PDP-11 Symbolic Debugger
COBOL-81 User's Guide

Order Number: AA-FAB3A-TK

December 1985

Revision/Update information: This is a new manual.

Operating System and Version: See the Preface for detailed
information.

Software Version: PDP—11 Symbolic Debugger
Version 2.0

digital equipment corporation
maynard, massachusetts

First Printing, December 1985

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.,

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Copyright ©1985 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this doc-
ument requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DATATRIEVE Micro/RSTS RT

DEC Micro/RSX UNIBUS
DECmate PDP VAX

DECnet P/OS VAXcluster
BECUS Professional VYMS
DECwriter QBUS VT

FMS Rainbow Work Processor

S
MicroPDP-11 RS digitall

ZK2957

This docurmnent was prepared using an in-house documentation production system.

All page composition and make-up was performed by TeX. the typesetting system
developed by Donald E. Knuth st Stanford University. TgX is a registered trademark of
the American Mathematical Society,

Contents

PREFACE vil
CHAPTER 1 INCLUDING DEBUGGER SUPPORT 1-1
1.1 HOW TO INCLUDE THE DEBUGGER IN YOUR TASK 1-1
1.1.1 Using a Nonoverlaid Configuration 1-2
1.1.2 Replacing the Bundled Debugger 1-3
1.1.3 Using an Overlaid Configuration 1-5
114 Exiting the Debugger 1-6
1.2 FEATURES OF THE DEBUGGER 1-7
CHAPTER 2 CONTROLLING DEBUGGER INPUT AND OUTPUT 2-1
2.1 SETTING THE DEFAULT LANGUAGE 2-1
2.2 CHANGING THE DEFAULT OUTPUT 2-2
221 SET OUTPUT Command Parameiters 2-2
222 The SHOW OUTPUT and CANCEL OUTPUT
Commands 2-2
23 USING LOG FILES 2-2
2.3.1 Log File Example 2-3
2.3.2 The SHOW LOG Command 2-3
2.4 USING INDIRECT COMMAND FILES 2-3

CHAPTER 3 DEFINING SYMBOLS 3-1
3.1 KINDS OF SYMBOLS 3-1
311 Permanent Symbols 3-1
3.1.2 Program Symbols 3-2
3.1.3 Defined Symbols 3-3
3.2 MAKING SYMBOLS UNIQUE 3-3
3.3 ADJUSTING THE DEBUGGER’'S SCCPE 3-4
3.3.1 SET SCOPE Command Parameter 3-5
3.3.2 The SHOW SCOPE and CANCEL SCOPE Commands 3-5
CHAPTER 4 CONTROLLING PROGRAM EXECUTION 4-1
4.1 DISPLAYING INFORMATION ON ACTIVE ROUTINE CALLS 4-1
4.2 THE EFFECTS OF BREAKPOINTS AND TRACEPOINTS 4-2
421 SET BREAK and SET TRACE Command Qualifiers __ 4-3
4211 The /AFTER:n Qualifier 4-3
4.2.1.2 The /CALLS Qualifier ¢ 4-4
4.2.1.3 The /RETURN Qualifier ¢ 4-4
4.2.2 SET BREAK and SET TRACE Command Parameters _ 4-4
4.2.2.1 The Address Parameter ¢ 4-4
4222 The DO Parameter © 4-5
4.2.3 Commands Related to SET BREAK and SET TRACE 4-5

CHAPTER 5 STARTING THE PROGRAM 5-1
5.1 EXECUTING A SPECIFIED NUMBER OF COMMARNDS 5-1

5.1.1 STEP Command CQualifiers 5-2

5.1.2 STEP Command Parameter 5-2

5.2 CHANGING THE DEFAULT STEP CONDITIONS 5-3

h.2.1 SET STEP Command Parameters 5-3

.22 The SHOW STEP and CANCEL STEP Commands ___ 5-3

5.3 EXECUTING AN UNDETERMINED NUMBER OF COMMANDS 5-4
CHAPTER 6 MANIPULATING DATA 6-1
6.1 DATA TYPES IN THE DEBUGGER 6-1

6.2 DEBUGGER MODES 6-2

6.3 DETERMINING THE VIRTUAL ADDRESS OF SYMBOLS 6-3

6.3.1 EVALUATE Command Qualifiers 6-4

6.3.2 EVALUATE Command Parameters 6-4

6.4 VALUE EXPRESSIONS 6-4

6.5 DISPLAYING MEMORY LOCATIONS 6-5

6.6 REFERENCING VARIABLE NAMES CONTAINING HYPHENS 6-5

6.7 ALTERING MEMORY LOCATIONS 6-6

6.7.1 DEPOSIT Command Qualifiers and Parameters 6-6

6.7.2 Depositing ASCIHl Strings 6-7

vi

CHAPTER 7 COBOL-81 INTERACTIVE DEBUGGING EXAMPLE

7.1

7.2

THE COBOL-81 PROGRAM

THE SAMPLE DEBUGGING SESSION

7-1

7-1

7-3

INDEX

TABLES
31

Debugger Permanent Symboils

3-1

Preface

intended Audience

This manual is intended for COBOL-81 programmers who have read and
understand the PDP-11 Symbolic Debugger User’s Guide, and know how to
use the host operating system.

Operating Systems and Versions

The PDP-11 Symbolic Debugger runs on the following operating systems
and versions:

VAX/VMS Version 4.0 or higher

VAX-11 RSX Version 2.0

RSX-11M Version 4.1 or higher

RSX~11M-PLUS Version 2.1 or higher

Micro/RSX Version 1.1 or higher

RSTS/E Version 9.0 or higher

Micro/RSTS Version 2.0 or higher

P/OS Version 2.0 with Professional Host Tool Kit Version 2.0 or
higher

P/OS Version 2.0 with PRO/Tool Kit Version 2.0 or higher

Structure of This Document

This manual is organized as follows:

¢ Chapter 1 explains how to include support for the debugger in your
task and describes the commands that invoke the debugger. It also
lists the major debugger features for all users as well as the debugger
features that are specific to COBOL-81.

o Chapter 2 explains how to configure the debugger’s default output,
make a record of a debugging session, and use a command file to
control the debugger.

vii

Chapter 3 describes the symbols the debugger recognizes and explains
how to define your own symbols. It also discusses strategies for
making symbols unique.

Chapter 4 explains how to set breakpoints and tracepoints in your
program.

Chapter 5 describes two methods of executing your program in the
debugger.

Chapter 6 discusses the data types the debugger recognizes, the

two modes of debugger operation, and a command that helps you
determine memory addresses and perform arithmetic, It also explains
how to examine and alter memory locations.

Chapter 7 gives an example of debugger use with a COBOL-81 pro-
gram

Asseociated Documents

The following list describes the content of each manual in the PDP-11
Symbolic Debugger documentation set:

viii

PDP-11 Symbolic Debugger User’s Guide. This manual explains general
use of the debugger with all supported languages.

PDP-11 Symbolic Debugger Installation Guide. This manual explains the
debugger instaliation procedure on all supported operating systems.

PDP-11 Symbolic Debugger Quick Reference Guide. The quick reference
manual lists the syntax of each debugger command and its qualifiers
and parameters,

PDP-11 Symbolic Debugger FORTRAN-77 User’s Guide. This manual
gives information to debugger users who program in FORTRAN-77.

NOTE

Where language-specific exceptions to the general case exist, the
information given in this manual, specific to COBOL-81, takes
precedence over general information presented elsewhere.

Conventions Used in This Document

The following conventions are followed throughout this manual:

Convention

Meaning

UPPERCASE

lowercase

(]

n
RSX-11

CTRL/a

Uppercase words and letters in examples indicate that you
type the word or letter exactly as shown.

Lowercase words and letters in examples indicate that you
substitute a word or value of your choice.

Brackets in examples indicate optional elements.
A lowercase n indicates that you must substitute a value.

RSX-11 is used as a generic term for the RSX-11M,
RSX-11M-PLUS, and Micro/RSX operating systems.

The symbol CTRL/a indicates that you hold down the CTRL
key while you simultaneously press the specified letter key.
For example, CTRL/Z indicates that you hold down the
CTRL key and press the letter Z.

The symbol indicates that you press the RETURN key.

Chapter 1

including Debugger Support

The PDP-11 Symbolic Debugger is a powerful tool that helps you find
logical and programming errors in a successfully compiled program that
does not run correctly. When you are ready to use the debugger on a
program, you must include it in your task. This chapter explains how to
include debugger support in your task and what commands you issue to
invoke the debugger. It summarizes the general debugger features listed
in the PDP-11 Symbolic Debugger User's Guide and lists those debugger
features that are available only for COBOL-81 users.

1.1 How to laclude the Debugger in Your Task

The PDP-11 Symbolic Debugger supports both a nonoverlaid kernel
and an overlaid kernel. You must include one of these two kernels in
your task to use the debugger on your program. The nonoverlaid kernel
occupies about 5000 bytes of user program space. The overlaid kernel
occupies less than 4000 bytes of user program space. You may use the
overlaid kernel unless your program is overlaid and you are loading your
overlay segments manually. In this case, you must use the nonoverlaid
debugger kernel because the overlaid debugger kernel uses autoloading,
and you may not mix the two loading methods in one task.

There are three ways to include debugger support in your task:

1. You can include a nonoverlaid debugger kernel in your task. Refer
to Section 1.1.1 for the commands to invoke the debugger with a
nonoverlaid kernel.

Including Debugger Support 1-1

2. I you want to use the overlaid debugger kernel, you can replace the
debugger that is bundled with your COBOL-81 compiler with the
PDP-11 Symbolic Debugger. See Section 1.1.2 for instructions on
replacing the debugger that is bundled with your compiler.

3. U you want to use the overlaid debugger kernel, but still want to
access the debugger bundled with your COBOL-81 compiler, refer to
Section 1.1.3.

1.1.1 Using a Nonoveriaid Configuration

i-2

When you want to invoke the debugger with a nonoverlaid kernel, you
must compile, link, and run your program. When you compile your
program, you should create a listing file so you can reference source code
line numbers and follow program flow during the debugging session. You
may use the following commands with any COBOL-81 task to invoke the
debugger with a nonoverlaid kernel:

FOR MCR USERS

>C81 myprog.myprog=myprog/DEB
>BLD myprog=myprog/DEB

>EPIT myprog.ODL

>TKB Qmyprog

*RUN myprog

FOR DCL USERS

$ CUBOL/DEBUG/LIST myprog

¢ MCR BLD myprog=nyprog/DEB
$ EDIT myprog.ObL

$ LINK Qmyprog

$ RUN myprog

The PDP-11 Symbolic Debugger ODL file (PDPDBG.ODL) always invokes
the overlaid kernel. If you want to use the nonoverlaid kernel and use the
BLDODL utility contained in the COBOL-81 kit, you will have to

1. Remove the $DALL co-tree from the ODL file

2. Replace the reference to $DROOT with LB:[1,1]PDPDBG/DA

3. Include the appropriate COBOL-81 OTS

4. Remove the reference to "@C81DBx.ODL”

In response to the final command, the file MYPROG.CMD runs to produce
a symbol table that the debugger requires for full symbolic capability.

Incleding Debugger Supgport

Use the following commands instead of the preceding ones only if both
the debugger and your COBOL-81 task are nonoverlaid:

FOR MCR USERS

>C81 myprog,myprog=myprog/DEB
>TKB myprog,,nyprog=myprog,LB: {1, 11PDPDBG/DA,LB: [1,1]CBILIB/LB
>RUN myprog

The TKB command in the preceding example contains two commas
between the file names on the left side of the equal sign because one of
the TKB command parameters has been omitted.

FOR DCL USERS

$ COBOL/DEBUG/LIST myprog
$ LINK/DEBUC=LE: [1,1]PDPDBG/SYMBOL wypreg,LB:[1,1]C81LIB/LIBR
$ RUN myprog

NOTE

RSTS users must replace the RUN command with the DEBUG
command as follows:

$ DEBUG myprog

Also, RSTS users should substitute all references to “LB*[1,1}"
with “LB:..”

1.1.2 Replacing the Bundled Debugger

If you do not want to use the debugger that comes bundled with your
COBOL-81 compiler after you install the PDP~11 Symbolic Debugger and
you want to use the overlaid PDP-11 Symbolic Debugger kernel, you may
replace your bundled debugger with the PDP-11 Symbolic Debugger.

To replace your bundled debugger, copy the PDP-11 Symbolic Debugger
kernel ODL file (LB:[1,1]PDPDBG.ODL) to the ODL file for the debugger
bundled with your compiler by issuing the following command:

$ COPY LB:[1,1]1PDPDBG.OPL LB:[1,1}CB1DBx.0DL

Including Debugger Suppert 1-3

1-4

You must complete the second file name by replacing the character x with
one of three letters, depending on what kind of OTS and instruction set
your compiler supports. There are three forms of the COBOL-81 ODL file:

C81DBG.ODL Resident libraries, and either CIS (Commercial Instruction Set)
or non-CIS

C81DBC.CDL Nonresident libraries and CIS
C81DBN.CDL Nonresident libraries and non-CIS

Once you copy the file PDPDBG.ODL, you may invoke the debugger by
compiling, linking, and running your program. No edits are needed. You
should create a listing file of your source code and refer to it during the
debugging session to follow program flow and to reference source code
line numbers. For example, to compile, link, and run a program called
MYPROG.CBL, issue the following commands:

FOR MCR USERS

>C81 myprog,uyprog=myprog/DEB
>BLD myprog=myprog/DER

>TKB Omyprog

>RUN myprog

After your program compiles and links, the command file myprog.CMD
is run to produce the symbol table that the debugger requires for full
symbolic capability.

FOR DCL USERS

¢ COBOL/DEBUG/LIST myprog

$ MCR BLD myprog=myprog/DEB

$ LINK Qmyprog
$ RUN myprog

NOTE

RSTS users must replace the RUN command with the DEBUG
command as follows;

$ DEBUG myprog

RSTS users should also substitute all references to LB [L1])"
with "LB:.”

Including Dehugger Support

1.1.3 Using an Overlaid Configuration

If you want to use the overlaid PDP-11 Symbolic Debugger kernel and
you still want to have access to the debugger that is bundled with your
COBOL-81 compiler, you must create and edit an ODL file for your
program. This section explains how to create and edit this ODL file and
the commands you use to invoke the debugger.

To create an ODL file that includes debugger support for a program called
MYPROG.CBL, type one of the following command lines:

FOR MCR USERS

>BLD myprog=myprog/DEB

FOR DCL USERS
$ MCR BLD myprog=myprog/DEB

The command that is appropriate to your CLI causes the BLDODL utility
to create a command file and an ODL file for your program.

You must edit the ODL file that BLDODL creates to include the PDP-11
Symbolic Debugger instead of the debugger that comes bundled with your
COBOL-81 compiler. For example, the following is a portion of an ODL
file for the program called MYPROG.CBL:

@LB: [1,1]C81DBN

USROT$: .FCTR MYPROG-$DROOT
LROOT USROT$,$DALL
.END

You must change the line @LB:[1,1JC81DBN because it refers to the
COBOL-81 bundled debugger. Note that this file may be named C81DBG
or C81DB(, depending on the configuration of your compiler. In either
case, modify this line so that it appears as follows:

QLB: [1,1]PDPDBG

You must also modify the .FCTR directive so that it includes the
COBOL-81 library. Edit it so that it appears as follows:

USROT$: .FCTR MYPROG-$DROOT-LB: [1,1]C81LIB/LB

The edited ODL file you create now correctly references the PDP-11
Symbolic Debugger.

Including Debugger Support 1-5

Once you modify your ODL file, you must link and run your program to
invoke the debugger. You should create a listing file of your source code
and refer to it during the debugging session to follow program flow and
to reference source code line numbers. For example, to compile, link, and
run a program called MYPROG.CBL, issue the following commands:

FOR MCR USERS

>(Bi myprog,nyprog=nyprog/DEB
>BLD myprog=myprog/DEB

>EDIT myprog.ODL

>TKB Qmyprog

>RUN myprog

FOR DCL USERS

$ COBOL/DEBUG/LIST myprog
$ MCR BLD myprog=myprog/DEB
$ EPIT myprog.ODL

$ LINK Gmyprog

$ RUN myprog

NOTE

RETS users must replace the RUN command with the DEBUG
command as follows:

¢ DEBUG myprog

RSTS users should also substitute all references to “LB"[1,1]"
with “LB:.”

1.1.4 Exiting the Debugger

1-6

To leave the debugger, type the following command:
DBG>EXIT

This command causes orderly termination of the debugger on all operating
systems.

Including Debugger Support

1.2 Features of the Debugger

The PDP-11 Symbolic Debugger has important features that are available
for all debugger users,

e [t is interactive.

¢ It is symbolic,

e It supports overlaid programs.

® It gives online HELP.

In addition, the debugger supports the following features for COBOL-81
users:

¢ Configures the debugger for COBOL-81 users using the SET
LANGUAGE command (see Chapter 2)

¢ Allows you to correctly qualify names of structured variable (see
Chapter 3)

* Recognizes COBOL-81 data types (see Chapter 6)

¢ Allows you to refer to symbol names that contain hyphens (see
Chapter 6)

Including Debugger Support 1-7

Chapter 2

Controlling Debugger Input and Qutput

This chapter explains how to set the default programming language to
COBOL-81 and describes what happens when this default is set. It also
explains how to configure aspects of the debugger input and output format
that are not specific to programming in COBOL-81.

2.1 Setting the Default Language

When you enter the debugger, it displays a message indicating the pro-
gramming language in which it expects your program to be written. If the
message does not specify COBOL-81, issue the command

DBG>SET LANGUAGE COBOL

This command informs the debugger that your program is written in
COBOL-81. The debugger uses this information to control how it inter-
prets and displays information. For example, when the language is set to
COBOL-81, the debugger interprets input and displays output in ASCII
format by default. Also, structured variables are displayed by major row
order; if you examine a structured variable, the first item displayed is the
item in Row 1, Column 1; the second item is the item in Row 1, Column
2: the third item is in Row 1, Column 3; and so on.

Controlling Debugger Input and Output 2-1

2.2 Changing the Default Output

By default, the debugger’s output configuration is NOLOG, TERMINAL,
NOVERIFY. You change the default output with the SET OUTPUT
command in the format;

SET OUTPUT parameter [,parameter [,parameter]l
[NO]LOG
{NO] TERMINAL
[NO]VERIFY

2.2.1 SEY QUTPUT Command Parameters

The parameters you use with the SET OUTPUT command configure

the debugger’s output. The [NOJLOG parameter determines whether

or not a record of the debugging session is written in a log file. The
[NOJTERMINAL parameter determines whether or not the debugger’s
output dispiays on your terminal. The [NOJVERIFY parameter determines
if indirect commands are displayed on your terminal and/or recorded in
your log file before they are executed.

2.2.2 The SHOW OUTPUT and CANCEL OUTPUT Commands

The SHOW OUTPUT command causes a message describing the debug-
ger’s current output configuration to be displayed. However, if you set
the debugger’s output to NOTERMINAL, no message is displayed on your
terminal.

The CANCEL OUTPUT command returns the output configuration to the
default of NOLOG, TERMINAL, NOVERIFY.

2.3 Using Log Files

When you issue the SET OUTPUT LOG command, the debugger begins
logging to a log file called DEBUG.LOG. If you want the debugger to write
log information to another file, issue the command

DBG>BET LOG filespec

This command causes the debugger to write log records to the file named
by filespec.

2.2 Controlling Debugger Input and Cutput

2.3.1 Log File Example

The following is an example of a log file:

SHOW OUTPUT

'%DEBUG-I-QUTPUT: noverify, terminal, logging to "DISK$USER: [303,B2I1MYPROG.LOG;1"
SET LANGUAGE COBOL

SHOW LANGUAGE

'Y DEBUG-I-CURRLANGCS81, Current language is COBOL-8%

SET LOG RECORD

This log file is closed after the command SET LOG RECORD is issued.
The commands and responses that follow this command are written to a
new log file called RECORD.LOG.

2.3.2 The SHOW LOG Commamnd

You can display the name of the log file the debugger is currently using
with the SHOW LOG command. If the output is set to NOLOG, the
debugger displays a message informing you that it is not writing records
to the current log file.

2.4 Using indirect Command Files

Indirect command files are files that contain a series of debugger com-
mands. Any valid debugger command can be included in an indirect
command file, but none of them are checked for valid syntax before they
are executed. Instead, the debugger issues an error message when it en-
counters invalid command syntax in the file and continues execution with
the next line in the command file.

You execute an indirect command file as follows:
@filespec

You can invoke an indirect command file in response to the debugger
prompt (DBG>) or in another indirect command file. The default file
extension for indirect command files is CMD.

Contrelling Debugger Input and Output 2-3

Chapter 3

Defining Symbols

The PDP-11 Symbolic Debugger allows you to refer to memory locations
and program data symbolically. This chapter explains the symbols the
debugger recognizes and how to define symbols.

3.1 Kinds of Symhols

You use symbols to refer to memory locations without having to specify
the virtual address of the location. The symbols that the debugger recog-
nizes can be divided into three categories: permanent symbols, program
symbols, and defined symbols.

3.1.1 Permanent Symbels

You can refer to the debugger’s permanent symbols at any time during a
debugging session. Table 3-1 lists these symbols and also describes what
they represent.

Table 3-1: Debugger Permanent Symbols

Symbol Definition

%R0 - %R5 General-purpose registers
%R6 or %SP Stack pointer

%R7 or %PC Program counter

%F0 - %F5 Floating-point registers

Defining Symbols 3~1

Table 3-1 (Cont.): Debugger Permanent Symbols

Symbol Definition

%S Processor status word
%FS Floating-point status word
%LINE nnn Source code line number
%NAME name

%SEGMENT name Overlay segment name

\ Current value

Current location
RET Logical successor

- Logical predecessor

3.1.2 Pregram Symbols

When you build your program with debugger support, the task builder
defines program symbols for you. These symbols are called program
symbols because they refer to records in the symbol table file (STB)
for your source code. In the STB file, the program symbol names are
associated with virtual addresses.

The STB file contains symbol records for the following program symbols:

¢ Names of user written routines

® Variable names (but not routine parameter names)

¢ Source code line numbers

Source code line numbers are a special case because the STB file does not

associate them with virtual addresses. Instead, source code line numbers
are associated with the program counter (PC).

3-2 Defining Symbols

3.1.3 Defined Symbols

During a debugging session, you can use the DEFINE command to create
a new debugger symbol or change an existing symbol, except that you
cannot redefine permanent or program symbols. Symbols you define
with the DEFINE command remain in effect until you redefine them with
another DEFINE command, cancel the definition with the UNDEFINE
command, or terminate the debugging session. The DEFINE command
has the following format:

DEFINE symbol=address

The symbol parameter specifies the name you want to use to refer to
program data or program addresses. The following restrictions apply to a
debugger symbol name:

¢ It may be composed of only alphanumeric characters (the 26 letters A
through Z and the numbers 0 to 9) and dollar signs ($).

» [t may not be more than six characters long.
¢ It may not begin with a number.
The address parameter identifies the portion of memory to which the

symbot refers. It can be either a previously defined symbolic address or a
virtual address denoted by a simple address or address expression.

3.2 Waking Symbols Unigue

When you refer to part of a structured variable in a debugger command,
you must use a unique variable name. Two debugger keywords, OF and
IN, allow you to qualify COBOL-81 structured variables.

Both OF and IN show the relationship between high-level variable names
and the lower-level variable they compose.

Defining Symbols 3-3

For example, consider the following data division:

DATA DIVISION.
FILE SECTION.

FD EMPLOYEE
LABEL RECORDS ARE OMITTED.
01 OLDREC
05 NUMBER PIC X(8)
06 HOURS PIC Z9.9
01 MNEWREC
05 NUMBER PIC X(8)
05 PAY PIC $$V99

To examine the contents of the variable NUMBER that is contained in the
record OLDREC, issue one of the following commands:

DBG>EXAMINE NUMBER IN OLDREC
DBG>EXAMINE NUMBER OF DLDREC

Both command lines are correct because IN and OF are synonyms.
(Chapter 6 explains the EXAMINE command.)

If you do not qualify ambiguous names in structured variables, the debug-
ger issues an error message. For example, an error message is issued in
response to the following command:

DBG>EXAMINE NUMBER
%DEBUG-E~NAMAMBIG, The data-name used in this command is ambiguous

The error occurs because there are two variables defined with the name
NUMBER. You must supply a unique name before the debugger can
determine which memory location the variable name references.

3.3 Adjusting the Debugger's Scope

If the program you are debugging consists of more than one routine, you
must pay attention to the scope of symbols to which you refer because the
debugger recognizes only symbols that are in the current scope. The scope
of a symbol is the routine in which the symbol is declared.

The default scope is called the PC scope. At the beginning of a debugging
session, the PC scope is the main routine. The PC scope, however, is
dynamic; as you debug your program, the PC scope is always the routine
you are currently executing,

3-4 Defining Symbols

If you do not want to use the default scope, you can specify scope by
using the SET SCOPE command. The SET SCOPE command establishes
the specified program unit as the one to be used for symbol interpretation.

The format of the SET SCOPE command is:

SET SCOPE pathname

3.3.1 SET SCOPE Command Parameter

The pathname parameter may be a scope prefix, the number 0, or the
backslash character (\).

A scope prefix describes a location in terms of its overlay segment name
(if any) and routine name. The format of a scope prefix is:

fsegment-list\]routine

The segment-list element names the segment that contains the routine to
which you are referring. The routine element names the routine to which
you are setting the scope.

The pathname element routine can be replaced by two symbols: the
number 0 or the backslash (V). The 0 symbol specifies that the scope be
reset to the default, which is the PC scope. After you issue the command
SET SCOPE 0, the scope is dynamic and is always the routine you are
debugging. The backslash (\) symbol specifies that symbols referenced
without pathnames be interpreted as global symbols.

You can also specify scope using a pathname. The use of pathnames is
discussed in the PDP-11 Symbolic Debugger User’s Guide.

3.3.2 The SHOW SCOPE and CANCEL SCOPE Commands

Two commands, SHOW SCOPE and CANCEL SCOPE, are useful when
you are adjusting the scope of the debugger.

To determine the current scope, use the command

DBG>SHOW SCOPE
%DEBUG-I-SCOPE, scope: 0 [= MAIN]

Defining Symhols 3-5

To cancel the scope established by the SET SCOPE command, use the
command

DBG>CANCEL SCOPE

The CANCEL SCOPE command causes symbols without scope prefixes to
be interpreted as if they occurred in the routine that is currently executing,
In its effect, the CANCEL SCOPE command is equivalent to the command
SET SCOPE 0.

3-6 Defining Symbels

Chapter 4
Controlling Program Execution

Controlling program execution is an important aspect of debugging. To
do this effectively, you must know what code is executing and how your
program transfers control from one part of your program to another. This
chapter explains the commands that help you debug program execution
and control.

4.1 Displaying Information on Active Routine Calls

The SHOW CALLS command provides information about the sequence
of currently active routine calls. For each call, the debugger displays one
line of information. The first line displays information about the current
routine; the next line (if there is one) displays information about the
routine that called the current routine. The listing ends with information
on the routine that originated the path to the current routine.

Each line of information displayed by the debugger contains the following:
e The name of the calling module and routine,
¢ The name of the called routine.

e The line number of the call.

e The absolute and relative value of the PC in the calling routine at the
time that control was transferred. Note that the PC values refer to the
location of the instruction following the call.

The format of the SHOW CALLS command is:

SHOW CALLS [call-countl

Controlling Program Execution 4-1

The optional call-count parameter is a decimal integer in the range 1
through 32767 that specifies the number of calls to be displayed. If you
do not specify the call count, or if the call count exceeds the current
number of calls, information on all calls is displayed.

4.2 The Effects of Breakpeints and Tracepoints

Once you decide where the important points in your program are, you are

ready to set either breakpeints or tracepoints, This section describes the

effects of these event points so you can decide which program controller

to use at a specific important program event,

A breakpoint is a program location where the debugger does the follow-

ing:

1. Suspends program execution immediately before the instruction at the
specified location is executed

2. Displays the name or the virtual memory location where execution has
been suspended

3. Executes commands in a DO sequence if one was specified in the
SET BREAK command (The SET BREAK command is discussed in
Section 4.2.1))

4, Issues its prompt

When a tracepoint is activated, the debugger does the following:

1. Suspends execution immediately before the instruction at the specified
location is executed

2. Reports that execution has reached the traced location

3. Executes commands in a DO sequence if one was specified in the
SET TRACE command (The SET TRACE command is discussed in
Section 4.2.1))

4. Resumes execution at the current program counter

These eventpoints remain in effect until the debugging session ends or
until they are canceled or replaced.

4-2 Controliing Program Execution

To set a breakpoint, issue the SET BREAK command. This command has
the following form:

SET BREAK [/qualifier] [address] [DO0{action)]
/AFTER:n
/CALLS
/RETURN

To set a tracepoint, issue the SET TRACE command. This command has
the following format:

SET TRACE [/qualifier]{address] [DO{action)]
/AFTER:n
/CALLS
/RETURN

§.2.1 SEYT BREAK amd SET TRACE Command Qualifiers

This section explains the qualifiers you can use with both the SET BREAK
and the SET TRACE commands. The qualifiers have the same effect on
both commands.

4.2.1.1 The /AFTER:n Qualifier

If you specify the /AFTER:n qualifier, the debugger takes action at the nth
activation of the specified location. It then takes action at each succeeding
activation of the location. For example, if you specify a value of 3 for n,
the breakpoint or tracepoint is activated when the debugger encounters
the location more than two times; that is, on the third encounter, fourth
encounter, and so on. The highest valid value of n is 255.

A special case exists. The /AFTER:0 qualifier has the same effect as the
/AFTER:1 qualifier, which activates the breakpoint or tracepoint the first
time the debugger encounters a location. However, the /AFTER:0 qualifier
cancels the program controller once it has been activated. Therefore,
/AFTER:0 allows you to set a program controller that you want to use
only on the first encounter of a program location,

Controlling Program Execution 4-3

4.2.1.2 The /CALLS Qualifier

The /CALLS qualifier sets a breakpoint or tracepoint in two places for all
commands that transfer control to a routine;

¢ After the calling instruction, but before the first instruction in a routine

e After the last instruction in a routine, but before the first instruction
following a routine call

In other words, if you use the /CALLS qualifier to set a program con-
troller, it is set at all JSR and RTS instructions, including those for system
routines.

If you specify /CALLS, you cannot specify another qualifier in that
command.

4.2.1.3 The /RETURN Qualifier

The /RETURN qualifier sets a breakpoint or tracepoint immediately

after the last instruction in a calling routine, but before the first instruction
tollowing a routine call, that is, at an RTS command. You must specify the
routine return you want to break or trace by using the address parameter
explained in Section 4.2.2.1.

4.2.2 SET BREAK and SET TRACE Command Parameters

This section explains the command parameters you use with SET BREAK
and SET TRACE. The effect of the parameters is the same for both
commands.

4.2.2.1

4-4

The Address Parameter

The address parameter specifies the instruction address where you want
to set a program controller. The specification may be in the form of a
simple address or an address expression (these are explained in the PDP-
11 Symbolic Debugger User's Guide, Section 3.2.1). You must specify this
parameter if you do not use the /CALLS qualifier.

Controlling Program Execation

4.2.2.2 The DO Parameter

The DO parameter causes the debugger to execute one or more debugger
commands when a breakpoint or tracepoint is activated. The action may
be a single command, a list of commands separated by semicolons, or an
indirect command file. The debugger executes DO action commands in
the order in which they appear, but it does not check the syntax of these
commands before they are executed. The number of levels to which you
can nest indirect command files is limited only by the amount of dynamic
storage currently available.

4.2.3 Commands Related to SET BREAK and SET TRACE

Four commands (SHOW BREAK, CANCEL BREAK, DISABLE BREAK, and
ENABLE BREAK) are related to the SET BREAK command. Four other
commands (SHOW TRACE, CANCEL TRACE, DISABLE TRACE, and
ENABLE TRACE) are related to the SET TRACE command. This section
describes the use of these commands,

To see which program controllers are in effect, issue either the SHOW
BREAK or the SHOW TRACE command. The debugger responds to these
commands with a message for either each breakpoint or each tracepoint
that is set.

Once set, a program controller remains active for the duration of the
debugging session unless you use the CANCEL BREAK or CANCEL
TRACE command to cancel it or set another breakpoint or tracepoint at
that program location. If you set a program controller in a location where
one already exists, the second program controller set replaces the one set
first,

The format of the CANCEL BREAK command is:

CANCEL BREAX[/gualifier] [address]
/ALL
/CALLS
/RETURN

The format of the CANCEL TRACE command is;
CANCEL TRACE[/qualifier] [address]
JALL

JCALLS
/RETURK

Controlling Program Execution 4-5

The /ALL qualifier cancels either all breakpoints or all tracepoints cur-
rently set in a program. The /CALLS qualifier cancels either all the
breakpoints or all the tracepoints at JSR and RTS instructions. The
/RETURN qualifier cancels the program controller that is set at the RTS
instruction of a routine. You must use the address parameter to specify
which routine contains the program controller.

To prevent breakpoints from being activated, issue the DISABLE BREAK
command; to prevent tracepoints from being activated, issue the DISABLE
TRACE command. DISABLE commands do not cancel program con-
trollers; they prevent program controllers from being activated until you
enable them.

To enable program controllers, use the ENABLE BREAK or the ENABLE
TRACE command. You do not have to respecify breakpoints or tracepoints
when you use these commands.

4-6 Controlling Program Execution

Chapter 5

Starting the Program

When you are ready to execute your COBOL-81 program, use either the
STEP command or the GO command. This chapter explains how to use
these commands.

5.1 Executing a Specified Number of Commands

To execute a specified number of commands in your program, use the
STEP command. The STEP command causes the debugger to execute a
single line or instruction, or a group of lines or instructions.

When you issue a STEP command, the debugger continues executing your
program until one of the following occurs:

A STEP sequence is complete.

A breakpoint occurs.

An error is detected in your program.

Your program completes execution,

You issue a control character command, such as CTRL/C.

A step sequence is considered complete only when the specified number
of lines or instructions has been executed, regardless of intervening events,

The format of the STEP command is as follows:

STEP[/qualifier] [step-count]

JINTD
/OVER
/INSTRUCTION
/LINE

Starting the Program 5-1

£.1.1 STEP Command Qualifiers

The /INTO and /OVER qualifiers control how the debugger treats called
routines in your program. The /INTO qualifier specifies that the debugger
step through the called routine. However, the /OVER qualifier specifies
that the debugger stop stepping at a routine call, execute the called
routine, and resume stepping when control is returned to the calling
routine. Note that called routines can be either a routine you wrote or

a system routine. Lines in called routines are not counted to satisfy a
step-count when the /OVER qualifier is in effect.

The /LINE and /INSTRUCTION qualifiers determine what the debugger
counts to satisfy a step-count. The /LINE qualifier specifies that the
debugger count the execution of one line of your source program as a step.
However, the /INSTRUCTION qualifier specifies that the debugger count
each instruction in the PDP-11 machine code as a step. Therefore, if a
line in your program translates to more than one PDP-11 machine code
instruction, a single STEP/INSTRUCTION command does not execute
that entire source program line.

Using these qualifiers with the STEP command overrides the default step
conditions or conditions specified with the SET STEP command.

5.1.Z STEP Command Parameter

The step-count parameter specifies the number of source code lines or
PDP-11 instructions (depending on how the step conditions are config-
ured) you want the debugger to execute. A step-count must be given as a
decimal integer.

Note that only executable lines, not comments or blank lines, are counted
to satisfy a step-count.

h-2 Starting the Program

5.2 Changing the Befault Step Conditions

If you issue the STEP command without qualifiers when you start up the
debugger, the debugger executes your program according to its default
step conditions. By default, the debugger steps by line and counts only
lines in the main routine to satisfy a step count (that is, /LINE/OVER}.

Use the SET STEP command to change the default debugger step con-
ditions. Once you change these conditions, the debugger executes the
STEP command according to the conditions you set if you issue it without
qualifiers.

The SET STEP command has the following format:

SET STEP parameter[,parameter]
INTO
OVER
INSTRUCTION
LINE

5.2.1 SET STEP Command Parameters

The SET STEP parameters have the same effect as that of the qualifiers
to the STEP command; that is, the INTO and OVER parameters control
whether the debugger steps into a called routine or suspends stepping

to execute the called routine. The INSTRUCTION and LINE parameters
control what the debugger counts to satisfy a step-count. INSTRUCTION
tells the debugger to count all PDP-11 instructions, but LINE tells the
debugger to count only source code lines.

5.2.2 The SHOW STEP and CANCEL STEP Commands

To display the current step conditions, issue the command

DBE>SHOW STEP

To restore step conditions to the debugger’s default, issue the command
DBG>CANCEL STEP

This command returns the step conditions te their default of LINE and
INSTRUCTION.

Starting the Program 5-3

5.3 Executing an Undetermined Mumber of Commands

If you want to execute an undetermined number of commands in your
program, use the GO command. The GO command instructs the debugger
to execute your program until one of the following occurs:

e Your program terminates,

® A breakpoint is encountered.

® A pending STEP sequence is completed.

¢ An error is detected in your program.

¢ You issue a control character command, such as CTRL/C.

When you issue the GO command at debugger start-up, your program
begins to execute as if you had built it without debugger support.

The GO command has the following format:

G0 [address]

The address parameter allows you to specify an address at which to
start program execution. It can be any legal simple address or address
expression (see the PDP-11 Symbolic Debugger User’s Guide, Section 3.2.1).

5-4 Starting the Program

Chapter 6

Manipulating Data

This chapter describes how to manipulate and alter data in your program
using the EVALUATE, EXAMINE, and DEPOSIT commands. It also
includes information on the concepts you must understand before using
these commands.

6.1 Data Types in the Debugger

The debugger associates data types with literals, program symbols, and
memory addresses, The data types of program symbols and memeory
addresses are assigned by the compiler. The data types of literals depend
on the format of the literal. Following is a list of the literal data types
the debugger supports and an explanation of how these data types are
associated with literals:

¢ The data type integer is associated with literals that do not contain a
decimal point.

s Literals that contain decimal points are associated with the data type
real.

e The quoted string data type is associated with strings that are enclosed
in quotation marks.

If a program symbol or memory address is not assigned a data type by the
compiler, the debugger uses a default data type to interpret the location.

Manipulating Data 6-1

The default data type for COBOL-81 is ASCIL You can change the default
data type with the SET TYPE command. This command has the format:

SET TYPE datatype
BYTE
INSTRUCTION
PACKED
WORD

Because the compiler normally assigns data types to your program loca-
tions, most users need not be concerned about the default debugger data
type. Ordinarily, the debugger is unlikely to use its default data type to
interpret any of your program locations.

To determine which default data type is currently in effect, you can issue
the SHOW TYPE command. The debugger responds with a message
showing the default.

6.2 Debugger Modes

The PDP-11 Symbolic Debugger supports radix modes and symbol modes.
These modes work together to control the form in which the debugger
interprets and displays information. The default debugger modes for
COBOL-81 are a decimal radix mode and a symbolic symbol mode. When
these modes are in effect, the debugger interprets and displays numbers
in the numeric base 10. It also displays the symbol assigned to a virtual
address instead of the address itself.

If you do not want to use these default modes, specify the mode you
want to use by issuing the SET MODE command or by specifying a mode
qualifier with the EXAMINE, EVALUATE, or DEPOSIT commands. The
SET MODE command has the format

SET MOUDE mode [,mode]
BINARY
DECIMAL
HEXADECIMAL
0CTAL
(X0} SYMBOL

The EXAMINE, EVALUATE, and DEPOSIT commands are explained later
in this chapter.

6-2 Manipulating Data

The radix modes BINARY, DECIMAL, HEXADECIMAL, and OCTAL
determine how integers in addresses and value-expressions are interpreted
and displayed. For example, the address 1010 can refer to four different
locations, depending on which radix mode is in effect when a command
containing that address is issued.

[NOJSYMBOL determines whether symbols, such as variables names in
your program, are displayed symbolically or by their numeric equivalents.
It also determines how the processor status word (%PS) and floating
point status word (%FS) are displayed. The default is SYMBOL. Note that
[NOJSYMBOL only affects the debugger display because you can always
enter data in either symbolic or numeric form.

To cancel modes established by the SET MODE command, issue the
following command:

DBG>CANCEL MODE
This command returns the mode settings to their defaults.
To have the current modes displayed, issue the following command:

DBG>SHOW MODE

6.3 Determining the Virtual Address of Symboels

Before you examine and modify memory, you should obtain information
to tell you what virtual addresses are associated with your program
symbols. You can determine this association using the EVALUATE
command. By using certain qualifiers with the EVALUATE command you
can also determine the addresses of memory locations. This command has
the following format:

EVALUATE{/qualifier] expression
/ADDRESS address
/BINARY value-expreasion
/DECIMAL
/HEXADECIMAL
/OCTAL

Manipulating Data 6-3

6.3.1 EVALUATE Command Qualifiers

The /BINARY, /DECIMAL, /OCTAL, and /HEXADECIMAL qualifiers
specify radix modes. If you specify a radix mode qualifier, integers in the
expression parameter are interpreted in the specified radix and values are
displayed in that radix.

6.3.2 EVALUATE Command Parameters

The expression parameter can be either an address or a value expression.
If you want the debugger to determine the value of the expression using
the address of the specified location, you must specify the /ADDRESS
qualifier. If you do not use the /ADDRESS qualifier, the value of the
expression is determined using the contents of the specified location. Note
that you can evaluate only an expression that contains values that are
resident.

If you issue the EVALUATE command with a simple address {one without
operators) and without the /ADDRESS qualifier, the debugger displays
the contents of the specified memory location.

6.4 Value Expressions

Value expressions may be specified with the EVALUATE and DEPOSIT
commands. If a value in the expression refers to 2 memory location, the
debugger performs the specified operations on the contents of the Memory
location, as opposed to the address of the location.

The following legal operators and delimiters in value expressions are listed
in the order in which they are interpreted by the system:

1. Parentheses

2. Unary minus

3. Multiplication and division

4. Plus and minus

Quoted strings cannot be combined with debugger operators to form a
value expression.

6-4 Manipulating Data

6.5 Displaying Memory Locations

The EXAMINE command lets you look at the contents of any virtual
address or any resident memory location described by a debugger per-
manent symbol, a defined symbol, or a program symbol. The EXAMINE
command has the following format:

EXAMINE [/qualifier} address
/ASCII[:=n]
/BYTE
/PACKED (COBOL-81 only)
/WORD

/BINARY
/DECIMAL
/HEKADECIMAL
JOCTAL

/ [WO] SYMBOL

The qualifiers you can use with the EXAMINE command are data type and
mode qualifiers. These qualifiers control how the contents of the location

you examine are displayed and how the address you specify is interpreted.
They override the data type and mode specified with a SET TYPE or SET

MODE command.

The address parameter specifies the location you want to display.

6.6 Referencing Variable Names Containing Hyphens

The debugger interprets hyphens in addresses as minus signs. Therefore,
the reference to a variable defined as HOURS-1 in the following command
line is interpreted as an arithmetic expression. {(You are not permitted to
perform arithmetic when language is set to COBOL.)

DBG>EXAMINE HOURS-1
%DEBUG-E-SYNTAXEXPR, syntax error in expreseion

To refer to a variable name that contains a hyphen, specify the %NAME
keyword. The following example demonstrates the use of this keyword:

DBG>EXAMINE JNAME 'HOURS-1'
MAIN\HOURS-1: 40

This command causes the debugger to display the contents of the variable
HOURS-1. Note that the variable specified with the %NAME keyword
must be enclosed in apostrophes.

Manipudating Data 6-5

6.7 Altering Memory Locations

The DEPOSIT command changes the value of a location. You can deposit
values into any resident program location. It has the following format:

DEPOSIT [/qualifier] address=value expresaion
/ASCII{:n]
/BYTE
/PACKED (COBOL-81 only)
/WORD

/BINARY
/DECIMAL
/HEXADECIMAL
/OCTAL

6.7.1 DEPOSIT Command Qualifiers and Parameters

You can use mode and data-type qualifiers with the DEPOSIT command.
The mode qualifiers determine what radix mode, or numerical base, the
debugger uses to interpret the expressions you specify. The data-type
qualifiers control how the debugger interprets the value you specify.
These qualifiers let you deposit values in a data type other than the one
associated with the memory location to which you are depositing, without
altering the data type of that location. When you examine its contents
later in your debugging session, your program treats the deposited value
as if it were the location’s data type, and the debugger still uses this
data type to contro} its interpretation of the location. You can, however,
instruct the debugger to change the location’s data type to that of the
value you deposited if you use a data type qualifier with the EXAMINE
command.

The address parameter determines where a value is deposited. The value
expression parameter gives the value you want deposited in that location.

6-6 Meanipulating Data

8.7.2 Depositing ASCH Strings

To deposit an ASCII string, enclose the value expression in quotation
marks or apostrophes, When the debugger encounters a string enclosed
in quotation marks or apostrophes, it assumes that the string is of the
data type ASCIL When the length of the string to be deposited is greater
than the length associated with the address, the string is truncated from
the right. However, when the length of the string is less than the length
associated with the address, the debugger inserts ASCII blanks to the right
of the last character in the string.

When you want to reference variable names of a character type other than
ASCII, you use the /ASCII qualifier. If the string you are depositing is
longer than two bytes, you must specify /ASCILn, where n is the number
of bytes in the string; otherwise, the debugger deposits only the first two
bytes of your character string.

Manipulating Data 6-7

Chapter 7

COBOL-81 Interactive Debugging
Example

This chapter contains a sample debugging session for a COBOL-81 pro-
gram. This debugging session demonstrates the most commonly used
debugger commands.

7.1 The COBOL-81 Program

The COBOL-81 program example examined in this chapter calculates the
square of the numbers 1 to 100 and the partial sum of their squares. It
consists of two routines: the main routine, which is called MAIN; and a
subroutine, which is called SQUARE.

COBOL-81 Interactive Debugging Example 7-1

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. MAIN.

3

4 ENVIRONMENT DIVISION.

5 DATA DIVISION.

8 WORKING-STORAGE SECTION.

7 01 Messagesa.

8 02 Messagei.

9 03 Linel pic x(80) value " Sums of Squares (1:100)".
10 03 Empty-line pic x value " ".

11 02 Message2.

12 03 Linel pic x(60) value " I I-2 Partial".
13 03 Line2 pic x(60) value " Sum®.
14 02 Message3 pic x{60) value " =-=-r<-r-------=m----mo-o-o-o-w ",
16

16 01 Partial pic 8(8).

17 01 I pic 9(4).

18 01 Isq pic 9(8).

19

20 01 Partial-disp pic z(7)9.

21 01 I-disp pic z(3)9.

22 01 Ieq-disp pic z(7)8.

23

24

26 PROCEDURE DIVISION.

26 Parl.

27 Diaplay Linel of Messagel.

28 Display Empty-line.

29 Diaplay Linel of MeasageZ.
30 Display Line2 of Message2.
31
32 Move O to Partial.
33 Perform Par2
34 varying i from 1 by 1 until i > 100.
35
36 Display Message3.
37 Stop run.
38

39 Par2,

40 Call "MYSUB® uaing i, isq.

41 Add isqg to Partial.

42 Meve i to i-disp.

43 Move i to ieq-disp.

44 Move partial to partial-diap.
45 Display i-diap, " ", isg-disp, * ", Partial-disp.
48

7-2 COBOL-87 Interactive Debugging Example

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. MYSUB.

3

4 ENVIRCNMENT DIVISION.

B

6 DATA DIVISIOK.

7 LINKAGE SECTION.

8 01 Nup-in pic 9(4).

°] 01 Num-out pic 9(8).

10

11 PROCEDURE DIVISION USIKG Num-in, Num-out.
12 Pari.

13 Multiply Num-in by Num-in giving Num-in.
14 Exit program.

7.2 The Sample Debugging Session

The numbers displayed after executing the preceding program are in-
correct. In each line of the display the variable I and the variable that
contains the square of I are equal to each other. Also, the numbers
displayed for Partial Sum are not equal to the sums of the squares of I.

The debugging session in this section locates the errors that caused the
incorrect results in the preceding program. The comments in the examples
briefly explain the commands. The callout number beside each comment
corresponds to the numbered explanation that follows,

COBOL-81 Interactive Debugging Example 7-3

DBG>SET OUTPUT LOG lhsk for log file @
DBG>SET BREAK YLINE 40 IBreak at routine call 2]
DBG>GO |Bagin execution e
%DEBUG-I-START, routine start at MAIN

%DEBUG-I-BREAKPOINT, breakpoint at MAIN\YLIKE 40

DBG>EXAMINE I ICheck variable initialization &
I: 1

DBG>GO !Continue execution &

ADEBUG-I-START, routine start a MAIN\%LINE 40
Sunes of Squares (1:100)

2

1 I Partial
Sum

1 1 0
YDEBUG-1-BREAKPOINT, breakpoint at MAIN\YLINE 40
DBE>GO |Execute loop @
ADEBUG-1-START, routine start at MAIN\YLINE 40

2 2 0
%DEBUG-X-BREAKPOINT, breakpoint at MAIN\YLINE 40
PBG>EXAMINE 18Q ICheck squaring of I @
18Q: ©
DBG>SET TRACE %LINE 41 DO {DEPOSIT ISQ=9) !Set to test Partial Sum @
DBG>GO e

%DEBUG-I-START, routine start at MAIN\YLINE 40
%DEBUG-I-TRAGEPOINT, tracepoint at MAINVYLINE 41

3 3 9
ADEBUG-I-BREAKPOINT, breakpoint at MAIN\YLINE 40
DBG>GO !Execute leop again for further testing 10}

%DEBUG-I-START, routine start at MAIN\YLINE 40
%DEBUG-I-TRACEPOINT, tracepoint at MAIN\YLINE 41

3 3 18
DEBUG-I-BREAKPOINT, breakpeint at MAIN\YLINE 40
DBG>EXIT IExit debugger ®

@ The SET OUTPUT command requests that a log file be maintained
during the debugging session. A file called DEBUG.LOG is created and
commands and debugger responses are written to this file during the
session.

@ A breakpoint is set at the call to the subroutine because the error
causing incorrect output is thought to be in the subroutine.

The GO command begins program execution,

At this point, the initialization of the variable I is checked. Because it
is correct, it is assumed that the Perform Par? statement on lines 33
and 34 is correct.

e

7-4 COBOL-81 Interactive Debugging Example

® The GO command executes the subroutine and the display commands
following it once. The breakpoint at the routine call is activated again
when it is encountered. The table printed between the START and
BREAKPOINT messages is generated by the program, not by the
debugger.

& A second GO command is issued so that more of the table is displayed.
It is determined by looking at the table that both ISQ and Partial Sum
are being assigned incorrect values.

@ The debugger examines the variable ISQ to verify that it contains the
value shown in the table, Because it does not, the debugger determines
that the assignment of ISQ-DISP must contain an error. By checking
the source code, the debugger recognizes the value of I as being
assigned to ISQ-DISP. This error is marked for correction in the source
code listing,

The contents of ISQ are also not correct, so there must be another error
in the source code. The source code that computes the value passed
back to ISQ is checked. The equation Multiply Num-in by Num-in
giving Num-in is incorrect. The correct equation is Multiply Num-in
by Num-in giving Num-out, This equation is marked for change in the
source code listing.

@ Now that the reasons for the errors in the squaring of I have been
determined, the only part of the program that remains to be debugged
is the computation and display of Partial Sum. Because 15Q is not
being computed correctly, a tracepoint is set at the command that
initializes Partial Sum. The DO action specified in this command
assigns the correct value to ISQ.

@ The GO command resumes execution of the program.

@ The value displayed for Partial Sum is correct during the first execution
of the loop. However, to be sure that Partial Sum is being assigned the
correct value, the loop is executed again with the GO command.

@ The table shows that Partial Sum contains a value of 18, which is
correct because 9 was assigned to 1SQ again by the SET TRACE
command. Because all errors have been found, the EXIT command is
issued.

COBOL-B1 Interactive Debugging Example 7-56

INDEX

A

/AFTER:O qualifier ¢ 4-3
JAFTER:n qualifier ® 4-3
Ambiguous references © 3-3
ASCIE strings © 6-7

Breakpoint
disabling ® 4-6
duration of¢4-2, 4-5
effect of® 4-2
enabling ® 4-6
setting® 4-2

C

Call-count ® 4-1
JCALLS qualifier * 4-4
CANCEL BREAK command ® 4-5
CANCEL MODE command ® 6-3
CANCEL CUTPUT command® 2-2
CANCEL SCOPE command ® 3-6
CANCEL STEP command ® 5-3
CANCEL TRACE command ® 4-5
COBOL-81 debugger, replacing bundled® 1-3
Command file

See Indirect command file
Current location ® 3-1
Current vajue ® 3-1

Data type {cont'd.}
defauit ® 6-1
with literals ® 6- 1
with program symbols * 6-1
DCL commands
invoking nonoverlaid kernael ® 1-3
invoking overlaid kernel ® 1-4, 1-6
DEBUG command® 1-3, 1-4, 1-6
Debugger
exiting® 1-6
startup ® 1-1
Debugger kernel
nonoverlaid @ 1-1
overiaid ® 1-1
Default debugger data type ® 6-1
Default language
effect of » 2-1
setting ® 2-1
Defauit output ® 2-1
changing ® 2-1
DEFINE command ® 3-3
Defined symbols* 3-3
DEPOSIT command ® 6-5
parameters ® 6-6
qualifiers ® 6-6
DISABLE BREAK command ® 4-6
Displaying memory ® 6-4
DO action % 4-5

Data type
debugger @ 6-1

ENABLE BREAK command * 4-6
ENABLE TRACE command® 4-6
EVALUATE command ® 6-3, 6-4
EXAMINE command ® 8-4, 6-5

Index-1

EXIT command ® 1-6

F

File
See Indirect command fite
See Log file
See ODL file
See STB file
@filespec command ® 2-3
Floating-point status word *® 3-1

G

GO command © 5-4

Indirect command file® 2-3

Invocation commands
nonoverlaid kerneie 1-2, 1-3
overlaid kernel ® 1-4, 1-6

L

Nonoverlaid kernel® 1-1
invoking® 1-1, t-2, 1-3

ODL fite
creating® 1-5
example ® 1-5
Operator
in value exprassions ¢ 6-4
Overlaid configuration
invoking® 1-4
Overlaid kernel ® 1-1
invoking® 1-3, 1-4, 1-6

P

Pathname @ 3-5
Permanent symbol® 3-1
Processor status word @ 3-1
Program symbol ® 3-2

and data types ¢ 6-1

Line number ® 3-1
Literal
with data types ® 6-1
l.og file® 2-2
default name® 2-2
example © 2-3
Logical predecessor ® 3-1
Logical successor® 3-1

Registers ® 3-1

/RETURN qualifier® 4-4

RSTS commands
invoking nonoverlaid kernel ® 1-3
invoking overlaid kernel®* 1-4, 1-6

MCR commands
invoking nonaverlaid kernel ® 1-2

invoking overtaid kernel® 1-4, 1-6

Memory
displaying ® 6-4

Mode
canceling®6-3
definition © 6-2
displaying ® 6-3
radix @ 6-2
symbol ® 6-2

2-Index

Scope* 3-4

default® 3-4

of variables ® 3-4

PC*3-4

segment-list ® 3-5

specifying ® 3-5
Scope prefix® 3-5
Segment

overlay ® 3-1
Segment-list

in pathname ® 3-5
SET BREAK command ® 4-3 to 4-5

SET LANGUAGE command ® 2-1
SET LOG command ® 2-2
SET MODE command ® 6-2
SET OUTPUT command® 2-2
SET SCOPE command ® 3-5
SET STEP command ® 5-3
SET TRACE command ® 4-3 to 4-5
SET TYPE command ® 6-2
SHOW BREAK command ® 4-5
SHOW CALLS command ® 4-1
display ¢ 4-1
SHOW MQDE command ® 6-3
SHOW OUTPUT command ¢ 2-2
SHOW SCOPE command ® 3-56
SHOW STEP command © 5-3
SHOW TRACE command®4-5
SHOW TYPE command ® 6-2
STB file® 3-2
STEP command © 5-1
Step condition
changing ®* 5-2
default®5-2
displaying ®* 5-3
restoring ® 5-3
STEP parameter ® 5-2
STEP sequence ® 5-1
Symbols ® 3-1
creating® 3-3
defined ® 3-3
in the debugger® 3-1
making unique ® 3-3
pathname element routine replacement ® 3-5
permanent ¢ 3-1
program ® 3-2
qualifying ® 3-3

T

Tracepoint
duration of*4-2, 4-5
effact of @ 4-2
enabling ® 4-6
setting® 4-2

)

Value expression ® 6-4

Value expression {cont'd.)
valid operators ® 6-4
Variable, hyphenated ¥ 6-5

Index-3

PDP-11 Symbolic Debugger
COBOL-81 User's Guide
AA-FAB3A-TK

READER'S Note: This form is for document comments only.

DIGITAL will use comments submitted on this form at

COMMENTS the company’'s discretion. If you require a written reply
and are eligible to receive one under Software Performance
Report {SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well organized? Flease make
suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

Assembly language programmer
Higher-level language programmer
Occasional programmer {experienced)
User with little programming experience
Student programmer
Other {please specify}

Coo0o0g

Name Date

Organization

Street

City State Zip Code
or Country

Na Postage
Necessary

if Mailed in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

S5G PUBLICATIONS ZK1-3/435
DIGITAL EQUIPMENT CORPORATICN
110 SPIT BRCOK ROAD

NASHUA, NEW HAMPSHIRE 03062-2698

Cut Along Dotted Line

