PDP-11 Symbelic Debugger
ACROD-11 User's Guide

COrder Number: AA-HL43A-TK

February 1986

Revision/Update Information:

QOperating System and Version:

Scftware Version:

digital equipment corporation
maynard, massachusetts

This is a new manual.

See the Preface for detaiied informa-
tion

PDP-11 Symbolic Debugger Version
2.0

February 1986

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document,

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Copyright ©1986 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.5.A.

The postpaid READER'S COMMENTS form on the fast page of this doc-
ument requests the user’'s critical evaiuation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT

DECUS RSTS

DPECwriter RSX

o

ZK3224

This document was prepared using an in-house documentation production system,

Al page composition and make-up was performed by TgX, the typesetting system
developed by Donald E. Knuth at Stanford University. TgX is a registered trademark of
the American Mathematical Society.

Contents

PREFACE vii
CHAPTER 1 INCLUDING DEBUGGER SUPPORT 1-1
1.1 HOW TO INVOKE THE DEBUGGER FOR YOUR MACRO-11
TASK 1-1
111 Using the Overlaid Configuration 1-2
1.1.2 Using the Nonoverlaid Configuration 1-3
1.1.3 Invoking the Debugger with Instruction and Data Space
{I- and D-space) Support 1-4
1.1.4 Exiting the Debugger 1-5
1.2 FEATURES OF THE DEBUGGER 1-5
CHAPTER 2 CONTROLLING DEBUGGER INPUT AND GUTPUT 2-1
2.1 SETTING THE DEFAULT LANGUAGE 21
2.2 CHANGING THE DEFAULT OUTPUT 2-1
2.21 SET OUTPUT Command Parameters 2-2
222 The SHOW QUTPUT and CANCEL OUTPUT
Commands 2-2
2.3 USING LOG FILES 2-2
2.31 Log File Example 2-3
2.3.2 The SHOW LOG Command 2-3
2.4 USING INDIRECT COMMAND FILES 2-3

CHAPTER 3 DEFINING SYMBOLS 3-1
3.1 KINDS OF SYMBOLS 3-1
3.1.1 Permanent Symbols 3-1
3.1.2 Program Symbols 3-2
3.1.3 Defined Symbols 3-3
CHAPTER 4 CONTROLLING PROGRAN EXECUTION 4-1
41 THE EFFECTS OF BREAKPOINTS AND TRACEPOINTS 4-1
4.1.1 SET BREAK and SET TRACE Qualifiers 4.2
4.1.11 The /AFTER:n Qualifier 4-3
4.1.1.2 The fCALLS Qualifier @ 4-3
41.2 SET BREAK and SET TRACE Parameters 4-3
4.1.2.1 The Address Parameter © 4-4
4.1.2.2 The WHEN Parameter © 4-4
4.1.2.3 The DO Parameter © 4-4
4.1.3 Commands Related to SET BREAK and SET TRACE _ 4-4
CHAPTER 5 STARTING THE PROGRAM 5-1
5.1 EXECUTING A SPECIFIED NUMBER OF COMMANDS 5-1
5.1.1 STEP Commmand Qualifiers 5-2
51.2 STEP Command Parameter 5-2
5.2 CHANGING THE DEFAULT STEP CONDITIONS 5-2
5.2.1 SET STEP Command Parameters 5-3
522 The SHOW STEP and CANCEL STEP Commands ___ 5-3
5.3 EXECUTING AN UNDETERMINED NUMBER OF COMMANDS 5-3

CHAPTER 6 MANIPULATING DATA 6-1
6.1 DATA TYPES IN THE DEBUGGER 6-1
6.2 DEBUGGER MODES 6-2
6.3 DETERMINING THE VIRTUAL ADDRESS OF SYMBOLS 6-3
6.3.1 EVALUATE Command Qualifiers 6-3
6.3.2 EVALUATE Command Parameters 6-4
6.4 VALUE EXPRESSIONS 6-4
6.5 DISPLAYING MEMORY LOCATIONS 6-4
6.5.1 EXAMINE Command Qualifiers 6-5
6.5.2 EXAMINE Command Parameter 6-5
6.6 ALTERING MEMORY LOCATIONS 6-6
6.6.1 DEPOSIT Command Qualifiers 6-6
6.6.2 DEPOSIT Command Parameters 6-6
6.6.3 Depositing ASCH Strings 6-7
5.6.4 Depositing Radix—50 Strings 6-7
INDEX
TABLES
3-1 Debugger Permanent Symbols 31

Preface

intended Aadience

This manual is intended for MACRO-11 programmers who have read and
understood the PDP-11 Symbolic Debugger User’s Guide and know how to
use the host operating system.

Operating Systems and Versions

The PDP-11 Symbolic Debugger runs on the following operating systems
and versions:

VAX/VMS Version 4.0 or higher

VAX-11 RSX Version 2.0 or higher

RSX-11M Version 4.1 or higher

RSX-11M~-PLUS Version 2.1 or higher

Micro/RSX Version 1.1 or higher

RSTS/E Version 9.0 or higher

Micro/RSTS Version 2.0 or higher

P/OS Version 2.0 with Professional Host Tool Kit Version 2.0 or
higher

P/0S Version 2.0 with PRO/Tool Kit Version 2.0 or higher

Structure of This Document

This manual is organized as follows:

¢ Chapter 1 explains how to include support for the debugger in your
task and describes the commands you use to invoke the debugger. It
also lists the major debugger features.

e Chapter 2 explains how to configure the debugger’s default output,
make a record of a debugging session, and use a command file to
control the debugger.

¢ Chapter 3 describes the symbols the debugger recognizes and explains
how to define your own symbols. It also discusses strategies for
making symbols unique.

vii

¢ Chapter 4 explains how to set breakpoints and tracepoints in your
program.

¢ Chapter 5 describes two methods of executing your program in the
debugger.

* Chapter 6 discusses the data types the debugger recognizes, the
two modes of debugger operation, and a command that helps you
determine memory addresses and perform arithmetic. It also explains
how to examine and alter memory locations.

Associated Documents

viii

The following list describes the content of each manual in the PDP-11
Symbolic Debugger documentation set.

e PDP-11 Symbolic Debugger User’s Guide. This manual explains general
use of the debugger with all supported languages.

® PDP-11 Symbolic Debugger Installation Guide. This manual explains the
debugger installation procedure on all supported operating systems.

* PDP-11 Symbolic Debugger Quick Reference. The quick reference man-
ual lists the syntax of each debugger command and its qualifiers and
parameters.

© PDP-11 Symbolic Debugger Information for FORTRAN-77 Lsers. This
manual gives information of interest to debugger users who program
in FORTRAN-77.

® PDP-11 Symbolic Debugger Information for COBOL-81 Users. This
manual gives information of interest to debugger users who program
in COBOL-81.

NOTE

Where language-specific exceptions to the general case exist, the
information given in this manual, specific to MACRO-11 takes
precedence over general information presented elsewhere.

Cenventions Used in This Document

The following are conventions that are followed throughout this manual:

Convention

Meaning

UPPERCASE

lowercase

l
n

RSX-11

CTRL/a

RET

Uppercase words and letters used in examples indicate
that you type the word or letter exactly as shown.

Lowercase words and letters used in examples indicate
that you substitute a word or value of your choice.

Brackets in examples indicate optional elements,
A lowercase n indicates that you must substitute a value.

REX-11 is used as a generic term for the RSX-11M,
RSX-11M-PLUS, and Micro/RSX operating systems,

The symbol CTRL/a indicates that you hold down the
CTRL key while you simultaneously press the specified
letter key. For example, CTRL/Z indicates that you hold
down the CTRL key and press the letter Z.

The symbol indicates that you press the Return key.

Chapter 1

Including Debugger Support

The PDP-11 Symbolic Debugger helps you find logical and programming
errors in a successfully compiled program that does not run correctly.
When you are ready to use the debugger on a program, you must include
it in your task. This chapter explains how to include debugger support in
your task and describes the commands you issue to invoke the debugger.
It also explains how to exit from the debugger and summarizes the general
debugger features listed in the PDP-11 Symbolic Debugger User’s Guide.

1.1 How to Inveke the Debugger for Your MMACRO-11 Task

To invoke debugger support, you can use either an overlaid or nonoverlaid
debugger kernel in your task. An overlaid debugger kernel occupies less
than 4000 bytes of user program space and can be included in your task
by creating an overlay descriptor language (ODL) file that combines your
program with the debugger. You then assemble, task-build, and run your
program. You can use the overlaid debugger kernel unless your program
is overlaid and you are loading your overlay segments manually. In

this case you must include the nonoverlaid debugger kernel because the
overlaid kernel uses autoloading, and you cannot mix the two loading
methods in a single task. If you want to use the overlaid debugger kernel,
read Section 1.1.1.

A nonoverlaid debugger kernel occupies about 5000 bytes of user space
and can be included in your task by using certain switches when you
assemble, link, and run your program. If you want to use the nonoverlaid
kernel, refer to Section 1.1.2

Including Debugger Suppert 1-1

1.1.1

1-2

Using the Overiaid Configuration

To use the overlaid debugger kernel, you must create an ODL file. The
following example represents an ODL file that correctly includes the
overlaid debugger in a user task. The source program to which this ODL
file refers is called MYPROG.MAC.

.RODT USROT$, $DALL

USROT$: .FCTR MYPROG-$DROCT
@LB: [1,1]PDPDEG.ODL
.E¥D

As shown here, the ODL file you create for your task must include a
factor (FCTR) statement that concatenates your program with part of the
debugger kernel (fDROOT). This factor statement must be declared in
the ROOT statement as a co-tree with the rest of the debugger kernel
($DALL). Also, your ODL file must include PDPDBG.ODIL, which is the
debugger kernel ODL file, immediately before the END statement. Note
that you can specify the elements in the FCTR statement in any order and
that the kernel segment can be appended to an overlaid source program.
For more information on ODL files and overlay structures, see the task
builder manual for your operating system.

Once you create the ODL file, you assemble, link, and run your program
to invoke the debugger. When you assemble your program, you should
create a listing file and refer to it during the debugging session to follow
program flow and to reference source code line numbers. You must
also create a symbol table file for the debugger to have its full symbolic
capability. The following example shows the MCR commands that you
use to invoke the debugger.

FOR MCR USERS

> MAC myprog,myprog/-SP=nmyprog/EN:DBG
> TKB myprog,,myprog=myprog/MP
> RUN myprog

The task build (TKB) command in the preceding example contains two
commas between the file names on the left side of the equal sign because
one of the TKB command parameters (the .MAP file) has been omitted.

The following example shows the DCL command you use to invoke the
debugger:

Including Debugger Support

FOR DCL USERS

$ MACRG/LIST myprog/ENABLE:DEBUG
$ LINK/SYMBOL_TABLE myprog/OVERLAY_DESCRIPTION
$ RUN myprog

NOTE

RSTS and Micro/RSTS users must replace the RUN command
with the DEBUG command as follows:

$ DEBUG myprog

VMS users must insert MCR in front of MAC in the compile
command, and in front of TKB in the task build command, as
in the following examples:

$ MCR MAC myprog,myprog/-SP=myprog/EN:DBG
$ MCR TKB myprog,.nyprog=mnyprog/MP

t.1.2 Using the Noncverlaid Configuration

When you want to invoke the debugger with the nonoverlaid kernel,

you must assemble, link, and run your program. When you assemble
your program, you should create a listing file and refer to it during the
debugging session to follow program flow and to reference source code
line numbers. You must also create a symbol table file for the debugger to
have its full symbolic capability. The following are the MCR commands
you use to invoke the debugger.

FOR MCR USERS

> MAC myprog,myprog/-SP=nyprog/EN:DBG
> TKB myprog, ,myprog=myprog,LB:{1,1]PDPDBG/DA
> RUN myprog

The TKB command in the preceding example contains two commas
between the file names on the left side of the equal sign because one of
the TKB command parameters (the .MAP file) has been omitted.

The following are the DCL. commands you use to invoke the debuggenr:

FOR DCL USERS

$ MACRQ/LIST myprog/ENABLE:DEBUG
$ LINK/DEBUG=LE: [1,1]PDPDBG/SYMBOL myprog
$ RUN myprog

Including Debugger Support 1-3

NOTE

RSTS and Micro/RSTS users must replace the RUN command
with the DEBUG command as follows:

$ DEBUG myprog

Also, RSTS users should substitute LB: for LBi[1,1] in the
preceeding examples.

1.1.3 Invoking the Debugger with Instruction and Data Space (I- and D-space)
Support

The following operating systems provide instruction and data space
support:

¢ RSX-11M-PLUS Version 2.1 or higher

¢ RSTS/E Version 9.0 or higher

¢ Micro/RSX Version 3.0 or higher

* Micro/RSTS Version 2.0 or higher

With this feature, you may be able to run significantly larger programs
than is otherwise possible on a PDP-11.

To use the debugger with a task built in I- and D-space, take one of the
following actions:

° MCR users should add /ID to the TKB command on the output file
specification.

¢ DCL users should add /CODE:DATA_SPACE to the LINK command
on the output file specification.

For more information on building tasks in I- and D-space consult the RSX-
11M/M-~PLUS Task Builder Manual or the RSTS/E Task Builder Reference
Manual as appropriate.

1-4 Including Debugger Support

1.1.4 Exiting the Debugger
To leave the debugger, type the following command in response to the
debugger’s prompt:
DBG>EXIT

This command causes orderly termination of the debugger on all operating
systems,

1.2 Features of the Debugger

The PDP-11 Symbolic Debugger supports the following features:

® It is interactive.
¢ It is symbolic.
¢ It supports overlaid programs.

¢ It supports I- and D-Space programs on the operating systems on
which I- and D-Space is available.

¢ It gives online HELP,

Including Debugger Support 1-5

Chapter 2

Controlling Debugger Input and Output

This chapter explains how to set the default programming language to
MACRO-11 and describes what happens when this default is set. It also
explains how to configure aspects of the debugger input and output format
that are not specific to programming in MACRO-11.

2.1 Setting the Default Language

When you enter the debugger, an informational message is displayed,
indicating the programming language in which the debugger expects your
program to be written. If this message does not say UNKNOWN, issue
the following command:

DBG>SET LANGUAGE NONE

This command informs the debugger that your program is written in
MACRO-11. When the current language is UNKNOWN, the debugger
expects input in word integer format and displays output in this format.

2.2 Changing the Default Output

By default, the debugger’s output configuration is NOLOG, TERMINAL,
NOVERIFY. You change the default output with the SET QUTPUT
command as follows:
SET OUTFUT parameter [,parameter [,parameter]]
[N01LOG

[NO] TERMINAL
[NOIVERIFY

Controlling Debugger fnput and Qutput 2-1

2.2.1

SET QUTPUT Command Parameters

The parameters you use with the SET OUTPUT command configure
the debugger’s output. The [NOJLOG parameter determines whether

or not a record of the debugging session is written in a log file. The
[NO]TERMINAL parameter determines whether or not the debugger’s
output shows on your terminal. The [NOJVERIFY parameter determines
if commands in an indirect command file are displayed on your terminal
and/or recorded in your log file before they are executed.

2.2.2 The SHOW OUTPUT and CANCEL OUTPUT Commands

The SHOW OUTPUT command causes a message describing the debug-
ger’s current output configuration to be displayed. However, if the output
is set to NOTERMINAL, no message is displayed at your terminal by the
SHOW OQUTPUT command,

The CANCEL OUTPUT command returns the output configuration to the
default of NOLOG, TERMINAL, NOVERIFY.

2.3 Using Loy Files

2-2

When you issue the SET OUTPUT LOG command, the debugger begins
recording information in a log file called DEBUG.LOG. If you want the
debugger to write log information to another file, issue the command:

SET LOG filespec

This command causes the debugger to write information in the file named
by filespec.

Controlling Debugger Input and Output

2.3.1 Leog File Example

The following is an example of a log file.

SHOW OUTPUT

!/DEBUG-I-QUTPUT: noverify, terminal, logging to "SY:[33,52IMYPROG.LOG;1"
SET LANGUAGE NONE

SHOW LANGUAGE

'%DEBUG-I-NOCURRLANG, Current language is UNKNOWN

SET LOG RECORD

This log file is closed when the command SET LOG RECORD is issued.
The commands and responses that follow this command are written to a
new log file called RECORD.LOG.

2.3.2 The SHOW LOG Command

You can display the name of the log file the debugger is currently using
by issuing the SHOW LOG command, If the output is set to NOLOG, the
debugger displays a message informing you that it is not writing records
to the current log file.

2.4 Using Indirect Command Files

Indirect command files are files that contain a series of debugger com-
mands. Any valid debugger command can be included in an indirect
command file, but none of them are checked for valid syntax before they
are executed. Instead, the debugger issues an error message when it en-
counters commands with invalid syntax and continues execution with the
next line in the command file. You can include comments in your indirect
command file if you preface them with an exclamation mark (!).

You execute an indirect command file as follows:
Qfilespec

You can invoke an indirect command file in response to the debugger
prompt (DBG>>) or in another indirect command file. The default file
extension for indirect command files is CMD,

Controfling Debugger Input and Gutput 2-3

Chapter 3

Defining Symbols

The PDP--11 Symbolic Debugger allows you to refer to memory locations
and program data symbolically. This chapter explains the symbols the
debugger recognizes and how to define symbols.

3.1 Kinds of Symbols

You use symbols to refer to memory locations without having to specify
the virtual address of the location. The symbols that the debugger recog-
nizes can be divided into three categories: permanent symbols, program
symbols, and defined symbols.

3.1.1 Permanent Symbols

You can refer to the debugger’s permanent symbols at any time during
a debugging session. Table 3-1 lists these symbols and tells what they

represent.

Table 3-1:

Debugger Permanent Symbols

Symbel

Meaning

%R0 - %R5
%R6 or %SP
%R7 or %PC
%F0 - %F5

General purpose registers
Stack peinter
Program counter

Floating-point registers

Defining Symbsls 3-1

Table 3—1 (Cont.): Debugger Permanent Symbols

Symbeol Meaning

%PS Processor status word

%FS Floating-point status word

Y%NAME Program symbol name follows
B M

%SEGMENT Overlay segment name follows

\ Current value

Current location
RET Logical successor

Logical predecessor

The %NAME debugger permanent symbol allows you to refer to symbols
in your program that contain periods. For example, to refer to the A.OR.B
program symbol you specify the following:

%HAME 'A.OR.B'
Note that the program symbol must be enclosed in single quotation marks.

See the PDP-11 Symbolic Debugger User’s Guide for more information on
the other debugger permanent symbols.

3.1.2 Pregram Symbels

When debugging a MACRO-11 program, you can refer to global symbols.
However, all the records required for the debugger to resolve references
to local symbols, such as 10%, are not generated. Therefore, references to
local symbols may generate unexpected results.

3-2 Defining Symbols

3.1.3 Defined Symbols

During a debugging session, you can create a new debugger symbol

or change an existing symbol by using the DEFINE command. These
symbols remain in effect until you terminate the debugging session. The
DEFINE command has the following format:

DEFINE symbol-address

The symbol parameter specifies what name you want to use to refer to
program data or program addresses. A debugger symbol name must:

¢ Be composed of only alphanumeric characters (the letters A to Z and
the numbers 0 through 9) and dollar signs ($)

* Be no more than 6 characters long
¢ Not begin with a number
The address parameter identifies the portion of memory to which the

symbol refers, It can be either a previously defined symbolic address or a
virtual address denoted by a simple address or address expression.

Dsfining Symbols 3-3

Chapter 4
Controlling Program Execution

Controlling program execution is an important aspect of debugging. To
do this effectively, you must know what code is executing and how your
program transfers control from one part of your program to another. This
chapter explains the commands that control program execution.

4.1 The Effects of Breakpoints and Tracepoints

Once you decide where the important points in your program are, you are
ready to set either breakpoints or tracepoints. This section describes the
effects of these eventpoints so you can decide which program controller to
use at a specific important program event.

A breakpoint is a program location where the debugger does the
following:

1.

Suspends program execution immediately before the instruction at the
specified location is executed.

Tests the value expression in the WHEN clause if one was specified in
the SET BREAK command (see Section 4.1.2.2). If this value expression
is false, program execution continues. However, if the value expression
Is true, activation of the breakpoint continues as described in Step 3.

Displays the name or the virtual memory location where execution has
been suspended.

. Executes commands in a DO sequence if one was specified in the SET

BREAK command (see Section 4.1.2.3),
Issues its prompt.

Controlling Program Execution 4-1

When a tracepoint is activated, the debugger does the following;

1.

5.

Suspends execution immediately before the instruction at the specified
location is executed.

Tests the value expression in the WHEN clause if one was specified in
the SET TRACE command (see Section 4.1.2.2). If this value expression
is false, program execution continues. However, if the value expression
is true, activation of the tracepoint continues as described in Step 3.

Reports that execution has reached the traced location.

Executes commands in a DO sequence if one was specified in the SET
TRACE command (see Section 4.1.2.3).

Resumes execution at the current program counter.

These eventpoints remain in effect until the debugging session ends or
until they are canceled or replaced.

To set a breakpoint, issue the SET BREAK command in the following
format:

SET BREAK [/qualifier] [address] [WHEN(value-expr)] [DO{action)]

/AFTER:n
/CALLS

To set a tracepoint, issue the SET TRACE command in the following
format:

BET TRACE [/qualifier] [addrese] {WHEN (value_expr)] [DO{action)]

/AFTER:n
/CALLS

4.1.1 SET BREAK and SET TRACE Qualifiers

This section explains the qualifiers you can use with both the SET BREAK
and the SET TRACE commands. The qualifiers have the same effect on
both commands.

4-2 Controlfing Program Executien

4.1.1.1

The /AFTER:n Qualifier

If you specify the /AFTER:n qualifier, the debugger takes action at the nth
activation of the specified location. It then takes action at each succeeding
activation of the location. For example, if you specify a value of 3 for n,
the breakpoint or tracepoint is activated when the debugger encounters
the location more than two times, that is, on the third encounter, fourth
encounter, and so on. The highest valid value of n is 255.

The /AFTER:0 qualifier has the same effect as /AFTER:1, which activates
the breakpoint or tracepoint the first time the debugger encounters a
location. However, the /AFTER:0 qualifier cancels the program controller
once it has been activated. Therefore, /AFTER:0 allows you to set a
program controller that you want to use only on the first encounter of a
program location.

4.1.1.2 The /CALLS Qualifier

The /CALLS qualifier sets a breakpoint or tracepoint in two places for all
commands that transfer control to a routine;
* After the calling instruction, but before the first instruction in a routine

® After the last instruction in a routine, but before the first instruction
following a routine call

In other words, if you use the /CALLS qualifier to set a program con-
troller, it is set at all JSR and RTS instructions, including those for system

routines.

If you specify /CALLS, you cannot specify any other qualifier in the
command.

4.1.2

SET BREAK and SET TRACE Parameters

This section explains the command parameters you use with SET BREAK
and SET TRACE. The effect of the parameters is the same for both
commands.

Controlling Program Execution 4-3

4.1.2.1 The Address Parameter

The address parameter specifies the instruction address where you want
a program controller set. It may be in the form of a simple address or an
address expression. If you do not specify the /CALLS qualifier, you must
specify this parameter.

4.1.2.2 The WHEN Parameter

The WHEN parameter allows you to control whether or not a program
controller is activated based on a condition specified by the value-expr
parameter.

4.1.2.3 The DO Parameter

The DO parameter causes the debugger to execute one or more debugger
commands when a breakpoint or tracepoint is activated. The action

may be a single command, a list of commands separated by semicolons,
or an indirect command procedure. The debugger executes DO action
commands in the order in which they appear, but it does not check the
syntax of these commands before they are executed. The number of levels
to which you can nest DO action commands is limited only by the amount
of dynamic storage currently available.

4.1.3 Commands Related to SET BREAK and SET TRACE

Four commands (SHOW BREAK, CANCEL BREAK, DISABLE BREAK, and
ENABLE BREAK) are related to the SET BREAK command. Four other
commands (SHOW TRACE, CANCEL TRACE, DISABLE TRACE, and
ENABLE TRACE) are related to the SET TRACE command. This section
describes the use of these commands.

To see what program controllers are in effect, issue either the SHOW
BREAK or the SHOW TRACE command. The debugger responds to these
commands with a message for either each breakpoint or each tracepoint
that is set.

Once set, a program controller remains active for the duration of the
debugging session unless you use the CANCEL BREAK or CANCEL
TRACE command to cancel it or set another breakpoint or tracepoint at
that program location. If you set a program controller in a location where
one already exists, the second program controller set replaces the one set
first.

4-4 Controfling Program Execution

The format of the CANCEL BREAK command is:

CANCEL BREAK[/qualifier] [address]
/ALL
/CALLS

The format of the CANCEL TRACE command is:

CANCEL TRACE[/qualifier][address}
/ALL
/CALLS

The /ALL qualifier cancels either all breakpoints or all tracepoints cur-
rently set in a program. The /CALLS qualifier cancels either all the
breakpoints or all the tracepoints at JSR and RTS instructions.

To prevent breakpoints and tracepoints from being activated, issue either
the DISABLE BREAK or the DISABLE TRACE command. DISABLE
commands do not cancel program controllers, they prevent the activation
of program controllers until you enable them.

To enable program controllers, use the ENABLE BREAK or the ENABLE
TRACE command. You do not have to respecify breakpoints or tracepoints
when you use these commands,

Controlling Program Execution 4-5

Chapter 5

Starting the Program

When you are ready to execute your MACRO-11 program, use either the
STEP command or the GO command. This chapter explains how to use
these commands.

5.1 Executing a Specified Number of Commands

To execute a specified number of commands in your program, use the
STEP command. The STEP command causes the debugger to execute a
single instruction or a group instructions.

When you issue a STEP command, the debugger continues executing your
program until one of the following occurs:

e A STEP sequence is complete,

¢ A breakpoint occurs.

& An error is detected in your program,

* Your program completes execution.

* You issue a control character command, such as CTRL/C.

A step sequence is considered complete only when the specified number
of instructions has been executed, regardless of intervening events.

The syntax of the STEP command is:
STEP[/qualifier] [step-count]

/INTO
/OVER

Starting the Program 5-1

E.1.1 STEP Commmand Qualifiers

The /INTO and /OVER qualifiers control how the debugger treats called
routines in your program. The /INTO qualifier specifies that the debugger
step through the called routine. The /OVER qualifier specifies that the
debugger stop stepping at a routine call, execute the called routine, and
resume stepping when control is returned to the calling routine. Lines in
called routines are not counted to satisfy a step-count when the /OVER
qualifier is in effect. Note that calied routines can be either a routine you
wrote or a system routine.

Using these qualifiers with the STEP command overrides the default step
conditions or step conditions specified by the SET STEP command,

5.1.2 STEP Command Parameter

The step-count parameter specifies the number of MACRO-11 instructions
you want the debugger to execute, Step-count must be given as a decimal
integer.

Note that only executable instructions, not comments or blank lines, are
counted to satisfy a step-count.

5.2 Changing the Defauit Step Conditions

If you issue the STEP command without qualifiers when you start up the
debugger, the debugger executes your program according to its default
step conditions. By default, the debugger counts only instructions in the
main routine to satisfy a step count.

Use the SET STEP command to change the default debugger step con-
ditions. Once you change these conditions, the debugger executes the
STEP command according to the conditions you set if you issue it without
qualifiers.

The format of the SET STEP command follows:
SET STEP parameter

INTD
OVER

5-2 Starting the Program

5.2.1 SET STEP Command Parameters

The INTO parameter specifies that the debugger step through called
routines. The OVER parameter specifies that the debugger stop stepping
at a routine call, execute the called routine, and resume stepping when
control is returned to the calling routine.

5.2.2 The SHOW STEP and CANCEL STEP Commands

To display the current step conditions, issue the command:
SHOW STEP
To restore step conditions to the debugger’s default, issue the command:

CANCEL STEP

5.3 Executing an Undetermined Numher of Commands

If you want to execute an undetermined number of commands in your
program, use the GO command. The GO command instructs the debugger
to execute your program until one of the following occurs:

¢ Your program terminates,

¢ A breakpoint is encountered.

* A pending STEP sequence is completed.

¢ An error is detected in your program.

¢ You issue a control character command, such as CTRL/C.

When you issue the GO command at debugger start-up, your program
begins to execute as if you had built it without debugger support.

The GO command has the following syntax;
G0 faddress]

The address parameter allows you to specify an address at which to
start program execution. It can be any legal simple address or address
expression.

Starting the Program 5-3

Chapter 6

Manipulating Data

This chapter describes how to manipulate and alter data in your program
using the EVALUATE, EXAMINE, and DEPOSIT commands. It also
includes information on the concepts you must understand before using
these commands.

6.1 Data Types in the Dehugger

The debugger associates data types with literals, program symbols, and
memory addresses.

The data type of a literal depends on the format of the literal. The
following list of the literal data types that the debugger supports explains
how these data types are associated with literals.

¢ The data type integer is associated with literals that do not contain a
decimal point.

* Literals that contain decimal points are associated with the data type
floating point or double-precision floating point (D_.FLOAT).

* The quoted string data type is associated with strings that are enclosed
in quotation marks.

The data types of program symbols and memory addresses are word
integer by default. You can change the data type the debugger uses to
interpret memory addresses with the SET TYPE command. This command
has the following format:

SET TYPE datatype

ASCII[:n]
BYTE

Maniputating Data 6-1

D_FLOAT
FLOAT

LONG
INSTRUCTION
RADEO

WORD

The datatype parameter determines what data type the debugger uses as

the default data type. All memory addresses are interpreted as being that
data type until another SET TYPE command is issued. You can override

the default data type by specifying a data type qualifier on the EXAMINE
and DEPOSIT command lines. (The EXAMINE and DEPOSIT commands
are explained later in this chapter.)

To determine the data type in effect, you can issue the SHOW TYPE
command. This command causes the debugger to display an informational
message that tells you the currently active data type.

6.2 Debugger Modes

The PDP-11 Symbolic Debugger supports radix modes and symbol
modes. These modes work together to contro] the form in which the
debugger interprets and displays information. The default debugger
modes for MACRO-11 are a decimal radix mode and a symbolic symbol
mode. When these modes are in effect, the debugger interprets and
displays numbers as decimals. It also displays the symbol that refers to a
memory address, instead of the address itself.

If you do not want to use these default modes, specify the mode you
want to use by issuing the SET MODE command or by specifying a
mode qualifier with the EXAMINE, EVALUATE, or DEPQOSIT commands
explained later in this chapter. The SET MODE command has the format:

SET MODE mode [,mode]
BINARY
DECIMAL
HEXADECIMAL
0CTAL
[¥D] SYMBOL

The radix mode parameters (BINARY, DECIMAL, HEXADECIMAL, and
OCTAL) determine how integers in addresses and value expressions are
interpreted and displayed. For example, the address 1010 can refer to four
different locations, depending on which radix mode is in effect when a
command containing that address is issued.

6-2 Manipulating Data

The [NO]SYMBOL parameter determines whether symbols, such as

variable names in your program, are displayed symbolically or by their
numeric equivalents. It also determines how the processor status word
(%PS) and floating-point status word (%FS) are displayed. The default
is SYMBOL. Note that [NO]SYMBOL only affects the debugger display
because you can always enter data in either symbolic or numeric form.

To cancel modes established by the SET MODE command, issue the
following command:

DBEG>GANCEL MODE
This command returns the mode settings to their defaults.
To have the current modes displayed, issue the following command:

DBG>BHOW MODE

6.3 Determining the Virtual Address of Symbols

Before you examine and modify memory, you should know how to
determine what virtual addresses are associated with your program
symbols. You can determine this association using the EVALUATE
command. By adding or subtracting an offset you also can determine the
addresses of higher and lower memory locations. This command has the
following format:

EVALUATE[/qualifier] expression
/ADDRESS address
/BINARY value expreseion
/DECIMAL
/HEXADECIMAL
/OCTAL

6.3.1

EVALUATE Command Qualifiers

If you issue the EVALUATE command with a simple address {one without
operators) and without the /ADDRESS qualifier, the debugger displays
the contents of the specified memory location.

The /BINARY, /DECIMAL, /OCTAL, and /HEXADECIMAL qualifiers
are radix modes. If you specify a radix mode qualifier, integers in the
expression parameter are interpreted in the specified radix and values are
displayed in that radix.

Manipulating Data 6-3

6.3.2 EVALUATE Command Parameters

The expression parameter can be either an address expression or a value
expression. If you want the debugger to determine the value of the
expression using the address of the specified location, you must specify
the /ADDRESS qualifier. If you do not use the /ADDRESS qualifier, the
value of the expression is determined using the contents of the specified
location. Note that you can only evaluate an expression that contains
values that are resident.

6.4 Value Expressions

Value expressions can be specified with the EVALUATE and DEPOSIT
commands. If a value in the expression refers to a memory location, the
debugger performs the specified operations on the contents of the memory
location, as opposed to the address of the location. These values have the
data type associated with the memory location.

The following are legal operators and delimiters in value expressions listed
in order from highest to lowest precedence.

¢ Parentheses
¢ Unary minus
* Multiplication and division

¢ TPlus and minus

Quoted strings cannot be combined with debugger operators to form a
value expression.

6.5 Displaying Memory Locations

6-4

The EXAMINE command lets you look at the contents of a memory
location. You can display the contents of any virtual address or any
resident location described by a debugger permanent symbol, defined
symbol, or program symbol. It has the following format:

EXAMINE [/qualifier] addreas
/ASCII[:n]
/BYTE
/D_FLOAT
/FLOAT

Manipulating Data

/INSTRUCTION
JLONG

/RADEO

/WORD

/BINARY
/DECIMAL
/HEXADECIMAL
/OCTAL

/ [HO1SYMBOL

/D_SPACE
/I_SPACE

6.5.1 EXAMINE Command Qualifiers

You can use data type and mode qualifiers with the EXAMINE command.
These qualifiers control how the contents of the location you examine
are displayed and how the address you specify is interpreted. They
override the data type and mode specified with a SET TYPE or SET
MODE command.

If your system supports I- and D-space, you can use the /I_SPACE and
/D_SPACE qualifiers with the EXAMINE command when you know that
the item you are examining is stored in either the I-space (instruction
storage) or D-space (data storage) portion of memory. Using no qualifier,
or any qualifier except /INSTRUCTION or /I_SPACE, with EXAMINE
causes the debugger to examine a D-space address. For example, the
following command causes the debugger to examine line 4 of the program
code in D-space):

DBG>EXAMINE YLINE 4

To examine an I-space address, you must use /INSTRUCTION or /I
SPACE with the EXAMINE command. For more information on I-space
and D-space, see your operating system documentation.

6.5.2 EXAMINE Command Parameter

The address parameter specifies the location you want to display. It can
be a simple address or an address expression.

Manipulating Data 6-5

6.6 Altering Miemory Locations

The DEPOSIT command changes the value of a location, You can deposit
values into any resident program location. The DEPOSIT command has
the following format:

DEPGSIT [/qualifier] address=value expression[,value expreasion]
/ASCII[:n]
/BYTE
/D FLOAT
/FLOAT
/LONG
/RADSC
/WORD

/BINARY
/DECIMAL
/HEXADECIMAL
/OCTAL

/D_SPACE
/I_SPACE

6.6.1 DEPOSIT Command Qualifiers

You can use mode and data type qualifiers with the DEPOSIT command.
The mode qualifiers determine what radix mode the debugger uses to
interpret the expressions you specify. The data type qualifiers control how
the debugger interprets the value you specify.

MACRO-11 users who have I- and D-space support on their systems can
use the /I_SPACE and /D_SPACE qualifiers. You use these qualifiers
when you know that the item you are depositing should be stored in the
I-space portiont of memory or in the D-space portion of memory. The
default is the /D_SPACE qualifier. For more information on I-space and
D-space see your operating system documentation,

6.6.2 DEFOSIT Command Parameters

The address parameter specifies the location in memory to which you want
to deposit a value. The value expression parameter specifies the value you
want to deposit in the memory location. If you specify more than one
value expression, the debugger deposits the first value at the location
denoted by address expression and deposits subsequent value expressions
at locations denoted by logical successors to address expression.

6-6 Manipulating Data

6.6.3 Depositing ASCH Strings

To deposit an ASCII string, enclose the value expression in quotation
marks or apostrophes. When the debugger encounters a string enclosed
in quotation marks or apostrophes, it assumes that the string is of the
data type ASCIL. When the length of the string to be deposited is greater
than the length associated with the address, the string is truncated from
the right. However, when the length of the string is less than the length
associated with the address, the debugger inserts ASCII blanks to the right
of the last character in the string,

When you want to deposit an ASCII string at an address represented by
non-ASCII characters, you use the /ASCII qualifier. If the string you are
depositing is longer than two bytes, you must specify /ASCILn, where n
is the number of characters in the string; otherwise, the debugger deposits
only the first two bytes of your character string,

6.6.4 Depositing Radix-50 Strings

You must use the /RADS0 qualifier with the DEPOSIT command to de-
posit a value expression that is a Radix~50 string. This qualifier identifies
value expression as being of the data type Radix-50. The string must be
delimited by quotation marks or apostrophes. If the length of the quoted
string is not a multiple of three characters, it is padded on the right with
blanks. The default length of Radix-50 values is two bytes.

Manipufating Data 6-7

INDEX

A

ASCII string ® 6-7

Breakpoint
disablinge 4-5
duration of® 4-2, 4-4
effect of @ 4-1
enabling ® 4-5
setting ® 4-1

C

CANCEL BREAK command® 4-4
CANCEL. MODE command® 6-3
CANCEL OUTPUT command ® 2-2
CANCEL STEP command® 5-3
CANCEL TRACE command® 4-4
Command files

See Indirect command files
Currant focation ® 3-2
Current value © 3-2

Debugger
exiting® 1-4
invoking
MACRO~11 command® 1-1
QDL file® 1-2
with nonovertaid kernel ® 1-1, 1-3
with overlaid kernef® 1-1, 1-2
Debugger features
general ® 1-5
Default language
effect of ® 2-1
setting ® 2-1
DEFINE commiand ® 3-3
Defined symbois @ 3-2
DEPOSIT command € 6-5
qualifiers ® 6-6
DISABLE BREAK command ® 4-5
DO parameter ® 4-4
[-Space * 6-5, 6-6

ENABLE BREAK command® 4-5
EVALUATE command *6-3, 6-4
EXAMINE command ® 6-4, 6-5
EXIT command® 1-4

Data type
debugger® 6-1
debugger default® 6-1
MACRO-11%®6-1
with literals ® 6-1
with program symbols e 6-1

F

File
See Indirect command file
See Log fite
@filespec command ® 2-3
Floating-point status word ¢ 3-2

Index—1

G

GO command #5-3
effect of ® 5-3

Indirect command files ® 2-3
|-Space © 6-5, 6-6

L

Literals and data types ® 6-1
Log file® 2-2
default name ® 2-2
example® 2-3
Logical predecessor® 3-2
Logical successor € 3-2

Mode
definition of® 6-2
radix ® 6-2
symbol ¢ 6-2

0

QOperator, in value expressions ® 6-4

P

Permanent symbol ® 3-1
Processor status word ® 3-2
Program symbol® 3-1, 3-2, 6-1

RADGEO string, deposit of #8-7
Registers © 3-2

SET BREAK command ® 4-2, 4-3
SET LANGUAGE command & 2-1
SET LOG command @ 2-2
SET MODE command ® 6-2
SET QUTPUT command ® 2-1, 2-2
SET STEP command ® 5-2
SET TRACE command ®4-2, 4-3
SET TYPE command ® 6-1
SHOW BREAK command ® 4-4
SHOW MODE command ® 6-3
SHOW OUTPUT command @ 2-2
SHOW STEP command €5-3
SHOW TRACE command ® 4-4
SHOW TYPE command ® 6-2
STB file® 3-3
STEP command®5-1, -2
Step conditions

changing @ 5-2

defaulte b-2

disptaying © 5-3

restoring® 5-3
STEP sequence® 5-1
Symboi® 3-1

creating ® 3-3

defined® 3-2

in the debugger® 3-1

permanent ® 3-1

program © 3-2
Symbo! table ® 3-1

T

Tracepoint
duration of ®4-2, 4-4
effect of @ 4-2
setting ® 4-1
Type
See Data type

)

Value expressions ® 6-4

S

w

Segment, overlay of ® 3-2

2-Index

WHEN parameter ® 4-4

PDP-11 Symbolic Debugger
Macro—11 User's Guide
AA-HLA3A-TK

READER'S Note: This form is for document comments only.
DIGITAL will use comments submitted on this form at

COMMENTS the company’s discretion. If you require a written reply
and are eligible to receive one under Seftware Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well organized? Please make
suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

Assembly language programmer
Higher-level language programmer
Occasional programmer {experienced)
User with little programming experience
Student programmer
Other (please specify)

Uooocoo

Name Date

Organization

Street

City State Zip Code
or Country

No Postage
MNecessary
if Mailed in the
United States

dilgiltjal Il

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS,

POSTAGE WILL BE PAID BY ADDRESSEE

S55G PUBLICATIONS ZK1-3/J35
DiGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD

NASHUA, NEW HAMPSHIRE 03062-2698

HhaordBloeHaniihinldaddad b il

Cut Along Dotted Line

PDP-11 Symbolic Debugger
Macro—11 User's Guide
AA-HLA3A-TK

READER'S Note: This form is for document comments only.

DIGITAL will use comments submitted on this form at

COMMENTS the company's discretion. If you require a written reply
and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well organized? Piease make
suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

[l Assembly language programmer

U1 Higher-level language programmer

[0 Occasional programmer {experienced)
Ll User with little programming experience
[1 Student programmer
[l Other {please specify)

Name Date

Organization

Street

City State _____ Zip Code
or Country

No Postage
Mecessary
if Mailed in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROCK ROAD

NASHUA, NEW HAMPSHIRE 03062-2698

HandLllendlioddblihdnlda bl

Cut Along BPetted Line

