PDP-11 Symbelic Debugger User's Guide

Order Number: AA-FABOA-TK

December 1985

Revision/Update information:

Operating System and Version:

Software Version:

digital equipment corporation
maynard, massachusetts

This is a new manual.

See the Preface for detailed
information.

PDP—11 Symbolic Debugger
Version 2.0

First Printing, December 1985

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document,

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by Digital Equipment Corporation or its affiliated

companies.

Copyright © 1985 by Digital Equipment Corporation

Alil Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the fast page of this doc-
ument requests the user’s critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DATATRIEVE Micro /RSTS RT

DEC Micro/RSX UNIBUS
DECmate PDP VAX

DECnet P/OS VAXcluster
DECUS Professional VMS
DECwriter QBUS VT

FMS Rainbow Work Processor

NicroPDP 1 RS clilglilt/al

ZK2955

This document was prepared using an in-house documentation production system.

All page composition and make-up was performed by TeX, the typesetting system
developed by Donald E. Knuth at Stanford University. TeX is a registered trademark of
the American Mathematical Society.

Contents

PREFACE ix
CHAPTER 1 INTRODUCTION TO THE DEBUGGER 1-1
1.1 DEBUGGER FEATURES 1-1
1.2 ABBREVIATING KEYWORDS 1-2
1.3 STRATEGIES FOR USING THE DEBUGGER 1-2
1.3.1 Planning a Debugging Session 1-3
1.3.2 Debugging Optimized Code 1-3
1.3.3 Receiving Online Help 1-4
1.4 INVOKING THE DEBUGGER 1-4
1.4.1 How to Invoke the Debugger for Your MACRO-11
Task 1-5
1.4.1.1 Using the Overlaid Configuration 1-5
1.4.1.2 Using the Nonoverlaid Configuration & 1-7
1.4.2 Inveking the Debugger with Instruction and Data Space
{I- and B-space} Support 1-8
1.4.3 Exiting the Debugger 1-8
CHAPTER 2 CONFIGURING BEBUGGER INPUT AND QUTPUT 2-1
2.1 SETTING THE DEFAULT LANGUAGE 2-1
2.2 CHANGING THE DEFAULT QUTPUT 2-2
2.2.1 SET QUTPUT Command Parameters 2-2
2.2.2 SET OUTPUT Command Example 2-3
2.2.3 The SHOW QUTPUT and CANCEL QUTPUT
Commands 2-3

2.3 USING LOG FILES 2-3
2.3.1 SET LOG Command Parameter 2-4

2.3.2 Example of & Log File 2-4

2.3.3 The SHOW LOG Command 2-5

2.4 USING INDIRECT COMMAND FILES 2-5
2.4.1 @ Command Parameter 2-6

2.4.2 @ Command Example 2-6
CHAPTER 3 DEFINING SYMBOLS 3-1
3.1 USING PERMANENT SYMBOLS 31
3.2 DEFINED SYMBOLS 3-3
3.2.1 Define Parameters 3-3

322 DEFINE Command Examples 3-5

3.2.3 The UNDEFINE Command 3-5

3.3 PROGRAM SYMBOLS 3-6
3.3.1 SET 8T8 Command Parameter 3-7

3.3.2 The SHOW STB Command 3-7

3.4 REFERENCING PROGRAM SYMBOLS 3-7
3.4.1 Simple Pathnames 3-8

3.4.2 Pathname for Overlaid Programs 39

3.4.3 The SET SCOPE Command 3-10

3.4.3.1 SET SCOPE Parameter @ 3-11
3.4.3.2 SET SCOPE Examples © 3-11
3.4.4 The SHOW SCOPE and CANCEL SCOPE Commands 3-12

CHAPTER 4 CONTROLLING PROGRAM EXECUTION 4-1

4.1 DISPLAYING INFORMATION ON ACTIVE ROUTINE CALLS 4-1
411 SHOW CALLS Command Parameter 4-2
4.1.2 SHOW CALLS Command Example 4-2
4.2 USING BREAKPOINTS AND TRACEPOINTS 4-3
4.21 SET BREAK and SET TRACE Command Qualifiers ____ 4-4

4.2.1.1 The /AFTER:n Qualifier ® 4-5
4.2.1.2 The /CALLS Qualifier = 4-5
4213 The /RETURN Qualifier ¢ 4-5
422 SET BREAK and SET TRACE Comimand Parameters . 4-6
4221 The Address Parameter © 4-6
4222 The WHEN Parameter ¢ 4-6
4.2.2.3 The DO Parameter ¢ 4-6

4.2.3 SET BREAK and SET TRACE Command Examples . a.7
4.2.4 Commands Related to SET BREAK and SET TRACE . 4-7
CHAPTER & STARTING THE PROGRAM 5-1
5.1 EXECUTING A SPECIFIED NUMBER OF COMMANDS 51
5.1.1 STEP Command Qualifiers 5-2
5.1.2 STEP Command Parametier 5-3
5.1.3 STEP Comimand Examples 5-3
5.2 CHANGING THE DEFAULT STEP CONDITIONS 5-4
5.2.1 SET STEP Command Parameters 5-5

52.2 SHOW STEP and CANCEL STEP Command
Examples 5-5
5.3 EXECUTING AN UNDETERMINED NUMBER OF COMMARNDS 5-5
5.3.1 GO Command Parameter 5-6

5.3.2 GO Command Examples 5-6

CHAPTER 6 MANIPULATING MEMORY 6-1

6.1 DATA TYPES IN THE DEBUGGER 6-1
6.2 CHANGING THE DEFAULT DATA TYPE 6-2
6.2.1 SET TYPE Command Parameter 6-3

6.2.2 SHOW TYPE and CANCEL TYPE Command
Examples 6-4
6.3 DEBUGGER MODES 6-4
6.3.1 SET MODE Command Parameter 6-5
6.3.2 The SHOW MODE and CANCEL MODE Commands _ 6-5
6.4 VALUE EXPRESSIONS 6-6
6.5 DETERMINING THE VIRTUAL ADDRESS OF SYMBOLS 6-6
6.5.1 EVALUATE Command Quzlifiers 6-7
6.5.2 EVALUATE Command Parameters 6-7
6.5.3 EVALUATE Command Examples 6-7
6.6 DISPLAYING MEMORY LOCATIONS 6-9
6.6.1 EXAMINE Command Qualifiers 6-9
6.6.2 EXAMINE Command Parameter 6-10
6.6.3 EXAMINE Command Examples 6-11
6.7 ALTERING MEMORY LOCATIONS 6-12
6.71 DEPQSIT Command Qualifiers 6-12
6.7.2 DEPOS!IT Command Parameters 6-13
6.7.3 Depositing ASCH Strings 6-13
6.7.4 Depositing Radix—50 Strings 6-14

6.7.5 DEPOSIT Command Examples 6-14

vi

CHAPTER 7 ENDING THE DEBUGGING SESSION 7-1
7.1 PREPARING TO LEAVE THE DEBUGGER 7-1
7.2 EXITING THE DEBUGGER 7-2
7.3 USING CONTROL CONMMARNDS 7-2
APPENDIX A PDP-11 SYMBOLIC DEBUGGER ERROR MESSAGES A-1
INDEX
TABLES
3-1 Debugger Permanent Symbols 3-1
6-1 Data Types Recognized By The Debugger 6-3

vii

Preface

intended Audience

This manual is intended for programmers who have no experience with
the PDP-11 Symbolic Debugger. However, experienced debugger users
can refer to it for explanations of commands they use infrequently.

This manual assumes that the reader understands programming in one of
the supported languages and knows how to use the host operating system.

Operating Systems and Versiens

The PDP-11 Symbolic Debugger runs on the following operating systems
and versions: '

VAX/VMS Version 4.0 or higher

VAX-11 RSX Version 2.0

RSX-11M Version 4.1 or higher

RSX-11M-PLUS Version 2.1 or higher

Micro/RSX Version 1.1 or higher

RSTS/E Version 9.0 or higher

Micro/RSTS Version 2.0 or higher

P/OS Version 2.0 with Professional Host Tool Kit Version 2.0 or
higher

P/OS Version 2.0 with PRO/Tool Kit Version 2.0 or higher

Structure of This Document

This manual is organized as follows:

Chapter 1 gives an overview of the features of the debugger and some
guidelines on how to use the debugger effectively. It also tells you
where to look for the commands to invoke the debugger.

Chapter 2 explains how to configure the debugger’s default output,
make a record of a debugging session, and use a command file to
control the debugger.

Chapter 3 describes the symbols the debugger recognizes and explains
how to define your own symbols. It also discusses strategies for
making symbols unique.

Chapter 4 explains how to set breakpoints and tracepoints in your
program.

Chapter 5 describes two methods of executing your program in the
debugger.

Chapter 6 discusses data types the debugger recognizes, the two modes
of debugger operation, and a command that helps you determine
memory addresses and perform arithmetic. It also explains examining
and altering memory locations,

Chapter 7 explains how to exit from the debugger.

Appendix A lists and explains debugger informational and error
messages.

Associated Docaments

The following briefly explains the contents of each manual in the PDP-11
Symbolic Debugger documentation set.

PDP-11 Symbolic Debugger Installation Guide. This manual explains the
debugger installation procedure on all supported operating systems.
PDP-11 Symbolic Debugger Quick Reference Guide. The quick reference
manual lists the syntax of each debugger command and its qualifiers
and parameters.

PDP-11 Symbolic Debugger FORTRAN-77 User's Guide. This manual
gives information to debugger users who program in FORTRAN-77.

o PDP-11 Symbolic Debugger COBOL-81 User's Guide. This manual gives
information to debugger users who program in COBOL-81.

NOTE

There are language-specific exceptions to the general use of the
debugger. Thus, wherever information given in a language-
specific debugger guide conflicts with information presented
here, the language-specific guide take precedence.

Conventions Used in This Document

The following conventions are followed throughout this manual:

Convention

Meaning

UPPERCASE

lowercase

l

n
RSX-11

CTRL/a

Uppercase words and letters in examples indicate that you
type the word or letter exactly as shown.

Lowercase words and letters in examples indicate that you
substitute a word or value of your choice.

Brackets in examples indicate optional elements.
A lowercase n indicates that you must substitute a value,

RSX-11 is used as a generic term for the REX-11M,
RSX-11M-PLUS, and Micro/RSX operating systems.
The symbol CTRL/a indicates that you hoid down the
CTRL key while you simultaneously press the specified
letter key. For example, CTRL/Z indicates that you hold
down the CTRL key and press the letter Z.

The symbol indicates that you press the RETURN
key.

Xi

| Chapter 1
introduction to the Debugger

The PDP-11 Symbolic Debugger helps you find logical and programming
errors in successfully compiled programs that do not execute correctly. For
example, the debugger can help you determine why a program terminates
abnormally, produces incorrect output, or goes into an infinite loop. The
debugger assists you in isolating and correcting your program’s errors by
allowing you to stop and start program execution where you want and to
display and alter the contents of memory locations.

1.1 Debugger Features

PDP-11 Symbolic Debugger characteristics make it a powerful and flexible
tool for finding logical and programming errors. You can use the debugger
to do the following;:

Issue debugger commands from your terminal and see their effects
immediately.

" Refer to program locations by symbols, rather than virtual addresses,

and receive debugger output in symbolic form.

Use the debugger on code written in FORTRAN-77, COBOL-81,
and MACRO-11. You can also switch languages during a debugging
session.

Set breakpoints and tracepoints in overlay segments that are not
currently resident.

Invoke online help to get information about debugger commands and
related features.

introduction to the Debugger 11

* Debug your programs on seven DIGITAL operating systems. These
operating systems are RSX-11M, RSX-11M-PLUS, Micro/RSX,
RSTS/E, Micro/RSTS, P/OS using the Pro/Tool Kit or the Professional
Host Tool Kit, and VAX/VMS. (Note that the Symbolic Debugger task
is native to VAX/VMS. All further references to VAX/VMS in this
manual assume that the PDP-11 debugger kernel, which is linked
to the task to be debugged, is in the compatibility mode for VAX-11
RSX.}

NOTE
COBOL-81 is not supported on VAX/VMS.

1.2 Abbreviating Keywords

You can abbreviate any keyword in a debugger command to its shortest
unique abbreviation. For example, you can abbreviate the command
SET BREAK to SE BR because no command keywords other than SET
and BREAK begin with SE and BR. Symbol names must always be fully
spelled out, however,

1.3 Strategies for Using the Debugger

Three strategies help you use the debugger effectively:

¢ Plan your debugging sessions carefully.
© Avoid debugging optimized code.

® Refer to the online HELP facility for information if you encounter
problems during a debugging session.

The following sections discuss these strategies in more detail,

1-Z Introduction to the Debugger

1.3.1 Plarring a Debugging Session

To use the PDP-11 Symbolic Debugger efficiently, you should tailor the
planning for your debugging session to the kind of abnormal behavior
displayed by your program. Three common types of abnormal behavior
are unexpected termination of the program, infinite looping within the
program, and incorrect control transfers, This section gives suggestions for
finding errors in programs that contain these types of abnormal behavior.

Unexpected termination of a program usually occurs shortly after the
error that caused it. Use the debugger to examine the contents of key
variables at the time of termination. If you note the approximate location
of termination, use the debugger to suspend program execution before
the termination point. Then execute the program in small, predetermined
steps and examine the contents of variables as you proceed to find the
instruction or instructions that produce the incorrect results.

If a program becomes caught in an infinite loop or if a pointer leads to an
incorrect program location, stop the program before the loop or pointer
and advance it in predetermined steps. By examining key locations as
you proceed, you isolate unexpected output and, therefore, the error that
caused it.

Once you locate your programming errors, you can make corrections
in your source program; then you may compile (or assemble), link, and
execute the corrected version.

1.3.2 Debugging Optimized Code

Debugger functions remain available when you debug optimized code;
however, the results of debugger operations may be unpredictable. For
example, a variable location in optimized code, particularly one within a
loop, may not have a value in it; instead, the value may be in any one of
several registers. Therefore, if you display the contents of such a variable,
the value displayed is incorrect.

In addition, in an optimized program, lines do not necessarily correspond
to instructions as in unoptimized code. With optimized code, the compiler
rearranges the generated instructions to minimize the number of tempo-
rary values required. Thus, the instructions generated and subsequently
executed may not correspond to the source code, and stepping through a
program by line or by instruction may yield unexpected results.

To avoid these difficulties, debug only unoptimized programs.

Introduction to the Debugger 1-3

1.3.3 Receiving Online Help

If you encounter problems during a debugging session, you can use the
online help facility to get information about debugger commands and
their format, qualifiers, and parameters. The help facility also provides
information about debugger modes, data types, valid variable references,
and termination procedures,

To use the help facility, issue the HELP command in the following format:

HELP [help-topic [subtopicl]

The help-topic parameter and the subtopic parameter specify the subject or
command for which you want help. If you type HELP without parameters,
you receive a list of all the topics on which information is available.

1.4 Invoking the Debugger

-4

The way you invoke the debugger depends on the programming language
and operating system you use. See one of the following manuals for infor-
mation on invoking the debugger for use with a high-level programming

language:
® PDP-11 Symbolic Debugger FORTRAN-77 User's Guide
® PDP-11 Symbolic Debugger COBOL-81 User’s Guide

If you are invoking the debugger for use on a MACRO-11 program, see
Section 1.4.1.

Note that the PDP~11 Symbolic Debugger only allows access to user
mode space, not to supervisor mode or kernel mode (sometimes called
executive mode). You can link to supervisor mode (I-CSSUP) routines
without affecting Debugger use, except that you may not step through
supervisor space (see Section 5.2), or set eventpoint in supervisor space
(see Chapter 4),

Introduction to the Debgger

1.4.1 How te Inveke the Debugger for Your RIACRO-11 Task

To invoke debugger support, you can use either an overlaid or nonoverlaid
debugger kernel in your task. An overlaid debugger kernel occupies less
than 4000 bytes of user program space and can be included in your task
by creating an overlay descriptor language (ODL) file that combines your
program with the debugger. You then assemble, task-build, and run your
program. You can use the overlaid debugger kernel unless your program
is overlaid and you are loading your overlay segments manually. In

this case you must include the nonoverlaid debugger kernel because the
overlaid kernel uses autoloading, and you cannot mix the two loading
methods in a single task. If you want to use the overlaid debugger kernel,
refer to Section 1.4.1.1.

A nonoverlaid debugger kernel occupies about 5000 bytes of user space
and can be included in your task by using certain switches when you
assemble, link, and run your program. If you want to use the nonoverlaid
kernel, refer to Section 1.4.1.2

1.4.1.1 Using the Overlaid Configuration

To use the overlaid debugger kernel, you must create an ODL file. The
following example represents an ODL file that correctly includes the
overlaid debugger in a user task. The source program to which this ODL
file refers is called MYPROG.MAC.,

.ROUT USROT$, $DALL

USROT¢: .FCTR MYPROG-$DROCT
QLB: [1,11PDPDEG.ODL
.END

As shown here, the ODL file you create for your task must include a
factor { FCTR) statement that concatenates your program with part of the
debugger kernel ($DROOT). This factor statement must be declared in
the ROOT statement as a co-tree with the rest of the debugger kernel
($DALL). Also, your ODL file must include PDPDBG.ODL, which is the
debugger kernel ODL file, immediately before the END statement. Note
that you can specify the elements in the FCTR statement in any order and
that the kernel segment can be appended to an overlaid source program.
For more information on ODL files and overlay structures, see the task
builder manual for your operating system.

Introduction to the Debugger 1-5

Once you create the ODL file, you assemble, link, and run your program
to invoke the debugger. When you assemble your program, you should
create a listing file and refer to it during the debugging session to follow
program flow and to reference source code line numbers. You must
also create a symbol table file for the debugger to have its full symbolic
capability. The following example shows the MCR commands that you
use to invoke the debugger.

FOR MICR USERS

>MAC myprog,myprog/-SP=myprog/EN:DBG
>TKB myprog, ,myprog=myprog/MP
>RUN myprog

The task build (TKB) command in the preceding example contains two
commas between the file names on the left side of the equal sign because
one of the TKB command parameters (the MAP file) has been omitted.

The following example shows the DCL command you use to invoke the
debugger.
FOR DCL USERS

$ MACRO/LIST myprog/ENABLE:DEBUG
$ LINK/SYMEOL_.TABLE myprog/DVERLAY.DESCRIPTION
$¢ RUN myprog

NOTE

RSTS and Micro/RSTS users must replace the RUN command
with the DEBUG command as follows:

$ DEBUG myprog

VMS users must insert MCR in front of MAC in the compile
command, and in front of TKB in the task build command, as
in the following examples:

$ MCR MAC myprog,myprog/-SP=myprog/EN:DBG
$ MCR TKB myprog, ,myprog=myprog/MP

Intreduction to the Debugger

1.4.1.2 Using the Nenoverlaid Configuration

When you want to invoke the debugger with the nonoverlaid kernel,

you must assemble, link, and run your program. When you assemble
your program, you should create a listing file and refer to it during the
debugging session to follow program flow and to reference source code
line numbers. You must also create a symbol table file for the debugger to
have its full symbolic capability. If you are using MCR, type the following
commands to invoke the debugger:

FOR MCR USERS

>MAC myprog,myprog/-SP=myprog/EN:DBG
>TKB myprog,,myprog=myprog,LB: [1,1]PDPDBG/DA
>RUN myprog

The TKB command in the preceding example contains two commas
between the file names on the left side of the equal sign because one of
the TKB command parameters (the .MAP file) has been omitted.

If you are using DCL, type the following commands to invoke the
debugger:

FOR DCL USERS

$ MACRO/LIST myprog/ENABLE:DEBUG

$ LINK/DEBUG=LB: [1,1]1PDPDBG/SYMBOL myprog
$ RUN myprog

NOTE

RSTS and Micro/RSTS users must replace the RUN command
with the DEBUG command as follows:

$ DEBUG myprog

Also, RSTS users should substitute LB: for LB:{1,1] in the
examples given here,

introduction to the Debugger 1-7

1.4.2 Inveking the Debugyer with Instruction and Data Space (I- and B-space)
Support

RSX-11M-PLUS Version 2.1 or higher, RSTS/E Version 9.0 or higher,
and Micro/RSX Version 3.0 or higher provide instruction and data space
support. With this feature, you may be able to run significantly larger
programs than is otherwise possible with a PDP-11.

To use the debugger with a task built in I- and D-space, take one of the
following actions:

® MCR users should add /ID to the TKB command on the output file
specification.

® DCL users should add /CODE:DATA_SPACE to the LINK command
on the output file specification,

For more information on building tasks in [- and D-space, consult the
RSX-11M/M-PLUS Task Builder Manual or the RSTS/E Task Builder
Reference Manual as appropriate.

For information on linking the debugger with FORTRAN-77 tasks in
I- and D-space, refer to PDP-11 Symbolic Debugger FORTRAN-77 User’s
Guide.

NOTE
I- and D-space support is not provided for COBOL-81.

1.4.3 Exiting the Debugger

To leave the debugger, type the following command in response to the
debugger’s prompt:
DBG>EXIT

Chapter 7 provides more information on exiting the debugger.

-8 introduction to the Debugger

Chapter 2

The PDP-11 Symbolic Debugger can display and accept information in
different formats. The format used primarily depends on the language in
which your program is written. However, you have control over some
parts of the debugger’s input and output format. This chapter explains
how to configure debugger input and output.

2.1 Setting the Default Language

When you invoke the debugger, it displays a message indicating the
default programming language, that is, the programming language in
which the debugger expects your program to be written. The default
programming language controls key input and output configuration
features. Therefore, if the debugger indicates a language other than the
one you are using, you should change the default language with the SET
LANGUAGE command.

How the SET LANGUAGE command affects debugger input and output
depends on the programming language. When you are debugging a
MACRO-11 program, the current language should be UNKNOWN.
When the current language is UNKNOWN, the debugger expects input
in word integer format and displays output in this format, If the current
language is not UNKNOWN, issue the following command when you are
debugging a MACRO-11 program:

DBG>SET LANGUAGE NONE

For an explanation of the effect of the SET LANGUAGE command when
debugging a FORTRAN-77 or COBOL-81 program, consult PDP-11
Symbolic Debugger FORTRAN-77 User's Guide or PDP-11 Symbolic Debugger
COBOL-81 User's Guide as appropriate,

Configuring Debugger Input and Output 2-1

You also use the SET LANGUAGE command when you debug a program
written in more than one programming language. For example, if one
routine is written in a language different from the other routines in

your program, issue the SET LANGUAGE command when you enter

the routine written in the new language. When you return to a routine
written in the original programming language, issue the SET LANGUAGE
command again.

2.2 Changing the Default Qutput

Some commands you issue to the debugger generate output. You can
control how the debugger records and displays this output with the SET
OUTPUT command. By issuing this command, you can change one or
all aspects of the output configuration at any time during a debugging
session.

The SET OUTPUT command has the following format:

SET QUTPUT parameter[,parameter[,parameter]]
fNOlLOG
[¥0] TERMINAL
[NDIVERIFY

2.2.% SET GUTPUT Command Parameters

The [NOJLOG parameter controls debugger logging. LOG specifies that
you want the debugger to record input and output in a log file. A log file
is a file created by the debugger to record the commands you issue to it,
and the responses it has to those commands. NOLOG specifies that you
do not want a record of the debugging session. The default is NOLOG.

The [NOJTERMINAL parameter determines whether or not debugger
output is displayed on your terminal. TERMINAL displays debugger
output. NOTERMINAL specifies that debugger output not be sent to your
terminal. The default is TERMINAL,

The [NOJVERIFY parameter controls the display of indirect commands to
the debugger. VERIFY specifies that indirect commands be displayed on
your terminal and/or recorded in your log file before they are executed.
NOVERIFY specifies that the debugger not display indirect commands on
your terminal or record them in your log file before they are executed.
The default is NOVERIFY,

2.2 Configuring Debugger Input and Dutput

2.2.2 SET QUTPUT Command Example

Following is an example of using the SET OUTPUT command:
DBG>SET OUTPUT LOG,VERIFY

This example requests that the debugger create a log file and record the
input and output from the debugging session in it. It also requests indirect
command verification.

2.2.3 The SHOW OUTPUT and CANCEL OUTPUT Commands

To check your output configuration, issue the following command:

DBG>SHOW OUTPUT
%DEBUG-I-DUTPUT, output :verify,terminal,logging to “DB2:[303,62}DEBUG.LOG;1"

The debugger responds to the SHOW OQUTPUT command with a message
that shows how each of the output characteristics is set. It also gives the
default device, the default directory, the name of the log file, and tells
whether or not debugger input and output is being recorded in this file.

You can return to the default output characteristics (NOVERIFY,
TERMINAL, NOLOG) by issuing the following command:

PBG>CANCEL OUTPUT

2.3 Using Leg Files

As mentioned previously, a log file is a file created by the debugger to
record the commands you issue to it and the responses it has to those
commands. Output to a log file is identical to output to a terminal, with
two exceptions:

¢ The DBG> prompt does not appear in a log file.

e Each line of debugger response in a log file is preceded by a comment
delimiter (the exclamation point).

You can use a log file as an indirect command file. Section 2.4 tells you
how to use indirect command files with the debugger.

Configuring Debugger Input and Ouiput 2-3

At the beginning of each debugging session, the log file is called
DEBUG.LOG. However, you can specify that the debugger write records
to a file other than DEBUG.LOG with this command:

DBG>SET LOG filespec

2.2.1 SET LOG Command Parameter

The filespec parameter names the new file in which you want the debug-
ger to record input and output. It has the following format:

[node::device: [directory]]filename.ext.

Note that the brackets around "directory” do not indicate an optional
element, but are required syntax. If you do not specify a file exten-

sion, the debugger uses the default file extension LOG; for example,
MYPROG.LOG.

If the debugger is already writing to a log file when you issue the SET
LOG command, the old file is closed and the new one opened. If you
specify a file that already exists, a new version of that file is created

if your operating system supports version numbers. If you specify an
existing version of a file, the debugger opens the file you specify and
appends the log of the debugging session to the end of the file. The
debugger also appends the log of the debugging session to the end of an
existing file on operating systems that do not support version numbers.

2.3.2 Exampie of a Log File

The following example shows part of a log file:

SET QUTPUT VERIFY

SHOW OUTPUT

VADEBUG-I-QUTPUT, output: verify, terminal, logging to *DB2:[303,52]DEBUG.LOG;1"
SEY LOG myprog

This log file shows that the output characteristic VERIFY is being set. This
output configuration is then verified by the message following the SHOW
OUTPUT command. The SET LOG command causes this file, which is
called DEBUG.LOG, to be closed and a new file called MYPROG.LOG to
be created. Any further input and output records are written to the file
MYPROG.LOG, instead of DEBUG.LOG.

2-8 Configuring Debugger Input and Outpet

2.3.3 The SHOW LOG Command

To verify the name of your log file, issue the following command:

DBG>SHOW L0OG
YDEBUG-I-LOGGING, logging to "DB2:[303,62]DEBUG.LOG;1"

In response to this command, the debugger displays the name of the log
file including its device and directory. The output also specifies if records
are being written in the log file.

2.4 Using indirect Command Files

If a debugging session is interrupted unexpectedly, you may want to
restart it with a partially created log file. You can execute a log file as an
indirect command file to resume the debugging session where you left off.

However, indirect command files do not have to begin as log files. You
can create an indirect command file using a text editor. The command file
can then be used to execute a series of commands. For example, you can
create an indirect command file that sets the output configuration of the
debugger and execute it each time you enter the debugger.

To create an indirect command file, list debugger commands in the order
you want them executed. You do not use any special syntax within an
indirect command file. Comments are allowed in the file. They should
be written to the right of debugger commands and preceded by an ex-
clamation point. Section 2.4.2 contains an example indirect command
file.

An indirect command file executes until an EXIT command or an end-
of-file is reached even if it contains syntax errors. If the syntax of a
command in an indirect command file is incorrect, the debugger issues an
error message and proceeds with the next line in the command file.

Invoke an indirect command file with the following command:

DBG>@iilespec

Configuring Debugger fnput and Output 2-5

2.4.1 @ Command Parameter

You must use the full file specification if your indirect command file is on
another machine or device, in another directory, or if it does not have the
default file type CMD. A full file specification has the following format:

[node: :device; [directory]lfilename.ext.

The brackets around “directory” do not denote an optional element, but
are required syntax.

You can also issue the @ command within another indirect command file,
The number of levels to which you can nest indirect command files is
limited only by the amount of dynamic storage currently available,

242 @ Command Example

The following is an example of the output generated by issuing the @
command. Note that the output characteristic VERIFY must be set for the
debugger to generate this output.

The contents of an indirect command file called MYPROG.CMD are as
follows:

SET OUTPUT LOG, VERIFY

SKOW OUTPUT

SET LOG MYPROG.LOG {Name of log file
SHOW LOG

This indirect command file executes as follows:

DBG>EMYPROG

SHOW OQUTPUT

%DEBUG-I-OUTPUT, output: verify, terminal, logging to "DB2:[303,52]1DEBUG.LOG;1"
SET LOG MYPROG.LDG

SHOW LOG

#DEBUG-I-LOGGING, logging to "DB2:[303,62]MYPR0OG.LOG;1"

2-§ Configuring Debugger Input and Output

Chapter 3

Jefining Symbels

The PDP-11 Symbolic Debugger allows you to refer to memory locations
and program data symbolically. This chapter explains the symbols the
debugger recognizes and how you can define symbols. It also discusses
the details of referencing program symbols. You use symbols to refer to
memory locations without having to specify the virtual address of the
location. The symbols that the debugger recognizes can be divided into
three categories: permanent symbols, defined symbols, and program
symbols.

3.1 Using Permanent Symbols

You can refer to the debugger’s permanent symbols at any time dur-
ing a debugging session. Table 3-1 lists these symbols and what they
represent.

Table 3-1: Debugger Permanent Symbols

Symbol Definition

%R0 - %R5 General purpose registers
%R6 or %SP Stack pointer

%R7 or %PC Program counter

%PS Processor status word
%S Floating-point status word
%F0 - %F5 Floating-point registers

Defining Symbols 3-1

Table 3-1 {Cont.): Debugger Permanent Symbols

Symbol Definition

%LINE nnn Source code line number
%NAME name Special symbol name
%SEGMENT name Overlay segment name

\ Current value

Current location

Logical predecessor
Logical successor

In the table, the debugger permanent symbols %R0 to %RS5 refer to the
processor registers that are for general use.

The %SP, %PC, %PS, and %FS debugger permanent symbols all refer to
the registers that help the processor control program execution.

Symbols %F0 to %F5 refer to registers that are used for floating-point
arithmetic,

The debugger permanent symbol %LINE nnn refers to a source code line
number where nnn is a decimal integer that specifies the line number.
The debugger always interprets the integer you specify with %LINE as
decimal. (Note that this permanent symbol is meaningless when you are
debugging a MACRO-11 program.)

The debugger permanent symbol %NAME allows MACRO-11 program-
mers to refer to symbols in their programs that contain periods. For
example, to refer to the program symbol A.OR.B, you specify

YNAME *A.OR.B'
Note that the program symbol must be enclosed in single quotation marks,

The %SEGMENT name symbol specifies an overlay segment where name
is a string that specifies the segment to which you are referring.

The current value symbol () denotes the last value displayed by an
EVALUATE command or denotes zero if no EVALUATE command has
been issued. (The EVALUATE command is explained in Chapter 6.)

The current location symbol (.) represents either the last address used
with an EXAMINE or DEPOSIT command or zero if neither of these
commands have been issued. (The EXAMINE and DEPQSIT commands
are explained in Chapter 6.)

3-2 Defining Symbols

The logical predecessor symbol (") refers to the address immediately
before the current location and is defined only for elements of arrays,
memory locations that do not have an assigned data type, program
instructions, and PDP-11 machine registers.

The logical successor symbol ([RET]) refers to the address immediately
following the current location and is also only defined for array elements,
untyped storage locations, instructions, and PDP-11 machine registers,

All debugger permanent symbols except current value, current location,
logical predecessor, and logical successor must be preceded by the percent
sign (%) when used in a debugger command line.

3.2 Defined Symbols

During a debugging session, you can create a new symbol or change

an existing defined symbol by using the DEFINE command. Defined
symbols are recognized only by the debugger. Although you can assign
a new name to a location or symbol in your program, your program

has no knowledge of the new name--it is known only to the debugger.
These defined symbols remain in effect until you terminate the debugging
session unless they are redefined or undefined,

The DEFINE command has the following format:

DEFINE symbol=addreas

3.2.1 Define Parameters

The parameter symbol specifies the name you want to refer to program
data or program addresses. The following restrictions apply to a defined
symbol name:

e It may be composed of only alphanumeric characters (the letters A
through Z and the numbers 0 through 9) and dollar signs ($).

@ [t may not be more than 6 characters long.
e It may not begin with a number.
Note that uppercase and lowercase letters are not differentiated. Thus, the

symbol name TECH and the symbol name Tech are treated as the same
symbol name.

Defining Symbols 3-3

The parameter address identifies a portion of memory. Integers used in an
address are interpreted in the current radix. For example, if the radix is set
to octal, the integer 10 will be interpreted as a decimal 8. (See Section 6.3
for a further discussion of radixes.) An exception to this rule is source code
line numbers, Line numbers are always interpreted as decimal integers.
Addresses can be either a simple address or an address expression.

A simple address can be one of the following:

® An integer that denotes a program or memory location

¢ A previously defined symbol, as in a symbol created with the debugger
command DEFINE

¢ A program symbol, such as a variable in your program

° A debugger permanent symbol (Table 3-1 lists and explains these
symbols.)

The simple address can be combined with other simple addresses and
operators to form an address expression. Debugger operators that can be
used in address expressions are listed below in order of their precedence:

1. Parentheses

2. Unary minus or the negative symbol
3. Multiplication and division symbols
4. Addition and subtraction symbols

If two or more operators of equal precedence are used in the same ex-
pression, the order of evaluation is from left to right. When the debugger
computes the value of an address expression, it performs the operation
you specify on the value of the address of the specified location rather
than on the value of the contents of the specified location. It also converts
floating-point literals to integers.

3-4 Defining Symbols

3.2.2 DEFINE Command Examples

To define a symbol that refers to memory location 1064, issue the follow-
ing command:

DBG>DEFINE SUM = 1064

Because this command assigns the symbolic name SUM to address 1064,
you can now specify the defined symbol SUM to refer to memory location
1064.

To define a symbol that refers to a memory location 4 bytes after SUM,
issue the following command:

DBG>DEFINE NEWSUM = SUM + 4

This command assigns the symbolic name NEWSUM to memory address
1068. Note that the debugger computes the address expression by adding
the integer 4 and memory address of SUM, not the contents of memory at
the location represented by SUM.

3.2.3 The URIBEFINE Command

You can cancel the definition of a symbol you have previously defined
with the following command:

DBG>UNDEFINE symbol

The symbol parameter refers to the name of the defined symbol you want
to undefine. This command makes the defined symbol named in the
parameter invalid. Note that you can alter a defined symbol definition
by issuing another DEFINE command for the symbol. The definition of

a symbol is superseded if another DEFINE command for that defined
symbol is issued.

Defining Symbols ~ 3-5

3.3 Program Symbols

When you build your program, the task builder defines program symbols
for you. These program symbols are defined in your source code’s symbol
table file (5TB). In the STB, the program symbol names are associated with
virtual addresses or program data and the current data type.

The STB file contains records for the following program symbols:

¢ Names of user written routines
¢ Variable names (but not routine parameter names)

® Source code line numbers

When you compile your program, the compiler generates PDP-11 machine
code. Each machine instruction has a corresponding program counter
(PC) value. Frequently, the compiler produces more than one PDP-11
instruction for each source code line, in which case the debugger interprets
each source line as a range of PC values corresponding to the PDP-11
instructions generated for that line. {Note that MACRO-11 programs have
only one instruction per line.) The information about the range of PC
values that correspond to one of your source code lines is kept in the STB
file,

ROTE

MACRO-11 does not generate the records required for the
debugger to reference all program symbols, Local symbols,
such as 10%, cannot be referenced,

You cannot display the contents of the STB file. However, you can create

a map file for the STB file using TKB or determine if a given symbol is in

the STB file by using the EXAMINE command. If you ask the debugger to
examine a symbol that is not in the STB file, you receive an error message.
Chapter 6 describes the EXAMINE command.

By default, the debugger looks for program symbol records in a file that
has the same name as your source code file and the file extension STB. If
the debugger is using the wrong STB file, you can specify the correct file
with the following command:

DBG>SET STB filespec

3-6 Defining Symbols

3.3.1 SET STB Command Parameter

Filespec is the name of the STB file for your program. Occasionally, the
debugger does not refer to the correct STB file because, for example, you
specified an STB file name other than the default one in your TKB or LINK
command or the STB file was moved after the TKB or LINK command was
issued.

Filespec has the following format:
[node: :device: [directoryl]1filename.ext

The brackets around “directory” do not indicate an optional item, but are
required syntax. The default file extension for STB files is STB.

3.3.2 The SHOW STB Command

To verify that the debugger is using the correct STB file, instruct the
debugger to display the name of the STB file by issuing the following
command:

DBG>SHOW STB
%DEBUG-I-INISTBNAM, TKB-specified STB file is "DB2:[303,52]MYPROG.STB;1"

3.4 Referencing Program Symbols

When your program consists of more than one routine, the debugger
searches in the routine you are currently debugging for any program
symbols to which you refer. Therefore, if you refer to a program symbol
that is not in the currently executing routine, you must specify that the
debugger look in another routine for the symbol. Otherwise the debugger
issues the following error message:

YDEBUG-E-NO-PATHNAME, unable to find SUBA\SUBA\VAR1 in STB file
The portion of your program in which a program symbol is known is
calied the scope of that symbol. For example, if a routine in your program

called SUB1 contains the variable ARR(1), the scope of ARR(1) is the
routine SUB1,

Defining Symbels 3-7

As mentioned previously, the debugger assumes that the scope of program
symbols to which you refer is the routine you are currently executing. If
you want to refer to a program symbol that is in another routine, you
must specify its scope in one of the following three ways:

¢ Use a simple pathname.

¢ Use an extended pathname for an overlaid program.

¢ [se the SET SCOPE command.

These methods of specifying scope are discussed in the next sections.

3.4.1 Simple Pathnames

A pathname describes a program location. It consists of program location
labels, such as routine names and source code line numbers, separated by
the backslash character (\). Simple pathnames have the following format:

routine\routire [\YLINE nnn]
routine\routine [\eymbol [{subscript-list)]]

The routine location label is the name of the routine in which the program
symbol occurs. This label must be specified twice to signal to the debugger
that the symbol to which you are referring is not in the current scope. If
you do not specify the routine twice, the debugger interprets the routine
name as a variable name and looks in the current scope for that variable,

The %LINE nnn label specifies a line number in the routine with nnn
representing the decimal integer number of the line. Note that nnn refers
only to compiler-generated line numbers.

The label symbol denotes a variable name or a symbol you defined
previously for use in the routine. You use the subscript-list parameter
when the symbol refers to an array, and you want to specify only certain
elements of that array. Subscript lists can be expressions, but all integers
they contain are interpreted in decimal radix, regardless of the default
radix mode,

You must use an extended pathname for overlaid programs. Extended
pathnames are discussed in Section 3.4.2.

NOTE

If you are debugging a MACRO-11 program, a pathname can
contain only a module name and a symbol name, as follows:

module\symbol

3-8 Defining Symbols

The following are examples of valid pathnames for a nonoverlaid high-
level language program that contains three routines: MAIN, SUB1, and
SUB2. Remember that you use pathnames to specify locations that are not
in the routine you are currently debugging.

For this example, the scope is the routine SUB1. If you want to refer to
the twelfth element of an array called ARR contained in the routine called
MAIN, give the following pathname:

MAIN\MAIN\ARR(12)

If you specify MAIN only once, the debugger looks in the current scope,
SUBI, for a variable called MAIN. Because you are referring to ARR in the
routine called MAIN, you must specify MAIN twice.

In the following example, the scope is still SUB1, but it refers to source
code line 4 in SUB2.

SUB2\SUB2\YLINE 4

3.4.2 Pathname for Overlaid Programs

The pathname syntax for overlaid programs is an extended form of the
simple pathname syntax. Because it is possible for a routine to appear at
more than one place in an overlay tree, a method of uniquely identifying
the routine is required. The extended pathname syntax contains a list of
overlay segment names at the beginning of the pathname.

Valid pathname formats for an overlaid program are

segnent-list\routine\routine [\}LINE nnn}
sepment-list\routine\routine [\symbol [(subscript-1iat)]]

The segment-list specifies one or more segment names, in the following
format:

%SEGMENT name {\}SEGMENT name...]

The keyword %SEGMENT must be specified when you reference one of
two or more identical object files in your overlay structure that have the
same name.

If you specify several segment names, specify them in order of segment
branching, with the segment name nearest the program root specified first.

Defining Symbols 3-9

For an example of when to use the %SEGMENT keyword, consider the
following ODL file:

.ROOT MAIN-+(A,B)
MAIN: .FCTR PROG.0BJ-LB:[1,1lPDPDBG.OBJ/DA
A: JFCTR FILEL.OBJ-FILE2.0BJ
B: .FCTR FILE3.O0BJ-FILE2.0BJ

This ODL file contains three segments: segment PROG is labeled MAIN,
segment FILE1 is labeled A, and segment FILE3 is labeled B. (Note that
MAIN, A, and B are only labels and are not recorded in the STB file,
Segment names are determined by the name of the first object file in

the segment.) The segment FILE1 consists of two object files named
FILE1.OBJ and FILE2.OB]. The segment FILE3 consists of two object files
named FILE3.OBJ and FILE2.OBJ]. The contents of FILE2.0OB] are identical.

To reference a variable contained in the FILE2.0B], you must tell the
debugger which segment contains the object file you want to reference.
For example, the following pathname references a variable in FILE2.0B]
that is contained in segment FILEL

%SEGMENT FILEi{\MAIN\MAIN\VAR%

However, the following pathname references the same variable name in
FILE2.0OBJ that is contained in the segment FILE3.

%SEGMENT FILE3\MAIN\MAIN\VAR1

3.4.3 The SET SCOPE Command

The SET SCOPE command establishes the specified program unit as

the one to be used for symbol interpretation. The scope established by
the SET SCOPE command becornes the default for all symbols specified
without a pathname. In other words, once you set the scope to a routine,
the scope is no longer dynamic. The debugger looks in that routine for
the symbols to which you refer without a pathname until the scope is set
to another routine, canceled, or set to zero.

You issue the command as follows:

DBG>SET SCOPE pathhame

3-10 Defining Symbols

3.4.3.1

SET SCOPE Parameter

The pathname parameter may be the number 0, the backslash character
(\), or a scope prefix.

The number 0 returns the scope to the debugger default, which is the
currently active program unit. The scope is then dynamic and is always
the routine you are currently debugging.

The backslash {\) specifies that symbols referenced without pathnames be
interpreted as global symbols,

A scope prefix may be thought of as a truncated pathname. It describes
a location in terms of its segment name (if any) and routine name. A
scope prefix does not specify a particular line number, array reference, or
symbol, as a pathname does. The format of a scope prefix is

[segment-1list] \routine

The location label segment-list names the overlay segment that contains
the routine to which you are referring. The label routine names the
routine to which you are setting the scope.

32.4.3.2 SET SCOPE Examples

This section demonstrates several uses of the SET SCOPE command.

The first example sets the scope for an overlaid program,
DBG>SET SCOPE %SEGMENT ROOT\MAIN

This example uses a scope prefix with the SET SCOPE command to tell
the debugger to interpret all symbols as lying within the main routine in
the root segment.

You can also set the scope to overlay segments that you did not write, for
example:

DBG>SET SCOPE YSEGMENT RMS\$GET

This command tells the debugger that symbols you refer to without a
pathname are in the RMS routine $GET, which is in the segment named
RMS.

Another use of SET SCOPE is to reset the scope to the currently active
routine by issuing the following command:

DBG>SET SCOPE ©

Defining Symbols 3-11

This command makes the scope dynamic; the scope changes as you debug
your program.

The backslash (), when used with the SET SCCOPE command, instructs
the debugger to interpret symbols specified without pathnames as global
symbols as in the following command line:

DBG>SET SCOPE \

You are most likely to set the scope to \ when you want to refer to
symbols in a MACRO-11 program or symbols in high-level language
routines compiled without the /DEBUG or /DB qualifier.

344 The SHOW SCOPE and CANCEL SCOPE Commands

SHOW SCOPE and CANCEL SCOPE are useful when you adjust the
scope of the debugger.

To determine the current scope, use the following command:

DBG>SHOW SCOPE
%DEBUG-I-SCOPE, scope: 0 [= MAIN]

The number 0 denotes that the scope is set to the routine currently
executing. The routine name given in brackets tells you which routine is
currently executing.

To cancel the scope established by the SET SCOPE command, use the
command:

DBG>CANCEL SCOPE

As a result of the CANCEL SCOPE command, symbols without path-
names are interpreted as if they occurred in the routine that is currently

executing. The CANCEL SCOPE command is equivalent in effect to the
comrmand SET SCOPE 0.

3-12 Defining Symbols

Chapter 4
Controlling Program Execution

Controlling program execution is an important aspect of debugging. To
do this effectively, you must know what code is executing and how your
program transfers control from one part of your program to another. This
chapter explains the commands that help you debug program execution
and control.

4.1 Displaying Information on Active Routine Galls

The SHOW CALLS command provides information about the sequence
of currently active routine calls. FORTRAN-77 programs compiled with
/TR:NAMES, /TR:BLOCKS, or /TR:ALL provide SHOW CALLS infor-
mation. Since /TR:BLOCKS is the default switch, your program will
supply traceback information unless you specify otherwise at compile
time, (Note that /TR: switches are not used for MACRO-11 or
COBOL-81. Also, SHOW CALLS is not a valid command when you are
debugging a program written in MACRO-11.)

For each active call, the debugger displays one line of information. The
first line displays information about the current routine; the next line (if
there is one) displays information about the routine that called the current
routine. The listing ends with information on the routine that originated
the call path to the current routine (see Section 4.1.2).

Each line of information displayed by the debugger contains the following;:

¢ The name of the calling module and routine.
¢ The name of the called routine.
e The line number of the call.

Controlling Program Execution 4-1

e The absolute and relative value of the PC in the calling routine at the
time that control was transferred. Note that the PC values refer to the
location of the instruction following the call.

The format of the SHOW CALLS command is:

SHOW CALLS [call-count]

§.1.1 SHOW CALLS Command Parameter

The optional parameter call-count is a decimal integer in the range 1
through 32767 that specifies the number of calls to be displayed. If you
do not specify the call count, or if the call count exceeds the current
number of calls, information on all calls is displayed.

4.1.2 SHOW CALLS Command Example

The following example demonstrates the use of the SHOW CALLS
command.

DBG>SET BREAK SUB2\YLINE 6

DEG>GD

%DEBUG-I-START, routine start at MAIN
ADEBUG-I-BREAKPDINT, breakpoint at SUBZ\JILINE b
DBG>SHOW CALLS

module name routine name line rel PC abs PC
SUB2 suB2 B 000038 080328
SUB1 sUB1 9 000084 060224
MAIN MAIN 24 000262 002602

In this example, SUB2 is the routine that is currently being executed.
SUB2 was called by SUB1, and SUB1 was called by MAIN.

The line numbers shown denote either the line after the call instruction
(SUB1 and MAIN) or the line where execution of the program stopped
(SUB2),

The relative PC value shows the number of bytes that have been executed
in a routine. In other words, this value is the value of the PC relative to
the beginning of a routine.

4-2 Controlling Program Execution

The absolute PC is the virtual address of the instruction immediately after
the call or the instruction where execution of the program stopped.

NOTE

Traceback information for a routine call is not written to

the traceback list immediately upon the execution of a call.
Therefore, a SHOW CALLS command issued immediately after
control is transferred to a routine can give incorrect information.
To ensure that SHOW CALLS gives correct information, issue
it only after the debugger has executed at least four PDP-11
machine instructions in the called routine.

4.2 Using Breakpoints and Tracepoints

Once you have identified the important points in your program, you

can set either breakpoints or tracepoints at these points. To specify that
you want program execution to stop at a particular location, use the

SET BREAK command. Use the SET TRACE command if you want

the debugger to report that it has reached a location without stopping
program execution. The following material further describes the effects of
breakpoints and tracepoints.

A breakpoint is a program location at which the debugger does the

following;:

1. Suspends program execution immediately before the instruction at the
specified location,

2. Tests the value of a WHEN condition if one was specified in the
SET BREAK command, If the value is TRUE, the activation of the
breakpoint continues; if the value is FALSE, your program resumes
execution. (The WHEN parameter is not valid for COBOL-81.)

3. Displays the symbolic or virtual memory location at which execution
has been suspended,

4. Executes commands in a DO sequence if one was specified in the SET
BREAK command.

5. Issues its prompt.

When a tracepoint is activated, the debugger does the following:

1.

Suspends execution immediately before the instruction at the specified
location is executed.

Controlling Program Execution 4-3

2. Tests the value of a WHEN condition if one was specified in the
SET TRACE command. If the value is TRUE, the activation of the
breakpoint continues; if the value is FALSE, execution of your program
resumes. (The WHEN parameter is not valid for COBOL-81.)

3. Reports that execution has reached the traced location.

4. Executes commands in a DO sequence if one was specified in the SET
TRACE command.

5. Resumes execution at the current program counter.

These eventpoints remain in effect either until the debugging session
ends or until they are canceled or replaced. See Section 4.2.4 for more
information on the duration of eventpoints,

NOTE

If you are using the overlaid debugger kernel, do not set a
breakpoint in code that does overlay handling (for example,
$AUTO, $MARKS, or $RDSEG). If a breakpoint is set in one
of these system routines, the debugger enters an infinite loop
when the breakpoint is activated.

The SET BREAK command has the following format:

SET BREAK[/qualifier] [address] [WHEN (expression)] [DO(action}]
/AFTER:n
JCALLS
/RETURN

The SET TRACE command has the following format:

SET TRACE{/qualifier] [address] [WHEN(expression)}] [DC(action)}
/AFTER:n
/CALLS
/RETURN

4.2.1 SET BREAK and SET TRACE Command Qualifiers

The foliowing sections explain the qualifiers you can use with both the
SET BREAK and the SET TRACE commands. The qualifiers have the
same effect on both commands.

4-4 Controlling Program Execution

4.2.1.1

The /AFTER:n Qualifier

If you specify the /AFTER:n qualifier, the debugger takes action at the nth
activation of the specified location. It also takes action at each succeeding
activation of the location. For example, if n equals 3, the breakpoint or
tracepoint is activated when the debugger encounters the location more
than two times; that is on the third encounter, fourth encounter, and so
on. The highest valid value of n is 255.

A special case exists. The /AFTER:0 qualifier has the same effect as
/AFTER:1, which activates the breakpoint or tracepoint the first time the
debugger encounters a location. However, the /AFTER:0 qualifier cancels
the program controller once it has been activated. Therefore, /AFTER:0
allows you to set a program controller that you want to use only on the
first encounter of a program location.

4.2.1.2 The /CALLS Qualifier

The /CALLS qualifier sets a breakpoint or tracepoint in two places for all
commands that transfer control to a routine:
» After the calling instruction, but before the first instruction in a routine

¢ After the last instruction in a routine, but before the first instruction
following a routine call

In other words if you use the /CALLS qualifier to set a program con-
troller, it is set at all JSR and RTS instructions, including those for system
routines.

If you specify /CALLS, it must be the only qualifier.

4.2.1.3 The /RETURN Qualifier

The /RETURN qualifier sets a breakpoint or tracepoint immediately

after the last instruction in a calling routine, but before the first instruction
following a routine call; that is, at an RTS command. You must specify the
routine return you want to break or trace by using the address parameter
explained in the next section. You cannot use the /RETURN qualifier
when you debug a MACRO-11 program because the MACRO assembler
does not supply all the required information in the STB file.

Controlling Program Execution 4-5

8.2.2 SET BREAK and SET TRACE Command Parameters

The following sections explain the parameters for the commands SET
BREAK and SET TRACE. The effect of the parameters is the same for both
commands.

4.2.2.1

The Address Parameter

The address parameter specifies the instruction (I-space) address where
you want a program controller set. It may be in the form of a simple
address or an address expression. If you do not specify the /CALLS
qualifier, you must specify this parameter,

4£.2.2.2 The WHEN Parameter

The WHEN parameter allows you to control whether or not a program
controller is activated by a condition specified by the expression, The
debugger evaluates the expression and determines whether it is TRUE or
FALSE. If the expression is TRUE, the debugger continues with activa-
tion of the program controller. If the value of the expression is FALSE,
executiont of the program resumes,

The expression you specify with the WHEN parameter can be any valid
value expression as described in Section 6.4.

The WHEN parameter is not valid for all high-level programming lan-
guages. If the documentation for your high-level programming language
does not contain a description of the WHEN parameter, you should

not use it because the results of a command containing this parameter
are unpredictable. The WHEN parameter is valid for use when you are
debugging a MACRO-11 program.

4.2.2.3 The DO Parameter

The DO (action) parameter is used when you want the debugger to
execute one or more debugger commands when a breakpoint or tracepoint
is activated. Any valid debugger command, including another SET BREAK
or SET TRACE command, can be specified in this parameter. The action
may be a single command, a list of commands separated by semicolons, or
an indirect command file. The debugger executes DO (action) commands
in the order in which they appear, but it does not check the syntax of
these commands before they are executed. The nesting of DO (action)
commands is limited by the amount of dynamic storage available.

4-6 Controlling Program Execution

6.2.3 SET BREAK and SET TRACE Command Examples

This section demonstrates the use of the SET BREAK and SET TRACE
commands.

To set a breakpoint at source code line 5 in the current scope, issue the
following command:

DBG>SET BREAK %LINE 5

This command will set a breakpoint at line 5 of the currently executing
routine. When the debugger encounters this line in executing your source
code, it stops program execution before it executes the instruction on line
5.

To set a tracepoint that is activated the fifth time an instruction is encoun-
tered, issue the following command:

DBG>SET TRACE/AFTER:5 YLINE 12 DO(SET OUTPUT LOG)

The preceding command sets a tracepoint at line 12 in the source code
program. This tracepoint is activated immediately before the instruction
on line 12 is executed for the fifth time. When this tracepoint is activated,

the debugger begins writing records to a log file as specified by the DO
sequence.

If you want to set an eventpoint in a routine that is not currently execut-
ing, specify a pathname, as in the following example:

DBG>SET TRACE SUBI\JLINE &

This example shows how to set a breakpoint at line 5 in SUB1 when you
are executing another routine,

4.2.8 Commands Related to SET BREAK and SET TRACE

Four commands (SHOW BREAK, CANCEL BREAK, DISABLE BREAK, and
ENABLE BREAK) are related to the SET BREAK command. Four other
commands (SHOW TRACE, CANCEL TRACE, DISABLE TRACE, and
ENABLE TRACE) are related to the SET TRACE command. This section
describes the use of these commands.

Controlling Program Execution 4-7

To see which program controllers are in effect, issue either of the following
commands:

DBG>SHOW BREAK

DEBUG-I-BREAKPONT, breakpoint at MAIN\YLINE B
%DEBUG-I-ERK_ENABLED, the recognition of breakpoints ie enabled
PBG>SHOW TRACE

#DEBUG-I-TRACEPOINT, tracepoint at MAIN\YLINE 12
#DEBUG-I-TRC_ENABLED, the recognition of tracepoints is enabled

The debugger responds to these commands with a message for each
breakpoint or each tracepoint that is set.

Ordinarily, a program controller remains active for the duration of the
debugging session. However, you can either cancel it with the CANCEL
BREAK or CANCEL TRACE command or set another breakpoint or
tracepoint at that program location. If you set a program coniroller in

a location where one already exists, the second program controller set
replaces the previous one.

The CANCEL BREAK command has the following format:

CANCEL BREAK[/qualifier] [address]
/ALL
/CALLS
/RETURY

The CANCEL TRACE command has the following format:

CANCEL TRACE[/qualifier} [address]
/ALL
/CALLS
/RETURN

For this command to operate correctly, you must specify either an address
or the /ALL or /CALLS qualifier. (The /RETURN qualifier requires that
an address be specified.)

The /ALL qualifier cancels all breakpoints or all tracepoints in a program.
The /CALLS qualifier cancels all the breakpoints or all the tracepoints at
JSR and RTS instructions. The /RETURN qualifier cancels the program
controller set at the RTS instruction of a routine. You must specify which
routine with the address parameter, which can be a simple address or an
address expression,

To prevent breakpoints or tracepoints from being activated, issue either
the DISABLE BREAK or the DISABLE TRACE command. These DISABLE
commands do not cancel program controllers but they do prevent the
program controllers from being activated until you enable them.

4-8 Controlling Program Execution

To enable program controllers, use the ENABLE BREAK or the ENABLE
TRACE command. You do not have to re-specify breakpoints or trace-
points when you use these commands.

Controlfling Program Execution 4-8

Chapter 5

Starting the Program

Once you have configured the debugger output and set breakpoints

and tracepoints, you can execute your program. The PDP-11 Symbolic
Debugger offers two methods of executing a program. The first method
executes a number of instructions or lines depending on how you specify
the command. The second method allows the program to run until one of
several events is encountered.

5.1 Executing a Specified Rumber of Commands

To execute a specified number of lines in your program, use the STEP
command. The STEP command causes the debugger to execute a single
line or instruction or a group of lines or instructions.

NOTE

The word “line” in this section refers to source code lines.
The word “instruction” refers to compiler-generated PDP-11
machine instructions or MACRQO-11 instructions.

When you issue a STEP command, the debugger continues executing your
program until one of the following occurs:

¢ A STEP sequence is complete.

o A breakpoint occurs.

e An error is detected in your program.

® You issue a control character command, such as CTRL/C.
® Your program completes execution.

Starting the Program 5-1

Although the debugger allows you to execute your program until it termi-
nates, this use of the STEP command is not recommended. If you execute
your program until its normal termination, the debugger background task
may still be running after your program finishes. Therefore, you should
always stop program execution before the end of your program and exit
from the debugger in an orderly manner. (Exiting from the debugger is
discussed in Chapter 7.)

A step sequence is complete only when the specified number of lines
or instructions have been executed, regardless of intervening events,
Therefore, if the debugger encounters a breakpoint while executing a
step sequence, execution of the step sequence is merely suspended, not
completed. Thus, any number of step sequences may be in effect at any
one time; the sequences are executed independently and simultaneously.
If multiple step sequences are completed at the same time, the debugger
issues a message for each completed sequence,

The STEP command has the following format:

STEPE/qualifier] [step-count]
/INTO
/OVER
/INSTRUCTION
/LINE

5.1.1 STEP Command Qualifiers

The /INTO and /OVER qualifiers control how the debugger treats called
routines in your program. The /INTO qualifier specifies that the debugger
step through the called routine. However, the /OVER qualifier specifies
that the debugger stop stepping at a routine call, execute the called
routine, and resume stepping when control is returned to the calling
routine. Note that called routines can be either a routine you wrote or a
system routine and that lines in called routines are not counted to satisfy a
step count when the /OVER qualifier is in effect. The default condition is
/OVER.

The /LINE and /INSTRUCTION qualifiers determine what the debugger
counts to satisfy a step count. The /LINE qualifier specifies that the
debugger count the execution of one line of your source program as a step.
However, the /INSTRUCTION qualifier specifies that the debugger count
each instruction in the PDP-11 machine code as a step. Therefore, if a
line in your program translates to more than one PDP-11 machine code
instruction, the command STEP/INSTRUCTION does not execute that
entire source program line. The default condition is /LINE.

§-2 Starting the Program

5.1.2 STEP Command Parameter

The step-count parameter specifies the number of source code lines or
PDP-11 instructions (depending on how the step conditions are config-
ured) you want the debugger to execute. Step-count must be given as a
decimal integer.

Note that neither comments nor blank lines are counted in satisfying a
step count.

5.1.3 STEP Command Examples

The following example of using the STEP command demonstrates the
effect of an intervening event on a step sequence. The scope in this
example is a routine named MAIN.

DBG>SET BREAK JLIKE 4

DBG>STEP/LINE 4

YDEBUG-I-START, routine start at MAIN
YDEBUG-I-BREAKPOINT, breakpoint at MAIN\YLINE 4
DBG>STEP/LIKE

YDEBUG=I1-START, routine start at MAIN\JLINE 4
YDEBUC-I-STEP, stepped to MAIN\YLINE 5
YDEBUG-I-STEP, stepped to MAINVYLINE B

The breakpoint is activated before the step sequence is complete, so the
sequence is only completed when the second STEP command is issued.
The “stepped to” message is issued twice because two step sequences
(STEP/LINE 4 and STEP/LINE) are completed at the same time. Note
that the instruction on line 5 of the routine called MAIN has not been
executed at the end of this example because the debugger stops execution
immediately before this instruction.

The next example shows how the /INSTRUCTION qualifier affects the
STEP command. In this example, the scope is a routine named MAIN.

DBG>STEP/INSTRUCTION 4
YDEBUG-I-START, start at MAIN\JLIKE 1
YDEBUG-I-STEP, stepped to MAIN\JLINE 1 + 16: MOV %Rt - (%SP)

The STEP/INSTRUCTION 4 sequence starts at line 1 and ends after the
fourth PDP-11 machine code instruction is executed. Because the four
instructions require 16 bytes, the debugger steps to the beginning of the
seventeenth byte of line 1.

Starting the Program 5-3

The last example demonstrates how the /INTO and /OVER qualifiers
affect the STEP command. In this example, the beginning scope is the
routine MAIN. This routine calls two other routines, SUB1 and SUB2, in
successive instructions.

DBG>STEP/INTD 3

#DEBUG-~I-START, routine start at MAIN\YLINE 2
%DEBUG-1-STEP, stepped to SUBI\YLINE 2
DEG>STEP 5

%DEBUG-I-START, routine start at SUBI\YLINE 2
Y¥DEBUG-I-STEP, stepped to MAINVYLINE 3
DBG>STEP/QVER 2

%DEBUG-I-START, routine start at MAIN\YLINE 3
%DEBUG-I-STEP, stepped to MAIN\YLINE &

In the first step sequence, the debugger counts the lines in the routine
SUBI in satisfying the step count for the STEP/INTO 3 and STEP 5
commands. In the second step sequence, the lines in SUBZ2 are not
counted to satisfy the step count in STEP/OVER 2. Therefore, the step
sequence is complete at the fifth line of the routine called MAIN.

5.2 Changing the Default Step Conditions

If you issue the STEP command without qualifiers at debugger start-

up, the debugger executes your program according to its default step
conditions. By default, the debugger steps by line and counts only lines in
the main routine to satisfy a step count.

Use the SET STEP command to change the default debugger step con-
ditions. Once you change these conditions, the debugger executes the
STEP command according to the conditions you set if you issue it without
qualifiers. In other words, the step conditions you set become the default
step conditions for that debugging session. Note that you override the
conditions you specify with the SET STEP command when you specify a
parameter with the STEP command.

The SET STEP command has the following format:

SET STEP parameter[,parameter]
INTO
OVER
INSTRUCTION
LINE

5-4 Starting the Program

521 SET STEP Command Parameters

The SET STEP parameters have the same effect as the qualifiers to the
STEP command, that is, the INTO and OVER parameters control whether
the debugger steps into a called routine or suspends stepping to execute
the called routine. The INSTRUCTION and LINE parameters control
what the debugger counts to satisfy a step count, INSTRUCTION tells the
debugger to count all PDP-~11 instructions, but LINE tells the debugger to
count only source code lines.

5.2.2 SHOW STEP and CANCEL STEP Command Examples

To display the current step conditions, issue the following command:

DBEG>SHOW STEP
YDEBUG-I-STEPTYPE, step type: by line, over routine calls

To restore step conditions to the debugger’s default, issue the following
command:

DBG>CANCEL STEP

This command returns default conditions to step by line and step over
routine calls.

5.3 Executing an Undetermined Mumber of Commands

If you want to execute an undetermined number of statements or instruc-
tions in your program, use the GO command. The GO command instructs
the debugger to execute your program until one of the following occurs:

® Your program terminates.

® A breakpoint is encountered.

¢ A pending STEP sequence is completed.

e An error is detected in your program.

e You issue a control character command, such as CTRL/C.

¢ Your program completes execution.

Starting the Program 5-6

Although the debugger allows you to execute your program until it termi-
nates, this use of the GO command is not recommended. If you execute
your program until its normal termination, the debugger background task
may still be running after your program finishes. Therefore, you should
always stop program execution before the end of your program and exit
from the debugger in an orderly manner. (Exiting from the debugger is
discussed in Chapter 7.)

When you issue the GO command at debugger siart-up, your program
begins to execute as it would if you had built it without debugger support.

The GO command has the following format:

G0 {address]

£3.1 GO Command Parameter

The address parameter allows you to specify an address at which to
start program execution. It can be any legal simple address or address
expression, as described in Section 3.2.1.

You should be cautious when using this parameter because the GO
command does not alter register contents or the systemn stack; it simply
transfers control to the designated location. Thus, if the program state at
the specified address is not the same as the program state when you issue
the GO command, the results are unpredictable. If you attempt to start the
program at a location that is not currently resident, an error is reported.
Also, if you specify an address that does not contain the beginning of an
instruction, a run-time error may occur when the instruction including that
byte is executed, (For I- and D-space tasks, the address parameter is an
I-space address.) »

5.3.2 GO Command Examples

When you use the GO command to resume program execution after
suspension, execution resumes at the current program counter location, as
in the following example:

%DEBUG-I-STEP, stepped to MAIN\YLINE 8

DBG>SET BREAK YLINE 8

DBG>GO

YPEBUG-I-START, routine start at MAIN\JLINE &
%DEBUG-I-BREAKPGINT, breakpoint at MAIN\YLINE 8

5-8 Starting the Program

Note that the breakpoint at line 8 ends the execution of the GO command.
Another GO command must be issued for execution to continue.

This next example demonstrates the effect of an incomplete step sequence
on the GO command.

DBG>SET BREAX JLINE &

PBG>STEP 8

%DEBUG-I-START, routine start at MAIN
%DEBUG-I-BREAKPOINT, breakpoint at MAIN\YLINE &
DBG>GD

%DEBUG-I-START, routine start at MAIN\%LINE 6
%DEBUG-I-STEP, stepped to MAIN\}LINE 8

When the step sequence is complete, execution of the GO command stops.

Starting the Pregram 5-7

Chapter 6

Manipulating Vlemory

This chapter describes how to manipulate and alter data in your program
using the EVALUATE, EXAMINE, and DEPOSIT commands. It also
explains the concepts you must understand before using these commands.

6.1 Data Types in the Debugger

Because different data types are interpreted and formatted in various ways,
the debugger must associate a data type with all the values it accepts as
input or displays as output. If the debugger cannot associate a data type
with a value, it assigns the value a default data type.

A literal is any character string that is a constant but is not a symbol.
The debugger supports three types of literals: integer, floating point, and
quoted string. The debugger associates the data-type integer with a literal
that does not contain a decimal point. If the literal contains a decimal
point, the debugger associates the floating-point data type with the literal.
A quoted-string data type is associated with a literal that is enclosed in
either single or double quotation marks.

Because high-level programming language compilers assign data types

to program symbols, it is unlikely that the debugger would have to use
its default data type to interpret these symbols. Instead, the debugger
associates the contents of high-level language program symbols with their
compiler-generated data type. Also, the debugger assumes that input fo

a program symbol is given in the data type the compiler assigned to that
symbol. Therefore, there is little need for you to be concerned with the
default debugger data type when you are debugging a high-level language
program, Your language documentation provides information on how the
debugger treats the data types your programming language uses.

Manipulating Memory 6-1

MACRO-11 programmers, however, must be concerned with the de-
fault debugger data type because symbols in MACRO-11 programs are
untyped. Therefore, the debugger does use its default data type to in-
terpret MACRO-11 program symbols. By default, the debugger uses the
data-type word integer to interpret MACRO-11 program symbols.

The debugger associates a data type with a simple address or an address
expression depending on three conditions:

* If you specify a type qualifier with a debugger command, an address
in that command is interpreted as having the characteristics of the data
type you specified.

e If you did not specify a type qualifier, but the address points to a
program location that has a compiler-generated data type, that data
type is used to interpret the address. (This is most likely to occur when
you are debugging a program written in a high-level language.)

 If neither of the preceding conditions are met, the address is interpreted
as having the default debugger data type, which depends on the
programming language you are using. For MACRO-11, the default
data type is word integer. Information on the default data type for
high-level languages is found in the debugger documentation for that
language. Note that you can change the default data type with the
SET TYPE command, which is explained in Section 6.2.

6.2 Changing the Default Data Type

The default debugger data type is used when a literal, program symbol, or
address cannot be associated with a data type in any other way.

If you do not want to use the default data type provided for your pro-
gramming language, you can change the default type by issuing the SET
TYPE command. The SET TYPE command has the following format:

SET TYPE datatype
ASCII
BYTE
D_FLODAT
FLOAT
LONG
INSTRUCTION
PACKED (COBOL-81 only)
RADBO
WORD

-2 Manipulating Memory

You can override the effect of the SET TYPE command by specifying
a data type qualifier with the EXAMINE, DEPOSIT, and EVALUATE

commands.

6.2.1 SET TYPE Command Parameter

The data type parameter determines what data type you want the de-
bugger to use as the default type. Table 6-1 describes the data types the
debugger recognizes.

Table 6-1: Data Types Recognized By The Debugger

Data Type Definition

ASCII[:n] ASCII of length n (where n = 2 by default)
BYTE Byte integer

D_FLOAT Double-precision floating point

FLOAT Single-precision floating point

LONG Longword integer

INSTRUCTION Program instruction of variable length
PACKED Packed decimal {valid only for COBOL-81)
RADS50 Radix-50

WORD Word integer

Note that the default length for the datatype ASCIH is 2 and n is always
interpreted as a decimal integer. For more information on using ASCII,
see the discussion in Section 6.6.1.

The data types that you can use depend on your programming language.
The valid data types for MACRO-11 programmers are ASCII, BYTE,
D_FLOAT, FLOAT, LONG, INSTRUCTION, RAD50, and WORD. See your
high-level language documentation for a list of the data types you can use
with a high-level programming language.

Manipulating Memory 6-3

6.2.2 SHOW TYPE and CANCEL TYPE Command Examples

To determine which data type is in effect, you can issue the SHOW TYPE
comimand as follows:

DBG>BHOW TYPE
ADEBUG-I-TYPE, type: word integer

To return the default data type to the one supplied by the debugger for
you programming language, issue the following command:

DBG>CANCEL TYFE

6.2 Debugger NModes

The PDI--11 Symbolic Debugger supports two modes, radix and symbol.
These modes control the form in which the debugger interprets and
displays information. The default radix mode (the numerical base) is
decimal, and the default symbol mode is symbolic.

If you do not want to use the default modes, you specify the modes you
want to use by issuing the SET MODE command or by specifying a mode
qualifier with the EXAMINE, EVALUATE, or DEPOSIT commands, which
are explained later in this chapter.

The SET MODE command has the following format:

SET MODE mode {,mecde]
BINARY
DECIMAL
HEXADECIMAL
OCTAL
[Wo] SYMBOL

A radix mode specified as a qualifier to the DEPOSIT, EXAMINE, or
EVALUATE command overrides the effect of the SET MODE command.

6-4 Manipulating Memory

6.3.1 SET ROBE Command Parameter

Mode determines how integers in address expressions and value ex-
pressions are interpreted and how memory locations are displayed. The
BINARY, DECIMAL, HEXADECIMAL, and OCTAL modes change the nu-
merical base the debugger uses to interpret and display information, For
example, if the radix mode is set to BINARY, the number 1010 has a dec-
imal value of 10. Howevaer, if the radix mode is set to HEXADECIMAL,
this number has a decimal value of 4112, The radix mode does not control
how data is stored in your program; it tells the debugger what numerical
base to use to interpret your input and that it must translate output to this
numerical base before it is displayed.

Note that the debugger always interprets %LINE nun as decimal.

[NOJSYMBOL determines whether symbols, such as variable names in
your program, are displayed symbolically or by their numeric equivalents.
For example, if the symbol mode is set to NOSYMBOL, the virtual address
of a memory location is displayed instead of the symbolic name that
refers to that program location. [NO]SYMBOL also determines how

the processor status word (%PS) and floating-point status word (%FS)

are displayed (see Section 6.6.3). The default is SYMBOL. Note that
[NO]SYMBOL affects only the debugger display because you can always
enter data in either symbolic or numeric form.

6.3.2 The SHOW RIODE and CARNCEL MAODE Commands

To have the current modes displayed, issue the following command:

DBG>SHOW MODE
%DEBUG-I-MODES, modes: eymbolic, decimal

This command causes the debugger to display a message describing the
current modes.

To cancel modes established by the SET MODE command, issue the
following command:

DBG>CANCEL MODE

This command returns the mode settings to their defaults of DECIMAL
and SYMBOL.

Manipulating Memory 6-5

6.4 VALUE EXPRESSIONS

Value expressions may be specified with the EVALUATE and DEPOSIT
commands. If a value in the expression refers to a memory location, the
debugger performs the specified operations on the contents of the memory
location, as opposed to the address of the location. These values have the
data type associated with the memory location or the default debugger
data type if no type is associated with the location.

Values are combined with operators and delimiters to form a value expres-
sion. The following legal operators and delimiters in value expressions are
listed in order of precedence:

1. Parentheses

2. Unary minus

3. Multiplication and division
4. Plus and minus

Quoted strings cannot be combined with debugger operators to form a
value expression.

NOTE
Value expressions are not valid for COBOL-81.

6.5 Determining the Virtual Address of Symbols

Before you examine and modify memory, you should understand how
to determine which virtual addresses are associated with your program
symbols. You can determine this association using the EVALUATE
command. By adding or subtracting an offset you also can determine the
addresses of higher and lower memory locations. You can only evaluate
an expression that contains resident values.

The EVALUATE command has the following format:

EVALUATE{/qualifier] expreasion
/ADDRESS address
/BINARY value-expresaion
/PECIMAL
/HEXADECIMAL
JOCTAL

6-6 Manipulating Memory

$.5.1 EVALUATE Command Qualifiers

If you issue the EVALUATE command with no qualifiers and a simple
expression {one without operators), the debugger displays the contents of
the specified memory location.

You use the /ADDRESS qualifier when you want the debugger to deter-
mine the virtual address of a symbol or to use the address of a location
you specify to determine the value of an expression parameter.

The /BINARY, /DECIMAL, /OCTAL, and /HEXADECIMAL qualifiers
specify radix modes. If you specify a radix mode qualifier, integers in the
expression parameter are interpreted in the specified radix and values are
displayed in that radix.

6.5.2 EVALUATE Command Parameters

The expression parameter can either be an address or a value expression.
If you want the debugger to determine the value of the expression using
the address of the specified location, you must specify the /ADDRESS
qualifier. If you do not use the /ADDRESS qualifier, the value of the
expression is determined using the contents of the specified location or,
if the expression does not refer to a memory location, by performing the
operations specified on the literals in the expression.

6.5.3 EVALUATE Command Examples

The following example demonstrates the use of the /ADDRESS qualifier.

DBG>DEFINE X = 15348
DBG>EVALUATE X

6083
DBG>EVALUATE/ADDRESS K
16346

In this example, the symbol X is defined to be memory location 15346.
The response to the EVALUATE command that is issued without the
/ADDRESS qualifier displays the contents of the memory location the
symbol X references, The response to the EVALUATE command with the
/ADDRESS qualifier displays the virtual address of the symbol X.

Manipulating Memory 6-7

Another use of the EVALUATE command is to perform address arithmetic,
as in the following example:

DBG>EVALUATE/ADDRESS (K + 2)/2
7874

This example demonstrates that the expression specified with the
/ADDRESS qualifier is treated as an address, not as a value expres-
sion. Here the debugger adds the value of the memory location denoted
by X (15346) and the integer 2. It then divides this sum by 2 to get the
value 7674,

NOTE

You cannot perform address arithmetic with the language set
to COBOL. If you want to do this kind of arithmetic while de-
bugging a COBOL program, first set the language to FORTRAN
and then SET LANG COBOL when you finish the arithmetic
exercise.

Finally, you can use the EVALUATE command to perform arithmetic on
value expressions. Consider this command:

DBG>EVALUATE X + 10
8093

In this example, the debugger treats the expression as a value expression
and adds 10 to the contents of location X to get the sum 6093. Note
that you could also have specified that the debugger add 6083 and 10 as
follows:

DBG>EVALUATE €083 + 10
8093

The debugger treats values in EVALUATE expressions as literals unless
one of them is a symbol or the /ADDRESS qualifier is specified.

6-8 Manipulating Memory

6.6 Displaying Memory Locations

You can display the contents of memory by using the EXAMINE com-
mand. This command allows you to display the contents of any virtual
address or any resident memory location described by a debugger perma-
nent symbol, defined symbol, or program symbol.

The EXAMINE command lets you look at the contents of a memory
location. It has the following format:

EXAMINE[/quaiifier] address
/ASCEI{:n}
/BYTE
/D_FLOAT
/D_SPACE
/FLOAT
/LONG
JINSTRUCTION
/I.SPACE
JRADBO
/WORD
/BINARY
/DECIMAL
/REXADECIMAL
/OCTAL
/PACKED (COBOL-81 only)

6.6.1 EXARINE Command Qualifiers

The qualifiers you can use with the EXAMINE command are data-type and
mode qualifiers. These qualifiers control how the contents of a memory
location are displayed. For example, if you specify a data-type qualifier,
the contents of the location you examine are displayed in the format of
that data type. Likewise, specifying a mode qualifier causes the contents
of the location to be displayed in that mode.

The data-type qualifiers are useful when you examine an untyped storage
location because the debugger associates its default data type with untyped
storage locations. If you examine a location that does not contain a value
that is of the default data type, you must translate the result to the correct
data type, so you can understand it. For example, if the default data type
is ASCII and you examine a Radix-50 value, you must translate the ASCII
string that is displayed to its Radix-50 equivalent before you know if the
memory location contains the correct value. However, if you specify the
/RAD5S0 qualifier when you examine the location, the value displayed is a
Radix-50 value.

Manipulating Memory 6-9

Because high-level language compilers associate data types with memory
locations, you need not specify a data-type qualifier with the EXAMINE
command to have values displayed in the correct data type when you
are debugging a high-level language program. These qualifiers are used
primarily for debugging MACRO-11 programs because they do not have
data types associated with memory locations.

When examining a task in I- and D-space, if you do not use a qualifier, or
use any qualifier except /INSTRUCTION or /L_SPACE, the debugger will
examine a D-space address. For example, the following command causes
the debugger to examine line 4 of the program code in D-space:

DBG>EXAMINE %LINE 4

To examine an I-space address, you must use /INSTRUCTION or
/L_SPACE with the EXAMINE command.

6.6.2 EXARINE Command Parameter

The address parameter specifies the location you want to display. It can
be a simple address or an address expression, and it can contain any valid
symbolic reference.

MACRO-11 and FORTRAN-77 programmers can examine a range of
locations by specifying the following:

EXAMINE addrese:address

This command causes the contents of a range of locations to be displayed
starting with the first address specified, up to and including the second
address.

COBOI. programmers can use the same command, but they cannot

use symbol names as part of the address range. Also, you cannot use
arithmetic operations in COBOL in conjunction with user symbols. For
example, you can use the command EXAMINE VARI but not EXAMINE
VARI1+10.

6-10 Manipulating Memory

6.6.3 EXARMINE Command Examples

You can EXAMINE memory locations by specifying a virtual address and
by specifying a symbol as in the following example:

DBG>DEFINE SUM = 15346
DBG>EXAMINE SUM
15346:6083

Both EXAMINE commands display the contents of the same memory
location.

In the following example, which shows the effect of the [NOJSYMBOL
qualifier when used with the EXAMINE command, X is a program symbol.

DBG>EXAMINE/SYMBOL X
MYPROG\X: 6083
DBG>EXAMINE/NOSYMBOL X
16346: 6083

Both EXAMINE commands display the same memory location. The
difference in the results is in how the debugger displays the output. In the
first command, the debugger displays the name of the memory location as
a symbol; in the second command, the debugger displays the name of the
memory location as a virtual address.

Only the debugger display is affected by mode values.

The symbol mode also affects the way the processor status word (PS)
and the floating-point status word (FS) are displayed. When the mode is
symbolic, the debugger gives you a formatted display of the contents of
the PS and the FS. For example:

DBG>EXAMINE/SYMBOL %PS

%PS: CURMOD PREMOD REGS xoor IPLT N Z V C
00 00 0O 0000000000

DBG>EXAMINE/SYMBOL YFS

%FS: ER ID IUY IV IVICLFLITMMNZVC
60 00 00 O0CO0CO0O0C O0CO0COC

If the mode is nonsymbolic, the display of the PS and FS is not formatted.
For example:

DBG>EXAMINE/NOSYMBOL %PS

%PS: 0
DBG>EXAMINE/NOSYMBOL %FS
YFs: 0

Manigulating Memary 6-11

6.7 Altering Memory Locatiens

The debugger allows you to alter the contents of memory locations
with the DEPOSIT command. You can deposit values into any resident
program location.

The DEPOSIT command has the following format:

DEPOSIT [/qualifier] address~value-expression
JASCIT[:n]
/BYTE
/D_FLDAT
/D_SPACE
/FLOAT
/LORG
/INSTRUCTICN
/1_SPACE
/RADBO
/WORD
/BINARY
/DECIMAL
JHEXADECIMAL
/0CTAL
/ [N01SYMBOL

BEPGSIT Command Qualifiers

When you issue the DEPOSIT command without qualifiers, the debugger
converts the value denoted by the value expression parameter to the
data type associated with the address. It then stores that value in the
designated address. If the address does not have an associated type, the
debugger interprets the value-expression as being of the default data type.

The qualifiers you use with the DEPOSIT command are mode and data-
type qualifiers. The mode qualifiers determine what radix mode is used
to interpret the address and the value expression specified with the
command. The data-type qualifiers control how the debugger interprets
the value expression. Therefore, when you issue the BEPOSIT command
with a data-type qualifier, the debugger ignores the data type associated
with the memory location, and deposits the value using the data type
specified by the qualifier. However, the debugger does not associate the
data type specified with a DEPOSIT command qualifier with the memory
location. After the value is deposited, the location is still interpreted as
having its compiler-generated type or, if it is an untyped location, the
default debugger type. Therefore, if you use the EXAMINE command
without qualifiers to look at the location, the value displayed will be in the

6-12 Manipufating Memary

format of the compiler-generated type or the default debugger type. If the
value stored in that location must be represented in some other type to
be meaningful, you must specify a data-type qualifier with the EXAMINE
command. Also, your program always treats the values stored in program
symbols in their compiler-generated type; the debugger cannot change the
types of variables in your program.

If you are altering memory locations of a task in I- and D-space, and
use no qualifier at all, or any qualifier except /I _SPACE, the debugger
alters a D-space address. To deposit a value in I-space, you must use the
/1_SPACE qualifier with the DEPOSIT command.

6.7.2 DEPQSIT Command Parameters

The address parameter specifies the memory location to which you want
to deposit a value. It can be a symbol or a virtual address. The value-
expression parameter specifies the value you want to deposit in the
mermory location,

MACRO-11 and FORTRAN-77 programmers can use a single DEPOSIT
command to deposit more than one value by listing the expressions to

be deposited on the right side of the equal sign and separating them with
commas. The debugger deposits the first value expression into the location
denoted by the address, then deposits subsequent value expressions into
the logical successors of that memory location,

6.7.3 Depositing ASCH Strings

To deposit an ASCII string, you must enclose the value expression in
quotation marks or apostrophes. When the debugger encounters a string
enclosed in quotation marks or apostrophes, it assumes that the string is
of the data type ASCII. When the length of the string to be deposited is
greater than the length associated with the address, the string is truncated
from the right. However, when the length of the string is less than the
length associated with the address, the debugger overwrites the existing
string leaving characters beyond the end of the new string unchanged
(MACRO-11 and FORTRAN-77 programs) or padding the excess bytes
with ASCII blanks (COBOL~-81 programs).

Manipulating Memory 613

When you want to reference variable names of a character type other than
ASCII, you use the /ASCII qualifier. If the string you are depositing is
longer than two bytes, you must specify /ASCILn, where n is the number
of characters in the string; otherwise, the debugger deposits only the first
two bytes of your character string,

6.7.4 Depositing Radix-50 Strings

You must use the /RADS50 gualifier with the DEPOSIT command to de-
posit a value expression that is a Radix-50 string. This qualifier identifies
the value expression as being of the data type Radix-50. The value expres-
sion must be delimited by quotation marks or apostrophes. If the length
of the quoted string is not a multiple of three characters, it is padded on
the right with blanks when it is stored because three Radix-50 characters
occupy two bytes in memory and the debugger stores all Radix-50 strings
in two-byte increments.

6.7.5 DEPOSIT Command Examples

In the following example, two successive locations are examined in
Radix— 50, and then the value of the first location is changed with the
DEPQOSIT command.

DBG>EXAMINE/RADEQ ARR(1):ARR(2)
MAINNARR(£)<0,18>: HAL
MAIN\ARR(2)<0,16>: E
DBG>DEPOSIT/RADG0O ARR(1) = "GEG"
DBG>EXAMINE/RADBO ARR (1)
MAINVARR(1)<0,18>: GEG

The angle brackets enclose numbers that show the starting point and
number of bits being examined. The location is displayed starting at bit
0 through bit 15. These angle brackets appear only when you display a
Radix-50 value.

The following example shows how to deposit an 18-character ASCII string
in the variable NAME, which is in the routine called SUBI.

DBG>DEP/ASCII: 18 SUBA\NAME = "The patient's name"

6-14 Manipulating Memory

The following example shows the effect of using a data type qualifier with
the DEPOSIT command.

DBG>EXAMINE VAR

VAR: B
DBG>DEPOSIT/BYTE VAR=65
DBG>EXAMINE VAR

VAR: A
DBG>EXAMINE/BYTE VAR
VAR: 86

The location VAR has the type ASCII associated with it. When the
DEPOSIT/BYTE command is issued, the debugger stores the integer 65 in
the memory location referred to by VAR. The first EXAMINE command
displays this location with its associated type of ASCII. However, when
the /BYTE qualifier is specified, the debugger displays the contents of
VAR as an integer.

Manipulating Memory 6-15

Chapter 7

Ending the Debugging Session

When you find errors in your program you want to correct, you must leave
the debugger and correct them in your source code. However, before you
leave the debugger, it is a good idea to check and see if you have looked
at all the program locations in which you suspect your program contains
errors. This chapter explains how you display all your eventpoints and
several ways you can safely exit from the debugger.

7.1 Preparing to Leave the Debugger

Before you leave the debugger, issue the following SHOW command:

DPBG>SHOW ALL
ADEBUG-I-NOBRKSET, there are no breakpoints currently et
WDEBUG-I-BRK_ENABLED, the recognition of breakpoints is enabled
ADEBUG-I-KOTRCSET, there are no trecepoints currently set
%DEBUG-I-TRC_ENABLED, the recognition of tracepoints is enabled
ADEBUG-I-CURR_NOLANG, Current language is unknown
%DEBUG-1-MODES, medes: symbolic, decimal

ADEBUG-I-OUTPUT, output: noverify, terminmal, mot logging to "DB2:[303,521DEBUG.LOG"
ADEBUG-I-SCOPE, scope: O [= MAIN]

WDEBUG-I-TYPE, type: word integer

%DEBUG-I-STEPTYPE, step type: by line, over routine calls

This command causes the debugger to display all the breakpoints and
tracepoints you have set. If you have not used some of the program
controllers that you set, you may not have found all the errors in your
program.

In addition to breakpoints and tracepoints, the SHOW ALL command
displays the current settings of mode, output, type, and step conditions.
You can use this command when you want to see how the debugger is
configured.

Ending the Debugging Session 7-1

7.2 Exiting the Debugger

To leave the debugger, issue the EXIT command as follows:

DBG>EKIT

This command causes orderly termination of the debugger on all operating
systems.

After you terminate a debugging session, you must run your program
again to restart the debugger.

7.3 Using Conirol Commands

You can use the control commands CTRL/C and CTRL/Z to interrupt the
debugger, but you should verify that the control command you use has
the effect you expect before you use it.

The CTRL/C command does the following:

@

On RSX-11M-PLUS, RSX-11M, and Micro/RSX, pressing CTRL/C
initiates one of the following reponses:

- When your terminal is set at NO CONTROL C (NOCTRLC),
pressing CTRL/C interrupts your task and returns control to your
operating system,

— When your terminal is set at CONTROL C (CTRLC), pressing
CTRL/C aborts your task and returns you to your operating system.
You must then rerun your program to reenter the debugger.

On the P/O8S, pressing CTRL/C aborts your task. You must then rerun
your program to reenter the debugger.

On RSTS/E and Micro/RSTS, pressing CTRL/C interrupts program
execution and returns control to the debugger.

On a VAX/VMS system, pressing CTRL/C interrupts the debugging
session and returns you to DCL. If you enter the CONTINUE com-
mand before issuing any other commands, you are returned to the
DBG> prompt. However, if you issue a command other than the
CONTINUE or SPAWN command at the DCL prompt, you must run
your program again to restart the debugger. If you enter the SPAWN
command upon exiting the subprocess, you can type CONTINUE to
resume debugging.

7-2 Ending the Debugging Session

If you interrupt the debugger using the CTRL/C command on
VAX/VMS, the debugger background task runs after you have received
the DCL prompt. You should issue the following SHOW command:

$ SHOW PROCESS/SUBPROCESS

The name of the debugger background task process appears in re-
sponse to this command. To stop the background task from running,
issue the STOP command as follows:

§ STOP process-name

This situation also occurs if you let your program run out of the
debugger. You should always set a breakpoint immediately before the
end of your program to avoid this problem.

The CTRL/Z command causes orderly termination of the debugger on
all systems. After you terminate a debugging session using the CTRL/Z
command, you must run your program again to restart the debugger.

Ending the Debugging Session 7-3

Appendix A

*DP-11 Symbolic Debugger Error
essages

The PDP-11 Symbolic Debugger generates error messages and informa-
tional messages while you are using it. These messages are displayed on
your terminal and in your log file, if one exists. The message format is as

follows:

ADEBUG-CODE-MSGNAM, message text

The percent character (%) identifies the line as a message. DEBUG
signals that the message is from the debugger, The CODE of the message
determines its class. The four classes of error messages are described
below, in order of greatest to least severity.

Code Description

F Fatal; must be corrected before the debugger will perform the
requested operation correctly.

E Error; should be corrected because the operation has been requested
incorrectly.

W Warning; should be investigated because the requested operation

may not be designed for use in the way it was specified.

I Information; no action necessary because the message is only
providing information.

The MSGNAM is the name of the message. This part of the message
is followed by the message text, which explains why the error message
occurred.

PDP-11 Symbolic Detregger Error Messages A-1

This appendix describes only the error messages generated by the debug-
ger, that is, those with a severity of F, E, or W. Informational messages are

generally self-explanatory.

The error messages in the following list are arranged in alphabetical order
by their message name. The message text, further explanation of the
message, and possible corrective action are given for each error message
generated by the debugger.

AFTTOBIG, AFTER count too large

Explanation. The delay specification in breakpoints and trace-
points is limited to a maximum of 255,

User Action. Reduce the delay specification to a valid value.

AMBIG, ambiguous keyword

Explanation. The keyword specified is an abbreviation for
several keywords that are valid at this point.

User Action. Make the abbreviation unique by increasing its
length.

ASCTOOBIG, ASCI type must be less than 256 bytes

Explanation. The number of characters in an ASCII string must
be from 1 through 255.

User Action. Reduce the number of characters,

BADINDEX, index cannot be an array

Explanation. An unsubscripted array name was used as an array
subscript.

User Action. Correct the expression and reenter the command.

BADINS, illegal opcode
Explanation. The debugger encountered an unexpected error.

User Action. File a Software Performance Report.

A-2 PDP-11 Symbolic Debugger Error Messages

BADPACK, The /PACKED qualifier is not valid with this data item

Explanation. The /PACKED qualifier cannot be used with
non-numeric data.

User Action. Check the validity of the data item.

BADRADS{, the string “string”™ contains non-RADS50 characters

Explanation. As specified, the string must contain only valid
Radix-50 characters.

User Action. Check the contents of the string or use another
data type.

BADRANGE, address range ‘address’ to ‘address’ is invalid (not
ascending)

Explanation, The addresses must be specified in order from
lowest to highest.

User Action, Correct the specification,

BADREGUSE, register name may not be used in this context

Explanation. Register names are invalid in certain address
contexts. Examples are execution start addresses, and breakpoint
and tracepoint addresses.

User Action. Specify an address that is not a register.

BAD_INSTRUCT, unable to decode PDP-11 instruction at "address’

Explanation. "Address’ does not start a valid PDP-11 instruc-
tion.

User Action. Check the validity of the address. It may begin on
an odd-byte boundary or refer to an address containing data.

BAD_NAME, bad file name

Explanation. The file system has detected a syntax error in the
file specification.

User Action. Correct the file specification.

PDP-11 Symholic Debugger Error Messages A-3

BAD_PATH, “pathname’ does not begin a valid pathname
Explanation. The pathname is incorrectly specified.

User Action. Check the validity of the pathname.

BAD_SCOPE, invalid numeric scope

Explanation. The only numeric scope recognized by the debug-
ger is 0-scope, as in SET SCOPE 0.

User Action. Check the validity of the specified scope.

BAD_STAMP, time stamp does not match

Explanation. The time stamp written in the STB file does not
match the time stamp written in the task image being debugged.
This indicates that the two files were not created by the same
task build.

User Action. Use SET STB ‘file-name’ to access the correct STB
file.
BAD_STB, invalid STB file

Explanation. The file specified in the SET STB command has an
invalid format.

User Action. Verify that the file name refers to an STB file and
specify the proper file name in the SET STB command.

BAD_STB, invalid nesting of FORTRAN routines

Explanation. The debugger has detected an error in the symbol
table file,

User Action. Recompile the program or file a Software
Performance Report.

BAD_SYMBOL, deposit past end of ‘symbol’

Explanation. An attempt was made to deposit too long a value
into one of the debugger permanent symbols.

User Action. Check the validity of the data.

A-4 PDP-11 Symholic Debugger Error Messages

BAD_SYMBOL, examine past end of 'symbol’

Explanation. An attempt was made to examine past the end of
one of the debugger permanent symbols.

User Action. Correct and reenter the command.

BAD_TBIT, unexpected T-bit trap

Explanation. A CTRI./C was typed during execution of a
debugger command.

User Action. None.

BAD_WHEN, WHEN expression is of invalid type

Explanation. The expression in a WHEN clause must be of
either LOGICAL type or INTEGER type.

User Action. Check the validity of the command.

BREAK_BAD_ADDR, address is unknown to debugger

Explanation. An error occurred searching the STB file.
Additional message(s) will appear giving more details.

User Action. None.

BRK_DISABLED, the recognition of breakpoints is disabled
Explanation. A DISABLE BREAK command is in effect.

User Action. Use the ENABLE BREAK to reverse the effects of
the DISABLE BREAK command.

BRK_ENABLED, the recognition of breakpoints is enabled
Explanation. An ENABLE BREAK command is in effect.

User Action. Use the DISABLE BREAK to reverse the effects of
the ENABLE BREAK commands.

COBOLERR, COBOQOL detected run time error

Explanation. The COBOL compiler discovered a fatal run-time
€rTor in your program,

User Action. Refer to your COBOL-81 user’s manual for an
explanation of the run-time error message.

POP-11 Symbolic Debugger Esror Messages A-5

COBOLNOQP, Current language is COBOL - no FORTRAN opera-
tors

Explanation. When the current language is COBOL-81, the
FORTRAN logical operators (.GT., .LT., and so on) are invalid.

User Action. Do not use the FORTRAN logical operators,

CONVERR, index could not be converted for dimension ‘'number’

Explanation. A conversion error occurred evaluating a subscript
expression. Additional message(s) will appear giving more
details.

User Action. None.

CTRLC, unexpected CTRL/C

Explanation. A CTRL/C was typed during execution of a
debugger command.

User Action. None.

CURRLANGCS1, Current language is COBOL-81

Explanation. The debugger is configured to operate on a
COBOL-81 program.

User Action. If your program is not written in COBOL-81, use
the SET LANGUAGE command to change the current language.

CURRLANGE77, Current language is FORTRAN-77

Explanation. The debugger is configured to operate on a
FORTRAN-77 program.

User Action. If your program is not written in FORTRAN- 77,
use the SET LANGUAGE command to change the current
language.

CURR_NOLANG, Current language is unknown

Explanation. The debugger is configured to operate on a
MACRO-11 program, which is the default debugger current
language.

User Action. If your program is not written in MACRO-11, use
the SET LANGUAGE command to change the current language.

A-G POP-11 Symbelic Debugger Error Messages

DATA..LOST, previously opened LOG file cannot be reopened, data
will be lost

Explanation. The debugger was unable to open the LOG file.
Additional message(s) will appear giving more details.

User Action. None,

DEPTOOLONG, DEPOSIT buffer overflow

Explanation. The DEPOSIT command is limited to a total of 100
bytes of data.

User Action. Divide the DEPOSIT command into several deposit
commands.

DIMENERR, number of indexes given does not match dimension

Explanation. An array reference contains an incorrect number of
dimensions, that is, too many or too few subscripts.

User Action. Check the validity of the number of dimensions,

EMT, illegal EMT

Explanation. The user program contains incorrect emulator trap
(EMT) instructions or the debugger encountered an unexpected
error

User Action. Check the EMT instruction or file a Software
Performance Report,

EXTOOLNG, vyou can only EXAMINE up to ‘number’ bytes at once

Explanation. A single EXAMINE command may only display
100 bytes of data.

User Action. Break the command inte two or more separate
EXAMINE commands.

FCS_ERR, FCS error code is ‘number’
Explanation. The FCS file system has detected an error.

User Action, Consult the RSX-11M/M-PLUS and Micro/RSX 1/0
Operations Reference Manual for an explanation of the error code.

PDP-11 Symbolic Dehugger Error Messages A-7

FILE_ERR, error on "type of file ‘file-operation’

Explanation. An error occurred in a file operation. Additional
message(s) will give details on the error encountered.

User Action. None.

FLTDIV, floating point divide by 0

Explanation. The debugger attempted to divide a floating-point
number by 0.

User Action. Correct the expression and reenter the command.

FLTOVF, floating point overflow

Explanation. A floating-point overflow occurred during evalua-
tion of an expression.

User Action. Correct the expression and reenter the command.

FLTUND, floating point underflow

Explanation. A floating-point underflow occurred during evalu-
ation of an expression.

User Action. Correct the expression and reenter the command.

FPUND, undefined floating point variable

Explanation. An expression contained a variable whose value
was undefined.

User Action. Correct the expression and reenter the command.

FP_ERR, floating point error
Explanation. The debugger encountered an unexpected error,

User Action. Avoid the use of floating point or file a Software
Performance Report.

HELP_FMT, length error in following keyword:
Explanation. The debugger HELP file is corrupt.

User Action. Avoid the use of the HELP command and file a
Software Performance Report.

A-8 PDP-11 Symbelic Debugger Error Massages

ILL_.NUM, “numeric-string’” is not a valid base-"radix’ number

Explanation. The ‘numeric-string’ is specified in the wrong
radix.

User Action. Use the SHOW MODE command to determine the
correct radix and respecify ‘numeric-string” or change the radix
mode.

INPCONERR, input conversion error

Explanation. A floating-point number must be a real constant
with a decimal point.

User Action. Check the validity of the input.

INTDIV, integer divide by 0
Explanation. The debugger attempted to divide an integer by 0.

User Action. Correct the expression and reenter the command.

INTERROR, 'message text’

Explanation. The debugger has detected an internal coding
error.

User Action. File a Software Performance Report.

INTOVE, integer overflow

Explanation. An integer overflow occurred during evaluation of
an expression.

User Action. Correct the expression and reenter the command.

INTRPT, unexpected interrupt

Explanation. An interrupt has occurred during execution of a
debugger command. Additional message(s} will appear giving
more details.

User Action. None.

INVCHAR, illegal character
Explanation. A command line contained an invalid character.

User Action. Check the validity of the command line,

PDP-11 Symbolic Debugger Error Messages A-3

INVDIM, subscript error, ‘array name’ has dimension ‘dimension list’

Explanation. An array reference has one or more dimensions
out of range,

User Action. Check the validity of the array reference,

INVLINE, invalid line number ‘line’
Explanation. Line numbers must be less than 32768,

User Action. Break your program into smaller pieces or respecify
the command, giving the correct line number,

INVTYPE, invalid data type
Explanation. The compiler corrupted the STB file.

User Action. Recompile your program to create a new STB file
or file a Software Performance Report for your compiler.

IN_USE, file is already in use
Explanation. The specified file is locked by another task.

User Action. Ensure that the file is available for use.

IOT, IOT instruction executed
Explanation. The debugger encountered an unexpected error.

User Action. File a Software Performance Report.

LINNOTEND, search failed for %LINE ‘line-number’
Explanation. No such line number exists in your program.

User Action. Verify the validity of the line number.

LINTOBIG, command line too long

Explanation. A command, including all continuation lines, is
limited to 256 characters.

User Action, Simplify the command.

A-10 PDP-11 Symbelic Debuggar £rror Messages

MEM_PROT, memory protect error

Explanation. An attempt was made to execute the contents of
system memory.

User Action. Check your program or file a Software
Performance Report.

MIXED_TYPE, unable to EXAMINE an address range of mixed type

Explanation. Entities in the specified address range must be
either program addresses or register addresses, but not both.

User Action. Specify an address range of one type.

NAMAMBIG, The data-name used in this command is ambiguous

Explanation. The specified data-name appears more than once
in the program.

User Action. Specify more COBOL qualification.

NAMTOBIG, the name “name’” has ‘length’ characters
Explanation. Symbol name must not exceed six characters.

User Action. Specify the name correctly.
NONNUMLIT, Only a nonnumeric literal can be moved to an
alphanumeric item

Explanation. A number cannot be moved into a storage location
that expects alphanumeric data.

User Action. Enclose the literal in quotation marks or specify
numeric type for the storage location by using a qualifier with
the DEPOSIT command.

NOPRED, ‘address’ has no predecessor

Explanation. Logical predecessor is defined only for elements
of arrays, untyped storage locations, instructions, and PDP-11
machine registers.

User Action. Reference the address by its symbolic name or
virtual address.

PDP-11 Symbolic Debugger Error Messages A-11

NOQUOTE, string literal missing closing quote

Explanation. String literals must be enclosed by quotation
marks.

User Action. Respecify with the closing quote.

NOSUCC, ‘address’ has no successor

Explanation. Logical successor is defined only for elements
of arrays, untyped storage locations, instructions, and PDP-11
machine registers.

User Action, Reference the address by its symbolic name or
virtual address.

NOSTEP, unable to STEP/OVER, stepping INTO instead

Explanation. The debugger cannot obtain from the COBOL-81
compiler the information needed to step over routine calls,

User Action. Instead of stepping through all of COBOL’s OTS
routines as well as your own, set breakpoints and issue the
GO command. This problem should be fixed with the next
COBOL-81 update.

NOSUCDEP, COBOL-81 does not support DEPOSITs to successive
memory locations

Explanation. You cannot store multiple values with a single
DEPOSIT command

User Action. Divide the command so that only one value is
stored each time you issue the DEPOSIT command.

NOTARRAY, subscripted variable “name’ is not an array
Explanation. A subscripted variable must be an array.

User Action. Correct the expression and reenter the command.

NOTDEFINE, you do not have a defined symbol “"name’”

Explanation. The debugger does not recognize 'name’ as a
symbol.

User Action. Use the DEFINE command to define 'name’,

A-12 PDP-11 Symbolic Debugger Error Messages

NOTLINKED, STB record has not been processed by TKB

Explanation. The STB file contains records that have not been
processed by the bask builder.

User Action. File a Software Performance Report for your task
builder.

NOTRES, ‘address’ is not resident

Explanation. An address specified in an EXAMINE or DEPOSIT
command refers to an overlay segment not currently in memory.

User Action. None.

NOT_GSD, unable to locate “name’ as GSD

Explanation. The specified ‘name’ could not be found as a
global symbel.

User Action. Check the validity of the name or reset your scope
so that it is no longer global,

NO_ACTION, wunable to link in action "action”

Explanation. The debugger could not obtain sufficient storage to
execute the indicated action.

User Action. Regain dynamic memory by eliminating unneeded
eventpoints and defined symbols.

NO_CALLS, there are no active call frames
Explanation. There are no subprograms currently active.

User Action. None.

NO_CONYV, unable to convert datatypes

Explanation. A DEPOSIT command attempted to convert
numeric data to character, or character data to numeric.

User Action. Check the validity of the data.

POP-11 Symbolic Debugger Error Messages A-13

NO_DIR, directory does not exist

Explanation. The directory specified as part of the file specifica-
tion does not exist.

User Action. Check the validity of the directory specification.

NO_FILE, file does not exist
Explanation. The specified file does not exist,

User Action. Correct the file specification and reenter the
command.

NO_FLOAT, COBOL-81 does not support floating point

Explanation. It is invalid to refer to a COBOL-81 storage
Iocation as floating point.

User Action. Change the data type specification to one that is
legal for COBOL-81.

NO_HIERARCHY, only COBOL supports hierarchical data types

Explanatioﬁ. The OF and IN keywords are defined only for
COBQOL-81 users,

User Action. Use pathname syntax to refer to FORTRAN-77
variables that could be ambiguous.

NO_LOG, unable to open log file “’file name”

Explanation. The debugger is unable to open the LOG file.
Additional message(s) will appear giving more details.

User Action. None.
NO_PACKED, FORTRAN-77 does not support packed decimal
types

Explanation. It is invalid to refer to a FORTRAN-77 program
location as packed.

User Action. Specify a valid FORTRAN-77 data type.

A-14 PDP-11 Symbolic Debugger Error Messages

NO_PATHNAME, unable to find 'name’ in STB file

Explanation. The debugger does not recognize 'name’ as a
symbol.

User Action. Check the validity of the name.

NO_READ, no read access to address 'address’

Explanation. The debugger was unable to read the specified
address,

User Action. Check the validity of the address,

NO._REAL, logical operations are not legal for REAL

Explanation. Logical operations can be performed only on
logical or integer expressions,

User Action. Check the validity of the expression.

NQ_SCOPE, 0-S5COPE is invalid for this PC

Explanation. The current PC is not within a program or subpro-
gram compiled with the DEBUG option.

User Action. Specify a pathname for the symbol.

NO_SPACE, internal storage exhausted

Explanation. The debugger could not obtain sufficient dynamic
memory to perform the command.

User Action. Regain dynamic memory by eliminating unneeded
eventpoints and defined symbols.

NO..STB_FILE, no STB file is currently set

Explanation. A SHOW STB command was issued when no STB
file was set.

User Action. Use the SET STB command.

NO..SUBS, Subscripts cannot be specified here

Explanation. Unstructured variable references cannot contain
subscripts.

User Action. Check the validity of the variable reference.

PDP-11 Symbolic Debugger Error Messages A-15

NO_WHEN, unable to link in condition “when clause’

Explanation. The debugger could not obtain sufficient storage
to evaluate the specified condition. The condition is treated as
though it evaluated to TRUE,

User Action. Regain dynamic memory by eliminating unneeded
eventpoints and defined symbols.

NO_WRITE, no write access to address “address’

Explanation. The debugger was unable to write to the specified
address.

User Action, Check the validity of the address.

NUMERICLIT, Only a numeric literal can be moved to a numeric
item

Explanation. Nonnumeric data cannot be moved to a storage
location that expects a number.

User Action. Specify a nonnumeric type for the storage location.

NUMTOOLONG, A numeric literal cannot have more than 18 digits
Explanation. Numeric literals must be shorter than 18 digits.

User Action. Shorten the numeric literal.

ODDBPT, you may not set an ‘event’ at odd address ‘address’

Explanation. You cannot set a breakpoint or tracepoint at an
odd address.

User Action. Correct the address and respecify it.

ODD_ADDR, odd address trap

Explanation. An attempt was made to begin execution at an odd
address.

User Action. Check your program or file a Software
Performance Report.

A-16 PDP-11 Symbolic Debugger Error Messages

OPERSTOVFL, operand stack overflow
Explanation. The parser has exhausted its operand stack.

User Action. Reduce the complexity of the command.

OPSTOVFL, operator stack overflow
Explanation. The parser has exhausted its operator stack.

User Actien. Reduce the complexity of the command.

QUTCONERR, output conversion error

Explanation. The debugger was unable to format the value
requesied.

User Action. File a Software Performance Report.

OUTOFBNDS, The subscript value specified is out of the legal range

Explanation. The largest value in the array range is smaller than
the specified subscript value.

User Action. Check the validity of the subscript value.

QUTPUTLOST, output being lost, both NOLOG and NOTERM are
in effect

Explanation. The SET OUTPUT command has been specified
with both NOLOG and NOTERM parameters.

User Action. Specify the SET QOUTPUT command with either
the LOG or TERM parameter,

PERM_DEF, you cannot redefine the permanent symbol 'name’

Explanation. A permanent symbol cannot be defined with the
DEFINE command.

User Action. Check the validity of the symbol name.

PROTECTED, file has restricted access

Explanation. The file specified in the current command is
protected against access by the debugger.

User Action. Correct the file protection.

PDP-11 Symbolic Debugger Error Messages A-17

PRSTOVFL, parse stack overflow
Explanatien. The parser has exhausted its parse stack.

User Action. Reduce the complexity of the command.

RECTOBIG, record was truncated

Explanation. An indirect command file contained a command
line of more than 255 bytes in length.

User Action. Correct the command file.

RETURN_BREAKs, can only refer to a routine

Explanation. The address specified with SET BREAK/RETURN
must be within a main routine or a called routine,

User Action. Correct the address and respecify it.

RMS_ERR, RMS error code is ‘number’
Explanation. The RMS file system has encountered an error.

User Action. Consult the RMS-11 MACRO-11 Reference Manual
or the VAX-11 Record Management Services Reference Manual for
an explanation of the error code.

SEE_CALLS, the number..of_frames argument (‘count’) must be
greater than 0

Explanation. A zero argument to SHOW CALLS is invalid.

User Action. Correct the command and reenter it.

SHOTOBIG, SHOW CALL count too large

Explanation. The SHOW CALLS count is a decimal integer in
the range 1 through 32767.

User Action. Correct the call-count parameter and reissue the
SHOW CALILS command.

A-18 PDP-11 Symbolic Debugger Error Messages

STNNAME, the SET STB_.FILE command handles STB file names up
to ‘length’ characters

Explanation. The file name specified is longer than allowed by
the host file systemn.

User Action. Correct the file name and reenter the command.

STPTOBIG, STEP count too large
Explanation. The maximum value of the step count is 32767.

User Action. Correct the command and reenter it.

STRTRUNC, string truncated

Explanation. The string being deposited was longer than the
length associated with the location deposited into.

User Action. None.

SYNTAX, command syntax error at or near “string”

Explanation. A syntax error was detected in the debugger
command.

User Action. Correct the command, and reenter it.

SYNTAXEXPR, Syntax error in expression

Explanation. The arithmetic expression in the debugger com-
mand contains a syntax error.

User Action. Check the validity of the arithmetic expression.

TBIT, unexpected T-bit trap

Explanation. Either you typed a CTRL/C during the execu-
tion of a STEP command or your program set the T-bit in the
processor status word.

User Action. None.

TERM_LOST, error during write of log output to terminal
Explanation. An [/O error occurred during terminal I/O.

User Action. File a Sofiware Performance Report.

PDP-11 Symbolic Debugger Error Messages A-18

A-20

TOOFEWSUBS, Command specifies too few subscripts for “string”

Explanation. The structured variable has more dimensions than
specified.

User Action. Check the validity of the variable reference.

TOOLONG, file name too long

Explanation. The file name specified is longer than allowed by
the host file system.

User Action. Correct the file name and reenter the command.

TOMANSUBS, Too many subscripts specified for this item

Explanation. The item is specified with more subscripts than the
structured variable is declared with.

User Action. Check the validity of the variable reference.

TRAP, TRAP instruction executed
Explanation. The debugger encountered an unexpected error.

User Action. File a Software Performance Report.

TRSTOVFL, tree storage overflow
Explanation. The parser has exhausted its tree storage.

User Action. Reduce the complexity of the command.

UNEXPEOF, unexpected end of file

Explanation. The debugger has detected an internal coding
error.

User Action. File a Software Performance Report.

UNMATCHED, unmatched end-of-routine record in STB

Explanation. The debugger encountered a format error in the
symbol table file,

User Action. File a Software Performance Report.

PDP-11 Symbolic Debugger Error Messages

VARERR, symbol “name’ is not an array variable

Explanation. The variable was specified with subscripts, but is
not dimensional.

User Action. Specify the variable without a subscript list.

WHEN_ERR, error in evaluation of WHEN

Explanation. An error was encountered attempting to evaluate
a WHEN clause. The WHEN clause is treated as though it
evaluated to TRUE.

User Action. Correct the WHEN clause.

PDP-11 Symbolic Debugger Error Messages A-21

INDEX

0 symbol € 3-11

%FS symbol® 3-2

%I[.INE symbol ® 3-2
in pathnames ¢ 3-8

%NAME symbol @ 3-2

%PC symbol® 3-2

%PS symbol ® 3-2

%SEGMENT symbol @ 3-2
in pathnames ® 3-8

%SP symbole 3-2

@ Command® 2-5
example ® 2-6

A

Address
as address expression ® 3-4
as parameter @ 3-4
as simple address ® 3-4
computation of ® 3-4
data types ® §-2
integers in ® 3-4
line humbers ine 3-4
operators in € 3-4
permanent symbol ine 3-4
program symbol in® 3-4
Address arithmetic @ 6-8
/AFTER:n qualifier ¢ 4-5
ASCH strings
default length® 6-14
depositing®6-13
$AUTO=4-4

Backslash (\}) symbol® 3-11
Breakpoint

disabling ® 4-8

displaying® 4-8

duration of € 4-8

effect of®4-3

enabling ® 4-8

setting ® 4-4

C

JCALLS qualifiere 4-5
CANCEL ALL command® 7-1
CANCEL BREAK command € 4-8
CANCEL MODE command © 6-5
CANCEL OUTPUT command ®2-3
CANCEL SCOPE command® 3-12
CANCEL STEP command ® 5-5
CANCEL TRACE command @ 4-8
CANCEL TYPE command® 6-4
Command file

See Indirect command file
Comment

in indirect command file ® 2-5

in log file® 2-3
Control commands € 7-2
CTRL/C®7-2
CTRL/Ze7-3
Current location symbole 3-2
Current scope, dispiaying® 3-12
Current value symbol® 3-2

Index-1

Data type 2 6-1
changing the default 6-2
compiler-genarated @ 6-1
debugger default® 6-2
displaying defauii ® 6-4
for addresses ® -2
recognized by the debugger® 6-3
Debugger
dispiaying configuration® 7-1
displaying modes ® 6-5
interrupting ® 7-2

invoking® 1-4
MACRO-11 command® 1-5
ODL file® 1-5

with nonoverlaid kernel® 1-5, 1-7
with overlaid kernel® 1-5
Debugger features @ 1-1
Debugger start-up @ 1-4
Debugger termination® 1-8, 7-2
Debugging session
online help e 1-4
optimized code® 1-3
planning e 1-2
Default language
setting® 2-1
DEFINE command © 3-3, 3-5
Defined symbol @ 3-3
Deposit
successive ©6-13
DEPOSIT command ® 6-12, 6-13, 6-14
DISABLE BREAK command ® 4-8
DO (action} parameter ® 4-6

Extended pathname {cont'd.)
example © 3-10
syntax ® 3-9

F

File
see Indirect command file
See Log file
See STB file
Filespec
formate 2-4
full® 2-6
in @ command @ 2-6
in log file® 2-4
%FS symbol®e 3-2

GO command ® 5-5, 5-6

H

HELP command e 1-4
Help facility® 1-4

E

ENABLE BREAK comimand @ 4-8
EVALUATE command © 6-6, §-7
EXAMINE command @ 6-9, 6-10
displaying & range ® 6-10
Exclamation point
in indirect command file® 2-5
in log file® 2-3
EXIT command® 1-8, 7-2
Extended pathname® 3-9
and %SEGMENT @ 3-9

2-Indax

indirect command file ® 2-5
and log file® 2-5
creating ¢ 2-5
example ® 2-6
exacution © 2-5
including comiments @ 2-5
invoking @ 2-5
nesting ® 2-6
VERIFY parameter® 2-2

integer
in addresses ® 3-4
in pathnames @ 3-8

L

Line number
as permanent symbol® 3-2
in addresses ¢ 3-4
in STB file® 3-6

%LINE symbol® 3-2

Literal @ 6-1

Log file® 2-3
as indirect command file® 2-3, 2-5
comment in®2-3 .
creating new version® 2-4
default extension @ 2-4
displaying name ® 2-5
example € 2-4
name of® 2-4

Logical predecessor symbol® 3-3

Logical successor symbol® 3-3

SMARKS @ 4-4
Made
canceling ® 6-5
definition of ¢ 6-4
radix ® 6-4
setting @ 6-4
symbol ® 6-4
and FS®6-11
and PS®6-11

%NAME symboie 3-2

Pathname {cont’'d.}
See also Simple pathname
for MACRO-11¢3-8
in SET SCOPE command @ 3-11
truncated® 3-11
%PC symbol® 3-2
Period ® 3-2
Permanent symbol ¢ 3-1
for registers @ 3-2
in addresses # 3-4
Program symbol® 3-6
data types ® 6-1
in MACRO-1123-6
referencing © 3-7
%PS symbole 3-2

Radix—50 strings
default length e B-14
depositing® 6-14
$RDSEG* 4-4
Register, permanent symbols fore 3-2
/RETURN qualifier® 4-5
Routine calls
displaying active ® 4-1

S

Operator
in addresses © 3-4
in value expressions ® 6-6
Optimized code, debugging® 1-3
Output configuration
canceling® 2-3
defauit e 2-2
displaying® 2-3
example of setting® 2-3
setting® 2-2
Overtay and pathname @ 3-9

P

Pathname
See also Extended pathname

Scope® 3-7
canceling® 3-12
displaying®3-12
prefixe 3-11
syntaxe 3-11
setting ® 3-10
specifying ® 3-8
%SEGMENT symbol e 3-2
SET BREAK command ® 4-4, 4-6, 4-7
SET LANGUAGE command ® 2-1
default for MACRO-11#2-1
for MACRO—11¢2-1
SET LOG command & 2-4
SET MODE command ® 6-4
overriding ® 6-4
SET QUTPUT command® 2-2, 2-3
SET SCOPE command® 3-10, 3-11
pathname in®€3-11

Index-3

SET STB command @ 3-6
SET STEP command ® 5-4, 5-5
SET TRACE command ® 4-4, 4-6, 4-7
SET TYPE command @ 6-2
overriding © 6-3
SHOW ALL command®7-1
SHOW BREAK command © 4-8
SHOW CALLS command® 4-1, 4-2
explanation of display ® 4-1
SHOW LOG command ® 2-5
SHOW MODE command ® 6-5
SHOW QUTPUT command® 2-3
SHOW SCOPE command® 3-12
SHOW STB command ® 3-7
SHOW STEP command®© 5-5
SHOW TRACE command ® 4-8
SHOW TYPE command ® 6-4
Simpie pathname® 3-8, 3-9
%SP symbol® 3-2
STB file® 3-6
contents ® 3-6
default extension® 3-7
name of @ 3-6
STEP commande5-1, 5-2, 6-3
duration of @ 5-1, 5-2
sequence of @ 5-1
Step conditions
canceling® 5-5
changing ® 5-4
default ¢ b-4
displaying ® 5-5
Symbol
ambiguous reference to® 3-7
as defined symbol® 3-3
as permanent symboi® 3-1
as program symbo| ® 3-6
backslash (\}®3-11
containing period® 3-2
creating @ 3-3
current location @ 3-2
current value © 3-2
for registers e 3-2
in pathnames @ 3-8
%LINE ® 3-2
in pathnames © 3-8
logical predecessor® 3-3
logical successor® 3-3
making unique ® 3-7

&-Index

Symbol {cont’d.)
number 0®3-11
%SEGMENT © 3-2
types of @ 3-1

Symbol table file
See STB file

System routines @ 4-4

T

Traceback information® 4-3
Tracepoint

disabling ® 4-8

disptaying @ 4-8

duration of ¢ 4-8

effect of ©4-3

enabling ® 4-8

setting ® 4-4

UNDEFINE command ® 3-5

v

Value expression®6-6
operators ® 6-6
quoted sirings in ® 6-6

Variable name
in STB file® 3-6

W

WHEN parameter® 4-6

PDP—11 Symbolic Debugger
User’'s Guide
AA-FABOA-TK

READER’S Note: This form is for document comments only.

DIGITAL will use comments submitted on this form at

COMMENTS the company's discretion. if you require a written reply
and are eligible to receive one under Software Performance
Report (SPR} service, submit your comments on an SPR
form.

Did you find this manuat understandable, usable, and well organized? Please make
suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

J Assembly language programmer

[0 Higher-level language programmer

[0 Occasional programmer (experienced)
[User with littie programming experience
[0 Swdent programmer
(O Other {ptease specify)

Name Date

Organization

Street

City State ____ Zip Code
or Country

i II " | Na Postage
Necessary
EEE if Mailed in the
United Statas

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

S$SG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD

NASHUA. NEW HAMPSHIRE £3062-2698

Cut Aleng Dotted Line

