption of processing is
at the next instruction.

158 INTERACTIVE OPERATION INSTRUCTIONS

Example:

LBYTE 6.,102. jlength and opcode

.MORD "X1611 ;segment class 22, nuwher 17

.WORD 4. ;termination character

.WORD 100. ;Maximum number of characters

LWORD 5. ;eursor index

.WORD 10. jeursor foreground color frow
;CLUT

.WORD &. jeursor background color from
;CLUT

13.12 START__KEYBOARD INPUT

Keyboard input for AST processing is begun. The input is terminated by a
STOP__KEYBOARD _INPUT instruction.

Opcode: 89
Format:
Parameters:
End Position:

Errors:

Notes:

Example:

Length: 0

START__KEYBOARD__INPUT

None

The current drawing and cursor positions are not changed.

None. If the application has not set up an RSX AST or MicroViMS
mailbox, the input data is lost.

It split screen toggling is enabled, host serial input causes the display
to switch to split screen mode, connecting it to the host port. The
keyboard is disabled untii <F4> is pressed. This is to avoid
ambiguity about the destination of keyboard input during toggling.

Pressing <.F4> a second time replaces the full screen and
reconnects the keyboard to VIVID. The <<F4> key is not accessible
to the display application.

Subsequent keyboard input is directed to the RSX AST or MicreVMS
mailbox (see Section 14.17). Character codes despatched are
exactly as for host serial input.

No drawing occurs.

.BYTE 0.,55. ;length and opcade

INTERACTIVE CPERATION INSTRUCTIONS 159

13.13 STOP__KEYBOARD INPUT

Stops the keyboard input for AST processing. Subsequent input is by means of the
serial interface, if it is connected.

Opcode: 100 Length: 0

Format: STOP__KEYBOARD INPUT

Parameters: None

End Position: The current drawing and cursor positions are not changed.
Errors: None

Notes: Keyboard input is subsequently routed by means of the host serial
port, if connected.

Example: .BYTE ¢.,100 ;length and opoode

CHAPTER 14
REPORT HANDLING

This chapter describes the instruction to request reports. The opcode is given in
decimal and a MACRO-32 example is provided. The formats of all report packets are
also described. The report packets are either written directly to the report segment or
provided to an AST or mailbox routine by means of the stack. The packet format is
identical in each case, except where specified otherwise.

2 Heports may be generated by any of the following:

2 Report requests (Sections 14.1 to 14.12)

® FErrors during segment processing (Section 14.13 and 14.14)

@ Match interrupts {Section 14.15 and 14.19)

e Switch interrupts (Section 14.186)

e Keyboard input (Section 14.17)

e Interruption of segment processing (Section 14.18)

The reporis described in Sections 14.1 to 14.12 are generated by report reguests.
The remaining reports {Sections 14.13 to 14.19) are generated by events,

An introduction to report handling is given in Section 2.13.

14.1 REQUEST REPORT INSTRUCTION

This instruction places the specified report in the current report segment.
Opcode: 108 Length: 1

Format: REQUEST _REPORT nrep

Parameters: nrep = report number required (range 0-10)

End Position: The current position is not changed.

161

162 REPORT HANDLING

Errors: Warning i report number is invalid, and no report other than the
warning report is generated.

Notes: If there is no current report segment, the instruction is ignored.
The report number is that identified in word 0 of the appropriate
report packet.

The following report packets can be specified:

nrep Report Title

0 DRAWING POSITION

1 CURSOR__ POSITION

2 CELL PARAMETERS

3 GLOBAL ATTRIBUTES

4 TRANSFORMATION

5 SCREEN _FORMAT

6 FREE SPACE

7 VSV21 SEGMENTS

8 HOST SEGMENTS

9 VIVID _ VERSION

10 SEGMENT__TRACE
Example: JBYTE 1.,108. ;length and opcode

LHORD B. jreport number

REPORT HANDLING 163

14.2 DRAWING_ POSITION REPORT PACKET

The report provides the current graphics drawing position in VAS.

Format: The format of the report packet is shown in Figure 14-1.
WORD
DRAWING__POSITION =0 0

NUMBER OF PARAMETERS = 2 1

DRAWING X COORDINATE IN VAS 2

DRAWING Y COORDINATE IN VAS 3

RE45

Figure 14-1 Format of Drawing Position Report Packet

Notes: This reportis generated only by a REQUEST REPORT instruction
and is provided in the report segment only.

14.3 CURSOR_ POSITION REPORT PACKET

The report provides the current graphics cursor position in VAS.

Format: The format of the report packet is given in Figure 14-2.
WORD
CURSOR_POSITION = 1 io
NUMBER OF PARAMETERS = 2 1
CURSOR X COORDINATE IN VAS 2
CURSOR Y COORDINATE IN VAS 3

AEARR

Figure 14-2 Format of Cursor Position Report Packet

Notes: This reportis generated only by a REQUEST _ REPORT instruction
and is provided in the report segment only.

164 REPORT HANDLING

144 CELL_PARAMETERS REPORT PACKET

The report provides the current attributes applicable to text instructions.

Format: The format of the report packet is given in Figure 14-3.
WORD
CELL_PARAMETERS =2 o]
NUMBER OF PARAMETERS = 12 i
CURRENT FONT SEGMENT 1D 2
FONT CELL WIDTH 3
FONT CELL HEIGHT 4
DISPLAY CELL WIDTH 5
DISPLAY CELL HEIGHT 6
DISPLAY CELL X MOVEMENT 7
DISPLAY CELL ¥ MOVEMENT 8
DISPLAY CELL UNITS CODE 9
CELiL X MAGNIFICATION 10
CELL Y MAGNIFICATION 11
CELL OBLIQUE CODE 12
CELL ROTATION CODE 13

RES5Y

Figure 14-3 Format of Cell Parameters Report Packet

Notes: This report is generated only by a REQUEST__ REPORT instruction
and is provided in the report segment only. Details of the parameters
are as for the input parameters in the text instructions {Chapter 11).

REPORT HANDLING 165

14.5 GLOBAL_ATTRIBUTES REPORT PACKET

The report provides the major current global attributes which are not otherwise
available by using the VCP {VSV21 Control Program). The VCP commands are
described in Chapter 18.

Format: The format of the report packet is given in Figure 14-4,
WORD
GLCBAI__ATTRIBUTES = 3 6]
NUMBER OF PARAMETERS = n 1
SCREEN BLINK MODE 2
BLINK TIME ON 3
BLINK TIME OFF 4
SCREEN BLANK MODE 5
FOREGROUND CCLOR INDEX 8
BACKGROUND COLOR INDEX 7
DRAWING COLCR MODE B
DRAWING OPERATIONAL MODE 9
LINE TEXTURE NUMBER OF BITS 10
LINE TEXTURE BIT PATTERN 11
AREA TEXTURE NUMBER OF BITS 12
1ST AREA TEXTURE BIT PATTERN 13

LAST AREA TEXTURE BIT PATTERN n+1

L4860

Figure 14-4 Format of Global Attributes Report Packet

Notes; This report is generated only by a REQUEST _ REPORT instruction
and is provided in the report segment only. Details of the parameters
are as for the input parameters in the global attribute instructions
{Chapter 8).

The maximum report packet size is 29 words.

166 REPORTHANDLING

146 TRANSFORMATION REPORT PACKET
This report provides the current transformation details.

Format: The format of the report packet is given in Figure 14-5,

TRANSFORMATION REPORT PACKET
WORD

TRANSFORMATION = 4 0

NUMBER OF PARAMETERS = 17 1

SCREEN X DIMENSION IN VAS 2
SCREEN Y DIMENSION IN VAS 3
WINDOW X CRIGIN IN VAS 4
WINDOW Y ORIGIN IN VAS 5
WINDOW X EXTENT N VAS 5}
WINDOW Y EXTENT IN VAS 7
VIEWPORT MINIMUM X 8
VIEWPORT MINIMUM Y 9

VIEWPORT WIDTH 10
VIEWPORT HEIGHT 11

X ZOOM FACTOR i2

Y ZOOM FACTOR 13

DRAWING TRANSFORMATIONS FLAG | 14

X DRAWING MAGNIFICATION 15
Y DRAWING MAGNIFICATIGN 16
DRAWING X COORDINATE SHIFT 17
DRAWING Y COORDINATE SHIFT 18

REd61

Figure 14-5 Format of Transformation Report Packet

Notes: This report is generated only by a REQUEST__REPORT instruction
and is provided in the report segment only. Details of the parameters
are as for the input parameters in the viewing transformation
instructions (Chapter 7).

REPORT HANBLING 167

14.7 SCREEN__FORMAT REPORT PACKET

The report provides the screen format,

Format: The format of the report packet is given in Figure 14-6.
WORD
SCREEN_.FORMAT = 5 o]

NUMBER OF PARAMETERS = 2 1

SCREEN WIDTH IN PIXELS 2

SCREEN HEIGHT IN PIXELS 3

REAG2

Figure 14-6 Format of Screen Format Report Packet

Notes: This report is generated only by a REQUEST REPORT instruction
and is provided in the report segment only.

14.8 FREE__SPACE REPORT PACKET

This repert provides the number of words of space free for further download of
segments to the VSV21.

Format: The format of the report packet is given in Figure 14-7.
WORD
FREE_ SPACE = 6 0

NUMBER OF PARAMETERS = 2 i

RESERVED 2

FREE SPACE IN WORDS 3

RE4G3

Figure 14-7 Format of Free Space Report Packet

Notes: This report is generated only by a REQUEST__ REPORT instruction
and is provided in the report segment only.

Word 2 is reserved to allow compatibility with any future increase in
VEV21 RAM. In this case, the free space would be given by a
longword.

Note that the amount of free space (Word 3) is given in words rather
than in bytes,

168 REPORT HANDLING

14.9 VSV2i_ SEGMENTS REPORT PACKET

This report provides a list of the segments downloaded to the VSV21.

Format; The format of the report packet is given in Figure 14-8.

VEV21_SEGMENTS =7

NUMBER OF PARAMETERS =n

FIRST SEGMENT {D

LAST SEGMENT 1D

n+1

REAG4

Figure 14-8 Format of VSV21 Segments Report Packet

Notes: This report is generated only by a REQUEST __REPORT instruction

and is provided in the report segment only.

Segment IDs are in ascending sequence.

The maximum report packet size is 255 words.

14.10 HOST_ SEGMENTS REPORT PACKET

This report provides a list of the segments defined in the host memory.

Format: The format of the report packet is given in Figure 14-9.

HOST__SEGMENTS = 8

NUMBER OF PARAMETERS = n

FIRST SEGMENT ID

LAST SEGMENT ID

n+1

RE465

Figure 14-9 Format of Host Segments Report Packet

Notes:

14.11

REPORT HANDLING 169

This reportis generated only by a REQUEST REPORT instruction
and is provided in the report segment only,

Segment IDs are in ascending sequence.

The maximum report packet size is 514 words.

VIiViD_ VERSION REPORT PACKET

This report provides the downloaded VIVID interpreter version number.

Format:

The format of the report packet is given in Figure 14-10.

VIVID_.VERSION = 9 ¢

NUMBER OF PARAMETERS = 3 1

BYTES 0-1 OF VERSION NUMBER 2

BYTES 2-3 OF VERSION NUMBER 3

BYTES 4-5 OF VERSICN NUMBER 4

AE466

Figure 14-10 Format of VIVID Version Report Packet

MNotes:

This report is generated only by a REQUEST REPORT instruction
and is provided in the report segment anly.

The first version number byte in each word is stored in hits 7t0 0, and
the second in bits 15 to 8.

14.12 SEGMENT__TRACE REPORT PACKET

This report provides a trace of the nested segment calls to the current segment.

Format:

Notes:

The format of the report packet is given in Figure 14-11.

This report is generated only by a REQUEST __ REPORT instruction
and is provided in the report segment only.

Segment IDs are in calling sequence from the top level down to the
segment in which the report request occurs.

The maximum report packet size is 33 words.

170 REPORT HANDLING

WORD
SEGMENT.._TRACE =10 0
NUMBER OF PARAMETERS = n 1
TOP LEVEL SEGMENT ID 2
CURRENT SEGMENT 1D n+1

RE467

Figure 14-11 Format of Segment Trace Report Packet

14.13 VIVID__WARNING REPORT PACKET

The report indicates that a warning has been encountered and segment processing
has continued.

Format: The format of the report packet is given in Figure 14-12.

VIVID_WARNING = 32 0

NUMBER OF PARAMETERS =5 1

WARNING CODE 2
TOP LEVEL SEGMENT {D 3
CURRENT SEGMENT ID 4

CURRENT SEGMENT BYTE OFFSET 5

CURRENT OPCODE 6

RE468

Figure 14-12 Format of VIVID Warning Report Packet

Notes: This report is generated when the VIVID interpreter finds a segment
error after which processing can continue.

The report may be directed to the report segment or to an AST or
mailbox.

The top-level segment (Word 3) is the segment referenced in the
invoking QIO. The current segment (Word 4} is the actual segment
currently being processed, and the ofiset refers to the offset in the
segment of the opcode word for which the error was detected.

REPORT HANDLING 171

1414 VIVID ERROR REPORT PACKET

The report indicates that an error has been encountered and segment processing
has been stopped.

Format: The format of the report packet is given in Figure 14-13.

VIVID._ERRCR = 130 0

NUMBER OF PARAMETERS = 7 1

ERROR CODE 2
TOP LEVEL SEGMENT ID 3
CURRENT SEGMENT ID 4

CURRENT SEGMENT BYTE OFFSET 5

CURRENT OPCODE 6

DRAWING X COCRDIMATE IN WAS 7

DRAWING Y COORDINATE IN VAS 8

RE4ED

Figure 14-13 Format of VIVID Error Report Packet

Notes: This report is generated when the VIVID interpreter finds an error
from which segment processing should not continue.

The report may be directed to the report segment or to an AST.

The top-level segment is the segment referenced in the invoking
QIO. The current segment is the actual segment being processed.
The offset refers to the offset from the start of that segment of the
opcode word for which the error was detected.

172 REPORT HANDLING

14.15 MATCH_ INTERRUPT REPORT PACKET

This report indicates that a match has been detected. Processing continues if the
match count has not been exhausted.

Format: The format of the report packet is given in Figure 14-14.
MATCH__INTERRUPT = 64 0
NUMBER OF PARAMETERS = & 1
TOP LEVEL SEGMENT ID 2
CURRENT SEGMENT ID 3

CURRENT SEGMENT BYTE GFFSET 4

CURRENT OPCODE 5

DRAWING X COORDINATE iN VAS 6

DRAWING Y COORDINATE IN VAS 7

RE470

Figure 14-14 Format of Match Interrupt Report Packet

Notes: This report is generated when a match is found while a segment is
being processed.

The report may be directed to the report segment or to an AST or
mailbox.

The top level segment is the segment referenced in the invoking
QIO. The current segment is the actual segment being processed.
The offset refers to the offset from the start of that segment of the
opcode word for which the error was detected.

REPORT HANDLING 173

1416 SWITCH_INTERRUPT REPORT PACKET

This report indicates that an operation has been performed on a pointing device for
which reporting has been enabied.

Format: The format of the report packet is given in Figure 14-15.

SWITCH__INTERRUPT = 65 Yy

NUMBER OF PARAMETERS = 3 1

CURSOR X COORDINATE IN VAS 2
CURSOR Y COORDINATE IN VAS 3
SWITCH STATUS WORD 4

RE4TT

Figure 14-15 Format of Switch Report Report Packet

Notes: The report may be directed to the report segment or to an AST or
mailbox.
The switch status word indicates whether switches are depressed
(bit = 1), or raised (bit = 0). Bit 0 corresponds to switch 0, bit 1 to
switch 1, and so on.

14.17 KEYBOARD_ INPUT REPORT PACKET

This report provides input from the keyboard to an AST,

Format: The format of the report packet is given in Figure 14-16.
KEYBOARD__INPUT = 66 o
NUMBER OF PARAMETERS = n 1
FIRST TWO ASCH CHARACTERS 2
LAST TWO ASCli CHARACTERS n+1

REATZ

Figure 14-16 Format of Keyboard Input Report Packet

174

Notes:

REPORT HANDLING

in each word, the first character is in bits 7 to 0, and the second in bits
15 1o 8. If there is only one valid character in the word, the second is
set to zero.

The data represents the ASCIH character string corresponding to a
single key depression. However, if the string is too long for the driver
buffers, multiple transters will occur.

14.18 VIVID INTERRUPT REPORT PACKET

This report indicates that segment processing has been interrupted by a QIO stop,
by time-out or by a cancel protocol from the host.

Format:

The format of the report packet is given in Figure 14-17.

VIVID_INTERRLIPT = 128 o

NUMBER OF PARAMETERS = 4 1

TOP LEVEL SEGMENT (D 2

CURRENT SEGMENT ID 3

CURRENT SEGMENT BYTE OFFSET 4

CURRENT SEGMENT LAST OPCODE B

RE473

Figure 14-17 Format of VIVID Interrupt Report Packet

Notes:

The report may be directed to the report segment or to an AST or
mailbox.

The top-level segment is the segment referenced in the invoking
QIO. The current segment is the actual segment being processed.
The offset refers to the offset from the start of that segment of the
opoode word for which the error was detected.

REPORT HANDLING 175

14.1¢ MAXIMUM__MATCHES REPORT PACKET

The report indicates that segment processing has been stopped as the maximum
number of matches has been reported.

Format: The format of the report packet is given in Figure 14-18.
MAXIMUM_MATCHES = 129 o]
NUMBER OF PARAMETERS = 4 1
TOP LEVEL SEGMENT ID 2
CURRENT SEGMENT ID 3
CURRENT SEGMENT BYTE OFFSET 4
CURRENT SEGMENT LAST OPCODE b

HE474

Figure 14-18 Format of Maximum Matches Report Packet

Notes: The report may be directed to the report segment or to an AST or
mailbox,

The top-level segment is the segment referenced in the invoking
QIO. The current segment is the actual segment being processed.
The offset refers {o the offset from the start of that segment of the
opcode word for which the error was detected.

CHAPTER 15
BUILDING PICTURES USING
FORTRAN DRAW

To run VSV11 emulation in the VSV21, download the VSV11 emulator from the host.
The method of downloading is described in Section 18.3.

The EORTRAN Draw package is a library of subroutines available to help
FORTRAN programmers to create pictures for the VSV21 in VSV11 emulation.

Library subroutines can be called from FORTRAN programs. The library uses
FORTRAN-77, so programs using it must be compiled using either the FORTRAN-77
or FORTRAN-IV-PLUS compiler.

The FORTRAN Draw package contains more than forty subroutines which enable
programs to:

& Draw common graphic shapes

e Control color attributes

e Write text

e Draw graphs and histograms

@ Perform screen and drawing position control functions
e Control the cursor position

e Perform initialization and input/output functions

® Access the display list contents

e Control display list processing

e Handle joystick input

e Issue QIO requests

177

178 BUILDING PICTURES USING FORTRAN DRAW

15.1 USING FORTRAN DRAW
15.1.1 Coordinate System

The coordinates used are shown in Figure 15-1.

YA
479

{290,400)

{110,220

{300.200)

0 5117x

ARZ195

Figure 15-1 FORTRAN Draw Coordinate System
Alt X- and Y-coordinate positions must be specified as integers. Any scaling and
translation operations that are required must be done by the application program.

For further information about the coordinate system used in VSV11 emulation, refer
to the description in the VSV11/VS11 Option Description (YM-C183C-00).

15.1.2 Common Block Definition

To change data in the COMMON block VSDEFS.FOR, include the foltowing line in
the data definition area at the top of the program;

INCLIDE 'VSDEFS.FOR'
The modute VSBLOCK.FTN contains the default values for the COMMON blocks

defined in VSDEFS.FOR. VSBLOCK and VSDEFS are contained on the same
directory as the FORTRAN Draw package.

BUILDING PICTURES USING FORTRAN DRAW 179

15.1.3 Reserved Logical Unit Numbers

The following LUNs (Logical Unit Numbers) are reserved for use by the library
subroutines.

e Logical Unit 2is assigned to the VSV21 device at all times for display output.

e Logical Unit 7 is used by the VSFILE and VSLOAD routines for saving and
restoring display buffers.

e |Logical Unit 10 is used when loading a new font using VSFONT.

15.2 PROGRAMMING METHOD

The basic method of writing a program to use FORTRAN Draw subroutines is shown
in flowchart form in Figure 15-2,

The steps are:

1. Download the kernel, pointing device driver and VSV 11 emulation software
to the VSV21 module.

If the VSV11 emulation need not be set under application control, refer to
the description of the VCP LOAD command in the VSV21 User's Guide
(AZ-FV70A-TC). These commands can also be included in the system
startup file.

2. Initialize the VSV11 Emulator. Before you can issue any further commands
to the VSV21, you must initialize the emulator and the package by calling
the VSINIT subroutine.

3. Build the display list. This involves calling the picture-drawing subroutines
you need to make up the picture.

4, Display the picture. This is done by calling the VSSYNC subroutine.
VSSYNC sends the display list to the VSV11 emulator, where it is processed
by the graphics controller chip and displayed on the screen.

15.3 FORTRAN DRAW SUBROUTINES
The following subroutines are listed by the function they perform. For a complete

description of each subroutine and its call parameters, refer to the VSV11-M/M-PLUS
Software Driver Guide (AA-J2870-TK).

180 BUILDING PICTURES USING FORTRAN DRAW

Drawing picture shapes:

VSCIRC - Draws a circle

VSCURV - Draws an interpolated curve
VSFILL — Draws a filled rectangle

VSRECT - Draws a filled or unfilled rectangle
VSPOLY - Draws a filled or unfified polygon
VSDOT — Draws an absolute point

VSDRAW — Draws a line to a point
VSDTHK -~ Draws a variable width line

VSRDRW

{ START)

VSINIT

INITIALIZE
THE VSVZ21 MODULE
AND FORTRAN DRAW

Draws a relative line

VSCIRC, ...

USE PICTURE-DRAWING
SUBROQUTINES TO
CREATE DISPLAY LIST

VSSYNC

SEND DISPLAY LiST
TO DEVICE FOR
DISPLAY

ANY
MORE
PICTURES

YES

ROZ 196

Figure 15-2 Programming Method for FORTRAN Draw

Color control:

VSBACK

VSCOLR

VSMIX

Text controf:

VSTEXT

VSFONT

VSDFNT

VSDSHD

VSFLEN

i

BUILDING PICTURES USING FORTRAN DRAW

Sets the background color
Sets the drawing color

Mixes a color

Writes a text string
Selects a text font
Writes text in the current font
Writes text with drop shadow

Gets the length of a text string

Graphs and histograms:

VSHINC

VSETHB

VSHSTX

VSHSTY

VSGRFX

VSGRFY

Sets the histogram increment
Sets the histogram base
Adds a point to X histogram
Adds a point to Y histogram
Adds a point to X graph

Adds a point to Y graph

Screen and drawing position control:

VSCLR

VEMOVE

VSRMVE

Clears screen

Moves current drawing position

Moves the current drawing position by a relative amount

181

182 BUILDING PICTURES USING FORTRAN DRAW

Cursor control:

VSCPOS - Gets cursor position
VSPUTC — Sets cursor position
VSCURS - Performs cursor operation

Initialization and configuration:

VSINIT - Initializes device and package
VSMODE - Sets channel characteristics

VSSWAP — Inverts the state of ali active channels

Display list functions:

VSLOAD — Loads saved display list

VSFILE — Begins saving display list instructions in a file
VSDPLY - Puts data into display list buffer

VSSYNC - Sends display list to device for display
VSDIMP - Jumps within display list

Joystick control:

VSJOYS

Performs joystick operation

VSWAIT Waits for switch interrupt

Miscellaneous:

VSDLAY — Pauses
VSQIO — lssues a QIO calf
VSSTAT - Gets l/O status block from last QIO

VSGADR Gets address

CHAPTER 16

BUILDING AND PROCESSING VSV11
DISPLAY LISTS

To run VYSV11 emulation in the VSV21, download the VSV 11 emulator from the host.
The method of downloading is described in Section 18.3.

The VSV21 can process display lists which contain the VS11/VSV11 display list
instructions. You can use the VSV11 emulator to run most VS11/VSV11 applications.

Adisplay listis alist of instructions which describes the graphic objects that make up
a picture. The instructions tell the graphics controller what shapes to draw on the
screen, and how they should appear. Display lists are created by applications
programs and outputto the VSV21 for display. The display listcan be stored in a host
fite, but it must reside in the VSV21 memory before it can be processed.

The display list consists of words of binary information which describe the primitives,
attributes, and control instructions that make up the picture. Each instruction
occupies one 16-bit word in the memory. it contains an operation code which
identifies the instruction, and parameters which give further information to the
graphics controlter hardware. For example, this may include the coordinates of the
point where the object is to be drawn. To build a display list, you list the instructions
which describe the shapes you want to include in the picture, in the order you want
them to be drawn on the screen. The steps in generating and processing a VSV11
display list to run on the VSV21 are described in Section 16.2.

16.1 VSV11 DISPLAY LIST CONTENTS
In V8V11 emulation, the VSV21 processes display lists which contain the VSV11
display list instructions. The VSV21 can emulate a single-channel minimum-

configuration VSV11 device. Therefore, it cannot support the following VSV
features:

e NMultiple channeis
e FEight-bit pixel data
e Hardware register programming

The instructions which can be used in VSV11 display lists are described in this
chapter.

183

184 BUILDING AND PROCESSING VSV11 DISPLAY LISTS

i16.1.1 Graphic Mode Instructions
In VSV11 emulation, the VSV21 operates in one of the following graphic modes:

e CHARACTER

¢ SHORT VECTOR

e | ONG VECTOR

® ABSOLUTE POINT

e GRAPH/HISTOGRAM X

e GRAPH/HISTOGRAM Y

e RELATIVE POINT

e RUN-LENGTH
The graphic mode determines how the graphic data instructions described in the
next section are to be interpreted by the VSV21 hardware.
16.1.2 Graphic Data Instructions
These instructions define coordinates and graphic objects to be drawn on the
screen. The interpretation of a graphics data instruction depends on the current
graphic mode, previously set by one of the instructions described in Section 16.1.1.
Each graphic mode instruction has one or more corresponding graphic data
instructions. For example, in long vector mode, there must be at least two long
vector data instructions to specify the endpoints of the vector to be drawn.
16.1.3 Contro! Instructions
These instructions provide facilities for setting up the pixel memory and joystick
channels, branching within the display list, clearing of the pixel memory, and the null
operation (NOP).
Control instructions may be inserted anywhere within the display list, except
between linked graphic data instructions. For example, control instructions may not

be inserted between two long vector data instructions which are associated with the
same vector. Control instructions do not affect the current graphic mode.

BUILDING AND PROCESSING VSV11 DISPLAY LISTS 185

The following control instructions are available:

e JOYSTICK STATUS — used to enable and disable the cross-hair cursor and
joystick interrupts.

o LOAD EXTENDED JOYSTICK CONTROL - can be used to simulate the
joystick switch being pressed within the software.

e WRITE CURSOR COQRDINATES — enables the program to set up initial
cursor coordinates or simulate the action of the joystick.

e SET HISTOGRAM BASE - used to specify the base position for a
histogram or bar chart.

e SET CHARACTER BASE — used to specify a table of characters to be
processed in character mode.

e DISPLAY JUMP - used to transfer control to another part of the display list.
The address can be specified relative tc the start of the display list or relative
to the start of the task.

e DISPLAY JUMP-TO-SUBROUTINE - used to call a subroutine within a
display list.

e DISPLAY POP — used to return from a display list subroutine.
& DISPLAY NOP — null operation.

e LOAD STATUS REGISTER A — used to stop the processor, enable/disable
the STOPR interrupt, clear or set the pixel memory.

e | OADSTATUS REGISTER C — used to control the channel select, memory
read/write select, memory switch enable, and pixel mode select.

e | OAD GRAPHPLOT INCREMENT — sets up the increment between data
points plotted in graph/histogram mode,

e | OAD PIXEL-DATA INHIBIT — can he used to erase selectively complex
pictures drawn by display lists containing several changes of pixel data.

e MARKER NO-OP - marks locations within the display list.

186 BUILDING AND PROCESSING VSV11 DISPLAY LISTS

16.1.4 Special Graphic Instructions

These instructions are used to perform bit-map operations, that is, to transfer data,
pixel by pixel, between the host memory and the on-board pixel memory. The special
graphic instructions do not affect the current graphic mode.

The special graphic instruclions available are:

@ BIT-MAP-0 — moves a square array of pixel data from the host memory to
the on-board pixel memory.

e BIT-MAP-1 — moves a string of pixels from the host memory to sequential
horizontal locations in the pixel memory.

e DMA PIXEL READBACK — reads an area of pixel memory into the host
memory using DMA,

The basic format of a display list instruction word is shown in Figure 16-1. All graphic
datainstructions have bit 15 clear. All other instructions have bit 15 set. Graphic data
instructions are interpreted within the context of the current graphic mode. Bits 14 to
10 contain the opcode of the instruction. For example, the opcode for the instruction
to set LONG VECTOR mode is 00100. The remainder of the word (bits 0 to 9)
contain additional information which is specific to the opcode chosen.

For a full description of the VSV 11 display list instructions, refer to the VSY11/VS711
Option Description (YM-C183C-00).

i5 14 13 12 11 10 0% 08 07 C6 ©5 04 03 02 01 0O
0
Al T T T T T T I T T T]
CONTROL opP FURTHER
BT -~ CopE > INFORMATION

{DEPENDS ON OP CODE)

RMZIA7

Figure 16-1 V8V11 Display List instruction Format

16.2 GENERATING AND PROCESSING VSV11 DISPLAY LISTS
The steps in generating a display list and processing it on the VSV21 are as follows:

1. On RSX systems, attach the user task to the device. This dedicates a
VSV21 so that it will accept only commands from your task. If the task
includes an interrupt service routine for a joystick, attach your task to the
device. Otherwise, the Attach is optional.

BUILDING AND PROCESSING VSV11 DISPLAY LISTS 187

Create the display list. You can use a display list which has been previously
created and stored in a file, but you must read the display list into the
memory before it can be processed.

Tell the VSV21 to process the display list. This is done by issuing a Q1O call
to the VSV21 driver. One of the parameters you specify is the address of the
display list in your program. This is used by the driver o initiate a transfer of
the dispiay tist to the VSV21 memory using DMA (Direct Memory Access).
The graphics controller processes the display list to generate the picture in
the pixel memory, and to output the picture to the screen,

You can interrupt the display list while it is being processed by using the QIO
functions described later in Chapter 17. For example, there are QIO
functions which enable you to stop the display or to continue at the point it
was stopped. There are also QIO functions which request input from the
joystick.

When the processing is complete, check the return status. When the QIO
transfer finishes, the device driver sends a status code back to the
application, to say whether it was successful. Check the status code incase
an exception has occurred.

Continue in the same way until all dispiay lists have been displayed.

On RSX systems, detach your task from the VSV21. If your task is attached
to the VSV21 at the end of the program, detach it to free the device.

CHAPTER 17
VSV11 /O FUNCTIONS

To run VSV11 emulation in the VSV21, download the VSV11 emulator from the host.
The method of downloading is described in Section 18.3.

This chapter describes how to write programs which issue QIO calls to the VSV21
device driver in VSV11 emulation. QIO calls can be used to perform a number of
different functions associated with processing a display list.

A general introduction to the QIO calf mechanism and its interface with the VSV21
device driver is given in Appendix A. Details of the QIO directive are given in the
RSX-11MIM-PLUS Reference Manual (AA-L675A-TC) and the VAXIVMS System
Services Reference Manual (AA-DO18C-TE).

The basic steps in generating a VSV11 display list and processing it on the VSV21
are given in Section 16.2.

189

190 VEV11 VO FUNCTIONS

17.1 QIO FUNCTIONS FOR RSX-11M-PLUS AND MICRO/RSX

The functions and their octal values are listed in Table 17-1.

Table17-1 VSV11 Emulation QIO Functions for RSX-11 M-PLUS and Micro/RSX

Description Function Code Octal Code
_ Attach the VSV21 IO.ATT 1400
Detach the vSV21 [O.DET 2000
Connect and display 10.CON 3000
Connect to auxiliary memory 10.AUX 2400
Continue dispiay [0.CNT 4000
Stop display 10.8TP 3400
Cancel ¥O requests IO.KIL 0012
Read joystick location I0.RJS 5000
Read data IO.RED 6400
Write data IO.WRT 7000

The device-specific functions of the QIO directive that are valid for the VSV21 in
YSV11 emulation are described in the following sections.

17.1.1 Attach the VSV21 Device — |0.ATT

Attaches the user task to the VSV21. The 10.ATT function can also connect the task
to an auxiliary display list,

You can set the following conditions when you issue the 10.ATT QIO call:

@ Make the current X and Y drawing position available to the program when
the 1/O request completes {Section 17.1.4).

e Make additional data available to the program when an AST (Asynchronous
System Trap) is queued as a result of a joystick interrupt.

e Specify that the accessing of instructions within the display list should be
relative to the start of the display list. This is used by the DISPLAY JUMP
and DISPLAY JUMP-TO-SUBROUTINE display list instructions. The
normal condition is task-relative addressing, that is, instructions are
accessed relative to the start of the program. This is explained further in
Section 17.1.3.

VSV11 VO FUNCTIONS 191

To set all of these conditions, set the graphics bit by defining TE.GRA = 2 in the
program.

QIO Format:

QIOWS IO.ATT lun,efn, iosb

> QIOWS$ IO ATTITE.GRA,lun.efn, iosb
where:
lun = logical unit number of the VSV21 device
efn = event flag number (may be omitted)
iosb = address of input/output status block used for reply status

17.1.2 Detach the VSV21 Device — IQ.DET

Detaches the VSV21 device. The IO.DET function detaches the user task from a
device which was attached using 10.ATT.

QIO Format:
QIOWS 10.DET,lun,efn, iosb

where lun, efn, and iosb are described in Section 17.1.1

17.1.3 Connect and Display — 10.CON
Processes a specified display list. The display fist is transferred to the on-board

memory by DMA (Direct Memory Access), and is used by the graphics controller to
generate pixel data in the pixel memory. The pixel data is then output to the video

screen to display the picture.

QIO Format:

QIOWS 10.CON.lun,efn, iosh,, <dsaddr,dlen,addr,chmode, [tout]f,asaddr]>

192 VSV11 /O FUNCTIONS

where:

lun, efn, and iosh are described in Section 17.1.1

dsaddr = address of the display list
dlen = size of the display list, in bytes
addr = task-relative or display list-relative address

If addressing is relative to start of program (task-relative), addr =
dsaddr.

If addressing is relative to start of display list, addr = 0. To specify
addressing relative to the start of the display list, start the display
list on a 32-word block boundary, and set addr to zero. You must
also set the TFR.GRA bit in the I0.ATT function (see Section
17.1.1).

chmode = an octal value which is used to set up the VSV21. The following
bits may be set:

Bits 8 and 9 - Channel (must be zero)
Bits 5 and 4 — Define the channe! access mode, as follows:
0 = Protected
1 = Read-only
2 = Write-only
3 = Read/write
Bit3 - Enables switching of the access mode
Bits 2 and 1 — Define the pixel drawing mode, as follows:
2 = Replace mode
3 = Logical OR mode
A further explanation of the contents of this word is given in the
LOAD STATUS REGISTER C display list instruction. A description

of this is given in the VSV71/VS11 Option Description
{YM-C183C-00), Chapter 3.

VSV11 /O FUNCTIONS 193

tout = time-out value for the display, in seconds (optional). The QIO
completion is indicated by a STOP interrupt generated at the end
of the display list processing. This interrupt is described in the
VSV11/VS§11 Option Description (YM-C183C-00}, Chapter 3. If
the time out expires and the QIO is not complete, an error code is
returned in the /O status block.

You can use the I0.KIL function to get out of the situation in which
no IYO completion interrupt is received.

asaddr — address of an optional AST service routine to handle cursor match
and joystick switch interrupts.

If the graphics bit (TF.GRA) was setin the I0.ATT QIO call, you canread the X and Y
coordinates of the current VSV21 drawing position when the 10.CON completes. To
retrieve the coordinates, issue a GLUN$ directive, as shown in Appendix A. For
further details, refer to the description of GLUNS in the RSX-1TMIM-PLUS
Executive Reference Manual (AA-L675A-TC) or the RSX-11MIM-PLUS and
MicrolRSX Executive Reference Manual (AA-Z508A-TC).

GLUNS sets the contents of the six-word buffer as shown in Figure 17-1

15 0
WORD O NAME OF DEVICE
WORD 1 UNIT NUMBER/FLAGS BYTE
WORD 2 FIRST DEVICE CHARACTERISTICS WORD
WORD 3 X COORDINATE
WORD 4 Y COORDINATE
WORD 5 FOURTH DEViCE CHARACTERISTICS WORD

ROZ2159

Figure 17-1 Contents of GLUN$ Buffer

194 VSEV11 FOFUNCTIONS

17.1.4 Connect to Auxiliary Memory — 10.AUX
Connects the device to the auxiliary memory.
QIO Format:

QIOWS 10.AUX, lun,efn, iosh, <axaddr,dlen,addr>
where:

lun, efn and iosb are as described in Section 17.1.1

axaddr = address of auxiliary memory segment
dlen = size of display area
addr = Oif the auxiliary segment is external to the task. Set to the axaddr

value on systems without memory management directives

17.1.5 Stiop the Display — 10.STP
Stops the display. This can be used to get the display list out of an endless lcop.
QIO Format:

QIOWS$ 10.8TPlun,efn,,iosb

where the parameters are as described in Section 17.1.1,

17.1.6 Continue the Display — 10.CNT

Continues the display after it has been interrupted by a joystick switch or cursor
match. Processing continues from the point where it was interrupted.

QIO Format:
QIOWS 10.CNT, lun,efn, iosb

where lun, efn, and iosb are as described in Section 17.1.1

VSV11 IO FUNCTIONS 195

17.1.7 Cancel /O Reguests —10.KIL
Cancels all outstanding ¥O requests to the VSV21 device. For I/O requests which
are waiting for service or are being processed by the driver, a status code of IE.ABO
is returned in the IO status block.
QIO Format:

QIOWS 10.KIL,lun,efn,,iosb

where lun, efn, and iosb are as described in Section 17.1.1

17.1.8 Read Joystick — I0.RJS
This function returns the coordinates of the current position of the joystick.
QIO Format:
QIOWS 10.RJS,lun,efn, iosb,,<staddrlen jsnum>
where:
lun, efn, and iosb are described in Section 17.1.1

staddr = start address of the data area in which the joystick coordinates will
be returned

len = size of the data area, in bytes {(minimum four bytes)
jsnum = joystick number (0, 1, 2, or 3) — the default is zero
Results:

On completion, the buffer at staddr will be set as shown in Figure 17-2.

STADDR+0 X COCRDINATE

STADDRH2 ¥ COORDINATE

REZ 161

Figure 17-2 Joystick Data Returned by I0.RJS

196 VSV11 /O FUNCTIONS

17.1.9° Read Data - 10.RED
This function reads data from the transparent driver.
QIO Format:

QIOWS$ 10.RED.,lun,efn,.iosb,,<baddr,len,tabid>
where:

lun, efn, and iosb are described in Section 17.1.1

baddr = start address of the data area in which the joystick coordinates will
be returned

len size of the data area, in bytes (minimum four bytes)

tabid table ID. Set to zero for the transparent driver.

17.1.10 Write Data — I0.WRT
Thus function writes data to the transparent driver.
QIO Format:
QIOW$ 10.WRT,lun,efn, iosh,,<baddrlten,tabid>
where:
lun, efn, and iosb are described in Section 17.1.1

baddr = start address of the data area in which the joystick coordinates will
be returned

len = size of the data area, in bytes (minimum four bytes)

tabid = table 1D. Set to zero for the transparent driver

17.2 QIO FUNCTIONS FOR MICROVMS

The functions and their hexadecimal values are listed in Table 17-2.

VSV11 /O FUNCTIONS

Table 17-2 VSV11 Emulation QIO Functions for MicroVMS

197

Description Function Code Hexadecimal Value
Start Display 0% START 30
Timeout 0% __TOUT 37
Stop Display 0% STOP 33
Resume Execution 0% RESUME 36
Read Status I0$__READSTATUS 31
Wait 10§ WAITSWITCH 32
Read Data I0$_ READ 38
Write Data 0% WRITE 39

17.2.1 10%_ START - Start Display
This function starts the display.
QIO format:

SYS$QIOW ([ein] ,chan JO$__START ,osb ,,,

< baddr,blen,staddr,[axaddr]{alen] jdchan]>)

where:
efn = event flag number. Defaults to O if omitted
chan = number of the /O channel assigned to the VSV21 device
josb = gddress of inpul/output status block used for reply status
baddr = starting address of the status buifer
blen = length of the display file buffer. Minimum length is eight bytes
staddr = address of display file at which processing is to start. If this is

omitted, processing starts at the beginning of the buffer

axaddr = address of the auxiliary buffer
alen = length in bytes of the auxiliary buffer
dchan = channetl number to use for the display file

198 VSV11 VO FUNCTIONS

17.2.2 Set Timeout Period - 10$ TOUT
Sets the number of seconds to wait for an /0O complete on 10$ START. This value
is in effect until it is changed by another I0$__ TOUT QIO or by reloading the driver
during SYSGEN. Initially the time out is 15 seconds.
QIO Format:

SYS$QIOW (fefn] ,chan 10$_ TOUT ,iosh ,,,<tout>)
where:

efn, chan and iosb are as described in Section 17.2.1

tout = number of seconds to wait; tout > 1

17.2.3 Stop Display - 10$ STOP
This function can be used to stop a looping display file.
QIO format:

SYS$QIOW ([efn] ,chan ,I0$ STOP ,iosb)

where efn, chan and iosh are as described in Section 17.2.1

17.2.4 Hesume Execution — 10§ RESUME

Resumes execution of a display file after a display stop. The arguments must be the
same as those in the Q% START function to be stopped.

QIO format:

SYSEQIOW (Jefn] ,chan 10$ RESUME ,iosb ,,,
<baddr,blen,[staddr},[aadr],[alen],[dchan]>)

where the arguments are as for I0$ START {(Section 17.2.1).

VSV11 /O FUNCTIONS

17.2.5 Read Status —10$ READSTATUS
Returns the four device registers containing the following:
e DPC address
® Most recent graphics mode
e Current X and Y positions
QIO format:
SYS$QIOW {[efn] ,chan 10$ START iosb,,,<baddr,blen=)
where:
efn, chan and iosb are as described in Section 17.2.1
baddr = address of status buffer

blen = length of status buffer. Minimum length is 8 bytes

17.2.6 Wait for Switch Interrupt — 1I0$ WAITSWITCH

199

Wait a specified number of seconds for a switch interrupt. This function is complete
when a switch interrupt occurs. lf a bus time out occurs, the function completes with

an error status. If any other interrupt occurs, the wait continues.

QIO format:

SYSEQIOW ([efn] ,chan I0$_ WAITSWITCH iosb ,,,
<tout,baddr,blen=)

where:
eln, chan and iosb are as described in Section 17.2.1
tout = number of seconds to wait
baddr = address of status buffer

bien = length of status buffer. Minimum length is 8 bytes.

200 VSV11 VO FUNCTIONS

17.2.7 Read Data - i0$ READDATA
This function reads data from the transparent driver.
QIO Format:

SYSHQIOW ({efn} ,chan ,I0$ READDATA ,iosb ,,,
<baddr,blen,tabid>)

where:
efn, chan and iosh are described in Section 17.2.1

baddr = start address of the data area in which the joystick coordinates will
be returned

blen = gize of the data area, in bytes (minimum four bytes)

tabid = table ID, set to zero for transparent driver

17.2.8 Write Data— 108 WRITEDATA
This function writes data to the transparent driver.
QIO Format:

SYSHQIOW (fefn] ,chan ,I0$ WRITEDATA ,iosb ,,,
<baddr,blen,tabid=>)

where:
efn, chan and iosb are as described in Section 17.2.1

baddr = start address of the data area in which the joystick coordinates will
be returned

blen = size of the data area, in bytes (minimum four bytes)

tabid = table I1D, set to zero for transparent driver

VSV11 /O FUNCTIONS 201

17.3 QIO STATUS RETURNS

In RSX-11M-PLUS and Micro/RSX systems, the /O status block has the format
shown in Figure 17-3.

STATUS

WORD O “ RETURN

WORD 1

OB

Figure 17-3 Format of VO Status Block under RSX-11M-PLUS and Micro/RSX

On completion of a QIO transfer, byte 0 of the 1O status block contains a completion
code. Successful completion is indicated by the value 1 (1S.SUC) in the status byte.
Unsuccessful completion is indicated by a negative value in the status byte. The
error codes are listed in Appendix B of the RSX-T1MIM-PLUS /O Drivers Reference
Manual (AA-L677A-TC).

in MicroVMS systems, the /O status block has the format shown in Figure 17-4.

I DISPLAY PROGRAM COUNTER | QIO COMPLETION CODE] WORD 0
3130 2827 1616 1211 0
[l 41 v-posimon | 4 | xrosmon | worp 1
7 /
REASON ERROR/
CODE OPCODE

HESB3

Figure 17-4 Format of I/0 Status Block under MicrovVMS

The contents of the IOSB are as follows:
Longword 0

bits 0-15 completion code
bits 168-32 display program counter

202 VSV11 VO FUNCTIONS

Longword 1
bits 0-11 current X position
bits 12-15 error code (if bit 31 is set) or last graphics mode opcode (if bit 31 is

not set)

bits 16-27 current Y position
bits 28-30 code giving reason for completion. This is one of the following:

1 =VS$CR_STOP normal

2 = VS$CR__SWITCH switch
3 = VS$CR__ MATCH match
4 =VS3CR NXM VSV11 hardware error

5= VS$CR__TIMEOUT time out
6 = VS$CR__ FORCE stop acknowledgement
0 =VS$CR_UNDEFINED undefined

bit 31 error fltag

CHAPTER 18
THE VSV21 CONTROL PROGRAM (VCP)

The VSV21 is configured and controlled by commands from the VSV21 Control
Program (VCP). VCP commands perform the following functions:

e Load the kernel by downloading the file KERNEL to the VSV21 module.

& Select either VIVID or VSV11 emulation by downloading either the VIVID
interpreter or the VSV11 emulator to the VSV21 module.

e Set the device configuration parameters. For example, describe the
peripheral devices currently attached to the serial ports.

e Show the current settings of the device configuration parameters.
e Show the current status of the device.

e Dump VSV21 memory o a file.

The VCP commands can be entered in any of three ways:
¢ A single command, in response o a system prompt
e A single command, in response to a VCP prompt

e Anumberof commands in acommand procedure, such as a system startup
file, to set the VSV21 device to the required state

The available VCP command lines are listed in this chapter, beginning at Section
18.2.

203

204 THE VSV21 CONTROL PROGRAM (VGP)

APPLICATIONS
USER PROGRAM
vCP VP
COMMAND COMMAND
REPLY veP STATUS
(VSV21 CONTROL
PROGRAM|
0 140
REPLY REQUEST
CODE U DEVICE
ARCHIVE DRIVER
. COMMAND
REPLY PACKET

———

VSv21

hﬁ/ MODULE

ROV 199

Figure 18-1 User and Program Interfaces to VCP

18.1 CALLINGVCP

The user and program interfaces to VCP are shown in Figure 18-1.

18.1.1 Installing VCP on RSX-11M-PLUS and Micro/RSX Systems

Under RSX-11M-PLUS and Micro/RSX, VCP must be either run or installed as an
executable task on the host system before you can issue commands to it.

To run VCP, enter
RUN $vcP

The prompt "vCP)" appears. You can now enter individual commands or execute
VCP command files. Press CTRL/Z to exit from VCP.

To install VCP. enter

INS $VCP/TASK= ...VCP

THE ¥SV21 CONTROL PROGRAM (VCP) 205

The system installs VCP and returns the system prompt. You can now enter singie
VCP commands if they are preceded by "VCP”, For example, to load the kernel,
enter

VCP LDAD KERNEL

18.1.2 Installing VCP on MicroVMS Systems

tnder MicroVMS, the file VCP.EXE must be in the directory SYS$SYSTEM, and all
the other files must be in SYS$LIBRARY. The logical name VAXVCP must point to
the SYS$LIBRARY directory during software instaliation.

To run VCP, enter

HCR VCP

The prompt “¥CP)" appears. You can now enter individual commands or execute
VCP command files. Press CTRL/Z to exit from VCPF.

You can enter a single VCP command in response to the dollar prompt without
running or loading VCP if it is preceded by " HCR VCP ”. For example, to load the
kernel, enter

HMCR VCP LOAD KERNEL

18.1.3 Calling VCP from a User Program

An application program can use VCP and remain self-contained by spawning the
VCP task and passing it a command. Consider the foliowing example:

A system has two VSV21 applications which are run frequently. The first application
was originally developed on a VSV11 system with a joystick, so it is run in VSV11
emulation. The second application was developed for VIVID, with a trackball as its
pointing device.

The user first downloads the VSV11 emulator or VIVID interpreter. Before each
application is run, the characteristics of the pointing device port must be defined, to
make sure that the device is in a known state. This could be accomplished in either of
two ways:

e Put the VCP commands in a command file which the user invokes before
running the applications.

@ Spawn VCP in the application program. This allows each application to
select its own device and configuration.

206 THE V3V21 CONTROL PROGRAM (VCP)

This method provides users with an automatic configuration and device control, It is
recommended for any system which has a number of different applications requiring
different operating characteristics.

The available commands are described in Section 18.2. The VCP task is invoked by
issuing the SPWNS directive from MACRO-11 programs, or by calling the SPAWN
subroutine from FORTRAN programs. Some examples of spawn calls under RSX-
11M-PLUS and Micro/RSX are as foliows:

MACRO-11 Cali:

SPWN$ tname,,,, [efn],.[esb],emdlin,cmdien

thame = name (in Radix-50 format) of the task to be spawned{...VCP in this
case)
efn = the event flag to be cleared when the directive is issued, and set

when VCP exits {(optional)

esb = address of an 8-word status block to be written when VCP exits
Word 0 - VCP completion status
Word 1 — TKTN abort code

Words 2 to 7 — Reserved

cmdlin = address of the command line to be seni to VCP
cmdlen = length ofthe command linein characters (maximum lengthis 255)
FORTRAN Call:

CALL SPAWN {rtname, [iefn], [iesb], icmlin,icmlen,, ids)

riname = name (in Radix-50 format) ofthe taskto be spawned (...VCPinthis
case}
iefn = the event flag o be cleared when the directive is issued, and set

when VCP exits (optional)

THE ¥SV21 CONTROL PROGRAM (VCP) 207

iesb = address of an 8-word status block to be written when VCP exits
Word 0 — VCP comptetion status
Word 1 — TKTN abort code

Words 2 to 7 — Reserved
icmlin = name of the command line to be sent to VCP
icmien = length ofthe command line in characters {maximumiengthis 255)
FORTRAN Example:
The VSV11 emulation software can be downloaded by a LOAD command {Section

18.3). The following section of FORTRAN code also downloads the VSV11
emulation software.

C FORTRAN VCP Exaumple

C
INTEGER*4 RTNAME
DATA RTNAME /6R._..VCP/

Name of VCP task in RADSO (assumes VCP is installed)

INTEGER*2 IESB(8)

C Status block returned from VCP

¢
CHARACTER%79 ICHLIN
INTEGER¥2 ICHMLEN

C Command line and length
DATA ICHMLIN /7LOAD ¥50: VSI1EW’/
DATA ICHLEN /167

€ Store command line and length

¢

INTEGER®2 IS
¢ Directive status word

208 THE VSV21 CONTROL PROGRAM (VCP)

CALL SPAWN (RTNAME,,,1,,IESB,, ICMLIN,ICMLEN,,,IDS)
Spawn VCP task and send the command (using event flag 1)

CALL WAITFR(1)
Wait for VCP to exit. MNote: IESB({) now contains the VCP
completion status,

IF (IDS5.LT.0) GO TD 59599
€ Check the directive status to make sure it was successful

C End of program

A full description of the SPWNS$ or SPAWN callis provided in the RSX-17M/IM-PLUS
Executive Reference Manual (AA-L675A-TC) and the RSX-11MIM-PLUS and
Micro/RSX Executive Reference Manual (AA-Z508A-TC).

18.2 THE VCP COMMANDS

This section describes the commands which can be issued to VCP, and the basic
format of the command line. For a description of the individual commands, refer to
Sections 18.3 to 18.8.

On-line HELP is available. To see the format of any command, enter HELP and the
command. The HELP facility prompts for parameter names and supplies the range
of values for each parameter.

18.2.1

THE VSV21 CONTROL PROGRAM (VCP)

Types of VCP Commands

Commands are provided for the following operations:

Download code from the host

LOAD [dev] filnam

Download segments from the host
VIVID__LOAD_ SEG filnam

Set a VSV21 parameter

SET PARAMETER [dev] ctabl/perm] dsp gvall/perm]
Dispiay configuration and status

TABLE [dev] ctab
STATUS dev

Dump VSV21 memory to a host file
DUMP filnam
where:
filnam = file name
dev = device specification
ctab = the table of options to be used
dsp = adisplay parameter

gval = a value associated with dsp

209

perm = a gqualifier which denotes whether the parameter is to be

set permanently, or only for this session

Parameters in a command line must be separated by one or more spaces, commas,
or tab characters. The format of these parameters is described in Sections 18.2.2
and 18.4.

210 THEVSV21 CONTROL PROGRAM (VCP)

18.2.2 Command Syntax

VCP commands are of the form:
command__name [dev] parameters

where:
command__name is one of those listed in Section 18.2.1. You can shorten a
command or parameter to the smallest number of characters necessary to
identify ituniquely. Forexample, SET _ PARAMETER canbe shortenedto SET;
LOAD may be entered as L.

dev is the device specification, which can be one of the following on RSX-11M-
PLUS and Micro/RSX systems:

VS0:
VS1:
VS2:
VS3:

On MicroVMS systems, dev is one of the following:

VSAQ: VSEO:
VSBO: VSFO:
VSCOo: VSGO:
VSDO: VSHO:

If the system has just been foaded, VS0: or VSAO: is the default specification.
Otherwise, the fast device specification entered is the default.

You must enter additional parameters for most commands. There are three
categories of parameter as follows.

ctab = a string of up to 16 characters
dsp = a string of up to 16 characters
gval = a parameter containing data of the following types:

& Character string
e Decimal integer
® Hexadecimali string

The format of these parameters is described in Section 18.4.

THE VSV21 CONTROL PROGRAM (VCP) 211

18.3 DOWNLOADING CODE OR DISPLAY LISTS FROM A HOST FILE

18.3.1 Downloading Code

About 81K words of VSV21 memory space are available for storing the downtoaded
V5V21 system software and the downloaded segments and saved atiributes. The
VSV21 memory space is illustrated in Figure 3-1 of Chapter 3. This section
describes the procedure and commands for downloading the VSV21 system
software (kernel, device drivers, interpreter and emutators) and the constraints to be
observed for this memory to be used efficiently. The components of the VSV21
system software are described in Section 1.4.

18.3.1.1 Downloading Procedure — The procedure s as follows. When you have
run or installed VCP (Section 18.1}), download the software in the following
sequence:

1. Load the kernel. The kernel prepares the V5V21 module {o receive other
files.

2. Load the pointing device driver. The avaifable pointing device drivers and
their logical names are as follows:

e MSI driver: JSTICK
¢ Penny and Giles driver: PGSTICK
e DECTABLET driver: DECTAB
3. Load the transparent port driver TRANSP, if required.
4. Load an interpreter or emulator. This is one of the following:
e VIVID interpreter: VIVID
Translates display lists into a picture
e VSV11emulator: VST1EM
Provides VSV11 emulation capability
e VT220 emulator: VT220EM
Full-screen emutationis providedin ROM, butitis cancelled
when VIVIDorVSV11isloaded. The VT220EMfile replaces

full-screen V1220 emulation and removes the existing
routine.

212 THE VSV21 CONTROL PROGRAM (VCP)

18.3.1.2 Memory Management — The kernel and drivers are stored in the high
memory locations. The interpreter or emulator is stored in the lowest location {Figure
3-1}.

When the VIVID SAVE__ ATTRIBUTES instruction is executed, saved attributes are
stored in memory locations immediately below the last driver loaded. Downloaded

VIVID segments are stored immediately above the interpreter.

When the above routines have been loaded, subsequent loading of drivers has the
following effects:

e Only the fast pointing device driver loaded is accessible to the application.
e The saved attributes remain accessible, but the space occupied by saved
attributes is lost when the attributes are deleted; the VSV21 cannot make
use of the area of memory immediately above the driver. Aloaded driver can

be removed only by refoading the kernel.

e VCP is unable to display or modify the pointing device characteristics as
described in Section 18.9.

Subsequent loading of an emulator or the VIVID interpreter removes the existing
routine.

For example, the user might do the following in a VSV21 session:

1. Load the VIVID interpreter and digitizing tablet driver at the start of the
session.

2. Run VIVID and save attributes.

3. Load the tablet driver again.

4. Execute a VIVID display list and restore attributes.

5. Load the V8V11 emulator.
The result is that the saved attributes remain accessible to the application, but when
they are deleted by a VIVID RESTORE__ ATTRIBUTES instruction, the space they
occupied does not become available to VIVID again. Finally, the VIVID interpreter is
deleted and the VSV11 emulator replaces it in the memory.
It is recommended that the pointing device driver is loaded before the interpreter or

emulator, and is not reloaded while the VIVID interpreter is resident on the VSV21.
This avoids the possibility of wasting VSV21 on-board memory.

THE VSV21 CONTROL PROGRAM (VCP) 213

At any time, the following routines are available to the application:

e The most recently loaded pointing device driver

e The transparent port driver, if loaded

@ The most lrecently loaded emuiater or VIVID interpreter
18.3.1.3 The LOAD Command — Code is downloaded by the LOAD command.
The general format of the LOAD command is:

LOAD [dev] filnam

where:
dev = device specification as given in Section 18.2.2.
filnam = name, without extension and UIC, of the file to be loaded. ltcan be

one of the following:
KERNEL -kernel
VIVID - VIVID interpreter
VS11EM - VSV11 emulation software
VT220EM — VT220 emutation software
JSTICK —MSI device driver
PGSTICK — Penny and Giles device driver
DECTAB - digitizing tablet driver

TRANSP —transparent port driver

The files are located on the host system as follows:
e RSX-11M-PLUS ~ LB:[3,54]
e Micro/RSX — LB:[3,54]
e MicroVMS : SYSSLIBRARY
The host system treats these filenames as unprivileged. Future versions of the

system may include additional unprivileged filenames, as well as a list of privileged
filenames.,

214 THE VSV21 CONTROL PROGRAM (VCP)

18.3.2 Downloading VIVID Segments

VIVID segments are downloaded to the VSV21 with the VIVID LOAD SEG
command. The general form of the command is:

VIVID__LOAD__SEG filnam

where filnam is the name of a host file containing the segments. If no tile extensionis
given, the defauit VIV is assumed.

The VIVID default font is downloaded automatically with the VIVID interpreter. It is
stored as a segment in VSV21 memory. If the font has been deleted from or
overwritten in VSV21 memory, it can be reloaded from the host. The parameter
filnam is as follows:

e RSX-11M-PLUS and Micro/RSX — [3,54]DFONT

e MicroVMS — SYS$LIBRARY:DFONT

VSV11 display lists are downloaded by using QIO calls (Chapter 17).

18.4 SETTING VSV21 DISPLAY PARAMETERS

The main function of the VS8V21 commands is to allow the user to set VSV21 display
parameters, such as the color definitions and the peripheral device characteristics.

The general format of the command for setting VSV21 parameters is:

SET_ PARAMETER [dev] ctabi/perm] dsp gvall/perm]

where:
dev = device specification, as defined in Section 18.2.2
ctab = a parameter chosen from the following fist:

GRAPHICS DISPLAY
VT220_ DISPLAY
SERIAL_KEYBOARD
SERIAL__HOST
SERIAL _POINTING

SERIAL_ TRANSP

THE V8V21 CONTROL PROGRAM (VCP) 215

KEYBOARD
HOST

POINTING

dsp = a display parameter, for example:
TESTCHART
SPLIT__SCREEN
LINES_ SPLIT
A__COLORS
B_COLORS
C_COLORS

D__COLORS

COUNT _ BLINK
INDEX_ BLINK

A_BLINK _COLORS
B BLINK__COLORS
C BLINK_ COLORS
D BLINK_COLORS
512 TIMINGS

640__TIMINGS

gval = anumeric or logical value associated with dsp

216 THE VSV21 CONTROL PROGRAM (VCP)

perm = a switch which decides if the parameter is to remain stored
in non-volatile memory when the VSV21 is detached from
the host. You can set it to one of the following values:

PERMANENT if the parameter is stored

NOPERMANENT if the parameter is not stored. This is the
default

The /perm switch cannot be used for the ctab parameter
POINTING.

You can enter up to 511 characters using one SET _ PARAMETER command, as
follows.

SET__PARAMETER [dev] ctabf/perm] dsp gvall/perm}—
dsp gval[/perm]—
dsp gvall/perm]—
dsp gvall/perm]

If the value of perm which qualifies ctab is set to PERMANENT, all values of dsp and
gval in the command line which are not qualified by /NOPERMANENT are put in
permanent storage. For example, suppose a SET__ PARAMETER command has
been included in the program as follows:

SET GRAPHICS/PERM VT220_COLORS & 4 3 2 §
SPLIT.SCREEN YES/NOPERM
LINES_SPLIT 6

The VT220 parameters and the COUNT value are put in permanent store, while the
SPLIT__ SCREEN parameter is not.

The range of available SET__ PARAMETER commands is summarized in Table 18-1.
The parameters are described in the sections whose numbers are given in brackets.

Table 18-1 Parameter Values for SET__ PARAMETER Commands

ctab dsp gval
GRAPHICS DISPLAY TESTCHART DISPLAY/NODISPLAY
(18.5) A_COLORS 24 hex chars

B COLORS 24 hex chars

C COLORS 24 hex chars

D__COLORS 24 hex chars

COUNT_ BLINK integer, range 0-16

INDEX BLINK 1to 16 integers, range 0-15

A BLINK _COLORS 11024 hex chars
B__BLINK__COLORS 1to24hexchars
C_ BLINK_COLORS 1to24 he«chars
D BLINK_ COLORS 1to24hexchars
512 TIMINGS 20 hex chars
640__TIMINGS 20 hex chars

Table 18-1 (Cont)

THE VSV21 CONTROL PROGRAM (VCP) 217

Parameter Values for SET _ PARAMETER Commands

ctab dsp gval
VT220 DISPLAY SPLIT SCREEN YES/NO
(18.6) LINES SPLIT 2to12

SERIAL__ KEYBOARD

(18.7)

SERIAL__HOST and
SERIAL__POINTING
(18.7)

SERIAL TRANSP
(18.7)

HOST
(18.7)

KEYBOARD
(18.8)

POINTING
(18.9)

VT220__COLORS

LINE_ STATUS

LINE _STATUS
MODE _PARITY
TYPE PARITY
BITS__CHAR

TX SPEED
RX SPEED

LINE__STATUS
MODE__PARITY
TYPE__PARITY
BITS CHAR
TX_ SPEED
RX__SPEED
XON__CODE
XOFF__CODE

MAX__CHAR

UK KEYBOARD
SCROLL

WRAP

TAB SETTINGS

KEY _CLICK
BELL
AUTOREPEAT
MODE

BITS CHAR
NATIONALITY

X__SQUARE
X FACTOR
X__SHIFT COUNT
Y SQUARE
Y_FACTOR
Y SHIFT__COUNT

5integers, range 0-15

ENABLE/DISABLE

ENABLE/DISABLE
WITH/FORCE/NONE
EVEN/ODD

7 or 8 for SERIAL__ HOST;
5tc 8for SERIAL__POINTING
7510 9600

7510 9600

ENABLE/DISABLE
WITH/FORCE/NONE
EVEN/ODD

integer, range 5-8

75 to 9600

75 to 9600

2 hex chars

2 hexchars

integer, range 1-80
HASH/POUND
SMOOTH/JUMP
YES/NO

1-20 hex chars

ON/OFF

ON/OFF

ON/OFF

PP/ TYPEWRITER
7ors

language name

YES/NO

integer, range 0-32767
integer, range 0-15
YES/NO

integer, range 0-32767
integer, range 0-15

218 THE VSV21 CONTROL PROGRAM (VCF)

18.5 SETTING UP THE GRAPHICS DISPLAY
You can set the following display characteristics:
& \Whole screen or split screen display
@ The range of colors in the display
® The range of colors to be blinked
e The number of colors to he blinked
@ The monitor timings
To set these you use SET__ PARAMETER GRAPHICS DISPLAY, which is one of
the commands for setting VSV21 parameters (Section 18.4).
The general format of the GRAPHICS DISPLAY command is as follows:

SET_PARAMETER [dev] GRAPHICS__ DISPLAY[/perm| dsp gvail/perm]

where:
dev = device specification, as defined in Section 18.2.2
dsp = adisplay parameter
gval = a value associated with dsp

perm = a switch as described in Section 18.4.
SET__ PARAMETER can conveniently be abbreviated to SET.

if the graphics software is downloaded, you can choose whether or not to display a
test chart by using the TESTCHART command as follows:

SET GRAPHICS_DISPLAY TESTCHART DISPLAY
or
SET GRAPHICS_DISPLAY TESTCHART NODISPLAY

18.5.1 The Color Look-Up Tahle {CLUT)

The V8V21 holds the default V8V11 CLUT in PROM. You can use VCP to put this
CLUT in NVRAM, and to change the values.

THE VSV21 CONTROL PROGRAM (VCP) 219

18.5.1.1 Default Colors — The default contents of the CLUT are the same as the
default VSV11 colors. The default colors are as follows:

Paosition Color Position Color

0 Btack 8 Mid green

1 Blue 9 Pale blue

2 Red 10 Light orange
3 Violet 11 Pink

4 Dark green 12 Green

5 Mid blue 13 Magenta

6 Orange 14 Yellow

7 Pale violet 15 White

18.5.1.2 Setting Up the CLUT — If you want to use another set of colors in the
VSV21 display, you can choose sixteen from a palette of 4096 colors. The colors
parameters are used to define these colors. The colors you specify willbe insertedin
the color fook-up table on the V5V21 module.

Six hexadecimal characters are used to define each of the 16 colors, so for each
display a lotal of 96 characters define the colors. To allow the 96 color and intensity
characiers {o be entered as a number of shorter, mere convenient strings, the
following four colors parameters are used:

A_ COLORS gval defining colors 0to 3

B_COLORS gval defining colors 4 to 7

C COLORS gval defining colors 8 to 11

D COLORSgval defining colors 1210 15

where gval is a 24-character hexadecimal string which defines four colors.

The characters are arranged as follows. Each of the sixteen available colors
requires six hexadecimal characters, arranged in three pairs, to define it. The three
pairs define the intensity of red, green, and blue respectively, and the system
combines the data to generate a composite color.

220 THEVSV21 CONTROL PROGRAM {VCP)

The primary coiors are coded as follows:

1. Red
2. Green
4, Blue

You can allocate an intensity value to any of these primary color codes. This value
ranges from O (zero intensity) to 15 (maximum intensity), that is, from 0 to F in
hexadecimal notation. Black is defined by allocating zero intensity to each of the
three colors, and white by allocating maximum intensity to each.

No error message is returned if the color-intensity pair does not beginwith 1, 2, or 4,
but incorrect output will result.

Similarly, errors will result if VCP commands in your program attempt to extract data
from unfilied positions in the CLUT. For example, if colors 0 to 7 are defined by
A__COLORS and B_ COLORS parameters, while colors 8 to F are left undefined,
attempts to read colors 8 to F will produce unpredictable resuits.

18.5.1.3 CLUT Examples —To generate red, the three pairs are 1F, 20, 40. They
are entered in a continuous string: 1F2040. In this case, green and blue have zero
intensity, so only red is produced.

Yellow could be generated by equal intensities of green and blue, omitting red:
102F4F. A less intense yellow would be 102525, and turquoise could be produced
by combining a little green with more blue: 10264B.

Black is 102040. White is a combination of the primary colors in maximum
intensities: 1F2F4F. Shades of gray through to white are generated by intermediate
intensity values which are the same for each primary color.

THE VS§V21 CONTROL PROGRAM (VCF)

Suppose you want to put the following nine colors in the CLUT:

221

Position Color Position Color

0 Green 5 Black

1 Cyan 6 Magenta
2 Turquoise 7 White

3 Red 8 Blue

4 Cyan

You can do this by using A_ COLORS, B COLORS, and C__ COLORS:

SET GRAPHICS_DISPLAY A_COLORS 102F4010284810264C1F2040

SET GRAPHICS_DISPLAY B_COLORS 1028481020401A204A1F2F4F

SET GRAPHICS_DISPLAY C_COLORS 10204F

18.5.2 Defining Blink Colors

The four BLINK __COLORS parameters aliow the user to define the colors to be
shown bilinking on the display, and store them in a blink colors look-up tabie
{BCLUT). Sixteen such colors can be entered by using the codes for primary colors
and their relative intensities in the way described for the Colors parameters in

Section 18.5.1.2.
A__BLINK__COLORS gval
B_ BLINK__COLORS gval
C_ BLINK__COLORS gval

D_ BLINK__COLORS gval

Defining colors 0 to 3
Defining colors 4 to 7
Defining colors 8 to 11

Defining colors 1210 15

where gval is a 24-character hexadecimal string which defines four colors.

222 THE VSV21 CONTROL PROGRAM (VCP)

18.5.3 Forming Pairs of Biink Colors

18.5.3.1 Defining the Range of Blink Colors — You can enter your choice of
alternating colors in the form of a string of integers by using INDEX_ BLINK. The
value of each integer refers to the position of a color you have already defined in the
color fook-up table. The position of each integer in the string refers to the position of a
color already defined in the blink color look-up table.

Example:

Suppose that the colors and blink colors tables have been set up as follows:

Position Color Blink Color
0 Green Orange

1 Yellow indigo

2 Turquoise Turquoise

3 Red Black

4 Yeliow Red

5 Black White

6 Mauve Yellow

7 White Blue

Then the command line:

SET GRAPHICS_DISPLAY INDEX_BLINK 6 § 7 4
means that:

blink color 0 alternates with color 6 — orange/mauve

blink color 1 alternates with color 5 — indigo/black

blink color 2 alternates with color 7 — turquoise/white

biink color 3 alternates with color 4 — black/yellow
18.5.3.2 Selecting Blink Colors from the Range — The number of colors for
which blinking is enabled is entered using COUNT BLINK. COUNT_ BLINK
allows the user to enter the number of colors to be blinked on the display. Its
associated gval is a hexadecimal integer between 0 {(no colors blinked) and F (all
colors blinked).
Example:

SET GRAPHICS_DISPLAY COUNT_BLINK 3

This allocates the first three color pairs defined by INDEX _ BLINK for use in the
VSV21 display. The remaining colors in the blink colors table are ignored.

THE V3V21 CONTROL PROGRAM (VCF) 223

18.5.4 Setting Monitor Characteristics

If you are using the VSV21 with a monitor which is not recommended by DIGITAL,
you may need to set the monitor display characteristics during hardware installation.

The 512 TIMINGS and 640 TIMINGS commands set the characteristics of
monitors with 512-pixel and 640-pixel wide displays, used respectively for VSV11
emutation and VT220 emulation.

Each command defines the following:
e Scantime
e Sync width
e Display start position
e Display width
bath vertically and horizontally.

Each command has eight parameters, grouped in five 4-character hex strings. The
parameter groups are as follows:

Group 1:

e Horizontal Cycle. Horizontal scan time, in units of memory cycles. Range
0t -FF.

e Horizontal Sync Width. Horizontal sync active low time, in units of memory
cycles. Range 01 —~1F

Group 2:

e Horizontal Display Start. Horizontal display startinterval, inunits of memory
cycles. Range 00— FF.

e Horizontal Display Width. Horizontal display period for one raster. Range
00 - FF.

Group 3:

e Vertical Cycle. Vertical scan cycle period in units of rasters. Range 0000
—OFFFE.

224 THE VSV21 CONTROL PROGRAM (VCP)

Group 4.

© Verlical Display Start. Vertical display start interval in units of memory
cycles. Range 00 — FF,

e Vertical Sync Width. Vertical low puise width in units of rasters. Range 00— 1F
Group 5:

® Vertical Window Width. Vertical display period of window screen in units of
rasters. Range 0000 — OFFF

18.6 SELECTING VT220 EMULATION

The V8V21 can provide a subset of VT220 functionality to enable you to use it as a
terminal on the host system. VT220 emulation operates in two modes.

e Full-screen text
e Split-screen text, where a user-definable number of text lines may be used
for terminal emulation
You use the SET VT220_ DISPLAY command to:
¢ Enable or disable switching into split-screen mode on host serial input
e Select the colors to use in VT220 emulation

e Select the number of lines for use in VT220 emulation

The general format of the SET VT220__ DISPLAY command is:

SET__PARAMETER [dev] VT220_ DISPLAY[/perm] dsp gvall/perm]

where:
dev = device specification, as defined in Section 18.2.2
dsp = a display parameter
gval = a value associated with dsp

perm = a switch as described in Section 18.4

For convenience, you can abbreviate SET__ PARAMETER to SET.

THEVSV21 CONTROL PROGRAM (VCP} 225

18.6.1 Splitting the Screen

You can divide the V5V21 screen dispiay into iwo sections.
e An upper section consisting of graphics display
e A lower section consisting of host text output

SPLIT__SCREEN determines whether the screen automaticaily splits on hostinput.
Its associated parameter gval is one of the following:

YES Enabies split screen (graphics and text display)

NO Disables split screen (graphics display only)
Example:;

SET_PARAMETER VT220_DISPLAY SPLIT_SCREEN YES

When a new SPLIT__SCREEN value is entered, the terminal VSV11 emulation
screen output is automnatically reset; that is, the text area is cleared.

You can set the number of text lines shown under the graphics display at between
two and twelve lines by using LINES SPLIT. The default is four lines.

Example:
SET_PARAMETER VT220_DISPLAY LINES_SPLIT 2

produces a two-line text window under the graphics display.

18.6.2 Choosing Colors for VT220 Emulation

VT220 COLORS allows the user to decide which of the colors defined by the
Colors parameters are to be used inthe VT220 emulation, and how these colors are
to be used. Five colors must be specified, using the positions of those colors in the
CLUT, separated by commas, spaces, or tabs as input. The function of each color in
the display is defined by its position in the VT220 COLORS string as follows:

Position Function

Normal
Background

Blink

Highlight

Blink and highlight

U WA —

226 THE VSV21 CONTROL PROGRAM (VCP)

Exampie:

SET ¥T220_DISPLAY VT220_COLDRS § 4 6 0 7
This uses the color allocations described in Section 18.5.3 to define black texton a
yellow background. The color of the text blinks to turquoise. The text is highlighted in

yellow. Blinking text is highlighted in pale red.

Note that the VT220 scrolling regions are not supported in split-screen mode.

18.7 CONFIGURING THE HOST SERIAL CONNECTION
18.7.1 Setting Up the Host Line Characteristics
You set up the communication characteristics by using the following commands:
SERIAL KEYBOARD
SERIAL HOST
SERIAL POINTING
SERIAL__ TRANSP
The SERIAL__ KEYBOARD command enables or disables the line to the host. You
set it either to ENABLE or to DISABLE.
The SERIAL_ HOST command sets up the line characteristics of the link to the host.
The link resembiles the link to a VT220, and the SERIAL HOST command enables
you to perform the same functions as those defined by the VT220 SET-UP key. Fora
further exptanation of these functions, see the V7220 User's Guide
(EK-VT220-UG-002).
The SERIAL__HOST command defines:
e Line status
e Node and type of parity

e Number of bits per character

e Baud rates of transmit and receive

The format of the SERIAL__HOST table command is:

SET__PARAMETER [dev] SERIAL__HOST[/perm] dsp gvall/permj

THE VSV21 CONTROL PROGRAM (VCP) 227

where:

dev = device specification as defined in Section 18.2.2

dsp = adisplay parameter. This can be one of the following:
LINE__STATUS
MODE__ PARITY
TYPE_PARITY
BITS _CHAR
TX__SPEED
RX_SPEED

gval = avalue associated with dsp

perm = g switch as described in Section 18.4

A description of the dsp parameters follows.

LINE__ STATUS defines the status of the line. Its associated gval can be either
ENABLE or DISABLE.

MODE__PARITY defines the parity mode. The parameter gval can be either WITH,
FORCE, or NONE.

TYPE_ PARITY defines the parity type. The parameter gval can be either EVEN or
ODD.

BITS_CHAR defines the number of bits in each character. The parameter gval can
be either 5, 6, 7, or 8.

TX__SPEED and RX__SPEED define the transmit and receive baud rates
respectively. The parameter gval can be one of the following:

75 300 2000
110 600 2400
134 1200 4800
150 1800 9600

The dsp parameters defined here are described in more detail in the V7220 User’s
Guide (EK-YT220-UG-002}.

228 THEVSV21 CONTROL PROGRAM (VCP)

18.7.2 Setting Pointing Device Characteristics

You use the SERIAL__POINTING command to set the line characteristics of the
serial port to which the peripheral device is connected.

The format of the SERIAL POINTING command is as follows:
SET__ PARAMETER [dev] SERIAL _POINTING[/perm] dsp gvall/perm]
where:
dev = device specification, as described in Section 18.2.2
dsp = adisplay parameter. This can be one of the following:
BITS _CHAR
LINE__STATUS
MODE__PARITY
TYPE__PARITY
TX__SPEED

RX_SPEED

gval = avalue associated with dsp

perm = a switch as described in Section 18.4

Example:

To define the number of bits in a character, use BITS _CHAR. You can give
BITS CHAR a value of 5, 8, 7, or 8.

SET SERIAL_POINTING BITS_CHAR 8

This defines an 8-bit character.

18.7.3 Setting Peripheral Device Characteristics

You use the SERIAL__TRANSP parameter to set the characteristics of the
peripheral device. This can be any serial device driven by the on-board transparent
driver, such as a keyboard or printer,

THE V¥SV21 CONTROL PROGRAM {VCP) 229

The parameters are as for SERIAL_ POINTING, with the following additions:
dsp gval
XON_ CODE two hex chars

XOFF_CODE two hexchars
XON__ CODE and XOFF_ CODE are communications protocol characters for your
own device.
18.7.4 Setting Up the Host Device

You enter the characteristics of the host device by using the HOST command. The
command defines:

e Keyboard type

® Screen display type

e Scrolling mechanism

e Existence of wraparound

o Tab settings

The format of the command is:

SET PARAMETER [dev] HOST{/perm] dsp gvall/perm}

where:
dev = device specification, as defined in Section 18.2.2
dsp = a display parameter. This can be one of the following:

MAX__CHAR
UK__KEYBOARD
SCROLL

WRAP

TAB_ SETTINGS

gval = avalue associated with dsp

230 THE VSV21 CONTROL PROGRAM (VCF)

perm = a switch as described in Section 18.4
MAX__CHAR defines the maximum length of the line. The line can be up to 132
characters in length.
The UK keyboard type is defined by UK__KEYBOARD. It is one of the following:
HASH enables the hash character

POUND enables the pound sign

SCROLL defines the scrolling mechanism. It is one of the following:
SMOOTH Smoocth scroll

JUMP Jump scroli

WRAP specifies whether or not word wrap is enabled. It is one of the following:
YES Set wrap

NO Cancel wrap

TAB _SETTINGS specifies the character position of the TAB setting.

Itis entered as a number of hex characters. The position of the tabs is derived from
the position of the “1” characters in the equivalent binary string.

18.8 SETTING UP KEYBOARD CHARACTERISTICS

You set up the keyboard by using the KEYBOARD command. The KEYBOARD
command defines:

® Key click

e Bell

® Autorepeat on or off

© DP or typewriter mode

e Number of bits per character

® Character set

THE VSV21 CONTROL PROGRAM (VCP) 231

The format of the KEYBOARD command is as foliows:
SET__PARAMETER [dev] KEYBOARD{/perm} dsp gval[/perm}
where:
dev = device specification as defined in Section 18.2.2
dsp = adisplay parameter. This can be one of the following:
KEY_ CLICK
BELL
AUTOREPEAT
MODE
BITS_ CHAR

NATIONALITY

gval = avalue associated with dsp

perm = a switch as described in Section 18.4

18.8.1 Key Sound

KEY CLICK decides whether or not the keys produce a click. Youcan set it either to
ON or to OFF,

18.8.2 Terminal Bell

BELL is a switch controlling the terminal bell. You can set it either to ON or to OFF.

18.6.3 Autorepeat

AUTOREPEAT sets the autorepeat facility to ON or OFF.

18.8.4 Mode

MODE sets the mode to data processing {DP) or typewriter.

232 THEVSV21 CONTROL PROGRAM (VCP)

18.8.5 Number of Bits

BITS__ CHAR sets the keyboard to 7-bit or 8-bit, depending on the operating system
type and version.

18.8.6 Character Sets

NATIONALITY sets the VSV21 to receive the character set of the keyboard being
used. The VSV21 can handie the following character sets:

us
UK

SWEDISH

DUTCH

FLEMISH

CANADIAN FRENCH
DANISH

FINNISH

GERMAN

ITALIAN

SWISS FRENCH
SWISS_GERMAN
NORWEGIAN
FRENCH

SPANISH

THE VSV21 CONTROL PROGRAM (VCP) 233

18.9 SETTING UP POINTING DEVICE CHARACTERISTICS
You set up the pointing device characteristics by using the POINTING command.
The POINTING command defines the sensitivity of the pointing device. Note that a
pointing device driver must be loaded (Section 18.3.1) before you can set up the
characteristics.
The format of the command is as follows:
SET__PARAMETER [dev] POINTING dsp gval
where:
dev = device specification as defined in Section 18.2.2
dsp = adisplay parameter. This can be one of the following:
X_SQUARE
X_FACTOR
X_SHIFT__COUNT
Y__ SQUARE

Y _FACTOR

Y SHIFT__COUNT

gval = a value associated with dsp

Note that the /perm switch cannot be used with this command. The values entered
with the POINTING command are not stored in non-volatile memory, and they are
lost when the machine is switched off.

18.9.1 Sensitivity

X_SQUARE and Y__SQUARE set the sensitivity of the cursor to the pointing
device movement in the X and Y directions respectively. The sensitivity in the X or Y
direction is proportional to the movement squared if the parameter is set to YES; that
is, the distance the cursor moves across the screen is greater per unit movement of
the pointing device for larger movements. Cursor movementis in linear proportion to
pointing device movement if the parameter is set to NO.

234 THE VS5V21 CONTROL PROGRAM (VCP)

18.9.2 Sensitivity Factors
X_FACTOR and Y FACTOR are factors by which the sensitivity can be
increased. They can be set to any integer value in the range 1 — 32767,
18.9.3 Shift Counts
The shift count is used to generate non-integer sensitivity factors (Section 18.9.2). A
shift count value is combined withthe X FACTOR andY FACTOR parametersin
the following calculation:

FACTOR = FACTOR/25HIFT
where;

FACTOR = value of X__ FACTORorY_FACTOR

SHIFT = value of SHIFT _ COUNT parameter (range 0-15)

This allows precise control of sensitivity.

18.10 DISPLAYING CONFIGURATION AND STATUS
To display the stored parameter values, use the TABLE command:

TABLE [dev] ctab

where:
dev = device specification as defined in Section 18.2.2
ctab = one of the strings listed in Section 18.4

The system responds by displaying the parameter values.
To see the status of any VSV21 device, enter:

STATUS dev
where:

dev = device specification as defined in Section 18.2.2

THE VSV21 CONTROL PROGRAM (VCP) 235

18.11 DUMPING VSV21 MEMORY TO A FILE

To dump the contents of VSV21 memory, enter the command DUMP. This dumps the
memory to a file named VCP.DMF.

CHAPTER 19
GETTING STARTED WITH VIVID

This chapter describes the steps in writing and running a VIVID application after
system power-up or initialization. The power-up procedure is described in the
VSV21 User Guide (AZ-FV70B-TC).
19.1 DOWNLOADING THE SOFTWARE
On power-up, the ROM-resident VT220 terminal emulator is active. Before the
VSV21 can be used to run a VIVID application, the following routines must be
downioaded from the host:

1. Kernel — controls VSV21 operation

2. Pointing device driver — controls joystick, trackball or other devices

3. VIVID interpreter — translates display list into a picture
t oad these with the VSV21 Command Program (VCP). The VCP command set is
described in Chapter 18 of this Guide. Install the VCP by entering one of the
following commands:

RUN ¢vCP on RSX-11M-PLUS and Micro/RSX systems

MCR vCP on MicroVMS systems

This returns the prompt “vcP)" . Enter the following commands:

Prompt Command

VP LOAD KERNEL

LINCH LDAD JSTICK (or DECTAB or PGSTICK)
VCP)Y LOAD TRANSP (if printer is to be used)
VP LOAD VIVID

237

238 GETTING STARTED WITH VIVID

The V3V21 displays a split screen, and is capable of reduced functionality console
emulation. The VSV21 can now interpret VIVID instructions. The VIVID font is
downloaded automatically with the VIVID interpreter.

Exit from VCP by pressing CTRL/Z.

The downloaded routines occupy a limited memory space which they share with
VIVID segments. To optimize the use of this memory, the user must observe certain
constraints in downloading and deleting system software. These are described in
Section 18.3.

19.2 DEFINING AND EXECUTING A DISPLAY LIST

This section uses a program example to describe how to write a MACRO-32
program under MicroVMS to define and execute a display list. The program defines
and executes a segment which clears the screen to a pattern of colored stripes.

; YIVID MACRD-32 Prograw

-TITLE TEST - VIVID test program
$IDDEF

Set up I/0 function names if necessary. & VIVID application
program usually contains the following RI0s:

; RSX and VMS SECTION ACTION
OIC FUNCTIONS REFERENCE

; I0.4DA or 4.2.3 Allocates a display area for

; I0$_ALLOCATE segments in host wewory

; I0.DEF ar 4.2.5 befines a segment by entering its
; I10%$_DEFSEG address and Iength on the ¥SV21

; I0.S5E or 4.2.8 Starts execution of a segqment

; I0$_STARTSEG

r

7

I0%_ALLAOCATE == ID$_CONINTREAD
I0¢_BEFSEG == IO$_TTYREADALL
I0$_DEFREP == I0$.DEACCESS
10$_STARTSEG = "X3E

i
i
H

F

REPSEG:

GETTING STARTED WITH VIVID

befine the display area size in host mewory.

The defined display area must be big enough to hold all the
seguents you intend io store in host mewory.

Enter the list of opcodes and parameters which make up

the segments.

These are entered to the display area as a series of .WORD
or .BYTE commands. An example is given with each of the

VIVID instructions described in Chapters 6 through 14.

Define the contents of the executable segwent:

JMDRD X 102 ; opeode for start of segment

.WORD "X0201 ; seguent ID

.WORD 1§ ; segment length

JWORD "X 601 ; opeode to initialize VIVID

JWORD "X 7F ; mask value

JMORD TX4C01 ; opcode to clear screen

JWORD "X E0O ; color 14 frow default CLUT
; = yellow stripes

JHORD "X €00 ; stop

Befine the contents of the repart segment:

.WORD 0O ; segment type filled in by VIVID
WORD "X0202 ; segment ID
CWORD 200 ; segment length (octal)

Allocate space for the reporting segment and other segments.
The display area mwust be big enough for all the cequents you
intend to store in host memory. This instruction gives 60000
bytes in addition to the 16 used above.

.BLKB 60000

Store the channel number, I/0 status block and device name:

.LONG ; storage for VGV21 channel no.
.BLKB 8 ; 1/0 status block
LASCID /VSAD:/ ; device name for assignment

239

240

GETTING STARTEDWITH VIVID

Define start of code:

CENTRY TEST, "HO

Assign a channel and device name to the VSV21 device:
This uses the stored information already set up.

$ASSIGN_S CHAN=CHAN , -
DEVNAM=DEV

Allocate a display area for all the concurrent segments:

Use the I0.ADA or I0$_ALLOCATE function and supply the
address of the segment and total length of the display area
as parameters.

$QI0B.S CHAN=CHAN -
FUNC=8I0%_ALLDCATE,-

I05B=I0SE, -

Pi=ADA,~ ; starting address of display
; area

P2=860022 ; length of display area

befine the executable segment:

Use the IO.DEF or IO_$DEFSEG fumction and supply the segment
address and length as paraseters:

$0I0W_5 CHAN=CHAN,- ; chanpel number
FUNC=#I0$.DEFSEG,- ; define segment
105B=105B,- : I/0 status block
Pi=ADA,- ; starting address of display
; area
pPa2=#{6 ; segrment length

Check the I/0 siatus block:

The contents of the I/0 status block are described in
Section 4.3.

1%:
2%:

~

BLBC
MOVH
BLBS
BRY

RO, 1¢
108B,RO
RO, 24
EXIT

Define the reporting seguent:

GETTING STARTEDWITHVIVID

Use the ID.DEF or IOD_$DEFSEG function and supply the segment
address and length as parameters.

$QI0N_S CHAN=CHAN,- ;

FUNC=#T0%_DEFSEG,- ;

105B=I1058, - ;
P1=REPSEG, - :
PR=#200 F

Check the 1/0 status block:

BLBC
MOV
BLBC

RO, EXIT
105B,RO
RO, EXIT

befine reporting:

Use the I0.DRP or IO_S$DEFREP
as a reporting segment.

$QI0W_5 CHAN=CHAN,- ;
FUNC=a10$_DEFREP,- ;
105B=I05E, - ;
P{=PREPSEG+2 ;

Check the I/0 status block:

BEBC
HOVH
BLBC

RO,EXIT
1058,R0
RO,EXIT

Start segnent execution:

channel number

define segment

I1/0 status block

starting address of display area
segment length

function to define the segment

c¢hannel number
define reporting
I/0 status block
segment ID

241

242 GETTING STARTED WITH VIVID

; Use the ID.SSE or I0$_STARTSEG function and supply the
; location of the segment ID and the required time-ocut value
; as parameters,

$QI0W_S CHAN=CHAN,-
FUNC=#I0%_STARTSEG, -

105B=1088, -
P1=@ADA+2, - ; segment ID from second word
; of seq.
Pe=#10 ; time-out period in secaonds
B Check the 1/0 status block:

BLBC RO, EXIT
HOVY 10SB,RO

i Exit

$EXIT_§ RO
.END TEST

APPENDIX A
THE QIO CALL MECHANISM

A program can use QIO calls to perform a number of different functions. Each QIO
call specifies one function which has an associated function code. For example, the
10.CON function sends a display list to the VSV21 to be displayed. In this function,
the programmer must specify the address of the display list as a parameter to the
QIO call.

The device driver handles all communication between application programs and the
VSV21 device. It receives input/output requests from programs, in the form of QIO
calls to system service routines in the operating system. The driver passes the
requests to the VSV21 processor in the form of command packets, using a
programmed I/O mechanism and Direct Memory Access (DMA).

The following types of function are provided for the VSV21 device driver:

e Configuration

Initialization

Diagnaostic and self-test

Device control

Crawing contro

The VvSV21 device driver provides two sets of QIO functions:
e VIVID functions
e VSV11 emulation functions
The two sets of functions are not compatible, The VSV21 must be set for the VIVID

or VSV11 functions by downloading either the VIVID interpreter or the VSV11
emulation code before running an application.

243

244 APPENDICES

Forthe VSV21 to display a picture, the display list must be interpreted by code on the
V8V21 module. The display list is used to build up the picture in the pixel memory.
The device driver does not send the display list across the parallel interface with the
rest of the command packet. Instead, the command packet causes the VSV21 to
initiate a transfer using a fast Direct Memory Access (DMA) mechanism. DMA s
used whenever a large amount of data needs to be transferred to the VSV21. For
example, DMA is also used to download the emulation code.

MACRO-11 programs issue QIO requests by calling a system macro, whereas high-
level fanguages such as FORTRAN-77 call subroutines to perform QIO requests.
Each request is processed by routines in the executive, and is placed in a request
queue. The device driver processes requests from the queue in order of priority.
There are two methods by which the program can test whether a transfer is
complete, as follows:

¢ Synchronous I/O0

The program requests return of control only when the transfer is complete.
For synchronous 1/0 you use the QIOW {Queue Input/Output and Wait)
form of the QIO call. This method is used in the examples in this chapter.

e Asynchronous I/O

The program requests immediate return of control before the transfer is
complete, so that the program can continue processing while the transfer is
in progress. For asynchronous VO you use the basic QIO {(Queue
Input/Output) form of the call. When the program reaches a point where it
needs to synchronize with the completion of the transfer, it must test
whether the transter is complete. Completion is notified by the setting of the
associated event flag, which you specify in the program as a parameter in
the QIO calt.

The return status code, which notifies whether or not the transfer was completed
successfully, is placed in the I/O status block. This is a data area which is setup in the
application program. You should check the return status after every QIO call, and
provide error-processing routines for each type of error.

Further information about the QIO request is given in the RSX-1TM/M-PLUS
Executive Reference Manual {AA-L675A-TC), the RSX-11M/M-PLUS and
Micro/RSX Executfive Reference Manual (AA-Z508A-TC), and the VAX/VMS
System Services Reference Manual (AA-DO18C-TE). FORTAN programmers
should aiso refer to these manuals for a description of the subroutine calls
which are equivalent to the QIO macro calls.

APPENDICES 245

A1 EXAMPLES OF QIO CALLS UNDER RSX-11M-PLUS AND MICRO/RSX

Each function code mnemonic is listed in the following examples with a
corresponding octal value. For example, the following function attaches the task to
the VSV21 device on Micro/RSX and RSX-11M-PLUS systems:

10.ATT = octal code 1400

To use the function code mnemonic inthe QIO call, set up the octal equivalents atthe
top of your program, for example:

: V3Vve1l QIO function definitions

I0.ATT=1400 ; ATTACH

These examples assume that you have set up these function codes in your program.

You can set up the QIO directives as a Directive Parameter Block {DPB) in your
program, and call them with the DIR$ directive. This method speeds up processing.
For example:

YSVATT: QIOW$ ID.ATT,1,1,,I05B,,{ACAT, ACLNG,6ACAT)

DIR$ BYGVATT ; ATTACH V8V21 DEVICE

To put variable data into the DPB at run time, use the local symbol definitions
described in the RSX-11M/M-PLUS Executive Reference Manual (AA-LE675A-TC)
and the RSX-1TMIM-PLUS and MicrofRSX Executive Reference Manual
{AA-Z508A-TC) and the VAX/VMS System Services Reference Manual (AA-

DO18C-TE}. For example:

HoV #DL,R0 ; ADDRESS OF DISPLAY LIST
HOV RO, VSVCON+Q . IOPL ; ... STORE IN QIO DPB

This method has been used for the examples in this manual.

246 APPENDICES

A.11 The I0.ATT Function
Program example:
1058B: LBLKW 2 ; W8V2L 1/0 STATUS BLOCK

VSVATT: QIOW$ IG.ATT,1,1,,10SB,,(ACAT,ACLNG,ACAT)

DIR$ #VSVATT ; ATTACH TO VSv21 DEVICE
CHPB #I5.50C, 1058 ; CHECK RETURN STATUS
BEQ 15% ; BRANCH IF OK

JHp AERR ; ATTACH ERROR

A.1.2 The GLUNS Function

BUFF: .BLKW 6 ; BUFFER FOR GLUN$

GLUN$ 1, #BUFF
; GET INFORMATION OM LUN { DEVICE AND PLACE IN "BUFF"

GLUNS$ sets the contents of the six-word buffer as shown in Figure 17-1.

A1.3 The lO.CON Function

A.1.3.1 Task-Relative Addressing — The following code sets up a display list,
DL, and specifies task-relative addressing.

DL: . ; START OF AN AREA (-—------
; USED TO BUILD A
; DISPLAY LIST...

-WORD 160000 ; DISPLAY JUMP INSTRUCTION
HORD DL ; JUMP TO DISPLAY LIST +0 ---}
DLNG = .-DL ; DISPLAY LIST LENGTH

vea: QIOW$ IO.CON,1,i,,I0SB,,(DL,DLNG,BL,54}

APPENDICES 247

A.1.3.2 Display List-Relative Addressing — This example generates a display
list, DL, and the QIO user parameters needed for addressing relative to the start of
the display list. Note that the display list is aligned to the start of a block (32-word)
boundary.

DL: . ; SBTART OF AN AREA (---r—-——-
; USED TD BUILD A
. ; DISPLAY LEST...
.WORD 160000 ; DISPLAY JUMP INSTRUCTION

JWORD DL ; JUMP TD DISPLAY LIST +0 --=}
DLNG = .-DL ; DISPLAY LIST LENGTH +N (N(E4)

V50: 3Iow$ I0.CON,1,1,,I0SB,,{0,DLNG,0,54}

MOV &DL,RO ; ADDRESS OF DISPLAY LIST DL

NEG RO ; ROUND UP TO NEXT BLOCK (32 WORDS)
BIC 8"C77,R0 ; USE BITS §-0 ONLY

ADD #DL RO ; COMPUTE DISPLAY LIST BTART

Hov RO,VS0+Q.I0PL ; STORE IT IN THE VSvZ21 QIO CALL
DIR$ #Y5Q ; ISSUE QIO

A.14 ThelO.RJS Function

XC: LHORD O ; BUFFER TO HOLD X COORDINATE
YC: LWORD O ; AND Y CDORDINATE
VSVYRJS: OIOW$ I0.RJS,1,1,,I0SB,,(XC,4? ; READ JOYSTICK COORDS

MACRO-11 programmers can test for status returns using the mnemonic code
given, for example:

CHPB #15.5UC, 0SB ; CHECKR RETURN STATUS
BER 15% ; BRANCH IF SUCCESSFUL
JHP ERR ; JUHP TO ERROR ROUTINE

248 APPENDICES

FORTRAN programmers should use the numeric code given to check for errors. For
exampie:

BYTE 105B(4) ! I/0 STATUS BLOCK

IF (IDSB(O).NE.1) GO TO 5000 I BRANCH TO ERROR ROUTINE
! HERE IF TRANSFER SUCCESSFUL

APPENDIX B
DEFINITION OF THE DEFAULT FONT

This table describes the default font. The font length is given, and each character is
defined as a 10-row cell.

* Pescribe font length and characteristics

START_FONT

DC.B 2

DC.B 6

DC. ¥ $F7F

DC.W END_FONT-START_DFONT
DC.¥ $FD

DC.Y 48

DC.Y $A

DC.W $0

* Describe matrix for each character

CELL1O
CELL1C
CELL1O
CELL1O
CELL1C
CELL1O
CELL1O
CELL1O
CELELO
CELLiO
CELLEO
CELLLO
CELL10O
CELL1C
CELLLC
CELL1C
CELL1O
CELL1O

FF,FF,FF,FF,FF,FF,FF,FF,FF,FF
FF,FF,FF,FF,FF, FF,FF,FF,FF,FF
FF,FF,FF,FF,FF,FF,FF,FF,FF,FF
FF,FF,FF,FF,FF,FF,FF,FF,FF,FF
FF,FF,FF,FF,FF,FF,FF,FF,FF,FF
FF,FF,FF,FF,FF,FF,FF,FF,FF,FF
FF,FF,FF,FF,FF,FF,FF,FF,FF,FF
FF,FF,FF,FF,FF, FF,FF,FF,FF,FF
FF,FF,FF,FF,FF, FF,FF,FF,FF,FF
FF,EF,FF,FF FF,FF,FF,FF,FF,FF
FF,FF,FF,FF FF,FF,FF,FF,FF,FF
FF,FF,FF,FF FF,FF,FF,FF,FF,FF
FF,FF,FF,FF,FF,FF,FF,FE,FF,FF
FF,FF,FF,FF,FF,FF,FF,FF,FF,FF
FF,FF,FF,FF,FF,FF,FF,FF,FF,FF
FF,FF,FF,FF,FF,FF,FF,FF,FF,FF
FF,FF,FF,FF,FF,FF,FF,FF,FF,FF
FF,FF,FF,FF,FF,FF,FF,FF,FF,FF

oA A e XKk ok oM oM ¢ ok ok ok ok ok ok ok Xc

Non
Nen
Nan
Nan
Nan
Nan
Nan
Non
Non
Mon
Non
Non
Non
Non
Non
Non
Non
Non

$T7F END_FONT-START_DFONT, ¢FD, %8, $A, $0

printing
printing
printing
printing
printing
printing
printing
printing
printing
printing
priniing
printing
printing
printing
printing
printing
printing
printing

249

250

CELL1Q
CELL1O
CELL1O
CELL1O
CELE1D
CELL1O
CELLLO
CELL1O
CELL1C
CELE1D
CELL1O
CELLLO
CELL1O
CELL1O
CELE10
CELL10
CELLEO
CELL1O
CELL1O
CELL1O
CELLLO
CELL1O
CELLiO
CELL10O
CELL1O
CELL1D
CELL1O
CELLLC
CELL1O
CELL1O
CELL1O
CELE1D
CELL1O
CELL1O
CELL1O
CELL1Q
CELL1O
CELE1D
CELL1O
CELLIO
CELL1O
CELL1O
CELL10
CELL1O
CELL1O
CELL1OD
CELL1O
CELL1O
CELL10

APPENDICES

FF,FF,FF,FF,FF,FF,FF,FF,FF,FF
FF,FF,FF,FF,FF,EF,FF,FF,FF,FF
FF,FF,FF,FF,FF,FF,FF,FF,FF,FF
FF,FF,FF,FF,FF,FF,FF,FF,FF,FF
FF,FF,FF,FF,FF,FF,FF,FF,FF,FT
FF.FF,FF,FF,FF,FF,FF,FF,FF,FF
FF,FF,FF,FF,FF,FF,FF,FF,FF,FF
FF,FF,EF,FF FF,FF,FF,FF,FF,FF
FF,FF,FF,FF,FF,FF,FF,FF,FF,FF
FF,FF,FF,FF,FF,FF,FF,FF,FF,FF
FF,FF,FF,FF,FF,FF,FF,FF,FF,FF
FF,FF,FF,FF,FF,FF,FF,FF,FF,FF
FF,FF,FF,FF,FF,FF,FF,FE,FF,FF
00,00,00,00,00,00,00,00,00,00
00,00,10,00,10,10,10,10,10,00
00,00,00,00,00,00,00,48, 48,00
00,00,24,24 7E,24,7E,24,24,00
00,00,10,7¢,90,7C,12,7C, 10,00
00,00,C2,C4,08,10,20, 46,86, 00
00,00,8C,42,A2,1C,22,22,1C, 00
00,00,00,00,00,00,08,10,30,00
00,00,20,10,08,08,08,10,20,00
00,00,08,10,20,20,20,10,08,00
00,00,00, 44,28, FE, 28, 44,00, 00
00,00,00,10,10,FE,10,10,00,00
00,04,08,18,00,00,00,00,00,00
00,00,00,00,00,FE,00,00,00,00
00,00,18,18,00,00,00,00,00,00
00,00,02,04,08,10,20,40,80, 00
00,00,38,44,82,82,82, 44,38, 00
00,00,7C,10,10,10,14,18,10,00
00,00, FE,02,0C,70,80, 42,3C, 00
00,00,3C,42,80,70,20,40,FE,00
00,00,20,20,FE,24,28,30,20,00
00,00,7C,82,80,86,74,02,FE,00
00,00,78,84,86,74,02,84,78,00
00,00,04,08,10,20,40,80, FE, 00
00,00,7¢,82,82,7¢,82,82,7C, 00
00,00,3C,42,80,BC,C2,42,3C, 00
00,00,18,18,00,00,18,18,00,00
00,04,08,18,00,00,18,18,00,00
00,00,80,20,08,02,08,20,80,00
00,00,00,00,FE,00,FE,00,00,00
00,00,02,08,20,80,20,08, 02,00
00,00,10,00,106,10,60,82,7C,00
00,00,7¢,02,72,92,42,82,7C, 00
00,00,82,82,FE, 82, 44,28,10,00
00,00,7E,84,84,7C, 84,84, 7E, 00
00,00,78,84,02,02,02,84,78,00

23
24
25
28
27
30
3
32
33
14
35
6
37
40
44
42
43
44
45
46
47
50
51
52
53
54
55
56
57
80
61
62
63
64
65
66
87
70
71
72
73
74
75
76
77
100
101
102
103

Non
Non
Non
Non
Non
Non
Non
Non
Non
Non
Non
Non
Non

printing
printing
printing
printing
printing
printing
printing
printing
printing
printing
printing
printing
printing

Space

EE RN

L= R I L I N =

[

€2 I I M d

CELL1C
CELLiO
CELL1O
CELL10
CELL1O
CELLiO
CELL1O
CELLiQ
CELLLO
CELL1O
CELEL10
CELL4O
CELLiO
CELLLO
CELL10O
CELL1O
CELL1O
CELL1O
CELELO
CELL1O
CELL1O
CELL1iO
CELL1O
CELL1O
CELL10
CELLi0O
CELL1O
CELLiC
CELL1O
CELL1O
CELL1O
CELL10O
CELL1G
CELLEO
CELL1O
CELL1O
CELL1O
CELL10O
CELLLO
CELLLC
CELL1O
CELL1O
CELL1D
CELLLO
CELELD
CELLLO
CELLiC
CELL1O

00,00,3E,44,84,84,84,44,3E,00
00,00,FE,02,02,3E,02,02,FE,00
00,00,02,02,02,3E,02,02,FE, 00
00,00,78,84 ,E2,02,02,84,78,00
00,00,82,82,82,FE,82,82,82,00
00,00,7C,10,10,10,10,10,7C,00
00,00,3C,42,40,40,40,40,E0,00
00,00,82,62,1A,06,1A,62,82,00
00,00,FE,02,02,02,02,02,02,00
00,00,82,82,82,02,A4,C6,82,00
00,00,82,C2,42,92,84,86,82,00
00,00,7¢,82,82,82,82,82,7C, 00
00,00,02,02,02,7E,82,82,7E,00
00,00,BC,42,42,82,82,82,7C, 00
00,00,82,42,22,7E,82,82,7E,00
00,00,7C,82,80,7C,02,82,7C,00
00,00,10,10,10,10,10,10,FE,00
00,00,7C,B2,82,82,82,82,82,00
00,00,10,28,28, 44,44 ,82,82,00
00,00,28,7C,D&,52,52,82,82,00
00,00,82,C6,6C,38,6C,C6,82,00
00,00,10,10,10,10,28,44,82,00
00,00,FE,06,0C,38,60,C0,FE,00
00,00,78,08,08,08,08,08,78,00
00,00,80,40,20,10,08,04,02,00
00,00,3C,20,20,20,20,20,3C,00
00,00,00,00,00,82,44,28,10,00
00,00,FE,00,00,00,00,00,00,00
00,00,00,00,00,00,20,10,18,00
00,00,FC,82,FC,80,7C,00,00,00
00,00,74,86,82,86,74,02,02,00
00,00,F8,04,02,84,78,00,00,00
00,00,BC,C2,82,C2, BC,80,80,00
00,00,7C,02,FE,82,7C,00,00,00
00,00,08,08,08,3E,08,88,70,00
3C,42,40,7C, 42, 42,7C,00,00,00
00,00,82,82,82,86,74,02,02,00
00,00,7C,10,10,10,18,00,10,00
3C,42,42,40,40,40,40,00,40,00
00,00,C2,32,0F,12,22,02,02,00
00,00,38,10,10,10,10,10,18,00
00,00,82,92,92,92,7E,00,00,00
00,00,82,82,82,86,74,00,00,00
00,00,7C,82,82,82,7¢,00,00,00
02,02,02,74,88,86,74,00,00,00
80,80,80,BC,C2,C2,BC,00,00,00
00,00,04,04,04,8C,72,00,00,00
06,00,7E,80,7C,02,7C,00,00,00

**************#***********#*************#*******

104
105
106
107
110
11
i1z
113
114
115
116
117
120
124
132
123
124
125
126
127
130
134
132
133
114
135
126
137
140
14
142
143
144
145
146
147
180
164
152
153
154
165
188
157
160
161
f62
163

3'—'/'—'N—<><E<Z!Z!—-IU’J:UE'UDZ:$1_7€L.HIG"J"1MU

—_ T L. P W <k oM R ODon

m =S Qo m o 3 =

APPENDICES

251

252

CELLLO
CELL1O
CELL1O
CELL1O
CELL1G
CELL1O
CELL1O
CELL1O
CELELO
CELL10
CELLLD
CELLiO
CELLiO
CELL1O
CELLLO
CELLIG
CELLiO
CELL1O
CELLiO
CELLiO
CELLiO
CELLiO
CELL1O
CELL1O
CELL1O
CELL1O
CELL10
CELL1O
CELL10
CELL10
CELLi0
CELL10
CELLL0
CELLEO
CELLEO
CELLLO
CELLLO
CELLEO
CELLLO
CELLLO
CELLO
CELLLO
CELLLO
CELLiC
CELLiQ
CELLiO
CELLiC
CELLiC
CELLIO

APPENDICES

00,00,30,48,08,08,3E,08,08,00
00,00,BC,42,42,42,42,00,00,00
00,00,10,28,44,82,82,00,00,00
00,00, 44,44,92,82,82,00,00,00
00,00,42,24,18,24,42,00,00,00
3C,42,40,5C,62,42,42,00,00,00
00,00,FE,08,30,40,FE,00,00,00
00,00,E0,10,80,0C,10,10,E0,00
00,10,10,10,00,00,10,10,10,00
00,00,0E,10,10,C0,10,10,0E,00
00,00,00,00,00,00,62,92,8C,00
00,00,00,00,00,00,00,00,00,00
00,00,10,38,7C,FE,7C,38,10,00
00,00,92,44,92, 44,52, 44,92 00
20,20,20,F8,22,22,3E,22,22,00
10,10,30,10,F2,02,0F,02,1F,00
88,88,78,88,78,3C,02,02,3C,00
08,08,78,08,F8,3E,02,02,02,00
00,00,00,00,00,38,44,44,38,00
00,00,FE,10,10,FE,10,10,00,00
£8,08,08,08,22,32,24,26,22,00
20,20,20,20,F8,08,14,22,22,00
00,00,00,00,00,0F,08,08,08,08
08,08,08,08,08,0F,00,00,00,00
08,08,08,08,08,F8,00,00,00,00
00,00,00,00,90,F8,08,08,08,08
08,08,08,08,08,FF,08,08,08,08
060,00,00,00,00,00,00,00,00,FF
00,00,00,00,00,00,00,FF,00,00
00,00,00,00,00,FF,00,00,00,00
00,00,00,FF,00,00,00,00,00,00
00,FF,00,00,00,00,00,00,00,00
08,08,08,08,08,F8, 08,08, 08,08
08,08,08,08,08,0F,08,08,08,08
00,00,00,00,00,FF,08,08,08,08
08,08,08,08,08,FF,00,00,00,00
08,08, 08,08,08,08,08,08,08,08
00,FE,80,20,08,02,08,20,80,00
00,FE,02,08,20,80,20,08,02,00
00,00,44,48, 48,40, FE,00,00,00
00,00,02,04,FC,40,FC,40,80,00
00,04,C4,3C,08,3E,08,88,70,00
00,00,00,00,00,10,00,00,00,00
06,060,00,00,00,00,00,00,00,00
00,00,00,00,00,00,00,00,00,00
00,00,10,10,10,10,10,00,10,00
00,00,10,F8,14,12,94,78,10,00
00,04,CA,TC,00,FE, 08, B8,70,00
00,90,00,00,00,00,006,00,00,00

® % ok Kk K ok ok o X ok o o Xk AR O A& K R R M W K R K M ok ok % % ¥ s O @ W o o N M Mt M ¥ ok Rk W mMe M % W W

i64
i65
166
167
170
i
i72
173
174
175
i76
i77
200
201
202
203
204
208
206
207
210
211
iz
13
214
218
214
217
220
221
222
223
224
226
226
227
230
231
232
233
234
235
236
237
240
244
242
243
244

Bl == o ol X OE < et

blank
dianond
grifl
HY

FF

CR

LF

degree
+

ML
VT

scan
scan
5cCan
s¢an
s¢an

A =E O B e

pi

not =
pound
tot
~spare-
~gpare-

inverse |

cent
pournd
~SpETE-

CELLiC
CELLiO
CELL1O
CELL1O
CELLiC
CELL1O
CELLiC
CELL1O
CELL1O
CELL19
CELL1O
CELL1O
CELLEO
CELL1O
CELLIQ
CELLiO
CELLiO
CELLiO
CELLiO
CELLiO
CELL1O
CELL1O
CELLiO
CELLiC
CELLiO
CELL1O
CELL1O
CELLLO
CELLiO
CELLiO
CELLiO
CELLiO
CELLLD
CELL19
CELL10
CELLiO
CELLAO
CELLLO
CELLiO
CELLiO
CELLiG
CELL1O
CELL10
CELL10
CELLiO
CELLO
CELLLO
CELLLO
CELLLO

00,00,10,10,7C,10,28,44,82,00
00,00,00,00,00,00,00,00,00,00
7E,80,80,7C,82,7C,02,02,FC,00
00,00,82, 44,88, 44,B8,44,82,00
7¢,82,82,84,84,84,82,82,7C,00
00,00,FC,00,FC,82,FC,80,7C,00
00,00,90,48,42,12,42,48,50,00
00,00,00,00,00,00,00,00,00,00
00,00,00,00,00,00,00,00,00,00
00,00,00,00,00,00,00,00,00,00
00,00,00,00,00,00,00,00,00,00
00,00,00,00,00,38,44,44,38,00
00,00,FE,10,10,FE,10,10,00,00
00,00,00,7C,04,08,30,44,38,00
00,00,00,38,44,40,30,20,7C, 00
00,00,00,00,00,00,00,00,00,00
20,40,38,44,44,44 44,00,00,00
00,00,50,50,90,90,9E,9E,FE,00
00,00,00,00,18,18,00,00,00,00
00,00,00,00,00,00,00,00,00,00
00,00,00,38,10,10,10,18,10,00
00,00,7C,00,38,44,44,44,38,00
00,00,12,24,48,50,48,24,12,00
00,00,42,F4,68,52,22,42,82,00
00,00,C0,44,88,D2,22,42,82,00
00,00,00,00,00,00,00,00,00,00
00,00,3C,42,84,08,10,00,10,00
00,00,44,7C,44,28,16,40,30,00
00,00,44,7C,44,28,10,04,18,00
00,00,44,7C,44,28,10,44,38,00
00,00,44,7C,44,28,10,00,28,54
00,00,44,7C,44,28,10,00,28,00
00,00,44,7C,44,28,10,28,10,00
00,00,F2,12,1E,82,12,14,F8, 00
B0,10,7B,84,02,02,02,84,78,00
00,00,7C,04,3C,04,7C,40,30,00
00,00,7C,04,3C,04,7C,04,18,00
00,00,7C,04,3C,04,7C, 44,38, 00
00,00,7C,04,3C,04,7C,00,28,00
00,00,7C,10,10,10,7C,40,30,00
00,00,7C,10,10,10,7C,04,18,00
00,00,7C,10,10,10,7C,44,38,00
00,00,7C,10,10,10,7C,00,28,00
00,00,00,00,00,00,00,00,00,00
00,00,44,64,54,4C,44,00,28,54
00,00,38, 44,44 ,44,38,40,30,00
00,00,38,44,44 44,38 04,18,00
00,00,38, 44,44 44,38 44,3800
00,00,38, 44,44, 44,38,00, 28,54

JIK?K*****##***********#************************

245
248
247
250
281
252
293
254
255
256
257
260
261
262
263
264
265
266
267
270
271
27z
273
274
275
276
277
300
301
302
203
304
208
306
307
310
311
312
313
314
345
316
3t7
320
321
Jaz2
323
324
325

APPENDICES

Yen
-spare-
section
currency
(<)
fem.
K
~Spare-

ord. ind.

~gpare-
~spare-
-gpare-
degree

+
superscript 2
cuperseript 3
-spare-

micrao
paragraph
niddle dot
-spare-
superscript
masc. ord. ind.
2}

174

i/2

-spare-
inverse P

A grave

A acuie

A circunflex

A tilde

A umlaut

A ring

AL ligature

€ cedilla

E grave

acute
circunflex
unlaut

grave

acute
circunflex
unlaut
-spare-

N filde

0 grave

8 acute

D circumflex

0 tilde

Bk~ P~ B ET] [T

253

254

CELL1O
CELL1O
CELL1O
CELELO
CELLLD
CELL10
CELLiO
CELL1O
CELL1O
CELL1O
CELL1D
CELELD
CELL1O
CELL1O
CELL1O
CELL1O
CELLI1O
CELLLO
CELL1O
CELL1D
CELL1O
CELL1O
CELL1O
CELLLO
CELL1O
CELL1O
CELL1D
CELL1O
CELL10
CELL1O
CELLiO
CELL1O
CELLLO
CELL1O
CELL1O
CELL1D
CELE1D
CELL10O
CELL1O
CELL1O

APPENDICES

00,00,38,44,44,44,38,00,28,00
00,00,EC,12,12,82,12,12,EC,00
00,00,7C,B8,84,92,42,C2,7C,00
00,00,38,44,44,44,44,20,18,00
00,00,38, 44,44, 44,44,80,30,00
00,00,38,44,44,44,44,28,10,00
00,00,38,44, 44, 44,44,00,28,00
00,00,10,10,10,28,44,00,28,00
00,00,00,00,00,00,00,00,00,00
26,04,FC,B4,84,7C,B4,84 FE,00
00,00,FC,B2,FC,80,7C,20,18,00
00,00,FC,82,FC,80,7C,08,20,00
00,00,FC,82,FC,80,7C,28,10,00
00,00,7¢,82,FC,80,7C,00,28,54
00,00,FC,82,FC,B0,7C,00,28,00
00,00,FC,82,FC,B0,7C,28,10,00
00,00,FC,12,7C,90,6E,00,00,00
BO,10,F8,04,02,84,78,00,00,00
00,00,7C,02,FE,82,7C,20,18,00
00,00,7C,02,FE,82,7C,08,30,00
00,00,7C,02,FE,82,7C,28,10,00
00,00,7C,02,FE,82,7C,00,28,00
00,00,7C,10,10,10,18,40,30,00
00,00,7C,10,10,10,18,04,18,00
00,00,7C,10,10,10,18,28,10,00
00,00,7C,10,10,10,18,00,28,00
00,00,00,00,00,00,00,00,00,00
00,00,82,82,82,86,74,00,28, 54
00,00,7C,82,82,82,7C,20,18,B0
00,00,7¢,82,82,82,7C,08,30,00
00,00,7¢,82,82,82,7C,28,10,00
00,00,7C,82,82,82,7¢C,00,28,54
00,00,7C,B2,82,82,7¢C,00,28, 00
00,00,FC,12,72,92,7C,00,00,00
00,00,7C,B4,B2,C2,7C,00,00,00
00,00,BC,42,42,42,42,20,18,00
00,00,BC,42,42,42,42,80,30,00
00,00,BC,42,42,42,42,28,10,00
00,00,BC, 42,42, 42, 42,00,28,00
00,00,BC,42,42,42,42,00,24,00

**

326
327
330
331
332
333
334
335
338
337
340
341
342
343
344
345
346
347
350
351
352
353
354
358
366
387
360
361
362
363
364
365
366
367
370
371
372
373
374
375

0 umlaut

OE ligature
0 slash

U grave

I acute

U circumflex
U oumlaut

Y unlaut
~spare-
German smnl s
grave
acute
circunflex
tilde
unfaut

[+ TR + P R s TR s TR P

ring

ae ligature
cedilla
grave
acute
circumflex
umiaut
grave
acute

e ke b @ M@ M OMor

circumflex
i umlaut
-spare-
n tilde
o g‘T‘EIVE
o acute
0 circumflex
o tilde
o umlaut
oe ligature
slash
g'\"EIVE
acute
circumflex
unbaut

I E FE F = O

umMlaut

APPENDIX C

EXAMPLE OF A VSV11 EMULATION
PROGRAM

c EXAMPLE OF A VSVii FORTRAN-77 PROGRAM
PROGRAM BARGEN
This progras draws a test card of
parallel lines and colored bars across the screen. These
instructions are sent to a user-specified file.
INTEGER¥2 I, MVXOL2) HVY(12) LNX{12) LNY(12)
DATA VX /7 30, 60, 90,421,451,481 511,511,511 511,511,511/
DATA My /7 ¢, 0, G, 0, 0, 0, 30, 80, 90,421 451,481/

DATA LWX /7 30, 680, 90,421,451,481, 0, o0, O, 0, 0, O/

baTA LNY /511,581,511,511 544,511, 30, 60, 90,421,491 481/

CALL VSINIT

CALL VSCLR

C Select colors
CALL VSBACK{1h)
CALL VSCOLR{(0)

c Draw parallel lines
DO 100 I = 1,12
CALL VSMOVE(MVX{(I} MVY(I})
CALL VSDTHE{LNX(I} LNY{(I),k3}
100 CONTINUE

C Drawy color bars

255

256 APPENDICES

C Set up histograwn
CALL VSHOVE(S2,94)
CALL VSETHB{54)
CALL VSHINC{(40}

C Draw 15 calors
pa 200 I = 0,14
CALL VSCOLR(I)
CALL VSHSTY(418,1,0}
200 CONTINUE

C Draw 16ih color
CALL VSMIX(8,11)
CALL VSHINC(2#(424-93-15%20))
CALL VSHSTY{418,{,0)
CALL VSSYNC

END

APPENDIX D
VIVID ATTRIBUTE MASK VALUES

Initialization items and their initialization mask values are listed in Table D-1. The
initiafization values are given in terms of the equivalent VIVID instructions. The mask
values are additive parameters to the VIVID INITIALIZE instruction,

Where the current values of items are also entered to the atiribute stack by the VIVID
SAVE_ ATTRIBUTES instruction, a “yes” appears in the “SAVED” column. The
mask value given is also used on RESTORE ATTRIBUTES to indicate that the
item should be restored. it replaces the item’s current value,

Note that the color look-up table (CLUT) and associated blink colors are not
initialized. This provides the application with complete control of the color paletie
used. The user can contro! the palette using a VCP command procedure or a VIVID
display segment.

Table B-1 ViIVID Attribute Mask Values

Mask Value Attribute Group Initiatization Equivalent Saved
VIVED Instruction

Dec Octal

1 1 Current Pointer MOVE__ABS 0,0 Yes

2 2 Cursor CURSOR_STYLEO Yes
POSITION__ CURSOR 0, © Yes
CURSOR__ VISIBILITY 0 Yos
RUBBER_ BAND O Yes

4 4 Drawing Colors FOREGROUND _CCLOR 15 Yes
BACKGROUND__COLOR 0 Yes

8 io Drawing Mocde DRAWING _MODE 0, 0O Yes

16 20 Texiure LINE TEXTURE 1, 1 Yes
ARECA_TEXTURE 1, 1 Yes

32 40 Transformations DRAWING__ MAGNIFICATION 0, 0 Yes
SCREEN DIMENSIONS 6840, 480 Yes
WINDOW _ORIGINQ, O Yes
ZOOM__FACTOR 1, 1 Yes
SET__VIEWPCRT0,0,0,0 Yes

257

258

Table D-1{Cont)

APPENDICES

VIVID Attribute Mask Values

Mask Value Attribute Group Initialization Equivalent Saved
VIVID Instruction

Dec Octal

64 100 Text SET_ FONT 4223 or undefined Yes
CELL OBLIQUED Yes
CELL ROTATIOND Yes
CELL_SIZE 8,10,0,0 Yes
CELL__ MAGNIFICATION 0,1, 2 Yes
CELL _MOVEMENTQ, 0 Yes

128 200 Screen Blank SCREEN__BLANK 0 No

256 400 Blink Control SCREEN__BLINK 0 No
BLINK _TIMING 32, 28 No

512 1000 Inputs SWITCH_ DISABLE No
MATCH DISABLE No
STOP KEYBOARD INPUT No

1024

2000

Attribute Stack

(Clear attribute stack)

APPENDIX E
DEFINING A CURSOR IN VIVID

The maximum size a cursor can have is the maximum cell size (16 % 16 pixels). The
cellis a 16 x 16 dot matrix, where the user can define the dots to be illuminated.

In the exampie given here, the matrix is regarded as starting at point 0,0 in the

hottom left-hand corner and being numbered in hex left to right, bottom to top, as
follows:

row 09

number 07

0123456789ABCDEF

column
number

259

260 APPENDICES

To define the cursor, the following parameters must be specified:
@ Number of cell rows
e X coordinate of cursor point

e Y coordinate of cursor point

Example:

iIf a cursoris to be defined as the character L and X denotes a pixel, the cursor shape
might be as follows:

row 09 XX

number 07 XX

01 XXXXXXXXXAXXXXXX
00 XXXXAXXXXAXXXXKXX
0123456789ABCDEF

column
number

APPENDICES

The display list defining this cursor is as follows:

5413
0010
0000
0009
FFTF
FFFF
Q003
0003
Q003
0003
0003
0003
0003
0003
0003
09003
0003
0003
0003
0003

I set cursor style

| 16 rous of cursor data

! define cursor point x coordinate

I define cursor point y coordinate

| define the bottom row I of cursor data

An alternative way to create the same result is as follows:

SaFF

0000
0000
FFFF
FFFF
0003
0003
0003
0003
0003
0003
0003
0003
0003
0003
0003
0003
0003
0003
8000

I set cursor style data to be terminated by
the END_PARAMETERS delimiter (length 255)
| define cursar point x coordinate

| define cursar point y coordinate
i define the bottom row 1 of cursor data

I END.PARAMETERS delimiter

261

GLOSSARY

attributes
instructions which describe the appearance of parts of a graphics picture, such
as color and size.

CLUT
Color Look-up Table. This table converts the four-bit pixel data, representing a
color for each pixel, into intensity values of red, blue, and green.

DMA
Direct Memory Access. DMA operations are initiated by the host processor.
They transfer data directly from the host memory to the VSV21 memory across
the Q-bus.

display list
The list of instructions that describes the items that make up a picture. AVIVID
display list is made up of segments. A VSV11 display list is made up of
primitives.

display priority
The pixel memory is updated only when the screen is blank during the frame fly-
back period. This eliminates fiicker but reduces performance.

download
Copy code from the host system, where it is stored, across the paraltel interface
to the V5V21 module.

drawing priority
The pixel memory is updated whenever data is ready. This is the fastest method
of displaying pictures. It may cause the screen to flicker each time an updale is
made.

emulation
The VSV21 can operate in one of three ways: VSV11 emulation, VIVID
interpreter or replaced VT220 emulation. The interpreter or emulator software
must first be downloaded from the host.

263

264 GLOSSARY

host system
The processor to which the VSV21 is attached through its Q-22 bus. Some
components of the system software for the VSV21 run under control of the host
operating system.

on-board software
This consists of downloaded software (including the VIVID interpreter, VSV 11
emulator and pointing device drivers), and resident software (including the
VSV21 driver, kernel and self-test and VT220 emulator),

pixel
A single point on the screen; the smallest location that can be addressed
separately.

primitive
The fundamental VSV11 graphics instruction, for example, draw a line, or write
some text.

programmed /0
The mechanism by which the host sends commands to and receives status
returns from the VSV21, through address-mapped registers on the Q-22 bus.

QIO request
A form of input/output request which uses system service routines in the
operating system executive to queue requests to the device driver.

segment
Partof a VIVID display list. A segment can contain either VIVID instructions, font
data, pixel data, keyboard data, report information or attribute data.

transformation
The mapping of a picture from the application’s coordinate system onto the
coordinates of the display surface (the video monitor screen).

VCP
V8V21 Control Program. A utifity program to configure and conirol the VSV21
device.

VIVID
V8V21 Instructions for Visual Display. This is the VSV21 instruction set which is
used in display lists.

VSL
VIVID Subroutine Library, This is a library of functions and subroutines which
can be used to control and execute segments and handle replies from VIVID.

VSV11 emuiation
The VSV21 emulates a minimum-configuration single-channel VSV11 graphics
device.

GLOSSARY 265

VT220 emulation
The V8V21 emulates a VT220 terminal with a limited set of features.

word
A word is 16 bits {two bytes) of memory. This is the unit of memory normally
accessed in one operation by the on-board 68000 microprocessor.

A
ACCEPT KEYBOARD INPUT
instruction, 156
Arcs
circular, 108
absolute drawing, 108
refative drawing, 110
elliptical, 111
absolutedrawing, 114
relativedrawing, 114
error areas
circulararcs, 109
ellipticalarcs, 113
ARCS_ ABSinstruction, 108
ARCS_ RELinstruction, 110
Area Operation instructions, 26,135
AREA_TEXTURE instruction, 100
Aspectratio
ellipse, 116
ellipticarcs, 112
screen, 19
AST (Asynchronous System Trap), 29
keyboard inputfor, 158
Attach VSV21 Device (QIO function)
VIVID, 40
VSV 11 emulation, 180
Attributes
global, instructionfar, 22,23
saved
storage in VSV21 memory, 34
operationson, B80-82
mask values, 257
AUTOSWITCH instruction, 154

B
BACKGROUND__COLORinstruction, 95
Baud rates, setting hostline, 227
BCLUT {Blink Color Look-up Table), 221
BLINK__COLORS instruction, 97
BLINK _COUNT instruction, 98
BLINK__TIMING instruction, 94

INDEX

C

CALL SEGMENT instruction, 79
Cancell/Orequests, 195
Cell, font (See Font cell)
CELL MAGNIFICATION instruction, 130
CELL MOVEMENT instruction, 131
CELL OBLIQUE instruction, 128
CELL ROTATION instruction, 129
CELL SiZEinstruction, 129
Character set (See Font)
CIRCLE instruction, 117
Circular arcs (See Arcs, circutar)
CLEAR SCREEN instruction, 135
CLEAR VIEWPORT instruction, 136
CLUT (Color Look-up Table), 218
Color

blinking, 221

look-up table {See CLUT)

setting background, 95

setting foreground, 95

VT220 emulation, 225
Compatibility, VIVID and VSV11, 1
Configuring VSV21 device, 203
Connectto Auxiliary Memory (QIO
function), 194
Connectand Display (QIO function), 180
Continue the Display (QIO function), 194
Control instructions, 17,75
COPY__ABSinstruction, 142
COPY__RELinstruction, 143
Copying method, 144
CREATE__SEGMENT instruction, 84
Cursor

characteristics, 27,72,179

defining acursor, 259

move to cursor position, 104

position report packet, 163

positioning, 150

setting style, 149

visibility, 151
CURSOR__POSITION report packet, 163
CURSOR__STYLEinstruction, 149
CURSOR__ VISIBILITY instruction, 151

267

268 INDEX

D
DCL (Digital Command Language), 2
Define Reporting Segment (QIO function), 46
Define Segment (QIC function), 42
Delete Segment (QIO function), 44
Detach V5V21 (Q1O function)
VIVID, 41
VSV11 emulation, 191
Digitizing tablet, 10
See also Drivers
Display area, 31
Allocate (QIC function), 41
Release (QIC function), 42
DISPLAY_END REPEAT instruction, 86
Display lists, 2
VIVID, 3
example, 238
executing, 45,46
segments, 31
VSLsubroutines, 62,63
VSV11 emulation
executing, 186
primitives, 183
Display parameters, settingup, 214
DISPLAY__REPEAT instruction, 86
DISPLAY__ WAIT instruction, 83
DMA (Direct Memory Access), 8,13
DOT instruction, 118
Downloading software
segments, 211
system software, 6,211,237
DRAW CHARS instruction, 132
DRAW PACKED CHARS instruction, 133
Drawing functions (VSL), 70
Drawing instructions, 23,103
DRAWING MAGNIFICAT!ON instruction, 87
DRAWING MODE instruction, 99
DRAWING POSITIONreport packet, 163
DRAWING TRANSFORMinstruction, 88
DRAWING TRANSLATION instruction, 88
DRAWING VASinstruction, B89
Drivers
downloading, 211
pointing device, 10
VSv21i, 8
DUMP__ ATTRIBUTES instruction, 81

E

Eliipse, 116

See also Arcs, elliptical
ELLIPSE ARCS ABSinstruction, 111
ELLIPSE ARCS RELinstruction, 114
ELLIPSE instruction, 116
Emulation

downloading emulation code, 211

VSVt 1,5

V1220, 2,9,10
End Display Processing (VSL function), 55
End Segment (VSL function), 67
Examples

VIVID program, 238

VSV11 emulation program, 255
Execute Segment (VSL function), 62

F
Fdkey, 158,159
FAST PIXEL_MODIFY instruction, 139
FAST PIXEL WRITE instruction, 138
Filled Figure instructions, 24, 121
FILLED RECT_ABSinstruction, 121
FILLED RECT__RELinstruction, 122
FLOOD _AREAinstruction, 122

Font
cell, 36
defaultlD, b5

definition of default, 35,249

downloading, 214

initialize instruction, 126

multinational, setting, 127

segment, 36

instructionto set, 127
FOREGROUND__COLORinstruction, 95
FORTRAN Draw library, 177
FORTRANprogram example, 255
FREE__SPACErepott packet, 167

G
Get Keyboard Input (VSL function}, 65
Get Report (VSLfunction), 64
Get Segment Block {VSL function), 66
Get Status (VSL function), 64
GetVIVID Version Number (VSL function), 57
Giobal Attribute instructions, 22,93
GLOBAL _ATTRIBUTES reportpacket, 165
GLUNS function example, 246
Graphics display, settingup, 218

H
Hostdevice, settingup, 229
Host line characteristics, setting up,
HOST SEGMENTS report packet,
Host serial connection, 226

226
168

i
/0, 4
{See also QIO functions, VSL)
error codes
VIVID, 5t
VSV1t emulation, 201
Initialize Display Processing (VSL function), 55
INITIALIZE . FONT instruction, 126
INITIALIZE instruction, 79
Interactive Operation functions (VSL), 72
Interactive Operation instructions, 27,149
interface, seriaito host, 226

J
Joystick, 10
driver (See drivers, pointing device)
JUMP__RELATIVE instruction, 85

K
-Keysound, 231
Keyboard characteristics, 230
KEYBOARD__INPUT report packet,
Kemel, 9
downloading,

173
211,237

L

Libraries (See FORTRAN Draw Library, VSL)
LINE TEXTURE instruction, 100
LINES ABSinstruction, 105
LINES RELinstruction, 105
LOAD__CHAR__ CELL instruction,
LOAD command (VCP), 213
Load Segment (QIO function), 43
Load Segment (VSL function)

fromfile, 59

fromhost, 60
Loading softwareto VSV21, 211

127

INDEX

i
Mailbox, reporisto, 29
Mask
attribute, 257
reporting, 46
MATCH DISABLE instruction, 156
MATCH ENABLE instruction, 155
MATCH INTERRUPT report packet,
MAXIMUM __MATCHES report packet,
MCR commandianguage, 2
Memaory
host, 4,33
VSVet on-board,
Monitor
resolution, 125,130
setting characteristics,
MOVE__ABSinstruction, 103
MOVE REL instruction, 104
MOVE__TO_CURSOR instruction,
MSiperipheral driver, 211
Multinationalmode, 231

172
175

33,212

223

104

N
NO OPERATIONInstruction, 84
NORMAL__ COLORSinstruction, 96

P

PAINT__AREA instruction,
Parity, hostline, 228
Penny and Giles peripheral driver, 211
Peripheral device characteristics, 228
PIXEL READBACK instruction, 137
PIXEL WRITE instruction, 137
Pointing device

characteristics, setting, 233

drivers (See Drivers, pointing device)

sensitivity, 233
POLYMARKS__ ABSinstruction,
POLYMARKS_ _REL instruction,
POSITION__ CURSOR instruction,
Primitive, VSV11 graphics, 183

123

106
107
150

269

270 INDEX

Q R
QIO tunctions Read Data (QIO function)
VIVID VIVID, 48
errorcodes, 51 VS8V11 emulation, 196, 200
10.ADA, 41 Read Joystick {QO function), 195
I0.ATT, 40 Read Status (QIO function}, 199
exampte, 246 RECOVER _ATTRIBUTES instruction, 81
I0.DET, 41 RECTANGLE ABSinstruction, 115
I0.DFS, 42 RECTANGLE RELinstruction, 116
IO.DRP, 46 Release Dispiay Area (QIO function), 42
10.DSG, 44 Release VSV21 Device (VSL function) 57
I0.LSG, 43 Reporthandling, 28, 161
I0.RDA, 42 Report Handling functions (VSL), 64
IC.REX, 46 Report packets
I0.SSE, 45 CELL PARAMETERS, 164
I0.5TP, 45 SCREEN__ FORMAT, 167
I0$ ALLOCATE, 41 SEGMENT _TRACE, 169
I0$ STARTSEG, 45 TRANSFORMATION, 166
I0$ CONTINUE, 46 VIVID __ERROR, 171
I0$ DEFREP, 46 VIVID _INTERRUPT, 174
I0$ DEFSEG, 42 VIVID__VERSION, 169
I0$ DELSEG, 44 VIVID _WARNING, 170
I0$ LOADSEG, 43 VS8V21 SEGMENTS, 168
I0$ READDATA, 48 Reports
I0$ RELEASE, 2 handling, (See Report handiing)
RSX and MicrovMS, 4,40 reporting segments, 15,37
statusreplies, 49 See also Report packets, Report Handling
V5SV11 emuiation functions (V5SL)
errorcodes, 201 REQUEST _REPORT instruction, 161
I0.AUX, 194 RESTORE__ATTRIBUTES instruction, 80
IO.CNT, 194 Restore Segments from Disk (VSL function},
I0.CON, 191 Resume Execution {QIO function)
IO.KIL, 195 VIVID, 46
I0.RED, 196 VSV11 emulation, 198
|0.RJS, 195 Resume Segment Execution (VSL function),
IO.WRT, 196 RUBBER__BANDinstruction, 152
0% READSTATUS, 199
I0$ RESUME, 198 s
0% START, 197 SAVE ATTRIBUTES nstruction, 80
0% STOP, 198 Save Segments on Disk (VSLfunction), 57
I0$__TOUT, 198 Scan, direction of pixel, 144
IS$_ WAITSWITCH, 199 SCREEN__BLANKinstruction, 94
0% WRITEDATA, 200 SCREEN BLINKinstruction, 93
MicrovMS, 196 SCREEN__ DIMENSIONS instruction, 89
RSX, 180 Screendisplay, 21

status replies, 201 SCROLL__ VIEWPORT instruction, 136

Segment, 15,31
create, 42
delete, 34

downloading, 214
identification, 32
passiotask, 31
storage
inhostmemory, 33
inVSV21memory, 33
types
aftributes, 38
instruction, 35
font, 36
keyboard, 37
pixel, 36
report, 37
SEGMENT RETURN instruction, 85
SELECTIVE CLEARIinstruction, 141
Serial port characteristics, 228
Set Drawing Mode (VSL function), 67
SET FONT instruction, 127
SetInstruction Parameter Mode (VSL
function), 67
Set Timeout Period (QIC function), 198
SET _VIEWPORT instruction, 91
SET__ WINDOW instruction, 92
Shift counts, pointing device, 234
Splitscreen, 225
Stack, attribute, 80
START ATTRIBUTES DATAinstruction, 82
Start Dispiay (QIO function), 187
Start Execution {QlC function), 45
START__FONT instruction, 75
START INSTRUCTION__LIST instruction, 75
START _KEYBOARD__DATAinstruction, 77
START KEYBOARD__INPUT instruction, 158
START PIXEL__ DATAinstruction, 76
START _REPCRT DATAinstruction, 78
STOP__DISPLAY instruction, 84
Stop Display (QIO function), 198
Stop Execution {QIOC function), 45
STOP_KEYBOARD INPUTinstruction, 159
SWITCH__INTERRUPTSreportpacket, 173
SWITCH REPORT DISABLE
instruction, 153
SWITCH _REPORT__ENABLE
instruction, 153

INDEX 271

SWITCH REPORT reportpacket, 173
System software, 1

components, 6

downloading, 211

host-resident, 7

on-board, 9

T
Terminalbell 231
Terminal emulation (See VT220 emulation)
Text functions (VSL), 71
Textinstructions, 25,125
Texture

area, 100

line, 100
Trackball, 4,10
downloading driver, 211
Transformationfunctions, 69
Transformation method, 19
Transformation instructions, 19,87

v

VAS (VIVID Address Space), 19
VCP {(V5V21 Controt Programy,
commands

syntax, 210

types, 209

installing

fromuser program, 205

MicroVMS systems, 205

RSXsystems 204
Viewport, 19

(Seealso CLEAR__ VIEWPORT instruction,

SCROLL__ VIEWPORT instruction)
VIVID, 13

address space (See VAS)

display lists (See Display lists, VIVID)
instructions, 13

areaoperation, 135

control, 75

drawing, 103

filled figure, 121

global attribute, 93

interactive, 149

reporthandling, 161

text, 125

interpreter, 13

jpading, 211,237

8,203

272 INDEX

QIO functions, 15,39
subroutine library (See VSL.)
window, 19

VSL (VIVID Subroutine Library), 16,53

functions

VVBBGN, 66
VVBEND, 67
VVBMOD, &7
VVBPMD, &7
VVEEXE, 82
VVERES, 63
VVESTP, 63
VVMCPY, 59
VVMCRS, 61
VVMDEL, 61
VVMDID, 59
VVMGET, 58
VVMMLD, 60
VVMSAY, 57
VVRKBD, 65
VVRREP, 64
VVRSEG, 66
VVRSTA, 64
VVXASS, 56
VVXEND, 55
VVXINI, 55
VVXREL, 57
VVXVER, 57

general functions, 55
instruction generation functions,
reporting functions, 64
segmentbuilding functions, 66
segment execution subroutines,
segment manipulation functions,
VSV11emulation, 1,5
(See also Emulation, Display lists,
Libraries, QIO functions)
V5V21 Control Program (See VCP)
V5V21 Subroutine Library (See VSL)
VT220 emulation, 2,9
colors, 225
loading, 10
options, 224

68

62
57

W
Wait QIO (VS8V11), 199
WAIT SWITCH instruction, 154
Window, screen, 19
origin, 21
Window, VSL, 55
WINDOW__ORIGINinstruction, 90
Write Data (QIO function)

VIVID, 48
VSVi1
RSX, 196

MicroVvMS, 200

Z
ZOOM FACTOR instruction, 91

VS&V21 Version 2.0
Programmer’s Guide

READER'S COMMENTS AA-FV678-TC

Your comments and suggestions will help us in our efforts to improve the quality and usefulness of our
publications.

1. Which of the following most closely describes your job? 1 can cbas coo cdn cen
{(a) Administrative support {d) Scientist/Engineer {(g) Educator/Trainer cfs cg> chs cis
(b) Programmer/Analyst (e} Systems Manager {n) Computer Operator
(c) Software support {f) Sales (i} Other

2. How many years of experience do you have with computers? 2 cas cbo cco cdn ces

(a)Lessthan1 (b)1to3 ({c)d4to6 (d7to9 (&) 10 or more
3. What did you like most about this manual?

4. What did you like /easf about this manual?

5. How do you rate this manual?
indicate your opinion of the quality of the manual. For each aspect of quality, darken your response on the five-point scale,
where (1) = POOR and (5) = EXCELLENT

(8) ACCUFECY . iiiii ittt cin 2> 3> 4y ho
(B} Completengss. ... clo 23 ¢3> cdd cho
(c} Usefulness of Examples/Figures c1s 23 <3 cds <5
(d} Clearness of Language ... clo 2y ¢k cdn 5o
{e) Helpfulness of index/Table of Contents ... cls €25 3 cd> cho
(A Consistency in Presenting Informationt ... clo €25 3> cdz cho
(g) Logical Organization cls 2y 3> cday cho
(h) Visual Appeal.........ccoiiiiin cis 2> <3 cd> cho
(i) Reievance of Information...........cocovenn e €1z 23 3 cdn cho
{(j) Ease of Learning ... clz c2> <3 cd> 5o
(K) Ease of USE ..o clo 25 3 cd> b
() YOUR OVERALL IMPRESSION ..o clo 2> 3 <4y cho
{m) Quality Relative to Other Digital Manuals................... cty 2> 3 cds B
(n) Quality Relative to Other Companies’ Manuals.............. cly ¢2> c3 cdo cho

6. List any errors you found in the manual. (Reference page, table, or figure numbers.)

7. Do you have any additionat comments?

Name Company

Title Department

Street City State/Country Zip
Tetephone No. Date

Site Code: RE

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD, MA.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Educational Services/Quality Assurance
t2 Crosby Drive BUO/EOS

Bedford, MA 01730

FOLD HERE

i

No Postage
Necessary
if Mailed in the
United States

