PDP~11 Symbelic Bebugger
FORTRAN-77 User's Guide

Order Number: AA-FAB4A-TK

December 1985

Revision/Update Information: This is a new manual.

Operating System and Version: See the Preface for detailed
information.

Software Version: PDP-11 Symbolic Debugger
Version 2.0

digital equipment corporation
maynard, massachusetts

First Printing, December 1985

The information in this docurnent is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation,
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and rnay
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Copyright ©1985 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this doc-
ument requests the user’s critical evaluation to assist in preparing future
documentation,

The following are trademarks of Digital Equipment Corporation:

DATATRIEVE Micro/RSTS RT

DEC Micro/RSX UNIBUS
DECmate PDP VAX

DECnet P/0OS VAXcluster
DECUS Professional VMS
DECwriter QBUS VT

FMS Rainbow Work Processor

RSTS
NicroPDP-11 Rex diilglitlall

ZK2958

This document was prepared using an in-house documentation production system.

Alt page composition and make-up was performed by TgX, the typesetting system
developed by Donald E. Knuth at Stanford University. TeX is a registered trademark of
the American Mathematical Society.

Contents

PREFACE vii
CHAPTER 1 INCLUDING DEBUGGER SUPPORT 1-1
1.1 HOW TO {NCLUDE THE DEBUGGER IN YOUR TASK 1-1
1.1.1 Invoking the Overlaid Configuration 1-2
1.1.2 Invoking the Nonoverlaid Configuration 1-3
1.1.3 Exiting the Debugger 1-4
1.2 FEATURES OF THE DEBUGGER 1-4
CHAPTER 2 CONTROLLING DEBUGGER INPUT AND OUTPUT 2-1
2.1 SETTING THE DEFAULT LANGUAGE 2-1
2.2 CHANGING THE DEFAULT OUTPUT 2-2
2.2.1 SET OUTPUT Command Parameters 2-2
222 The SHOW OUTPUT and CANCEL OUTPUT
Commands 2-2
2.3 USING LOG FILES 2-2
2.3.1 Log File Example 2-3
232 The SHOW LOG Command 2-3
2.4 USING INDIRECY COMMAND FILES 2-3

i#

CHAPTER 3 DEFINING SYMBOLS 3-1

3.1 KINDS OF SYMBOLS 341
3.1.1 Permanent Symbols 3-1
3.12 Program Symbols 3-2
3.1.3 Defined Symbols 3-3
3.2 MAKING SYMBOLS UNIQUE 3-3
3.21 Simple Pathnames 34
3.22 Pathnames in Overlaid Programs 3-5
3.2.3 The SET SCOPE Command 3-5

3.2.3.1 SET SCOPE Command Parameters © 3-8
3.23.2 The SHOW SCOPE and CANCEL SCOPE
Command ¢ 3-6

CHAPTER 4 CONTROLLING PROGRAM EXECUTION 4-1
4.1 DISPLAYING INFORMATION ON ACTIVE ROUTINE CALLS 4-1

4.2 THE EFFECTS OF BREAKPGINTS AND TRACEPOINTS 4-2

421 SET BREAK and SET TRACE Qualifiers ... 4-3

4.2.11 The /AFTER:n Qualifier ¢ 4-3
4.2.1.2 The /CALLS Qualifier ® 4-4
4213 The /RETURN Qualifier ¢ 4-4
4.2.2 SET BREAK and SET TRACE Parameters 4-4
4.2.2.1 The Address Parameter ¢ 4-4
42272 The WHEN Parameter © 4-5
4,223 The DO Parameter © 4-b
4.2.3 Commands Related to SET BREAK and SET TRACE . 4.5

CHAPTER 5 STARTING THE PROGRAM

5-1

5.1 EXECUTING A SPECIFIED NUMBER OF COMMANDS 5-1
5.1.1 STEP Command Cualifiers b-2

5.1.2 STEP Command Parameter 5-2

5.2 CHANGING THE DEFAULT STEP CONDITIONS 5-3
5.2.1 SET STEP Command Parameters 5-3

522 The SHOW STEP and CANCEL STEP Commands ___ 5-3

5.3 EXECUTING AN UNDETERMINED NUMBER OF COMMANDS 5-4
CHAPTER 6 MANIPULATING DATA 6-1
6.1 DATA TYPES IN THE DEBUGGER 6-1
6.2 DEBUGGER MODES 6-3
6.3 DETERMINING THE VIRTUAL ADDRESS OF SYMBOLS 6-4
6.3.1 EVALUATE Command Qualifiers 6-4

6.3.2 EVALUATE Command Parameters 6-5

6.4 VALUE EXPRESSIONS 6-5
6.5 DISPLAYING MEMORY LOCATIONS 6-5
6.5.1 EXAMINE Command Qualifiers 6-6

6.5.2 EXAMINE Command Parameter 6-7

6.6 ALTERING MEMORY LOCATIONS 6-7
6.6.1 DEPOSIT Command Qualifiers 6-7

6.6.2 DEPOQSIT Command Parameters 6-8

6.6.3 Depositing ASCIl Strings 6-8

6.6.4 Depositing Radix—-50 Strings 6-9

vi

CHAPTER 7 EXAMPLE DEBUGGING SESSION 7-1
7.1 DEBUGGING THE FUNCTION AVERGE 7-2
7.2 DEBUGGING THE SUBROUTINE SORT 7-6
7.3 TESTING THE FUNCTION MEDIAN 7-8

INDEX

TABLES
3-1 Debugger Permanent Symbols 31
6-1 FORTRAN-77 and DEBUG Data Types

6-2

Preface

Intended Audience

This manual is intended for FORTRAN-77 programmers who have read
and understand the PDP-11 Symbolic Debugger User’s Guide and know
how to use the host operating system.

Operating Systems and Versions

The PDP-11 Symbolic Debugger runs on the following operating systems
and versions:

VAX/VMS Version 4.0 or higher

VAX-11 RSX Version 2.0

RSX-11M Version 4.1 or higher

RSX-11M-PLUS Version 2.1 or higher

Micro/RSX Version 1.1 or higher

RSTS/E Version 9.0 or higher

Micro/RSTS Version 2.0 or higher

P/OS Version 2.0 with Professional Host Tool Kit Version 2.0 or
higher

P/0S Version 2.0 with PRO/Tool Kit Version 2.0 or higher

Structure of This Document

This manual is organized as follows:

Chapter 1 explains how to include support for the debugger in your
task and describes the commands you use to invoke the debugger.
It also lists the major debugger features for all users as well as the
debugger features that are specific to FORTRAN-77.

Chapter 2 explains how to configure the debugger’s default output,
make a record of a debugging session, and use a command file to
control the debugger.

vii

Chapter 3 describes the symbols the debugger recognizes and explains
how to define your own symbols. It also discusses strategies for
making symbols unique.

Chapter 4 explains how to set breakpoints and tracepoints in your
program,

Chapter 5 describes two methods of executing your program in the
debugger,

Chapter 6 discusses the data types the debugger recognizes, the

two modes of debugger operation, and a command that helps you
determine memory addresses and perform arithmetic. It also explains
how to examine and alter memory locations.

Chapter 7 gives an example of debugger use with a FORTRAN-77
program.

Associated Documents

The following list describes the content of each manual in the PDP-11
Symbolic Debugger documentation set.

viil

PDP-11 Symbolic Debugger User’s Guide. This manual explains general
use of the debugger with all supported languages.

PDP-11 Symbolic Debugger Installation Guide. This manual explains the
debugger installation procedure on all supported operating systems,
PDP-11 Symbolic Debugger Quick Reference Guide. The quick reference
manual lists the format of each debugger command and its qualifiers
and parameters.

PDP-11 Symbolic Debugger COBOL-81 User’s Guide. This manual gives
information to debugger users who program in COBOL-81.

NOTE

Where language-specific exceptions to the general case exist,
the information given in this manual, specific to FORTRAN-77,
takes precedence over general information presented elsewhere,

Conventions Used in This Document

The following are conventions that are followed throughout this manual:

Convention

Meaning

UPPERCASE

lowercase

[l

n
RSX-11

CTRL/a

RET

Uppercase words and letters in examples indicate that you
type the word or letter exactly as shown.

Lowercase words and letters in examples indicate that you
substitute a word or value of your choice.

Brackets in examples indicate optional elements.
A lowercase n indicates that you must substitute a value.

RSX-11 is used as a generic term for the RSX-11M,
RSX-11M-PLUS, and Micro/RSX operating systems.

The symbol CTRL/a indicates that you hold down the CTRL
key while you simultaneously press the specified letter key.
For example, CTRL/Z indicates that you hold down the
CTRL key and press the letter Z.

The symbol indicates that you press the RETURN key.

Chapter 1

Including Debugger Support

The PDP-11 Symbolic Debugger helps you find logical and programming
errors in a successfully compiled program that does not run correctly.
When you are ready to use the debugger on a program you must include
it in your task. This chapter explains how to include debugger support in
your task and describes the commands you issue to invoke the debugger.
It also summarizes the general debugger features listed in the PDP-11
Symbolic Debugger User’s Guide and lists those debugger features that are
available only to FORTRAN-77 users.

1.1 How te Include the Debugger in Your Task

You can include debugger support in your task, either as an overlaid
kernel or as a nonoverlaid kernel.

An overlaid debugger kernel occupies less than 4000 bytes of user pro-
gram space and can be included in your task by creating an overlay
descriptor file (ODL) that combines your program with the debugger.

You then compile, link, and run your program. You can use the overlaid
debugger kernel unless your program is overlaid and you are loading your
overlay segments manually. In this case, you must include the nonover-
laid debugger kernel because the overlaid kernel is loaded automatically,
and you cannot mix the two loading methods in a single task. If you want
to use the overlaid debugger kernel, read Section 1.1.1.

A nonoverlaid debugger kernel occupies about 5000 bytes of user space
and can be included in your task by using certain qualifiers when you
Jink your program. If you want to use the nonoverlaid kernel, refer to
Section 1.1.2

Including Debugger Support 1-1

1.%.1

i-2

Inveking the Overfaid Configuration

To use the overlaid debugger kernel, you must create an ODL file. The
following example shows an ODL file that correctly includes the overlaid
debugger in a user task. The source program to which this ODL file refers
is called MYPROG.FTN.

.ROOT USROT$, $DALL
USROT$: .FCTR MYPROG-$DROOT-LB:{1,1]1F4POTS/LE
@LB: (1,1]PDPDBG

.END

As shown here, the ODL file you create for your task must include an
FCTR statement that concatenates your program with part of the debugger
kernel ($DROOT) and the FORTRAN-77 library (F4POTS). This FCTR
statement must be declared in the ROOT statement as a co-tree with the
rest of the debugger kernel ($DALL). Also, your ODL file must include
PDPDBG.ODL, which is the debugger kernel ODL file, immediately
before the END statement. Note that you can specify the elements in the
FCTR statement in any order and that the kernel segment and library can
be appended to an overlaid source program. For more information on
ODL files and overlay structures, see the Task Builder manual for your
operating system.

Once you create the ODL file, you must compile, link, and run your
program to invoke the debugger. When you compile your program, you
should create a listing file and refer to it during the debugging session to
follow program flow and to reference source code line numbers,

The following MCR and DCL commands are used to invoke the debugger.

FOR MCR USERS

>FT7 myprog,myprog/-SP=myprog/DB/-0P/TR
>TKB myprog, ,myprog=myprog/MP
>RUN myprog

The TKB command in the preceding example contains two commas
between the file names on the left side of the equal sign because one of
the TKB command parameters has been omitted. This command specifies
that TKB create only an object file and a symbol table file. You must create
a symbol table file for the debugger to have its full symbolic capability.

Including Debugger Support

FOR DCL USERS

§ FDRTRAN/F77/DEBUG/NOOP/TRACEBACK/LIST myprog
$ LINK/SYMBOL.TABLE myprog/OVERLAY_DESCRIPTION
$ RUN ayprog

NOTE

RSTS and Micro/RSTS users must replace the RUN command
with the DEBUG command as follows:

$ DEBUG myprog
Also, RSTS users should substitute “LB:” for “LB:{1.1].

YMS users must use the MCR commands; that is, they must
insert "MCR” in front of “F77” in the compile command and in
front “TKB” in the task build command. For example:

$ MCR F77 myprog,cyprog/-SP=myprog/DB/-0P/TR
$ MCR TXB myprog, ,myprog=myprog/MP

1.1.2 Invoking the Nonoverlaid Configuratien

When you want to invoke the debugger with the nonoverlaid kernel,

you must compile, link, and run your program. When you compile

your program, you should create a listing file and refer to it during the
debugging session to follow program flow and to reference source code
line numbers. The following MCR and DCL commands are used to invoke
the debugger.

FOR MCR USERS

>FT7 myprog,uyprog/-5P=uyprog/DB/-0P/TR
>TKB nyprog,.myprog=myprog,LB:[1,1}PBPDBG/DA,LB:{1,1}F4POTS/LB
>RUN myprog

The TKB command in the preceding example contains two commas
between the file names on the left side of the equal sign because one of
the TKB command parameters has been omitted. This command specifies
that TKB create only an object file and a symbol table file. You must create
a symbol table file for the debugger to have its full symbolic capability.

Inciuding Debugger Support 1-3

FOR DCL USERS

$ FORTRAN/F77/DEBUG/NOOP/TRACEBACK/LIST LYProg
$ LINK/DEBUG=LB: [t,1]PDPDBG/SYMBOL nyprog,LB: [1,1]F4POTS/LIBR
$ RUN myprog

NOTE

RSTS and Micro/RSTS users must replace the RUN command
with the DEBUG command as follows:

$ DEBUG myprog
Also, RSTS users should substitute “LB:” for “LB:[1.1].

VMS users must use the MCR commands; that is, they must
insert "MCR” in front of “F77” in the compile command and in
front “TKB” in the task build command. For example;

$ MCR F77 wyprog,myprog/-SP=myprog/DB/-0F/TR
§ MCR TKB wyprog, .myprog=myprog,LB: [1, 1] PDPDBG/DA,LB: [1, 1] FAPOTS/LB

1.1.3 Exiting the Debugger
To leave the debugger, type the following command in response to the
debugger’s prompt:
DBG>EXIT

This command causes orderly termination of the debugger on all operating
systems,

1.2 Features of the Debugger

The PDP~11 Symbolic Debugger has important features that are available
for all debugger users.

¢ It is interactive.

* It is symbolic.

® It supports overlaid programs.

e It gives online HELP.

1-4 Incleding Debugger Support

In addition, the debugger supports the following features for
FORTRAN-77 users:

¢ Configures the debugger for FORTRAN-77 users using the SET
LANGUAGE command {see Chapter 2)
» Recognizes FORTRAN-77 data types (see Chapter 6)

¢ Supports two new qualifiers, /L SPACE and /D_SPACE, for use with
the EXAMINE and DEPOSIT commands (see Chapter 6)

Including Debugger Support 1-5

Chapter 2

Controlling Debugger Input and Output

This chapter explains how to set the default programming language to
FORTRAN-77 and describes what happens when this default is set. It also
explains how to configure aspects of the debugger input and output format
that are not specific to programming in FORTRAN-77.

2.1 Setting the Default Language

When you enter the debugger, an informational message is displayed,
indicating the programming language in which the debugger expects your
program to be written. If this message does not say FORTRAN, issue the

following comnmand:

DBG>SET LANGUAGE FORTRAN

This command informs the debugger that your program is written in
FORTRAN-77. The debugger uses this information to control how it
interprets and displays information.

When the language is set to FORTRAN, the debugger does the following:

e Interprets input and displays output in decimal integer format by
default

s Recognizes the FORTRAN logical operators .GT,, .LT,, .GE., .LE., .EQ.,
NE., .NOT., .AND,, .OR,, .XOR,, and .EQV.

¢ Displays structured variables in column major order; if you examine
a structured variable, the first item displayed is the item in Row 1,
Column 1; the second item is the item in Row 2, Column 1; the third
ijtem is in Row 3, Column 1; and so on

Contrafiing Debugger Input and Output 2-1

2.2 Changing the Default Output

By default, the debugger’s output configuration is NOLOG, TERMINAL,
NOVERIFY. Change the default output with the SET OUTPUT command

as follows:
SET OUTPUT parameter [,parameter [,parameter]l
[NO]1LOG
[NOITERMIKAL
[NO]VERIFY

2.2.1 SET OUTPUT Command Parameters

The parameters you use with the SET OUTPUT command configure
the debugger’s output. The [NOJLOG parameter determines whether

or not a record of the debugging session is written in a log file. The
[NOJTERMINAL parameter determines whether or not the debugger’s
output shows on your terminal. The [NO]VERIFY parameter determines
if commands in an indirect command file are displayed on your terminal
and/or recorded in your log file before they are executed.

2.2.2 The SHOW QOUTPUT and CARNCEL OUTPUT Commands

The SHOW OUTPUT command causes a message describing the debug-
ger’s current output configuration to be displayed. However, if the output
is set to NOTERMINAL, no message displays at your terminal.

The CANCEL OUTPUT command returns the output configuration to the
default of NOLOG, TERMINAL, NOVERIEY.,

2.3 Using Log Files

When you issue the SET QUTPUT LOG command, the debugger begins
logging to a log file called DEBUG.LOG. If you want the debugger to write
log information to another file, issue the following command:

SET LOG filespec

This command causes the debugger to write log records to the file named
by filespec.

2-2 Controlling Debugger Input and Output

2.2.1 Leg File Example

The following is an example of a log file.

SHOW QUTPUT

1%DEBUG-I-0UTPUT: noverify, terminal, logging to "SY:[33,52]MYPROG.LOG;1"
SET LANGUAGE FORTRAN

SHOW LAKGUAGE

1%DEBUG-I-CURRLANGF7Y, Current language is FORTRAN-77

SET LOG RECORD

This log file is closed when the command SET LOG RECORD is issued.
The commands and responses that follow this command are written to a
new log file called RECORD.LOG.

2.3.2 The SHOW LOG Command

You can display the name of the log file the debugger is currently using
by issuing the SHOW LOG command. If the output is set to NOLOG, the
debugger displays a message informing you that it is not writing records
to the current log file,

2.4 Using Indirect Command Files

Indirect command files are files that contain a series of debugger com-
mands, Any valid debugger command can be included in an indirect
command file, but none of thern are checked for valid syntax before they
are executed. Instead, the debugger issues an error message when it en-
counters commands with invalid syntax and continues execution with the
next line in the command file. You can include comments in your indirect
command file if you preface them with an exclamation mark (!).

Execute an indirect command file as follows:
@filespec

You can invoke an indirect command file in response to the debugger
prompt (DBG>>) or in another indirect command file. The default file
extension for indirect command files is CMD.

Eontrolking Debugger Input and Output 2-3

Chapter 3

Defining Symbols

The PDP-11 Symbolic Debugger allows you to refer to memory locations
and program data symbolically. This chapter explains the symbols the
debugger recognizes and how to define symbols.

3.1 Kinds of Symhels

You use symbols to refer to memory locations without having to specify
the virtual address of the location. The symbols that the debugger recog-
nizes can be divided into three categories: permanent symbols, program
symbols, and defined symbols.

3.1.1 Permanent Symbels
You can refer to the debugger’s permanent symbols at any time during

a debugging session. Table 3-1 lists these symbols and tells what they
represent.

Table 3-1: Debugger Permanent Symbols

Symbol Meaning

%R0 - %R5 General purpose registers
%R6 or %SP Stack pointer

%R7 or %PC Program counter

%F0 - %F5 Floating-point registers

Oefining Symbols 3-1

Table 3—-1 (Cont.): Debugger Permanent Symbols

Symbol Meaning

%PS Processor status word
%FS Floating-point status word
%LINE nnn Source code line number
%NAME name

%SEGMENT name Overlay segment name

\ Current value

Current location
RET Logical successor

Logical predecessor

3.1.2 Program Symbhels

When you build your program with debugger support, the Task Builder
defines program symbols for you. These symbols are called program
symbols because they refer to records in the symbol table (STB) file
for your source code. In the STB file, the program symbol names are
associated with virtual addresses.

The S5TB file contains symbol records for the following program symbols:

e Names of user written routines

¢ ENTRY statement names

¢ Routine entry point labels

¢ Variable names (but not routine parameter names)

® Source code line numbers

Source code line numbers are a special case because the STB file does not

associate them with virtual addresses. Instead, source code line numbers
are associated with the program counter (PC),

3-2 Defining Symbols

NOTE

If you do not name the main module of your program using a
FORTRAN program statement, the debugger assigns the symbol
MAIN. to it. Therefore, you must use this symbol to refer to
the main module of your program if it is unnamed. Also, the
debugger always displays .MAIN. as the name of an unnamed
module.

3..3 Defined Symbols

During a debugging session, you can create a new debugger symbol

or change an existing symbol by using the DEFINE command. These
symbols remain in effect until you terminate the debugging session. The
DEFINE command has the following format:

DEFINE symbol=address

The symbol parameter specifies what name you want to use to refer to
program data or program addresses. The following restrictions apply to a
debugger symbol name:

¢ It may be composed of only alphanumeric characters (the letters A to Z
and the numbers 0 through 9) and dollar signs ($).

o It may not be more than 6 characters long.
s It may not begin with a number.
The address parameter identifies the portion of memory to which the

symbol refers. It can be either a previously defined symbolic address or a
virtual address denoted by a simple address or address expression.

3.2 WMaking Symbels Urigue

If the program you are debugging consists of more than one routine, you
must pay attention to the scope of symbols to which you refer because the
debugger recognizes only those symbols that are in the current scope. The
scope of a symbol is the routine in which the symbol is declared.

The default scope is called the PC scope. At the beginning of a debugging
session, the PC scope is the main routine. The PC scope, however, is
dynamic; as you debug your program, the PC scope is always the routine
you are currently executing.

Defining Symbols 3-3

If you want to refer to symbols that are in a scope other than the default
scope, you can specify a different scope in one of three ways:

¢ Use a pathname

* Use an extended pathname for an overlaid program

® Use the SET SCOPE command

These three methods of specifying scope are discussed in the following
sections.

3.2.1 Simpie Pathnames

A pathname describes a program location. It consists of program location
labels separated by the backslash character (\). A program location label
may be the name of a routine, a line number, an array reference, or a
symbol. Valid formats for a nonoverlaid program are:

routine\routine [\}LINE nnn]
routine\routine [\symbol [(subscript-1list)]}

The pathname element routine is the name of the routine in which the
symbol occurs. You must specify this pathname element twice to signal
to the debugger that the symbol to which you are referring is not in

the current scope. If you do not specify the routine twice, the debugger
assumes that the routine name is a variable and looks in the current scope
for that variable.

The element %LINE nnn specifies a line number in the routine with nnn
representing the decimal integer number of the line, and the pathname
element symbol denotes a program symbol or a symbol you defined
previously for use in the routine.

The subscript-list is used when the symbol refers to an array, and you
want to specify only one element of that array. Subscript-lists can be
expressions, but all integers in them are interpreted in decimal radix,

regardless of the default radix mode.

3-4 Defining Symbols

3.2.2 Pathnames in Overlaid Programs

The pathname syntax for overlaid programs is an extended form of the
pathname syntax for nonoverlaid programs. Because it is possible for a
routine to appear at more than one place in an overlay tree, a method
of uniquely identifying the routine is required. The extended pathname
syntax contains a list of overlay segment names at the beginning of the
pathname.

Valid pathname formats for an overlaid program are:

segment-list\routine\routine (\}LINE nan]
segment—liat\routina\routina[\eymbol[(subscript-list)]]

Segment-list specifies one or more segment names, in the following
format:

YSEGMENT name [\name]

The keyword %SEGMENT is optional, but it must be specified when you
reference one of two or more segments in your overlay structure that have
the same name.

If you specify several segment names, you must specify them in the order
of segment branching; specify the segment name nearest the program root
first.

3.2.3 The SET SCOPE Command

The SET SCOPE command establishes the specified program unit as
the one to be used for symbol interpretation. The scope established by
the SET SCOPE command becomes the default for all symbols specified
without a pathname.

The SET SCOPE command has the following format:

SET SCOPE pathname

Defining Symbols 3-5

3.2.3.1 SET SCOPE Command Parameters

The pathname parameter can be a scope prefix, the number 0, or the
backslash character (\).

A scope prefix may be thought of as a truncated pathname. It describes a
location in terms of its overlay segment name (if any) and routine name.
A scope prefix does not specify a particular line number, array reference,
or symbol, as a pathname does. The format of a scape prefix is:

[segment-list\]routine

Segment-list names the overlay segment that contains the routine to
which you are referring. Routine names the routine to which you are
setting the scope. Note that in this case you need not specify the routine
twice because the command SET SCOPE tells the debugger to expect a
routine name.

Instead of naming the routine to which you want to set the scope, you
can use one of two symbols, the number 0 or the backslash (\). The

0 symbol specifies that the scope be reset to the default, which is the

PC scope. In other words, after issuing the command SET SCOPE 0,

the scope is dynamic and is always the routine you are debugging. The
backslash symbol specifies that symbols referenced without pathnames be
interpreted as global symbols.

3.2.3.2 The SHOW SCOPE and CANCEL SCOPE Command

Two commands, SHOW SCOPE and CANCEL SCOPE, are useful when
you are adjusting the scope of the debugger.

To determine the current scope, use the command:
DBG>SHOW SCOPE

To cancel the scope established by the SET SCOPE command, use the
cormrnand:

DBG>CANCEL SCOPE

The CANCEL SCOPE command causes symbols without scope prefixes to
be interpreted as if they occurred in the routine that is currently executing.
In its effect, the CANCEL SCOPE command is equivalent to the command
SET SCOPE 0.

3-5 Defining Symbols

Chapter 4
Controlling Program Execution

Controlling program execution is an important aspect of debugging, To
do this effectively, you must know what code is executing and how your
program transfers control from one part of your program to another. This
chapter explains the commands that help you debug program execution
and control

4.1 Displaying Information on Active Routire Calls

The SHOW CALLS command provides information about the sequence
of currently active routine calls. For each call, the debugger displays one
line of information, The first line displays information about the current
routine; the next line (if any) displays information about the routine
that called the current routine, The listing ends with information on the
routine that originated the call path to the current routine.

Each line of information displayed by the debugger contains the following:
¢ The name of the calling module and routine.
e The name of the called routine.

¢ The line number of the call.

® The absolute and relative value of the PC in the calling routine at the
time that control was transferred. Note that the PC values refer to the
location of the instruction following the call.

The SHOW CALLS command has the following format:

SHOW CALLS [call-count]

Comtrolling Program Execution 4-1

The optional call-count parameter is a decimal integer in the range 1
through 32767 that specifies the number of calis to be displayed. If you
do not specify the call count, or if the call count exceeds the current
number of calls, information on all calls is displayed.

4.2 The Effects of Breakpoints and Tracepoints

Once you decide where the important points in your program are, you are
ready to set either breakpoints or tracepoints. This section describes the
effects of these eventpoints so you can decide which program controller to
use at a specific important program event.

A breakpoint is a program location where the debugger does the follow-

ing:

1. Suspends program execution immediately before the instruction at the
specified location is executed.

2. Tests the value expression in the WHEN clause if one was specified in
the SET BREAK command (see Section 4.2.2,2). If this value expression
is false, program execution continues. However, if the value expression
is true, activation of the breakpoint continues as described in Step 3.

3. Displays the name or the virtual memory location where execution has
been suspended.

4. Executes commands in a DO sequence if one was specified in the SET
BREAK command (see Section 4.2.2.3).

5. Issues its prompt.

When a tracepoint is activated, the debugger does the following:
1. Suspends execution immediately before the instruction at the specified
location is executed.

2. Tests the value expression in the WHEN clause if one was specified in
the SET TRACE command (see Section 4.2.2.2), If this value expression
is false, program execution continues. However, if the value expression
is true, activation of the tracepoint continues as described in Step 3.

3. Reports that execution has reached the traced location.

4. Executes commands in a DO sequence if one was specified in the SET
TRACE command (see Section 4.2.2.3).

5. Resumes execution at the current program counter.

4-2 Controlling Program Execution

These eventpoints remain in effect until the debugging session ends or
until they are canceled or replaced.

To set a breakpoint, issue the SET BREAK command in the following

format:
SET BREAK [/qualifier][address] [WHEN(value-expr)] [DO{action}]
JAFTER:n
/CALLS
/RETURN

To set a tracepoint, issue the SET TRACE command in the following

format;
SET TRACE [/qualifier][address] [WHEN(value_expr)] [DO{action}]
/AFTER:n
/CALLS
/RETURN

4.2.1 SET BREAK and SET TRACE Qualifiers

This section explains the qualifiers you can use with both the SET BREAK
and the SET TRACE commands. The qualifiers have the same effect on
both commands.

4.2.1.1 The /AFTER:n Qualifier

If you specify the /AFTER:n qualifier, the debugger takes action at the nth
activation of the specified location. It then takes action at each succeeding
activation of the location. For example, if you specify a value of 3 for n,
the breakpoint or tracepoint is activated when the debugger encounters
the location more than two times, that is, on the third encounter, fourth
encounter, and so on. The highest valid value of n is 255.

A special case exists. The /AFTER:0 qualifier has the same effect as
/AFTER:1, which activates the breakpoint or tracepoint the first time the
debugger encounters a location. However, the /AFTER:0 qualifier cancels
the program controller once it has been activated. Therefore, /AFTER:0
allows you to set a program controller that you want to use only on the
first encounter of a program location.

Controlling Program Execution §-3

4.2.1.2 The /CALLS Qualifier
The /CALLS qualifier sets a breakpoint or tracepoint in two places for all
commands that transfer control to a routine:
© After the calling instruction, but before the first instruction in a routine

® After the last instruction in a routine, but before the first instruction
following a routine call

In other words, if you use the /CALLS qualifier to set a program con-
troller, it is set at all JSR and RTS instructions, including those for system
routines,

If you specify /CALLS, you cannot specify any other qualifier in the
command.

4.2.1.3 The /RETURN Qualifier

The /RETURN qualifier sets a breakpoint or tracepoint immediately

after the last instruction in a calling routine, but before the first instruction
following a routine call, that is, at an RTS command. You must specify the
routine return you want to break or trace by using the address parameter
explained in Section 4.2.2.1.

4.2.2 SET BREAK and SET TRACE Parameters

This section explains the command parameters you use with SET BREAK
and SET TRACE. The effect of the parameters is the same for both
commands,

4.2.2.1 The Address Parameter

The address parameter specifies the instruction address where you want
a program controller set. It may be in the form of a simple address or an
address expression. If you do not specify the /CALLS qualifier, you must
specify this parameter.

&-4 Controlling Program Execution

4.2.2.2 The WHEN Parameter

The WHEN parameter allows you to control whether or not a program
controller is activated based on a condition specified by the value-expr
parameter. For example, if you want a breakpoint to be activated only
when a variable in your program called ADD is equal to 1, issue the
following command:

DBG>SET BREAK %LINE & WHEN(ADD.EG.1)
This command causes the debugger to test the contents of the variable

ADD before it activates the breakpoint. If ADD is not equal to 1, the
breakpoint is not activated.

4.2.2.3 The DO Parameter

The DO parameter causes the debugger to execute one or more debugger
commands when a breakpoint or tracepoint is activated. The action

may be a single command, a list of commands separated by semicolons,
or an indirect command procedure. The debugger executes DO action
commands in the order in which they appear, but it does not check the
syntax of these commands before they are executed. The number of levels
to which you can nest DO action commands is limited only by the amount
of dynamic storage currently available,

423 Commands Related to SET BREAK and SET TRACE

Four commands (SHOW BREAK, CANCEL BREAK, DISABLE BREAK, and
ENABLE BREAK) are related to the SET BREAK command. Four other
commands (SHOW TRACE, CANCEL TRACE, DISABLE TRACE, and
ENABLE TRACE) are related to the SET TRACE command. This section
describes the use of these commands.

To see what program controllers are in effect, issue either the SHOW
BREAK or the SHOW TRACE command. The debugger responds to these
commands with a message for either each breakpoint or each tracepoint
that is set.

Once set, a program controller remains active for the duration of the
debugging session unless you use the CANCEL BREAK or CANCEL
TRACE command to cancel it or set another breakpoint or tracepoint at
that program location. If you set a program controller in a location where
one already exists, the second program controller set replaces the one set
first.

Controlling Program Execution 4-5

The CANCEL BREAK command has the following format:

CANCEL BREAK{/qualifier] [address]
/ALL
/CALLS
/RETURN

The CANCEL TRACE command has the following format:

CANCEL TRACE[/qualifier][address]
JALL
/CALLS
/RETURN

The /ALL qualifier cancels either all breakpoints or all tracepoints cur-
rently set in a program. The /CALLS qualifier cancels either all the
breakpoints or all the tracepoints at JSR and RTS instructions. The
/RETURN qualifier cancels the program controller that is set at the RTS
instruction of a routine. You must use the address parameter to specify
which routine contains the program controller.

To prevent breakpoints and tracepoints from being activated, issue either
the DISABLE BREAK or the DISABLE TRACE command. DISABLE
commands do not cancel program controllers, they prevent the activation
of program controllers until you enable them.

To enable program controllers, use the ENABLE BREAK cr the ENABLE
TRACE command. You do not have to re-specify breakpoints or trace-
points when you use these commands.

4-8 Controlling Program Execution

Chapter 5

Starting the Program

When you are ready to execute your FORTRAN-77 program, use either
the STEP command or the GO command. This chapter explains how to
use these commands.

5.1 Executing a Specified Number of Commands

To execute a specified number of commands in your program, use the
STEP command. The STEP command causes the debugger to execute a
single line or instruction, or a group of lines or instructions.

When you issue a STEP command, the debugger continues executing your
program until one of the following occurs:

A STEP sequence is complete

A breakpoint occurs

An error is detected in your program

Your program completes execution

You issue a control character command, such as CTRL/C

A step sequence is considered complete only when the specified number
of lines or instructions has been executed, regardless of intervening events.

The STEP command has the following format:

STEP{/qualifier] [step-count]

/INTO
JOVER
/INSTRUCTION
JLINE

Stanting the Program 5-1

51.1 STEP Command Qualifiers

The /INTO and /OVER qualifiers control how the debugger treats called
routines in your program. The /INTO qualifier specifies that the debugger
step through the called routine. However, the /OVER qualifier specifies
that the debugger stop stepping at a routine call, execute the called
routine, and resume stepping when control is returned to the calling
routine. Note that called routines can be either a routine you wrote or

a system routine. Lines in called routines are not counted to satisfy a
step-count when the /OVER qualifier is in effect.

The /LINE and /INSTRUCTION qualifiers determine what the debugger
counts to satisfy a step-count. The /LINE qualifier specifies that the
debugger count the execution of one line of your source program as a step.
However, the /INSTRUCTION qualifier specifies that the debugger count
each instruction in the PDP-11 machine code as a step. Therefore, if a
line in your program translates to more than one PDP-11 machine code
instruction, a single STEP/INSTRUCTION command does not execute
that entire source program line,

Using these qualifiers with the STEP command overrides the default step
conditions or step conditions specified by the SET STEP command.

5.1.2 STEP Command Parameter

The step-count parameter specifies the number of source code lines or
PDP-11 instructions (depending on how the step conditions are config-
ured) you want the debugger to execute. Step-count must be given as a
decimal integer.

Note that only executable lines, not comments or blank lines, are counted
to satisfy a step-count.

§-2 Starting the Program

5.2 Changing the Default Step Conditions

If you issue the STEP command without qualifiers when you start up the
debugger, the debugger executes your program according to its default
step conditions. By default, the debugger steps by line and counts only
lines in the main routine to satisfy a step count (i.e.,, /LINE/OVER).

Use the SET STEP command to change the default debugger step con-
ditions. Once you change these conditions, the debugger executes the
STEP command according to the conditions you set if you issue it without
qualifiers.

The SET STEP command has the following format:

SET STEP parameter[,parameter]
INTO
OVER
INSTRUCTION
LINE

5.2.1 SET STEP Command Parameters

The SET STEP parameters have the same effect as the qualifiers to the
STEP command. That is, the INTO and OVER parameters control whether
the debugger steps into a called routine or suspends stepping to execute
the called routine. The INSTRUCTION and LINE parameters control
what the debugger counts to satisfy a step-count. INSTRUCTION tells the
debugger to count all PDP-11 instructions, but LINE tells the debugger to
count only source code lines.

522 The SHOW STEP and CARCEL STEP Commands

To display the current step conditions, issue the following command:
SHOW STEP

To restore step conditions to the debugger’s default, issue the following
command:

CANCEL STEP

Starting the Program 5-3

5.3 Executing an Undetermined Number of Commands

If you want to execute an undetermined number of commands in your
program, use the GO command. The GO command instructs the debugger
to execute your program until one of the following occurs:

Your program terminates,

A breakpoint is encountered.

A pending STEP sequence is completed.

An error is detected in your program,

You jssue a control character command, such as CTRL/C.

When you issue the GO command at debugger start-up, your program
begins to execute as if you had built it without debugger support.

The GO command has the following format:

G0 [address]

The address parameter allows you to specify an address at which to
start program execution. It can be any legal simple address or address
expression,

5-4 Starting the Program

Chapter &
Manipulating Data

This chapter describes how to manipulate and alter data in your program
using the EVALUATE, EXAMINE, and DEPOSIT commands. It also
includes information on the concepts you must understand before using
these commands.

6.1 Data Types in the Debugger

The debugger associates data types with literals, program symbols, and
memory addresses. The data types of program symbols and memory
addresses are assigned by the compiler. The data type of a literal depends
on the format of the literal. The following list of the literal data types that
the debugger supports explains how these data types are associated with
literal.

* The data-type integer is associated with literals that do not contain a
decimal point.

» Literals that contain decimal points are associated with the data-type
floating point or double-precision floating point (D—FLOAT).

¢ The quoted string data type is associated with strings that are enclosed
in quotation marks.

If a program symbol or memory address is not assigned a data type by the
compiler, the debugger uses a default data type to interpret location. The
default data type for FORTRAN-77 is word integer. You can change the

Manipulating Data 6-1

default data type with the SET TYPE command. This command has the
following format:

SET TYPE datatype
ASCII[:n]
BYTE
D_FLOAT
FLOAT
LONG
INSTRUCTION
RADS0O
WORD

Note that, in most cases, you need not be concerned about the default
debugger data type because the compiler assigns data types to your
program locations. Therefore, it is unlikely that the debugger will use its
default data type to interpret any of your program locations. Table 6-1
shows how the debugger interprets the data types used by the
FORTRAN-77 compiler.

Table 6-1: FORTRAN-77 and DEBUG Data Types

FORTRAN-77 Equivalent

Data Type DEBUG Data Type
BYTE BYTE

LOGICAL WORD

LOGICAL=] BYTE

LOGICAL#2 WORD

LOGICAL#=4 LONG

INTEGER WORD

INTEGER*2 WORD

INTEGER*4 LONG

REAL FLOAT

REAL+4 FLOAT

REAL+8 D_FLOAT

DOUBLE PRECISION D_FLOAT

COMPLEX Use two FLOAT numbers
COMPLEX=*8 Use two FLOAT numbers

6-2 Manipulating Data

Table 6—1 (Cont.): FORTRAN-77 and DEBUG Data Types

FORTRAN-77 Equivalent

Data Type DEBUG Data Type
CHARACTER*len! ASCII[:n}!

Radix-50 RAD50
MACRO-11 Instruction INSTRUCTION

Len and n bath represent the same thing: the number of characters specified. This number can be
any integer from 1 through 255.

To determine the data type in effect, you can issue the SHOW TYPE
command. This command causes the debugger to display an informational
message that tells you the currently active data type.

6.2 Debugger Modes

The PDP-11 Symbolic Debugger supports radix modes and symbol modes.
These modes work together to control the form in which the debugger
interprets and displays information, The default debugger modes for
FORTRAN-77 are a decimal radix mode and a symbolic symbol mode.
When these modes are in effect, the debugger interprets and displays
numbers as decimals. It also displays the symbol that refers to a memory
address, instead of the address itself,

If you do not want to use these default modes, specify the mode you want
to use by issuing the SET MODE command or by specifying a mode qual-
ifier with the EXAMINE, EVALUATE, or DEPOSIT commands explained

later in this chapter. The SET MODE command has the following format:

SET MODE mode [,model
BINARY
DECIMAL
HEXADECIMAL
OCTAL
{NO1SYMBOL

The radix modes BINARY, DECIMAL, HEXADECIMAL, and OCTAL
determine how integers in addresses and value expressions are interpreted
and displayed. For example, the address 1010 can refer to four different
locations, depending on which radix mode is in effect when a command
containing that address is issued.

Manipulating Data 6-3

[NOJSYMBOL determines whether symbols, such as variable names in
your program, are displayed symbolically or by their numeric equivalents.
It also determines how the processor status word (%PS) and floating-point
status word (%FS) are displayed. The default is SYMBOL. Note that
[NOJSYMBOL only affects the debugger display because you can always
enter data in either symbolic or numeric form.

To cancel modes established by the SET MODE command, issue the
following command:

DBG>CANCEL MODE
This command returns the mode settings to their defaults.
To have the current modes displayed, issue the following command:

DBG>SHOW MODE

6.3 Determining the Virtual Address of Symbols

Before you examine and modify memory, you should know how to
determine what virtual addresses are associated with your program
symbols. You can determine this association using the EVALUATE
command. By adding or subtracting, an offset you also can determine the
addresses of higher and lower memory locations. This command has the
following format:

EVALUATE[/qualifier] expression
/ADDRESS address
/BINARY value expreesion
/DECIMAL
/HEXADECIMAL
/OCTAL

8.3.1 EVALUATE Command Qualifiers

If you issue the EVALUATE command with a simple address (one without
operators) and without the /ADDRESS qualifier, the debugger displays
the contents of the specified memory location.

The /BINARY, /DECIMAL, /OCTAL, and /HEXADECIMAL qualifiers
are radix modes. If you specify a radix mode qualifier, integers in the
expression parameter are interpreted in the specified radix and values are
displayed in that radix.

6-4 Manipulating Data

6.3.2 EVALUATE Command Parameters

The expression parameter can be either an address expression or a value
expression. If you want the debugger to determine the value of the
expression using the address of the specified location, you must specify
the /ADDRESS qualifier. If you do not use the /ADDRESS qualifier, the
value of the expression is determined using the contents of the specified
location. Note that you can only evaluate an expression that contains
values that are resident.

6.4 Value Expressions

Value expressions can be specified with the EVALUATE and DEPOSIT
commands. If a value in the expression refers to a memory location, the
debugger performs the specified operations on the contents of the memory
location, as opposed to the address of the location. These values have the
data type associated with the memory location.

The following are legal operators and delimiters in value expressions listed
in order from highest to lowest precedence.

¢ Parentheses

¢ Unary minus

Multiplication and division

Plus and minus

Quoted strings cannot be combined with debugger operators to form a
value expression.

6.5 Displaying Memory Locations

The EXAMINE command lets you look at the contents of a memory
location. You can display the contents of any virtual address or any
resident location described by a debugger permanent symbol, defined
symbol, or program symbol. It has the following format:

EXAMINE [/qualifier] address
/ASCIT[:n]
/BYTE
/D_FLOAT
JFLOAT

Manipulating Data 6-5

/INSTRUCTION
/LONG

/RADEO

/WORD

/BINARY
/DECIMAL
JHEXADECGIMAL
/OCTAL

/ [ND] SYMBOL

/D_SPACE
/I_SPACE

6.5.1 EXARMNE Command Qualifiers

You can use data type and mode qualifiers with the EXAMINE command.
These qualifiers control how the contents of the location you examine
are displayed and how the address you specify is interpreted. They
override the data type and mode specified with a SET TYPE or SET
MODE command,

Two new qualifiers, /I._SPACE and /D_SPACE, have been defined for
use by FORTRAN-77 users who have I- and D-space support on their
systems. Consult your system manager to determine if your operating
system provides I- and D-space support.

If your system supports I- and D-space, you can use the JL_SPACE and
/D_SPACE qualifiers with the EXAMINE command when you know that
the item you are examining is stored in either the I-space (instruction
storage) or D-space (data storage) portion of memory. Using no qualifier,
or any qualifier except /INSTRUCTION or /I_SPACE, with EXAMINE
causes the debugger to examine a D-space address. For example, the
following command causes the Debugger to examine line 4 of the program
code in D-space:

DBG>EXAMINE JLINE 4

To examine an I-space address, you must use /INSTRUCTION or
/1-SPACE with the EXAMINE command. For more information on
I-space and D-space, see your operating system documentation.

6-6 Manipulating Data

6.5.2 EXAMINE Command Parameter

The address parameter specifies the location you want to display. It can
be a simple address or an address expression.

6.6 Altering Memory Locations

The DEPOSIT command changes the value of a location. You can deposit
values into any resident program location. The DEPOSIT command has
the following format:

DEPOSIT [/qualifier] address=value expression[,value expression]

/ASCII:n]

/BYTE

/D.FLOAT

/FLOAT

/LONG

/RADBO

/WORD

/BINARY
/DECIMAL
/JHEXADECIMAL
/OCTAL

/D_SPACE
/I_SPACE

§.6.1 DEPOSIT Command Qualifiers

You can use mode and data-type qualifiers with the DEPOSIT command.
The mode qualifiers determine what radix mode, or numerical base, the
debugger uses to interpret the expressions you specify. The data-type
qualifiers control how the debugger interprets the value you specify.

Note that although these qualifiers allow you to deposit values in a data
type other than the one associated with the memory location to which you
are depositing, they do not alter the data type of the location. Therefore,
your program treats the value as if it were of the data type associated
with the location, and the debugger still uses this data type to control

its interpretation of the location if you examine its contents later in the
debugging session. The debugger can be instructed to treat the location in
the data type of the value you deposited if you use a data type qualifier
with the EXAMINE command.

Manipulating Data 6-7

FORTRAN-77 users who have I- and D-space support on their systems
can use the new /I SPACE and /D_SPACE qualifiers. (See your system
manager to find out if your operating system provides I- and D-space
support.) You use these qualifiers when you know that the item you are
depositing should be stored in the I-space portion of memory or in the
D-space portion of memory. For more information on I-space and D-space
see your operating system documentation.

6.6.2 DEPOSIT Command Parameters

The address parameter specifies the location in memory to which you want
to deposit a value. The value expression parameter specifies the value you
want to deposit in the memory location. If you specify more than one
value expression, the debugger deposits the first value at the location
denoted by address expression and deposits subsequent value expressions
at locations denoted by logical successors to address expression.

6.6.3 Depositing ASCII Strings

To deposit an ASCIH string, enclose the value expression in quotation
marks or apostrophes. When the debugger encounters a string enclosed
in quotation marks or apostrophes, it assumes that the string is of the
data type ASCH. When the length of the string to be deposited is greater
than the length associated with the address, the string is truncated from
the right. However, when the length of the string is less than the length
associated with the address, the debugger inserts ASCH blanks to the right
of the last character in the string.

When you want to deposit an ASCII string at an address represented by
non ASCII characters, you use the /ASCII qualifier. If the string you are
depositing is longer than two bytes, you must specify /ASCIL:n, where n
is the number of characters in the string; otherwise, the debugger deposits
only the first two bytes of your character string.

6-8 Manipulating Data

6.6.4 Depositing Radix-50 Strings

You must use the /RAD50 qualifier with the DEPOSIT command to de-

posit a value expression that is a Radix-50 string. This qualifier identifies
value expression as being of the data type Radix-50. The string must be
delimited by quotation marks or apostrophes. If the length of the quoted
string is not a multiple of three characters, it is padded on the right with
blanks. The default length of Radix-50 values is two bytes.

Manipulating Data 6-9

Chapter 7
Example Debugging Session

This chapter contains sample debugging sessions that demonstrate the
most commonly used debugger commands. The program being debugged
consists of a main program and three subroutines, The example sessions
find errors in the subroutines. In each example, a compiler listing of each
subroutine is given, followed by the debugging session for that subroutine.
Comments are written beside each debugger command in the example and
further explanation follows each example.

The main procedure of this program, which is called MAIN, is a series
of calls to other routines. This routine executes correctly; the bugs in this
program are in its subroutines. The following is a compiler listing of the
main routine:

¢ PERFORM SOME SIMPLE STATISTICS ON A SET OF NUMBERS

0001 PROGRAM MAIN

0002 PARAMETER (ICOUNT=10)

0003 REAL MEDIAN

0004 DIMENSION VECTOR(ICOUNT)

0005 DATA VECTOR/10.,12.,8.,14.,8.,16.,4.,18.,2.,20/
C COMPUTE THE AVERAGE

0006 PRINT *,AVERGE(VECTOR, ICOUNT)

C BSORT THE VALUES INTO ASCENDING ORDER

0007 CALL SORT (VECTOR,ICOUNT)
¢ COMPUTE THE MEDIAN
0008 PRINT *,MEDIAN(VECTOR, ICOUKT)
¢ COMPUTE THE RANCE
0009 PRINT #,VECTOR(ICOUNT)-VECTCR(1)
0010 STOP
0011 END

Example Debugging Session 7-1

7.1 Debugging the Function AVERGE

The first routine to be debugged is a FUNCTION in the program that
computes the average of a number of values. A listing of the source code

follows;

C COMPUTE THE AVERAGE OF THE VALUES IN AN ARRAY

0001
0002
0003

0004
0006 10

0008

0007
oo

FUNCTION AVERGE(VALUES,MAXDIM)
DIMENSION VALUES (MAXDIM)
AVG = 0.0

DG 10 INDEX = 1, MAXDIM
AVG = AVG + VALUES(INDX)

AVERGE = AVG/REAL(MAXDIM)

RETURK
END

The value of the variable AVG is not correct after AVERGE is executed.
The following is a debugging session that finds the error in AVERGE.
The comments given beside each debugger command briefly explain the
function of the command. These comments are not generated by the
PDP-11 Symbolic Debugger; they have been added to clarify the example.
The callout numbers beside each comment correspond to the numbered
explanations that follow.

7-2 Exampie Debugging Session

!8et to break before DO loop
{Begin execution at strat of program

DBG>SET BREAX AVERGE\YLINE 3

DBG>GO

%DEBUG-I-START, rouwtine atart at MAIN
%DEBUG-I-BREAKPOINT, breakpoint at AVERGE\JLINE 3
DBG>EXAMIRE/INSTRUCTION YLINE 4:%LINE 6 !Look for branching imstruction
AVERGE\YLINE 4: MOV Q4(%Rb),1512)

AVERGE\YLINE 4 +6: MOY #1, AVERGE\INDEX
AVERGE\YLINE 4 +12: CMP AVERGE\INDEX, 1512
AVERGE\YLINE 4 +18: BGT AVERGE\JLINE 6
AVERGE\YLINE 6: MOV #85631,16812

AVERGE\YLINE 5 +8: MOV AVERGENINDX, 4RO
AVERGE\YLINE 6 +10: ASL %RO

AVERGE\YLINE b +12: ASL %R0

AVERGE\4LINE 5 +14: ADD 1480, %R0
AVERGE\YLINE 5 +18: SETF

AVERGE\ALINE 5 +20: LBF AVERGE\AVG, %FO
AVERGE\YLINE 5 +24: ADDF (%Ro) ,%Fo0
AVERGE\YLINE 5 +28: STF %FO, AVERGE\AVG
AVERGE\%LINE 5 +30: IKC AVERGE\INDEX
AVERGE\%LINE 5 +34: CMP AVERGE\INDEX, 1512
AVERGE\Y%LINE 5 +40: BLE AVERGE\LINE 5

AVERGENYLINE 6: MOV #E86530,1612
DBG>SET BREAK %LINE 5+40

DBG>GO {Resune execution
%BEBUG-I-START, start at AVERGE\JLINE 3
YDEBUG-I-BREAKPOINT, breakpoint at AVERGE\YLINE 5+40
DBG>EXAMINE AVG

AVERGE\AVG: 0.0000000
DBG>SET SCOPE MAIN

DBG>EXAMINE VECTOR(1):VECTOR(3)
MAINAVECTOR{1): 10.00000
MATIN\VECTOR{2): 12.00000
MAIN\VECTOR(3): 8.000000
DEG>SET SCOFE O

Werify initialization of VECTOR

!Return acope to active routine

Example Debugging Session

L1
e

®

18et to break at branching instruction@®

'Does AVG contain the ist array value (10):@®

!Change scope to routine containing array VECTORED

o

1-3

DBG>EXAMINE/INSTRUCTION %LINE &:%LINE 6 {Because VECTOR is correct, error muet be in assignment
fof AVG. Look at range of intructions te find error.

AVERGE\JLINE B: MOV #65631,1612

AVERGE\YLINE 5 +6: MoV AVERGE\INDX,%RO !INDEX is misspelled. [11]
AVERGE\YLINE 6 +10: ASL %RO

AVERGE\YLINE 5 +12: ASL RO

AVERGE\¥LINE 5 +14: ADD 1480, %RO

AVERGE\YLINE 5 +18: SETF

AVERGE\YLINE 5 +20: LDF AVERGE\AVG, YFO

AVERGE\LINE 5 +24: ADDF (4RO}, {FO

AVERGE\JLINE B +26: STF %FO, AVERCE\AVG

AVERGE\LINE 5 +30: INC AVERGE\INDEX

AVERGE\JLIKE & +34: P AVERGE\INDEX, 1512

AVERGE\YLINE 5 +40: BLE AVERGE\J|LINE 6

AVERGENYLINE 6: MOV #B5530, 1812

DBG>DEPOSIT INDX = 1 !Assign beginning value to INDX &
DBG>GO IExecute loop ®

YDEBUG-I-START, start at AVERGE\YLINE 5+40
YDEBUG-I-BREAKPOINT, breakpoint at AVERGE\YLINE 5+40

DBG>EXAMINE AVG |Does AVG centain the 1st array value?{®
AVERGE\AVG: 10.00000

DBG>DEPOSIT INDEK=2 {Reset loop controller L15]
DBG>DEPOSIT INDX=2 {Increment INDX O
DBG>SET TRACE YLINE 5+30 DO (DEPOSIT INDX=INDK+1)} [Set tracepoint to increment mx. ®
DBG>CANCEL BREAK AVERGE\YLINE 5+40 !Cancel breakpoint in loop 1]

DBG>SET BREAK MAIN\)line 7 !Set to break after routine is finished(®

DBG>GO !Complete routine execution 20}

%DEBUG-I-START, start at AVERGE\JLINE 5 +40
%DEBUG-1-TRACEPQINT, tracepeint at AVERGE\}LINE 5+30
%DEBUG-I-TRACEPOINT, tracepoint at AVERGE\JLINE 5+3C
Y%DEBUG-I-TRACEPDINT, tracepoint at AVERGE\YLINE 5+30
%DEBUG-I-TRACEPOINT, tracepoint at AVERGE\YLINE 5+30
%DEBUG-I-TRACEPOINT, tracepoint at AVERGE\LLINE 5+30
%DEBUG-I-TRACEPOINT, tracepoint at AVERGE\JLINE 5+30
%DEBUG-I-TRACEPOINT, tracepoint at AVERGE\JLIKE 5+30
%DEBUG-I-TRACEPOINT, tracepoint at AVERGENYLINE 5+30
%DEBUG-I-TRACEPOINT, tracepoint at AVERGE\4LINE 5+30
11.00000

ADEBUG-I-BREAKPOINT, breakpoint at MAXN\JLINE 7

@ The first command sets a breakpoint at the instruction before the loop
to be debugged.

@ The GO command begins program execution, which continues until
the breakpoint is reached.

@ Once this instruction is reached, a range of instructions is examined to
determine the location of the branching instruction that controls the
loop.

@ Now a breakpoint is set at the address of the instruction that controls
the looping process. The debugger stops the program immediately
before this instruction is executed,

7-4 Example Debugging Session

@
L6

@

=

The GO command resumes program execution.

When program execution is halted, the value of AVG is examined to
determine if its value is being assigned correctly.

Because the value of AVG is not correct, the array that contains the
values to be assigned to AVG may have been initialized incorrectly.
The scope is set to the main routine so that the array can be displayed.

The EXAMINE command verifies the initialization of the array
VECTOR. Note that here a range of values is examined.

Because this initialization is correct, the scope is set to the currently
active program unit (AVERGE) with the command SET SCOPE 0 and
debugging continues in this function,

The error must be in the instruction:

AVG = AVG + VALUES({INDEX)

Therefore, the PDP-11 machine instructions to which this source code
line translates are displayed.

The error is found in AVERGE\%LINE 5 + 6, The loop control vari-
able, INDEX, is misspelled as INDX.

To ensure that this error is the one that is causing the wrong values
to be assigned to the variable AVG, the value 1 is deposited in INDX,
When the loop is executed, this assignment causes it to behave as if it
is executing for the first time.

The loop is executed again with the GO command.

The variable AVG is examined and found to contain the correct value
10.00000.

® Therefore, to make the loop work correctly, the variable INDEX is

given the value 2. This assignment allows the loop to be executed the
correct number of times.

The misspelled variable INDX is also given the value 2.

This misspelled variable INDX is incremented during loop execution
by setting a tracepoint at the PDP-11 machine instruction that incre-
ments the loop controller INDEX. The DO portion of this tracepoint
increments INDX thus forcing the correct values to be assigned to the
variable AVG.

Because the error has been found in this loop, the breakpoint is
canceled.

Example Debugging Session 7-5

® A breakpoint is set at the line in the main routine that calls the next
routine. This breakpoint halts execution immediately before the calling
instruction is executed.

@ The GO command resumes program execution. Note that after the
debugger issues 9 informational messages about the activation of the
tracepoint in the function, the value of the function is printed on the
terminal screen by the program. This value is not displayed by the
debugger; it is displayed by the user program. The value the program
displays is correct, so this routine is known to be operating correctly,

7.2 Debugging the Subroutine SORT

The second routine to be debugged is a subroutine in the program that
sorts the numbers in the array VECTOR into ascending order. A listing of
the source code follows:

C SORT THE ELEMENTS OF THE ARRAY 'VALUES' INTO ASCENDING DRDER

0001 SUBRQUEINE SORT (VALUES,MAXDIM)

0002 DIMENSION VALUES{MAXDIM)

0003 LOGICAL DONE

0004 10 DONE = .TRUE.

0005 Do 20 INDEX = 1, MAXDIM-{

0006 IF (VALUES(INDEX) .GT. VALUES(INDEX+1)) THEX
0007 VALUES (INDEX} = VALUES(INDEX+1)
0008 SWITCH = VALUES(INDEX)

0009 VALUES(INDEX+1) = SWITCH

0010 DONE = .FALSE,

001t ENDIF

0012 20 CONTINUE

0013 IF (.NOT. PONE) GOTG 10

0014 RETURN

0015 END

The value of the array VECTOR is not correct after this routine is executed.
The following example debugging session finds the error that causes the
incorrect results. The comments given beside each debugger command
briefly explain the function of the command. These comments are not
generated by the PDP-11 Symbolic Debugger; they have been added to
clarify the example. The callout numbers beside each comment correspond
to the numbered explanations that follow.

7-6 Example Debugging Session

DBG>SET BREAK/AFTER:3 SORT\JLINE & i8et to break on 3rd encounter of Line 8@
DBG>GO |Resume execution 12]
YDEBUG-I-START, routine start at MAIN

%DEBUG-I-BREAKPOINT, breakpoint at SORT\YLINE &

DBG>EXAMINE INDEX ICheck loop control variable 3]
DBG>SORTA\INDEX: 3
DBG>EXAMINE SWITCH !Check temporary storage variable 4]
DBG>SORTASWITCH: 8.000000
DBG>CANCEL BREAK SORT\JLINE 6 !Source code lines in wrong order

!Cancel breakpoint to continue program execution®
DBG>SET BREAK MAIN\Yline 8 1Set to break befors call to next function®
DBG>GO 'Resume execution @

YDEBUG-I-START, routine start at SORT\LLINE &
%DEBUG-I-BREAKPOINT, breakpoint at MAIN\ALINE 8

As mentioned previously, the subroutine SORT arranges the values in the
array VECTOR in ascending order. The values that SORT is working on,
in order, follow:

16.,12.,8.,14..6.,16..,4.,18.,2.,20

The following list explains the debugger commands used to find the error
that causes incorrect results to be returned from SORT.

@ The first command sets a breakpoint at Line 6 in the subroutine. The
/AFTER:3 qualifier is used because the first time the varjables in the
subroutine contain meaningful information is when this instruction is
encountered the third time.

® The GO command begins execution of the subroutine,

©® The loop control variable, INDEX, is examined to determine if this
variable is being incremented correctly. Because the variable contains
the number 3, it is known to be working correctly.

@ The variable SWITCH is then examined. Note that at this peoint in the
program, the variable contains the value that it was assigned during
the previous execution of the loop. Because SWITCH is used to store
the higher of two values that must be reversed in the array VECTOR,
the variable should contain the number 12. This is determined by
checking the contents of VECTOR and noting that the numbers 12
and 8 must be reversed during the second execution of the loop. This
variable contains the incorrect value.

@ When it is determined that SWITCH is being assigned the wrong value,
the source code is examined to see how a value is stored in SWITCH.
It is noted that two of the source code lines, Lines 7 and 8, are in the
wrong order.

Example Debugging Session 7-7

Because there is not a way to reverse source code lines using the
debugger, this routine cannot be fixed for purposes of testing to see
if the error found is the only one that exsits, so the breakpoint in the
routine is canceled to allow it to complete execution.

@ Another breakpoint is set in the main routine that stops program
execution before the call to the next functions.

@ The GO command resumes program execution,

7.3 Testing the Function MEDIAN

Because the rest of this program works on a sorted array and because
the routine in this program that sorts an array is incorrect, it must be
determined if the incorrect values the rest of the program generates are
caused by incorrect sorting or incorrect coding. Therefore, the function
MEDIAN is tested.

The following is a listing of the source code in this function:

C THIS FUNCTION COMPUTES THE MEDIAN OF THE ARRAY 'VALUES'

0001 REAL FUNCTION MEDIAN{VALUES,MAXDIM)

0002 DIMENSION VALUES (MAXDIM)

C COMPUTE THE MEDAN

0003 IF (MOD(MAXDIM,2) .EG. 0O) THEN

0004 MEDIAN={VALUES (MAXDIM/2+1) +VALUES (MAXDIM/2))}/2
0005 ELSE

0008 MEDIAN=VALUES {MAXDIM/2)

0007 ENDIF

0008 RETURN

0009 EKD

The following is a list of the commands and debugger responses issued
during the testing of the function MEDIAN. The comments given beside
each debugger command briefly explain the function of the command,
These comments are not generated by the PDP-11 Symbolic Debugger;
they have been added to clarify the example. The callout numbers beside
each comment correspond to the numbered explanations that follow.

7-B Example Debugging Session

DBG>DEPOSIT VECTOR{1)=2.,4.,6.,8.,10.,12.,14.,16.,18.,20. !Depoeit sorted values in VECTOREP
DBG>EXAMINE VECTOR(1):VECTOR(10) 'Werify deposit
2.000000

4. 000000

6. 000000

8.000000

10.60000

12.00000

14.00000

16.00000

18.00000

MAIN\VECTOR(1}:
MAIN\VECTOR(2}:
MAIN\VECTOR(3}:
MAIN\VECTOR(4):
MAIN\VECTOR (5} :
MAIN\VECTOR(8&):
MAIN\VECTOR(7}:
MAIN\VECTOR(8):
MAIN\VECTOR(9)}:
MAIN\VECTOR(10):

DBG>SET STEP OVER

DBG>STEP
%DEBUG-I-START,
11.00000
YDEBUG-I-START,
DBG>STEP
Y%DEBUG-I-START,
18.00000
%DEBUG-I-START,
DBG>EXYT

20.00000
!Set to execute routime with
'one step command
!Step to next line in main routine@®

start at MAIN\JLINE 8

stepped to MAIN\YLINE @

{Test computation of ranga(a

start at MAIN\JLINE ©

stepped to MAIN\YLINE 10

@

{Leave the debugger G

Because the values in the array VECTOR are incorrect, the correct
values are assigned to this array using the DEPOSIT command.

The results of the DEPQSIT command are verified with the EXAMINE
command.

Because it has not been determined if the function MEDIAN works
correctly and the function is not debugged, but only tested. Therefore,
the step conditions are set to OVER, so the routine can be executed
using the STEP command.

The STEP command executes MEDIAN, and steps to the next line
in the main routine. The value the program displays on the terminal
(11.0000) is correct for the value of the median of this array, so this
function is known to be working correctly.

The STEP command is issued again, so the last command in the
program, which computes the range of the array, can be tested. The
program displays the correct value (18.00000).

Now that the program has been fully debugged and tested, the debug-
ger is exited using the command EXIT.

Example Debugging Session 7-9

INDEX

A

JAFTER:O qualifier® 4-3
/AFTER:n qualifier 4-3
Ambiguous symbols® 3-3
ASCIl string®6-8

Breakpoint
disabling © 4-6
duration of® 4-3, 4-5
effect of # 4-2
enabling ® 4-6
satting © 4-2

C

Call-count ® 4-1
JCALLS qualifier ® 4-4
CANCEL BREAK command ® 4-5
CANCEL MODE command ® §-4
CANCEL OQUTPUT command ® 2-2
CANCEL SCOPE command © 3-6
CANCEL STEP command © 5-3
CANCEL TRACE command € 4-5
Command files

See Indirect command files
Current iocation ©® 3-2
Current value ® 3-2

Data type (cont'd.)

debugger default®86-1

FORTRAN-77%6-1

with literals & 6-1

with program symbols @ 6-1
DBCL commands

invoking nonoverlaid kernel® 1-3

invoking overlaid kernel ® 1-2
DEBUG command® 1-3, 1-4
Debugger

exiting® 1-4

including support for® 1-1
Debugger features

for FORTRAN-77 ¢ 1-4

general ® 1-4
Debugger kernel

nonoverlaid ® 1-1

invoking ® 1-3
overfaid ® 1-1
invoking ® 1-1

Debugger startup ® 1-1
Default language

effact of @ 2-1

setting ® 2-1
Default output ® 2-1

changing ® 2-1
DEFINE command ® 3-3
Defined symbols® 3-3
DEPOSIT command ® 6-7

qualifiers ® 6-7
DISABLE BREAK command @ 4-6
DO parameter ® 4-5

Data type
debugger ® 6-1

ENABLE BREAK command ® 4-6

Index-1

EVALUATE command® 6-4, 6-5
EXAMINE command e 6-5, 6-6
EXIT command® 1-4

F

File
See Indirect command file
See Log file
See STB file
@filespec command ® 2-3
Floating-point status word ® 3-2

GO command ® 5-4
effect of ® 5-4

MNonoverlaid kernel ® 1-1
invoking ® 1-3

ODL file® 1-2
creating ® 1-2
example® 1-2

Operator, in value expressions ® 6-5

Overlaid kernef® 1-1
invoking® 1-1, 1-2
Qverlays
pathname in® 3-4
segment ® 3-5

Indirect command files ® 2-3
Invocation commands
for nonoverlaid kernef® 1-3
for overlaid kernel® 1-2

L

Line numbers © 3-2
Literals and data types®6-1
Log file® 2-2
default name ® 2-2
example® 2-3
Logical predecessor® 3-2
|.ogical successor® 3-2

P

Pathname ¢ 3-4
extended ® 3-5
for overlaid programs ® 3-4
syntax e 3-4
truncated ® 3-6
Permanent symbol ® 3-1
Processor status word® 3-2
Program symbol® 3-1, 3-2, 6-1

RADGBO string, deposit of® -9
Registers © 3-2
/RETURN qualifier ¢ 4-4
RSTS invocation
nonoverlaid® -4
overlaid® 1-3

MCR commands

invoking nonoverlaid kernel® 1-3

invoking overlaid kernel® 1-2
Mode

definition of ® 6-3

radix ® 6-3

symbol © 6-3
Module

unnamed® 3-2

2-Index

S

Scope® 3-3
default® 3-3
PC®3-3
prefix ® 3-6
specifying ® 3-4
Segmant, overlay of ® 3-2
Segment-list® 3-5, 3-8
SET BREAK command @ 4-3, 4-4

SET LANGUAGE command ® 2-1
SET LOG command @ 2-2
SET MODE command © 6-3
SET QUTPUT command @ 2-2
SET SCOPE command ® 3-5
SET STEP command® 5-3
SET TRACE command ® 4-3, 4-4
SET TYPE command ® 6-2
SHOW BREAK command @ 4-5
SHOW CALLS command ® 4-1

display ® 4-1
SHOW MODE command ® §-4
SHOW OUTPUT command ® 2-2
SHOW SCOPE command ® 3-6
SHOW STEP command © 5-3
SHOW TRACE command ® 4-5
SHOW TYPE command ® 6-3
STB file® 3-1, 3-2
STEP command®5-1, 5-2
Step conditions

changing® 5-2

default @ 5-2

displaying ® 5-3

restoring ® 5-3
STEP sequence ® 5-1
Subscript-list® 3-4
Symboie 3-1

backslash @ 3-6

creating ® 3-3

defined® 3-3

in the debugger ® 3-1

making unique ® 3-3

permanent ® 3-1

program © 3-2

zero ® 3-6
Symbol table® 3-1

T

Tracepoint
duration of ®4-3, 4-5
effect of ® 4-2
setting®4-2

Unnamed modules ® 3-2

v

Value expressions ® 6-5

VMS invocation
nonoverlaid ® 1-4
overlaid® 1-3

w

WHEN parameter ® 4-5

fndex-3

PDP-11 Symbolic Debugger
FORTRAN~-77 User’'s Guide
AA-FAB4A-TK

READER’'S Note: This form is for document comments only.

DIGITAL will use comments submitted on this form at

COMMENTS the company's discretion. if you require a written reply
and are eligible to receive one under Software Performance
Report {SPR} service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well organized? Please make
suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

Assembly language programmer
Higher-level language programmer
Occasional programmer {experienced)
User with little proegramming experience
Student programmar
Other {please specify)

oooooil

Name Date

Organization

Street

City State Zip Code
or Country

No Postage
Necessary
if Mailed in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS,

POSTAGE WILL BE PAID BY ACDRESSEE

S3G PUBLICATIONS ZK1-3/J35
BIGITAL FQUIPMENT COAPORATION
110 SPIT BROOK ROAD

MASHUA, NEW HAMPSHIRE D3062-2698

— — — — — DoNotTear-Fold Here — — — — o — — — . . __ __ _ _ _ _ _ _ _ _]

Cut Along Dotted Line

