PDP-11 SORT/MERGE
User’s Guide
Order No. AA-CI67A-TC

April 1984

This manual describes how to use the PDP-11 SORT/MERGE utility. The
manual is intended for all RSTS/E, RSX-11M/M-PLUS, and Micro/RSX
users of SORT/MERGE who need to reorder or combine data files.

OPERATING SYSTEMS AND VERSION: RSTS/E V8.0
RSX-11M V4.1
RSX-11M-PLUS V2.1
Micro/RSX V1.0

SOFTWARE VERSION: PDP-11 SORT/MERGE V3.0

digital equipment corporation - maynard, massachusetts

First Printing, April 1984

The information in this document is subject to change without notice and should not be con-
strued as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1984 by Digital Equipment Corporation.
All Rights Reserved.

Printed in U.S.A.

The postpaid READER’'S COMMENTS form on the last page of this document requests the
user’s critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSTS
DEC/CMS EduSystem RSX
DEC/MMS IAS TOPS-20
DECnet MASSBUS UNIBUS
DECsystem-10 Micro/PDP-11 VAX
DECSYSTEM-20 Micro/RSX VMS
DECUS PDP VT
DECwriter PDT Enaﬂuan
ZK2576
HOW TO ORDER ADDITIONAL DOCUMENTATION
In Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)
In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Belfast Road
In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager
DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)
Digital Equipment Corporation Digital Equipment Corporation
P.O. Box CS2008 A&SG Business Manager
Nashua, New Hampshire 03061 c/o Digital's local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

Contents

Preface

Chapter 1

Chapter 2

Page
vil
Getting Started
1.1 Sorting Records 1-1
1.1.1 The SORT Command. 1-2
1.1.2 Using SORT Qualifiers 1-3
1.1.3 Input and Output File Parameters. 1-5
12 Merging Records.o D 1-5
1.2.1 The MERGE Command 1-6
1.2.2 MERGE Qualifiers 1-7
1.2.3 Input and Output File Parameters. 1-7
1.3 Running BATCH SORT and MERGE 1-7
Invoking SORT and MERGE at the Command Level
2.1 Using SORT/MERGE from the MCR/CCL Interface. 2-1
2.2 Defining Your SORT/MERGE Operations. 2-2
2.2.1 Default File Types for DCL.. 2-3
2.2.2 Default File Names for MCR/CCL.. 2-3
2.3 Specifying Key Field Information. 2-4
2.3.1 Identifying the Position, Size, and Orderof a Key 2-4
232 Multiple Keyso 2-5
2.3.3 Data Typeand Size 2-6
2.3.4 Specifying Key Information in MCR/CCL 2-7
2.3.56 Collating Sequences. e 2-8
2.3.6 Options for Equal Keys 2-9
2.4 Defining the Sorting Process 2-10
2.5 Specifying File Attributes 0o 2-12
2.5.1 Specifying Input File Format and Organization. 2-12
2.5.2 Optimizing the SORT/MERGE Work Area. 2-13
2.5.3 Specifying Shareable Files 2-14
2.5.4 Specifying Output File Organization and Format. 2-14
2.5.,5 Chaining to a SORT or MERGE Image (RSTS/E only). 2-16
26 MergingFiles o Lo 2-17

2.7 Summary of DCL Qualifiers and MCR/CCL Switches 2-17

iii

Chapter 3 Using a Specification File

Chapter 4

Chapter 5

3.1

3.2

3.3
3.4
3.5

3.6
3.7
3.8

Creating a Specification File 3-1
3.1.1 Entering Text in a Specification File. 3-3
3.1.2 Using Qualifiers in the Specification File. 3-3
Specifying Record Fields 3-4
3.2.1 Specifying Keys oo 3-5
3.2.2 Formatting Data for the Output File.36
3.2.3 Defining and Using Conditions 3-7
3.2.4 Specifying Record Selection.38
Sorting Files with More Than One Record Format. 3-9
Special Considerations 3-10
Specifying a Collating Sequence 3-11
3.5.1 Defining Your Own Collating Sequence 3-11
3.5.2 FOLD and TIE_BREAK 3-12
3.5.3 Modifying the Collating Sequence 3-13
3.5.4 Example of a User-Defined Collating Sequence. 3-14
Reassigning Work Files. 3-15
Specifying a New Pad Character 3-16
Specification File Summary 3-16

Using SORT and MERGE in Application Programs

4.1
4.2
4.3
4.4

4.6

Language Support L Lo 4-1
The Two Callable SORT and MERGE Interfaces 4-2
Specifying Your Own Routines 4-3
Calling the SORT Subroutines 4-3
4.4.1 Passing File Names and Initializing Your Sort 4-5
4.4.2 Passing Records to SORT .-. 4-12
4.4.3 Returning Records to Your Program, .. 4-12
444 Sortingthe Records. 4-13
445 Ending Your Sort. 4-14
Calling the MERGE Subroutines 4714
4.5.1 Initializing Your Merge 4-16
4.5.2 Summary of SORT Subroutine Calls. 4-19
Task Buildingo 4-21
4.6.1 Overlay Descriptor Language (ODL) files 4-21
4.6.2 Task Building with User-Defined Routines 4-23
463 LUNUsage. s 4-25

Improving SORT Efficiency

5.1

5.2

How SORT Operates. 5-1
5.1.1 Initialization Phase. 5-2
512 SortPhase.52
5.1.3 Merge Phase of the SORT 5-4
514 CleanupPhaseo 5-4
Understanding and Using SORT/MERGE Statistics 5-4
5.2.1 Using Statistics with Callable SORT/MERGE 5-6

iv

53 WhattheUserCanDo. 5-7
531 Work Files oo 5-8
5.3.2 Input File Allocation 5-9
5.3.3 Output File Preallocation 5-9
534 Process. Lo 5-10
5.4 What the System Manager Can Do 5-10
Appendix A Error Messages
Appendix B Sample Programs
BASIC-PLUS-2 Program Using the MERGE File Interface B-2
BASIC-PLUS-2 Program Using Both SORT and MERGE
Mixed-Mode Interfaces. oo B-3
COBOL-81 Program Using the MERGE Record Interface B-6
COBOL-81 Program Using the SORT Record Interface B-8
FORTRAN Program Using the MERGE File Interface. B-11
FORTRAN Program Using the SORT File Interface B-13
Appendix C Specification File Translator
C.1 Converting Version 2 Specification Files. C-1
C.2 Translator Error Messages « .« o o C-1
Appendix D Multinational Collating Sequence
Appendix E Compatibility with PDP-11 SORT/MERGE Version 2
Index
Tables
2-1 SORT/MERGE — DCL Qualifiers, MCR/CCL Switches 2-2
2-2 SORT Processes v v v v v v v v v i e e e e e 2-10
2-3 SORT Qualifiers in a DCL Command Line 2-18
2-4 SORT Switches in an MCR/CCL Command Line 2-20
2-5 MERGE Quualifiers in a DCL Command Line 2-22
2-6 MERGE Switches in an MCR/CCL Command Line 2-24
3-1 Specification File Keywords 3-2
3-2 Specification File Summaryo 3-16
4-1 SORT Subroutines. oo 4-4
4-2 SRTINI Parameters o v v v v v e e e 4-6
4-3 SRTRLS Parameters. « o « v v v e 4-12
4-4 SRTRTN Parameters« v 4-13
4-5 MERGE Subroutines Lo o000 0o 4-15
4-6 MRGINI Parameters. o000 4-17
4-7 Summary of SORT Subroutine Calls for File Interface. 4-19
4-8 Summary of SORT Subroutine Calls for Record Interface 4-19
4-9 Summary of SORT Subroutine Calls for File Interface Input,
Record Interface Qutput 00 4-20
4-10 Summary of SORT Subroutine Calls for Record Interface Input,
File Interface Qutputo 4-21
4-11 SORT/MERGE ODL Files 4-22

Preface

How to Use This Manual

The PDP-11 SORT/MERGE User’s Guide describes how to use the SORT
and MERGE utilities for RSTS/E, RSX-11M, RSX-11M-PLUS, and
Micro/RSX operating systems. You should use this manual if you want to sort
the data in files, or if you want to combine two or more data files. This
manual describes simple and complex applications of SORT and MERGE.

The manual has five chapters and five appendixes:

* Chapter 1 is an introduction to SORT and MERGE,; it shows some elemen-

tary examples of using SORT/MERGE at DCL level.

e Chapter 2 is a discussion of using SORT and MERGE in DCL and

MCR/CCL command lines, and it describes all of the qualifiers that you can
use to customize your sort or merge operation.

Chapter 3 discusses the use of specification files with SORT or MERGE. A
specification file allows you to define parameters for a sort or merge opera-

tion, and it also allows you to perform some functions that are unavailable
in a simple command line SORT or MERGE.

Chapter 4 shows how to use SORT and MERGE in an application program,
discussing the callable subroutines that are included in the SORT/MERGE
Utility.

Chapter 5 discusses optimization techniques, describing how you can
improve system performance depending on the sort or merge operations that
you use.

Appendix A lists the SORT and MERGE error messages.

Appendix B lists six sample application programs that use the callable
SORT and MERGE subroutines.

Appendix C discusses the translator utility, which you use to convert
SORT/MERGE Version 2 specification files to files that are compatible
with Version 3.

Appendix D lists the MULTINATIONAL collating sequence.

Appendix E lists changes between this version of PDP-11 SORT/MERGE
and the previous version.

vii

Conventions Used in This Manual

The following conventions are used throughout this manual to designate
required and optional syntax:

red

Optional; you may select none, one, or all of the choices
Select one and only one of the choices
Enclose the choices that you select in parentheses

A horizontal ellipsis in syntax formats means that you can repeat the
preceding element

A vertical ellipsis in syntax formats means that there can be additional
syntax statements between the listed elements

Syntax shown in red can be entered interactively

viii

Chapter 1
Getting Started

PDP-11 SORT/MERGE provides you with a fast and flexible means of reor-
dering and combining data files, which are important functions in many data
processing applications. For example, suppose you maintain your employee
records online; depending on the application, you may want to sort the data
alphabetically by employee name, numerically by department number or by a
sales performance measurement. You may also want to combine, or merge,
two or more of your data files into a single file. PDP-11 SORT/MERGE
provides you with a fast and easy way to sort the individual files and/or
combine them into a single ordered file.

This chapter introduces the PDP-11 SORT and MERGE utilities as invoked
at DCL command level, shows the DCL syntax required for simple sort and
merge operations, and describes how to run SORT and MERGE in batch
mode (for RSTS/E and RSX-11M-PLUS only).

1.1 Sorting Records

PDP-11 SORT reads records from as many as ten input files, sorts them
according to the field(s) you specify, and generates one reordered output file.
For example, assume that you have a file named MAGSUB.DAT that con-
tains the data records of a magazine subscription list. There is one record for
each subscriber; each record has five fields:

e Subscriber’s name
e Street address

e City

e State

¢ Expiration date of the subscription
Exp Date

Name Street City State (e Mao/Dad
Yellen Mark 90 Lynwood Lane Mestfield MA Ba41231
Germont Alfredn 15 Town House Dr HWaltham Ma BEO0501
Thompson Lynda 385 N Main St Easton M 831130
Fallon Curtis 56 Junieer Lane Lenox MAa g41101

1-1

Exp Date

Name Street City State (Yr/Mo/Da)
Tosca Floria 108 Winfield Dr Rome WY 850630
Weaver Sterhen 72 Newton Aue Hyde Park NY 240509
Marsh Beverly ~ 303 Cambridge Gt Pittsfield MA gEl0ls
Barber Robert 81 River 5t Belmont MY 841031

Suppose that you want to create a new file with the subscription records
ordered alphabetically by subscriber’s name and that you want the new file to
be called MAGSUB.LIS. The field containing the subscriber’s name is your
sort field, or key. Use SORT to collate this file in the order that you want with
the DCL level SORT command line. The SORT command line specifies infor-
mation specific to the type of sorting operation that you want to perform, the
name of the file that you want to sort (the input file), and the name of the file
to which the sorted data is to be written (the output file).

For example, in the simple list of magazine subscribers shown above, where
the input file is MAGSUB.DAT, the output file is to be called MAGSUB.LIS,
and you want to accept all of the default parameters that SORT supplies, the
DCL command line is

$ SORT MAGSUB.DAT MAGSUB.LIS

The command line for this sort operation does not give any information about
the key field because the key field (subscriber’s name) begins in the first
position of the record. When you sort the file using the default of entire record
in ascending alphabetical order (A to Z), the new file, MAGSUB.LIS, now
looks like this:

Name Street City State Exp Date
(Yr/Mo/Da)
Barber Robert 81 River 5t Belmont NY B41031
Fallon Curtis 26 Junieper Lane Lenaox Ma B41101
Germont Alfredo 15 Town House Dr Waltham MA BE05G1
Marsh Bewerly 305 Cambridde Bt Pittsfield MA BR1I01E
Thomeson LLynda 383 N Main St Easton MA 831130
Tosca Floria 108 Winfield Dr Rome by 850630
Weaver Sterhen 72 Newton Aue Hyde Fark NY B40509
Yellen Mark 90 Lynwood Lane Westfield MA 841231

1.1.1 The SORT Command

The SORT command line at the DCL interface consists of three parts, sepa-
rated by spaces.

$ S0RTL/suvalifiersl input-filelsaualifiers] output-filelsaualifiers)

1-2

SORT is the DCL command that invokes the PDP-11 SORT utility. The
SORT command accepts qualifiers that describe the key(s), specify sort op-
tions, or describe other aspects of the sort operation or the data that you are
using. The SORT command requires two parameters that identify the input
file(s) and the output file.

The input file parameter identifies the file or files that you want to sort.
SORT allows you to sort up to 10 input files (in a single operation) into one
output file. If you have more than 10 files to sort, you can break them into

Getting Started

smaller groups, sort each of the groups, and then merge the output files into a
single output file. If you do not supply an input file, SORT prompts you for
the input file name.

The output file parameter identifies the name of the file that SORT creates;
this file will contain the sorted data from the input file or files. You identify
various characteristics for the output file by using qualifiers, as described
later in this chapter. You can specify only one output file; if you do not supply
an output file, SORT prompts you for the output file name.

You use the qualifiers with one, two, or all of the parts of the SORT command
line when your particular application requires that you override the defaults
that are supplied with SORT. The default values are established when SORT
is installed on your system.

PDP-11 SORT supports all RMS-11 files.

1.1.2 Using SORT Qualifiers

The first element of the command string is the command SORT. The SORT
command is followed by the qualifier(s) appropriate to your sorting task.
Qualifiers always begin with a slash (/) and are placed after the SORT com-
mand. These qualifiers let you identify your key fields, describe the data in
these fields, and specify various sort options.

Subqualifiers provide additional information about a qualifier. Use an equal
sign (=) between the qualifier and its subqualifiers. If you use more than one
subqualifier, enclose the subqualifiers in parentheses and separate them by
commas. When a subqualifier takes a value, separate the subqualifier from its
value with a colon. You can use an equal sign in place of the colon between a
subqualifier and its value; however, it is good practice to use a colon in order
to distinguish between qualifiers and subqualifiers.

In the sorting operation on the magazine subscription list, no qualifiers were
used. Suppose, however, that you want to sort the magazine subscription data
based on the expiration date. Since the field that identifies the expiration
date is other than the default field, you must use the /KEY qualifier as well as
two of its subqualifiers, POSITION and SIZE. In addition to the required
POSITION and SIZE subqualifiers, the /KEY qualifier accepts several op-
tional subqualifiers, which are used to define your key fields for the
SORT utility.

Look at the fields in the following file, which is named MAGSUB.DAT. The
numbers in parentheses indicate the position of each field in the record. For
example, the street field begins at position 20 and occupies positions 20
through 39. The field representing the expiration date begins at position 60
and is 6 characters (bytes) long:

Name Street City State Exr Date
!

(1-18) (20-39) (40-31) (52-58) (HG0-63)

Yellen Mark 90 Lyvnwood Lane Westfield MA 241231

Germont Alfredo 13 Town House Dr Waltham Ma 830501

Thomeson Lynida 3953 N Main 5t Easton Ma B31130

Fallon Curtis 36 Junierer Lane Lenox MA 841101

Getting Started 1-3

Name Street City State Exp Date

(1-19) (20-38) (40-51) (532-59) (BO-B5)
Tosca Floria 108 Winfield Dr Rome NY B50630
Weaver Sterhen 2 Newton Aue Hyde Park Ay 8403509
Marsh Beuerly 305 Cambriddge S5t Pittsfield MA B31015
Barber Robert 81 River St Belmont NY 841031

To sort MAGSUB.DAT based on expiration date, use the command line
$ SORT/KEY=(POSITION:BO ,SIZE:B) MAGSUB.DAT MAGEMP.LIS

The POSITION subqualifier (POSITION:60) identifies the position of the
first character in the key field, and the SIZE subqualifier (SIZE:6) gives the
length of this key field. When you use more than one subqualifier, separate
them with commas. Note that the first byte in a record is considered
position 1.

As shown below, the records in the output file created from this sort operation
are listed in order of their expiration dates.

Name Street City State Exr Date
Thomerson Lynda 3895 N Main St Easton MA 831130
Weaver Sterphen 72 Newton Ave Hvde Park kY B405089
Barber Robert 81 River St Belmont Y 241031
Fallow Curtis 56 Juniper Lane Lemnox MA g41101
¥Yellen Mark 90 Lynwood Lane Westfield MA 841231
Germont Alfredo 1% Town House Dr Waltham MA 850301
Tosca Floria 108 Winfield Dr Rome MY 250630
Marsh Beverly 303 Cambridde St Pittsfield MA B51015

Notice that the expiration dates are now in ascending order.

A primary key is the first field on which your records are sorted. That is,
SORT reorders your records based on the information in the field that you
choose as the primary key. However, if some of your records have the same
data for the primary key, you may want to specify a secondary key. The
secondary key is used to sort those records with identical primary keys. For
example, assume that the primary key for MAGSUB.DAT is the state field.
There are five records with the data “MA” and three records with the data
“NY”. To sort the records alphabetically by state, and then alphabetically by
name (for subscribers within the same state), you specify the name field as
the secondary key.

¢ GORT/KEY={(POSITION:32 .5I7E:B)/KEY=(POSITION:1 S3IZE:1%)
% MAGSUB.DAT MAGEXP.LIES

As shown below, the records are listed alphabetically for Massachusetts sub-
scribers, then alphabetically for New York subscribers.

Name Street City State Exr Date
Fallon Curtis 36 Junieper Lane Lenox MA 41101
Germont Alfredno 15 Town House Dr Waltham MA HBEO501
Marsh Bewerly 30% Cambridde St Pittsfield MA BE101E
Thompson Lynda 385 N Main S5t Easton MA HBI1130
Yellen Mark 90 Lynwood Lane Westfield MA

Barber Robert 81 River S5t Belmont MY

Tosca Fleria 108 Winfield Dr Rome A

Weaver Sterhen 72 Newton Aue Hyde Park N

1-4 Getting Started

In Chapter 2, you will learn more about the SORT command qualifiers and
how they are used to specify information to the SORT utility about your sort
operation. Chapter 2 also explains how to specify multiple keys and describes
the defaults for qualifiers and subqualifiers. Chapter 5 describes the com-
mand qualifiers that you can use for optimization.

1.1.3 Input and Output File Parameters

You can sort up to 10 input files using PDP-11 SORT; all sort operations
generate a single output file. Use the input file parameter and the output file
parameter to identify the input file(s) that you want to use and the output file
that you want to create. Use qualifiers to specify file attributes for the input
and output files: list the input file qualifier(s) immediately after the input file
specification(s) and the output file qualifier(s) after the output file
specification.

When you have more than one input file for a sort operation, use a comma to
separate the individual input file specifications. For example, if you have
three input files named SALES1.DAT, SALES2.DAT, and SALES3.DAT
that you want to sort into a single file named SALES.DAT (assuming that
you accept all of the default qualifiers), use the following command line:

$ SORT SALESL.DAT.SALESZ.DAT:SALES3.DAT BALES.DAT

Chapter 2 describes the qualifiers that you can use with the input and the
output file parameters to define your file attributes. Chapter 5 describes the
output file qualifiers used in optimizing sort operations.

1.2 Merging Records

You can use the MERGE utility to combine files that have already been
sorted on the same key or keys. The MERGE utility accepts up to 10 input
files and combines them according to the key field(s). As with SORT,
MERGE always generates a single output file. All of the input files to
MERGE should previously be sorted according to the same key(s) that you
specify for the merging operation. You can also use MERGE to determine
whether or not a file has already been sorted according to a specified set
of keys.

For example, the following lists represent two files named EREPRT.LIS and
WREPRT.LIS, containing reports from two plants in a manufacturing

company:
DATE PLANT PART QTY Q1Y PCT
CODE NUM MANUF REJECTED USABLE

BZ1108 E 0275 1000 a7 aG . 3
821109 E 7820 1200 28 a97.05
82110989 E 2064 800 12 98,5
821109 E 4016 HE50 i1 a98.8
8211009 E 3198 1500 i1 49,3
821109 bl 40186 1300 23 a97.4
821109 W 0275 700 13 98,1
821109 W 2064 1800 25 a8, 6
21109 Jed 31498 1630 21 an. v
821108 W 7820 1400 14 9.0

Getting Started 1-5

Each of the records in these files contains six fields (DATE, PLANT CODE,
PART NUMBER, QUANTITY MANUFACTURED, QUANTITY
REJECTED, AND PERCENT USABLE). Each of the two files has been
sorted on the field containing the percent usable figure; this field begins in
position 40 and is 4 characters long.

Suppose you want to merge these files based on the “Percent Usable” field.
The command to merge the two files is:

% MERGE/KEY={POSITION:40,8IZE:4) EREPRT.LIS MREPRT.LIS MBECRET.LIS
The command line format for MERGE is identical to that for SORT, except
that the command keyword is MERGE. In this example:

* The /KEY qualifier uses the two required subqualifiers (POSITION:40 to
denote the location of the key field and SIZE:4 to denote the length of the
key field)

® The two input files (which, as with SORT, are separated by commas) are
EREPRT.LIS and WREPRT.LIS

¢ The name of the output file that MERGE creates is MRGRPT.LIS
The merged file created with this command string, MRGRPT.LIS, now looks

like this:
DATE PLANT PART oTY QTY PCT
CODE NUM MANUF REJECTED USABLE

821109 E 0275 1000 37 95,3
871109 W 2198 1300 39 97,4
8721109 E 7820 1200 78 97,6
821109 W 2064 700 13 ag, 1
B21109 E 2064 g0 17 98,5
821109 A 7820 1800 25 aB. 06
821109 W 0w75 1650 21 9@, 7
821109 E 4016 950 11 98,8
821109 W 4016 1400 14 99,0
821109 E 3198 1500 11 99,73

1.2.1 The MERGE Command

The MERGE command line at the DCL interface consists of three parts,
separated by spaces.

& MERGEL/sualifiers] input-filel/aualifiersd outrput-filelsaualifiers]

MERGE is the DCL command that invokes the PDP-11 MERGE utility. The
MERGE command accepts qualifiers that describe the key(s), specify op-
tions, or describe other aspects of the merge operation or the data that you are
using. The MERGE command requires two parameters that identify the input
file(s) and the output file.

The input file parameter identifies the file or files that you want to merge.
MERGE allows you to merge up to 10 input files (in a single operation) into
one output file. The keys must be the same in each of the input files. If you do
not supply an input file, MERGE prompts you for the input file name.

1-6 Getting Started

The output file parameter identifies the name of the file that MERGE
creates; this file will contain the data from the input file or files. You identity
various characteristics for the output file by using qualifiers, as described
later in this chapter. You can specify only one output file; if you do not supply
an output file, MERGE prompts you for the output file name.

You use the qualifiers with one, two, or all of the parts of the MERGE
command line when your particular application requires that you override the
defaults that are supplied with MERGE. The default values are established
when MERGE is installed on your system.

PDP-11 MERGE supports all RMS-11 files.

1.2.2 MERGE Qualifiers

As with SORT, MERGE provides default values for qualifiers; you need spec-
ify qualifiers only when you want to override the defaults. In the merge task
on the two quality control reports, the /KEY qualifier is required because the
key field is other than the entire record. The POSITION and SIZE subquali-
fiers are required whenever you use the /KEY qualifier.

Chapter 2 describes how the MERGE command qualifiers and subqualifiers
are used to specify information to MERGE about your merge operation.

1.2.3 Input and Output File Parameters

MERGE accepts up to 10 presorted input files, each ordered using the same
key(s). You must use a comma to separate individual input file specifications,
as shown in the command string for the merging operation for the quality
control reports:

$ MERGE/KEY=(POSITION:40,:81ZE:4) EREPRT.LISWREPRT.LIS MRGRPT.LIS

You can name only one output file in your command string.

Chapter 2 explains the qualifiers that you use with both the input and output
file parameters to define your file attributes.

1.3 Running Batch SORT and MERGE

You can run a sort or merge operation as a batch job (on RSTS/E and
RSX-11M-PLUS only). Batch processing frees your terminal for other work
and is particularly useful when you are running frequent or lengthy sort or
merge operations. See the documentation for the operating system that you
are using to learn about creating and submitting batch jobs.

Getting Started 1-7

Chapter 2
Invoking SORT and MERGE at the Command Level

This chapter describes how to define your reordering operations when you use
the SORT or MERGE command in the DCL and MCR/CCL interfaces. The
first part of the chapter shows you how to sort data (using SORT); you can
follow the same procedures to merge your data files (using MERGE). Later,
you learn how to use sequence checking, the option that is unique to MERGE.
In addition, this chapter describes the following: ’

* How to specify key information, including key position and size, the order of
your sort, and the way key field data is stored in your records

e How to define the way in which SORT or MERGE processes your keys
internally according to what is most appropriate for your application

e How to specify the file attributes for the input and output files

A summary of all DCL qualifiers and MCR/CCL switches for SORT and
MERGE is found at the end of this chapter.

When you issue the SORT or MERGE command interactively, you can also
use a specification file (that you create with a text editor). Using a specifica-
tion file allows you to use additional SORT features, such as user-defined
collating sequences. You learn about using a specification file in Chapter 3.
You can also invoke SORT or MERGE from an application program; Chapter
4 describes this procedure.

2.1 Using SORT/MERGE from the MCR/CCL Interface

Chapter 1 showed examples using SORT from the DCL interface. From DCL,
you issue the SORT (or MERGE) command, followed by input file informa-
tion, then output file information. You can also use SORT and MERGE using
standard MCR/CCL commands; when you invoke these utilities from the
MCR/CCL interface, the system displays the SRT> or MGE> prompts,

respectively.
The format for using SORT and MERGE at MCR/CCL level is as follows:
SRT> output-file/switches = input-fileis)/switches

Note that when you use the MCR/CCL interface, the output file information
precedes the input file information and is separated from the input file infor-
mation by an equal sign. (With the DCL interface, input file information is
listed first and is separated from output file information by a space.)

All switches in the MCR/CCL interface begin with a slash and are exactly two
letters in length. There are also some negative switches that include a minus
sign between the slash and the two-letter mnemonic (for example, /-ST).

2.2 Defining Your SORT/MERGE Operations

PDP-11 SORT/MERGE requires information from you about the type of sort
or merge operation that you want to do (for example, ascending or descending
order) and the type of data with which you are working (for example, file
organization). You provide this information in the command string that you
issue when you invoke SORT or MERGE. The SORT/MERGE utility as-
sumes some information by default; however, you must provide other parts of
this information explicitly. This chapter describes how to issue SORT and
MERGE command strings and the optional and required qualifiers (for DCL)
or switches (for MCR/CCL).

Table 2-1 summarizes the DCL qualifiers and the MCR/CCL switches used
with SORT or MERGE; the remainder of this chapter describes each of these
qualifiers and switches.

Table 2-1: SORT/MERGE — DCL Qualifiers, MCR/CCL Switches
DCL ’ MCR Function

/KEY /KE Describes key field(s), including position, size, order,
and data type

/COLLATING_SEQUENCE /CS Specifies one of three predefined collating orders for
’ character key field(s)

/STABLE /ST Defines options for equal keys

/NOSTABLE /-ST :

/NODUPLICATES /ND

/PROCESS /PR Defines the internal sorting process (SORT only)

/SPECIFICATION /SF Identifies a specification file, described in Chapter 3

/STATISTICS /SS Displays a statistical summary, primarily for help

with optimization, described in Chapter 5

/WORK_FILES /F1 Used for optimization, described in Chapter 5 (SORT
/DE only)

/CHECK_SEQUENCE /CH Verifies that the records in the input files are in order

/NOCHECK_SEQUENCE /~-CH (MERGE only)

/FORMAT /FO Required under certain conditions for defining input
/BK file characteristics; also used to define output file
/BL format and, for optimization, window or clustersize,
/81 described in Chapter 5

/SHAREABLE /SH Specifies that the input file is to be opened in a write-

shareable mode

2-2 Invoking SORT and MERGE at the Command Level

Table 2-1 (Cont.): SORT/MERGE — DCL Qualifiers, MCR/CCL
Switches

DCL MCR Function

/INDEXED_SEQUENTIAL /IN Defines input or output file organization

/SEQUENTIAL /SE Define output file organization

/RELATIVE /RE

/OVERLAY /OV Specifies that the output file is to be overlaid on, or
written to, an existing empty file

JALLOCATION /AL Used for optimization, described in Chapter 5

/CONTIGUOUS /CO

/BUCKET_SIZE /BU

/LOAD_FILL /LO

/TREE_SPACE /PT

(Not available in DCL) /CN Identifies an image to chain to (RSTS/E only)

2.2.1 Default File Types for DCL

Default file types are file types that SORT or MERGE provides when you do
not specify a file type in your command line. For the DCL interface, the
default file type for SORT and MERGE input files is .DAT. The default file
type for the output file is .DAT, regardless of the file type of the input file(s).
For example, suppose you use the command line

4 SORT INPUT OUTPUT

SORT looks in your default directory for the file INPUT.DAT and writes the
sorted output file to a file named OUTPUT.DAT.

For the DCL interface, you must provide a file name for at least one input file
and the output file. If you do not give an input file specification in your
command line, the following prompt is displayed on your terminal.

INPUT FILEY

If you do not provide an output file specification, SORT prompts you with
OUTPUT FILE?

2.2.2 Default File Names for MCR/CCL

For the MCR/CCL interface, there is a default file name when you have only
one input file for your sort or merge operation: SRT.DAT. The default file
specification for the output file is OUT.DAT. If you do not specify a file type,
the default file type is .DAT.

When you use the MCR/CCL interface and enter one or more characters after
the SRT> or MGE> prompt followed by the <RETURN> line terminator,
SORT or MERGE substitutes default values for any missing values in the
command expression. For example, if you enter only an equal sign then press
<RETURN> at the SRT> prompt, SORT substitutes the default value of
SRT.DAT for an input file and OUT.DAT for the output file.

Invoking SORT and MERGE at the Command Level 2-3

2.3 Specifying Key Field Information

STORE
(1-2)

1E
ZE
1E
1E
ZE
1E
ZE
2k
ZE
1E

2-4

You are not required to specify key information for a sorting operation. By
default, SORT reorders a file by sorting up to the first 255 bytes of a record’s
length, in ascending order, and assuming character data. However, if the field
that you want to use as the key does not start in the first position or does not
contain character data, you must then indicate to SORT or MERGE the
position and size of the key. The following sections show how to identify keys

to SORT/MERGE.

2.3.1 lIdentifying the Position, Size, and Order of a Key

You identify a field as being a key (on which to sort records) by giving the
position of the field. The position of the key is determined by counting, inclu-
sively, the number of bytes between the beginning of the record and the first
byte in the field. For example, the following file named YRSALE.DAT con-
tains employee sales records with quarterly and yearly sales totals (in thou-
sands of dollars). The number ranges in parentheses indicate the positions of
each of the fields in the records. The first byte of each record is considered to
be POSITION=1. The blanks represent spaces. (Note that if you use the TAB
character in a data file, it is treated as a single ASCII character.)

The field representing store begins in position 1, the field representing depart-
ment begins in position 7, the field representing the employee’s name begins
in position 11, and so on.

SALES REPORT

DEPT NAME Q1 Q2 03 Q4 TOTAL
(7-8) (11-33) (36-38) (d4-45) (3Z2-54) (BO-GZ) (BEB-71)
B1 Emery Patrick 5.3 5.2 5.9 B.7

B1i Arrlebaum Georde 6.9 7.3 B.d 5.8

B1 Kilratrick Karvyn G.3 3.8 B.7 5.2

B1 Hoffman Chervl 5.8 G.d .9 70

Al Sterling Martha 8.3 7.8 7.8 2.1

Al Griffen Michael 7.3 7.3 Tl 7.6

B1 Fenster Barbara 5.7 Bed E.G B35

Al Gates Stephan 7l 7.0 B.4 Tl

Al Jamieson Robert 5.7 [EIPE 5.8 5.7

Al Albertson Romald 6.8 6.7 B.8 5.4 272

Suppose you are to sort these records by the sales employees’ names. The first
byte in this key field is in position 11. The range of the field extends from
positions 11 through 35, so the key field’s size is 25. The size of the field is the
number of bytes allocated to the field in the record.

With DCL, you could sort this file into an output file named SRTLIS.DAT
using the following SORT cemmand line.

$ SORT/KEY=(POSITION:11,5IZE:25) YRSALE.DAT SRTLIG.DAT
Remember to separate subqualifiers (POSITION,SIZE) with a comma.

To accomplish the same output using the MCR/CCL interface, you would use
this command:
SRT> SRTLIS.DAT=YRSALE.DAT/KE:11.25

Invoking SORT and MERGE at the Command Level

With MCR/CCL, the KEY switch (/KE:11.25) is part of the input file parame-
ter. In this command line, the two numbers that follow the /KE represent the
position of the key field (position 11) and its size (25 bytes). In MCR/CCL, the
values for position and size are separated by a decimal point.

You are required to specify both the position and size of a key field whenever
you use the /KEY qualifier or /KE switch (except that you cannot use SIZE
with D_FLOATING or F_FLOATING data types in DCL). Later in this
chapter, you learn how to specify the sizes of data types other than character.

The file SRTLIS.DAT from this sorting operation contains the list of sales
records with the employees’ names rearranged alphabetically. Alphabetical
order (A to Z) or ascending numeric order (lowest to highest number) is the
default.

Suppose, however, you want to sort in descending order on the numeric field
in YRSALE.DAT that contains the total sales figures. Then you must specify
the order of your sort.

To specify a descending sort order in DCL, use the command line
$ GSORT/KEY=(POSITION:B8,5IZE:4,DESCENDING) YRSALE.DAT SRTLIS.DAT

In MCR/CCL, the command line specifying a descending sort order is
SRT> GSRTLIS.DAT=YRSALE.DAT/KE:DBB.4 :

The letter “O” in “KE:068.4”, represents “opposite’’ and means that the
data is to be sorted in descending order. To sort the data in ascending order,
you can either omit the letter designation (since ascending order is the de-
fault) or include “N”’ (for “Normal”’) after the colon. Remember that you
must indicate the sort order before you list the numbers indicating position
and size.

Specify a descending sort order when you have numeric data that you want to
order from highest to lowest, or when you have character (alphabetic) data
that you want in reverse alphabetic order.

Thus far, most examples have shown operations that sort on only one key
field. The next section explains how to specify multiple keys — keys that are
primary, secondary, and so on.

2.3.2 Multiple Keys

You can specify up to 16 key fields in a sorting operation, with a total key size
of up to 512 bytes. If you do select multiple keys, decide which is the primary
key, which is the secondary key, and so on, and then list them in the com-
mand string in the order of their priority.

For example, suppose you want to arrange the sales records in YRSALE.DAT
from the highest to the lowest total sales for each department within each
store. Your primary key is the store field, the secondary key is the department
field, the third-level (tertiary) key is the total sales field, and you want the
sorted data to be written to a file named KEYS3.DAT.

With DCL, you specify this information to SORT as follows:

$ SORT/KE=(PO:1:8I2:2)/KE=(P0:7 .851Z:2)/KE=(PD:BE:8I1Z:4,:DESD?
% YRBALE.DAT KEYS3.DAT

Invoking SORT and MERGE at the Command Level 2-5

As this example shows, you can abbreviate qualifiers and subqualifiers as long
as the abbreviations are unique.

For each sort key, you must use a separate /KEY qualifier. If SORT finds key
subqualifiers repeated after a single /KEY qualifier, it does not treat these as
specifications for multiple keys. Instead, the subqualifiers that are most re-
cently encountered override previous subqualifiers.

Using the MCR/CCL interface, the command line to accomplish the same
operation is

SRT: KEYS3.DAT=YRSALE.DAT/KE:1.2:7.2:0B8.4

As this example shows, in MCR/CCL you must repeat the colon and the

values for each of the subsequent key fields after the /KE switch for the
primary key, but you do not need to repeat /KE.

After this multiple-key operation is completed, the sorted sales records appear

as follows in KEYS3.DAT:

STORE DEPT NAME g1 0z Q3 Q4 TOTAL
1E Al Griffen Michael 7.5 7.3 7l LB Z29.8
1E AR Albertson Ronald 6.9 (.7 .8 6.8 27.2
1E B1 Hoffman Chervl G:.8 G.d G.9 7.0 27.1
1E B1 Emery Patrichk 6.5 G.2 3.8 6.7 25,3
1E B1 Kilrpatrick Karvn 5.3 3.8 G5.7 G2 25,0
2E (AN] Sterling Martha 8.3 7.9 7.8 8.1 32.1
Z2E Al Gates Stephan 7.1 7.0 6.9 7.1 28.1
2E Al Jamieson Robert G.7 B.G 5.8 6.7 26.8
2E Bl Arplebaum Geordge G.9 7.3 .4 6.8 27.4
2k B1 Fenster Barhara G5.7 5.4 5.6 6.5 2B.Z2

Thus far, the data type used in all the sorting examples has been character
(text). It has not been necessary to specify the data type in the examples
because character is the default data type. There are other ways, however, in
which data can be represented. The procedure used to create your input file(s)
determines the data type of each field in the records.

2.3.3 Data Type and Size

You must specify the data type if the data in your key field(s) is not stored as
character data type. The data types recognized by PDP-11 SORT/MERGE
with DCL are

ASCIL_FLOATING

ASCIL_ZONED

BINARYI[,SIGNED]

BINARY,UNSIGNED

[CHARACTER]
DECIMAL[TRAILING_SIGN,OVERPUNCHED__SIGN]
DECIMAL,LEADING_SIGN,OVERPUNCHED__SIGN
DECIMAL,LEADING_SIGN,SEPARATE_SIGN
DECIMAL, TRAILING_SIGN,SEPARATE_SIGN
DECIMAL,UNSIGNED

DIBOL_ZONED (decimal, trailing overpunched sign)
D_FLOATING

F_FLOATING

PACKED_DECIMAL

2-6 Invoking SORT and MERGE at the Command Level

The data types enclosed in brackets are the defaults. For example, if you do
not specify a data type for your key field, SORT/MERGE assumes character
data type. If the data type in your key field is binary and signed, you can
specify BINARY, since BINARY,SIGNED is the default. However, if your key
data type is binary and unsigned, you must specify BINARY, UNSIGNED.

If your key data type is decimal and its sign is trailing and overpunched (the
default), you may specify DECIMAL only. If your key data type is decimal
but unsigned, you must specify DECIMAL, UNSIGNED.

If your key data type is decimal and its sign is trailing but separate, specify
TRAILING_SIGN and SEPARATE_SIGN. If your key data type is decimal
and its sign is leading and overpunched, specify LEADING_SIGN and
OVERPUNCHED_SIGN. If your key data type is decimal and its sign is
leading and separate, specify LEADING_SIGN and SEPARATE__SIGN.

For example, the numeric fields in the file YRSALE.DAT contain information
that is stored as decimal unsigned. To specify a descending sort operation on
the field with the total sales figures, you would use the following command
line:

$ SORT/KEY=(POSITION:GB.SIZE:4.DESCENDING DECIMAL (UNSTIGNEDY -
~% YRSALE.DAT SRTLIS.DAT

For MCR/CCL the data types are

A (ASCII floating string)

B (Signed two’s complement binary, COBOL COMP-6)
C (Character, ASCII, EBCDIC, or MULTINATIONAL)
D (Decimal, unsigned, trailing overpunched sign)

F (Floating point)

I (Decimal, leading separate sign)

J (Decimal, trailing separate sign)

K (Decimal, leading overpunched sign)

L (DIBOL zoned decimal, trailing overpunched sign)

P (packed decimal)

S (signed binary, COBOL COMP or FORTRAN integer)
U (unsigned binary)

7 (ASCII zoned)

The numeric fields in the file YRSALE.DAT contain information that is
stored as decimal unsigned. To specify a descending sort operation on the field
with the total sales figures, use the following command line:

SRT> SRTLIS.DAT=YRSALE.DAT/KE:D0OBB.4

2.3.4 Specifying Key Information in MCR/CCL
The order for specifying key information in MCR/CCL is as follows:

1. Data type. In the example shown above, the data type is unsigned deci-
mal, represented by ‘D’ (KE:DO68.4).

2. Sort order. In the example, the order is descending, represented by ‘O,
(KE:DO68.4).

Invoking SORT and MERGE at the Command Level 2-7

2-8

3. Position, specified as a decimal number (KE:DO68.4).

4. Size, separated from position by a decimal point and specified as a deci-
mal number (KE:DO68 .4).

In MCR, you must always specify the size of the key field. The size specifica-
tion, given in bytes, depends on the data type.

The following rules apply to the size of a key field for specific data types:
* For CHARACTER data type, the size cannot exceed 255 bytes
* For BINARY data type, you must specify size as 1, 2, 4, or 8 bytes

* For DECIMAL data type, the maximum is 31 bytes; if the sign of a decimal
number is stored as a separate byte, that byte must be included in the count
of the size

* For floating-point data types, the size must be either 4 or 8

2.3.5 Collating Sequences

SORT arranges characters in ASCII sequence by default. SORT also allows
you to use either the EBCDIC or MULTINATIONAL collating sequence. You
might use EBCDIC, for example, as input to a program that requires EBCDIC
sequence; you might use MULTINATIONAL if your records use the multina-
tional character set. You can specify an ASCII collating sequence, which
could be used in a command line to override a collating sequence defined in a
specification file. (The use of specification files is discussed in Chapter 3.)

For DCL, choose one of the following command qualifiers to specify a collating
sequence.

/COLLATING_SEQUENCE=ASCII
/COLLATING_SEQUENCE=EBCDIC
/COLLATING__SEQUENCE=MULTINATIONAL

For MCR/CCL, use one of the following qualifiers as an input file switch to
specify a collating sequence.

/CS:ASCII
/CS:EBCDIC
/CS:MULTINATIONAL

Note that when you specify the EBCDIC sequence, the characters remain in
ASCII representation; only their order is changed.

When you use the MULTINATIONAL collating sequence, the followihg
ordering procedures are applied.

¢ All diacritical forms of a character (that is, all forms of a character that
include any accent mark) are given the collating value of the character.
(A, A, A collate as A)

¢ Lowercase characters are given the collating value of their uppercase equiv-
alents. (a collates as A, 4 collates as A)

* If two strings compare as equal, tie-breaking is performed. The strings are
compared to detect differences due to diacritical marks, ignored characters,

Invoking SORT and MERGE at the Command Level

or characters that collate as equal although they are actually different. If
the strings still compare as equal, another comparison is done based on the
numeric codes of the characters. In this final comparison, lowercase charac-
ters are ordered before uppercase.

NOTE

Be careful when you use the MULTINATIONAL collating
sequence for records and files that will be processed at a later
time. Sequence checking procedures in most programming
languages compare the numeric values that represent the in-
dividual characters. Because MULTINATIONAL is based on
actual graphic characters, and not the codes representing
those characters, normal sequence checking will not work.

Appendix D lists the multinational collating sequence.

2.3.6 Options for Equal Keys

Your input file(s) may contain records with equal keys. These records will be
grouped together in the output file, and, by default, their sorted order (with
respect to each other) will be unpredictable. However, you can use the
STABLE option, which causes records with equal keys to be directed to the
output file in the order in which they were input to SORT. If you specify a
stable sort when sorting multiple input files, on output, records in the first file
with equal keys will precede those from the second file, and so on.

With DCL, use the command qualifier /STABLE. The default condition for
DCL is /NOSTABLE.

With MCR/CCL, use the input file switch /ST. The default condition for
MCR/CCL is /-ST.

As an alternative to the STABLE option, you can use the NODUPLICATES
option to retain only one record when you have records with equal keys. If
SORT/MERGE encounters duplicate records when you have specified the
/NODUPLICATES option during a sort or merge operation, the record that is
kept (from among the duplicates) is the first record that SORT/MERGE
encounters. You cannot use both the NODUPLICATES option and the
STABLE option in the same sort.

If you want to specify which of the duplicate records SORT/MERGE is to
keep, you should use SORT/MERGE in an application program, write your
own equal-key routine, and either pass your equal-key routine address to the
callable SORT/MERGE initialization program (SRTINI or MRGINI) or link
the program with your equal-key routine named SRTCLB. Chapter 4 of this
manual discusses calling SORT from an application program.

The default condition is /DUPLICATES. To specify the NODUPLICATES
option in DCL, use the command qualifier /NODUPLICATES.

With MCR/CCL, use the input file switch /ND.

Invoking SORT and MERGE at the Command Level 2-9

2.4 Defining the Sorting Process

SORT provides four processing methods for sorting your data: record, tag,
address, or index sort. Table 2-2 describes these processes.

Table 2-2:

SORT Processes

Process

Input Device

Output Device

Processing Notes

Record Any RSTS/E or Any RSTS/E or Keeps record intact throughout sort.
RSX-11M/M-~ RSX-11M/M- Output file contains complete records.
PLUS input PLUS output
device device
Tag Disk only Any RSTS/E or Sorts only key(s), then reaccesses input file
RSX-11M/M- records to create output file.
PLUS output Output file contains complete records.
device
Address Disk only Any device that Sorts only key(s).
accepts binary Output file contains only binary RFAs, and
data file number when there is more than one
input file.
Index Disk only Any device that Sorts only key(s).

accepts binary
data

Output file contains only binary RFAs, file
number when there is more than one input
file, and keys.

Record sort is the default process.

To specify a sort process with DCL, use one of the following command
qualifiers:

/PROCESS=RECORD

/PROCESS=TAG
/PROCESS=ADDRESS
/PROCESS=INDEX

With the MCR/CCL interface, specify the sort process using one of the follow-
ing as an input file switch:

* /PR:R (record)
e /PR:T (tag)

¢ /PR:A (address)
e /PR:I (index)

None of the examples in this chapter has specified the sort process, so, by
default, each has used record sort. Suppose, however, you wanted to use TAG
sort for the descending sort operation on the YRSALE.DAT file. With the
DCL interface, your command line would be

$ SORT/KEY=(P0:68.,512:4 DESCI/PROCESS=TAG YRSALE.DAT

With the MCR/CCL interface, your command line would be
SRT> SRTLIS.DAT =

SRTLIS. DAT

YREALE.DAT/KE:0GE . 4/PR: T

Invoking SORT and MERGE at the Command Level

There are several criteria to consider when you select a sort process. The most
important consideration is your use of the output file:

Record and Tag sort generate files that contain the entire records. These
reordered files are ready to be printed and distributed, or stored.

Address sort creates a list of pointers to the records in the input file. This list
takes the form of binary record’s file addresses (RFAs). (See the RMS-11
User’s Guide and RMS-11 MACRO-11 Reference Manual for more informa-
tion about RFAs.) A program can use this list of pointers to access records in
the rearranged order for further processing or later
output.

Index sort creates an output file that contains both RFAs and key fields. The
output format of these key fields is the same as the input format. If your
program needs key field content for a decision during future processing, select
index sort rather than address sort. (Do not confuse the index sort process
with RMS indexed file organization.)

You may need to reorder records from one file in several ways for different
purposes. Instead of storing several sorted versions from the same file, each
with complete records, you can store several output files from address or index
sort in much less space. Then use these files to access the records in the main
file in the sorted order you want.

Another important consideration in determining your sort process is the
amount of temporary storage space that you have available for the sort:

Tag, address, and index sort use relatively less temporary storage space than
record sort. Because record sort keeps the record intact during the sort, it can
take up much more work space when your files are large.

In general, the smaller the total key field size is with respect to the total input
record size, the greater the saving in temporary storage space.

Your input and output devices can also determine the sort process that you
use. Record sort is the only process that can accept input from cards and
magnetic tape as well as disk. Output from address and index sort must go to
a device that accepts binary data.

Finally, there are performance (speed) differences among the sort processes.
Generally, address and index sort are the fastest processes. However, if you
plan to retrieve the sorted records in order at some point in your operation,
record sort will usually be the fastest process. Tag sort moves only keys in-
stead of complete records, so it can be faster than record sort when record size
is very large and key size is small. Tag sort can also be faster for extremely
large files and devices with fast seek times. In most cases, however, the time
that tag sort takes to reaccess the input file to create the output file makes it
slower than record sort.

In the examples shown so far, the process selected for the sample sorting
operations on the file YRSALE.DAT has been either record or tag sort. Record
sort is usually the most appropriate choice if you want to print out your
reordered file, if your record size is not large, and if there is adequate tempo-
rary storage space.

Invoking SORT and MERGE at the Command Level 2-11

If, instead of printing the sorted records, you want to use them in an applica-
tion program to calculate, for example, statistics, then index sort would be the
appropriate process.

‘The format of the record generated by SORT depends upon the sort process
that you use. Index and address sorts produce a record which has a 1-word
input file number (only if there is more than one input file) and a 3-word
binary record file address (RFA). For an index sort, the sort keys in the output
file appear exactly as they were in the input file (that is, they are not con-
verted to an internal sort format).

2.5 Specifying File Attributes

There are certain circumstances in which you are required to specify file
attributes and others in which you may choose to change file attributes. This
section explains how to describe file attributes to SORT/MERGE.

PDP-11 SORT/MERGE accepts all PDP-11 Record Management Services
(RMS) files. That is, it accepts sequential, relative, or indexed-sequential
data files on one or more mass-storage devices, containing records of fixed,
variable, variable with fixed-length control (VFC), or RMS stream format.
You can specify up to 10 input files; the input files need not have the same
record formats and file organizations.

2.5.1 Specifying Input File Organization and Format

If you are sorting file(s) not residing on disk or standard ANSI magnetic tape,
then you must specify the size of the longest record in your file(s) as well as
the size of your file(s). The record size that you specify will override the size
defined in the file header or label.

You specify the record size for a file by giving the longest record length (LRL)
in bytes. The longest record length allowed for various file organizations is

Maximum
File Organization Record Length
Sequential 32,765
Relative 16,381
Indexed-sequential 16,369

These totals include control bytes for variable records with VFC format. For
multiple input files, the LRL is the length of the longest record among all of
the files.

At the DCL interface, you specify the record size of the input file’s format
using the following input file qualifier:
/FORMAT=(RECORD_SIZE:n)

2-12 Invoking SORT and MERGE at the Command Level

With MCR/CCL, you must specify the record format when you specify the
record size. Use one of the following input file switches:
/FO:sCONTROLLED i

FIMED

RMS_STREAM:n

STREAM:n

UARTABLE :

UNKNOWN 1

You can abbreviate record format values to one letter. Version 3 of PDP-11
SORT/MERGE supports the STREAM syntax for compatibility with Version
2; here, STREAM and RMS_STREAM have the same meaning. You must
specify the record size if the longest record length (LRL) cannot be obtained
from RMS (that is, if the file was created by a version of RMS that does not
include the LRL information).

You specify file size in blocks. SORT uses file size information to estimate the
file size of the temporary file(s) used for the sort operation. Maximum file size
accepted is 4,294,967,295 or (2*2-1) blocks. For multiple input files, the size is
the total size of all files. If the file size is not provided by either you or RMS,
SORT allocates 1000 blocks by default.

In DCL, specify input file size with the input file qualifier /FORMAT=FILE
SIZE:n. ’

With MCR/CCL, specify input file size with the input file switch /BK:n.

If the file is neither on disk nor ANSI magnetic tape, you must specify both
record and file size.

For example, the DCL command line for a descending sort on the sales figures
in YRSALE.DAT would be

¢ SORT/KE=(P0O:68,512:4,DESC) -
~% YRSALE.DAT/FORMAT=(RECORD_SIZE:71 FILE_SIZE:3) SRTLIE.DAT

The same command line in MCR/CCL is
SRT> SRTLIS.DAT = YRSALE.DAT/KE:0B8.4/F0:U:71/BK:?3

If the organization of your input file(s) is indexed-sequential, then you must
specify this organization to SORT. Also, you can indicate the number of keys
in the indexed file; if you do not specify this information, the number of keys
will default to 1. You should be sure to indicate the number of keys to ensure
that SORT/MERGE allocates sufficient RMS space.

In DCL, specify indexed-sequential organization with the input file qualifier
/INDEXED_SEQUENTIAL[=n], where n equals the number of keys.

In MCR/CCL, specify indexed-sequential organization with the input file
switch /IN[:NI.

2.5.2 Optimizing the SORT/MERGE Work Area

By default, SORT/MERGE divides available work area between tree-related
data structures and I/O-related data structures in such a way as to ensure the
best performance for a typical sort operation. However, there may be some

Invoking SORT and MERGE at the Command Level 2-13

2-14

instances where the I/0 requirements of your job require more space than the
default provides. The /TREE_SPACE qualifier (in DCL) or /PT switch (in
MCR/CCL) lets you override this default and choose the distribution of avail-

able work area between SORT/MERGE data tree structures and I/O data
structures.

For SORT, the default division is 55% to the tree and 45% to I/O. For
MERGE, the default-division is 30% to the merge list and 70% to I/O. If the
majority of the files you are sorting require a large number of I/O data struc-
tures (for example, an INDEXED file with many keys, or a consistently large
number of input files), you may want to alter the split so that there will be
enough room for the I/0 requirements. (For example, if you are sorting several
indexed files, each having many keys, it may be desirable to allow SORT a
smaller tree, thereby allocating more room for RMS-required structures.)

In DCL, specify how you want the work area allocated with the input file
qualifier /TREE_SPACE=n, where n is the percentage of work space allo-
cated to the data tree structures.

With the MCR/CCL interface, use the input file switch /PT:n.

2.5.3 Specifying Shareable Files

If you want to sort files that may be updated by another user during the sort
operation, then you must specify that your input file(s) be opened in a write-
shareable mode. By default, the files are not shareable. For each shareable
file, use the DCL input file qualifier /SHAREABLE or the MCR/CCL switch
/SH. The default value for DCL is /NOSHAREABLE.

2.5.4 Specifying Output File Organization and Format

The default file organization for the output file in a sort or merge operation is
sequential. You can override this default in either of the following ways.

A) Use one of the following to specify the file organization:
¢ DCL (output file qualifier)

/SEQUENTIAL
/RELATIVE
/INDEXED__SEQUENTIAL[=n]

As with the input file qualifier for indexed-sequential organization for
the output file, you can optionally specify the number of keys.

e MCR/CCL (output file switch)

/SE (sequential)
/RE (relative)
/IN[:n] (indexed-sequential)

You can optionally specify the number of keys in an output file that is
indexed, just as you can for an input file of indexed-sequential organiza-
tion.

Invoking SORT and MERGE at the Command Level

B) Use the /OVERLAY output file qualifier in DCL (/OV switch in
MCR/CCL). When you use the /OVERLAY qualifier, the output file al-
ready exists (and is empty), and its file organization has been previously
defined. If you use the /OVERLAY qualifier, you cannot use any of the file
organization qualifiers.

If you specify indexed-sequential organization, SORT assumes that an empty
indexed-sequential file of the same name already exists; SORT writes over the
existing file. SORT/MERGE does not create an indexed output file if no such
file exists. In general, however, to write the sorted records to an existing
empty file, you should use the /OVERLAY qualifier.

If you want the output file record format to differ from that of your first input
file, then you must specify the output format. You can specify fixed-length
records, variable-length records, variable with fixed-length control (VFC) re-
cords or stream records (for RMS stream files only). If you do not specify
output record format, the format defaults to the (first) input file record format
for record or tag sort, and to fixed record format for address or index sort.

In specifying the output record format, you can optionally indicate the maxi-
mum record size (in bytes) of the output records. The maximum record size
allowed is 32,765 bytes for sequential files, 16,381 for relative files, and 16,369
for indexed files. These totals include control bytes. If you do not specify the
size, the default is a length large enough to hold the longest output record.

Indicate the new record format by using the appropriate qualifier.
¢ DCL (output file qualifier)

/FORMAT= (FIXED:n
VARIABLE:n
RMS_STREAM:n
STREAM:n
CONTROLLED:n,FSZ:m

The FSZ subqualifier is used with VFC (CONTROLLED) records. It speci-
fies the size in bytes of the fixed portion of the record, up to a maximum of
255 bytes. If you specify this size as 0, RMS defaults the value to 2 bytes. If
you do not specify FSZ, the default is the maximum sizes of the fixed
control portions of all VFC input files. If you do not specify FSZ and there
are no VFC input files, the default is 2 bytes.

* MCR/CCL
/FO: ¢ FIXED:n
VARIABLE:n
RMS_STREAM:n
STREAM:n

CONTROLLED:n:m

You can specify a second value (m) for CONTROLLED records to give the
size in bytes of the fixed portion of the record, up to a maximum of 255
bytes. If you specify this size as 0, RMS defaults the value to 2 bytes. If you
do not specify this size, the default is the maximum sizes of the fixed control

portions of all VFC input files. If you do not specify this size and there are
no VFC input files, the default is 2 bytes.

Invoking SORT and MERGE at the Command Level 2-15

2-16

For both DCL and MCR/CCL, you can truncate record format values to the
first letter. The STREAM value exists for compatibility with Version 2 and is
the same as RMS_STREAM.

If you direct your output file to magnetic tape, you can specify the file’s block
size in bytes or you can accept the default. If one or more of the input files is a
tape file, the block size of the output file defaults to the maximum of the
block sizes of all tape input files. If the input file is a disk file, the default
value is 512 bytes.

In DCL, specify the block size of a file with the BLOCK_SIZE:n subqualifier
in the /FORMAT output file qualifier (for example,
/FORMAT=(FIXED,BLOCK__SIZE:800).

In MCR/CCL, specify the block size of a file with the output file switch /BL:n.

2.5.5 Chaining to a SORT or MERGE Image (RSTS/E Only)

If you are using the RSTS/E operating system, you can “chain” from one
executable image to another. PDP-11 SORT/MERGE supports RSTS/E
chaining from the MCR/CCL interface with the /CN output switch. Chaining
is not available with the DCL interface.

For example, you can request that the SORT utility chain to an image
MYPROG.TSK generated by BASIC-PLUS-2 upon completion of the re-
quested ordering operation. The MCR/CCL command line is as follows:

SRT> QUT «+MYPROG/CN=TINP.DAT

The name of the chain image is listed as a second output file, but with the
/CN switch appended. The switch is required. In addition, you can specify the
line number of the image where execution is to begin. For example, the follow-
ing command line causes the image MYPROG.TSK to begin at line 1400:

SRT> QUT (MYPROG/CN: 1400=IMNP . DAT

Compilers or programs other than the BASIC-PLUS-2 compiler may inter-
pret the meaning of the chain value (for example, 1400 in the above example)
in different ways. SORT or MERGE places the value in the FQNENT field of
the FIRQB block. Refer to the RST'S/E System Directives Manual for details.

It is also possible to chain into SORT or MERGE from other tasks. To accom-
plish this, put the sort command line into RSTS/E core common, place the
value 30000 in the FQNENT field of the FIRQB, and then chain to the desired
SORT or MERGE task file. Refer to the RSTS/E System Directives Manual
and the RSTS/E programming manual for your language for details. For
example, the following BASIC-PLUS-2 program chains into the sort image
SRTUTL.TSK:

10 U$ = SYS(CHR$(8Y)+"SOR OUT=INPUT/FO:V:3/85")

15 CHAIN "LB:[12I8RTUTL.TEK" LINE 30000
Z0 S8TOP

(To chain to MERGE, replace SRTUTL.TSK with MGEUTL.TSK.) Line 10
in the program places the command line in core common. Line 15 first causes
the value 30000 to be placed into the FIRQB and then chains to the SORT
image.

Invoking SORT and MERGE at the Command Level

2.6 Merging Files

The MERGE utility allows you to combine up to 10 presorted files. If you use
MERGE from DCL or MCR/CCL interface, all your input files must already
be sorted on the same key(s). You specify the same key information and file
attributes for MERGE as you do for SORT. The prompt for MERGE is
MGE>.

In MERGE, however, you do not specify either the sort processes or any work
files. Also, there is a function unique to MERGE called sequence checking
that verifies that your input files are sorted.

You can use qualifiers to indicate explicitly whether or not sequence checking-
should be done. Use these qualifiers if you do not want sequence checking (to
override the default) or if you want to ensure that sequence checking is done
(for example, to override an instruction in a specification file that cancels
sequence checking).

In DCL, specify whether or not sequence checking is done with the command
qualifier /CHECK _SEQUENCE or /NOCHECK_SEQUENCE. The default
is CHECK_SEQUENCE.

In MCR/CCL, specify whether or not sequence checking is done with the
input file switch /CH or /~-CH. The default is /CH.

When you use the /NOCHECK_SEQUENCE qualifier (/~-CH switch), the
records are not checked for order. If you have only one input file, the records
are listed in the output file in the same order as they are listed in the input
file; if you have more than one input file, the order of the records on output
may be unpredictable.

When you use sequence checking to verify that the records have been sorted,
the records are still merged into an output file, which you must specify. If you
are checking that records are sorted on a key field that is other than the entire
record (the default), then you must specify key information along with re-
questing sequence checking.

In addition to sequence checking, you can use MERGE on one or more files to
change file characteristics such as format, organization, record size, or VFC
size. For example, the following MCR/CCL command changes the file
SALARY.DAT from a variable sequential file with a 50-byte maximum rec-
ord size to a fixed relative file with 80-byte maximum record size (null-filled
with binary 0 where necessary).

MGE> SALARY.DAT/RE/FO:F:80 = SALARY.DAT/-CH/FO:V:S0

2.7 Summary Tables of SORT/MERGE Qualifiers and Switches

The tables in this section list the DCL qualifiers and MCR/CCL switches that
you can use with SORT or MERGE. All qualifiers and switches are optional.
Use the qualifiers and switches in the command line format shown below.

e DCL

& SORT/qualifiers INPUTS:DAT/aualifiers OUTPUT.DAT/qualifiers
% MERGE /aualifiers INPUTS.DAT/aualifiers OQUTPUT.DAT/aualifiers

Invoking SORT and MERGE at the Command Level 2-17

2-18

* MCR/CCL

SRT:

MGE >

QUTPUT.DAT/switches =

QUTPUT.DAT/switches =

INPUTS.DAT/switches

INPUTS.DAT/switches

Refer to the Preface for an explanation of the notation used in these tables.

Table 2-3: SORT Qualifiers in a DCL Command Line

Qualifiers

Subqualifiers and Values

Notes

Command Qualifiers

/KEY

/STABLE
/NOSTABLE

/DUPLICATES
/NODUPLICATES

/PROCESS=

/COLLATING_SEQUENCE=

POSITION:1-255

SIZE: 1-255

1,2,4,0r8
1-31

,ASCENDING
,DESCENDING

,CHARACTER
,ASCIL_FLOATING
,ASCIL_ZONED
,BINARY
,SIGNED
,UNSIGNED

,DECIMAL
,SIGNED
,UNSIGNED

[,TRAILING_SIGN]
,LEADING__SIGN

I: ,OVERPUNCHED__SIGN
,SEPARATE__SIGN

,DIBOL_ZONED
,D__FLOATING
,JF__FLOATING
,PACKED_DECIMAL

RECORD
TAG
ADDRESS
INDEX

EBCDIC

ASCII }
MULTINATIONAL

Invoking SORT and MERGE at the Command Level

]

Always include a value for
POSITION and a value for
SIZE when using /KEY

For CHARACTER data
For BINARY data
For DECIMAL data

Do not use both /STABLE
and /NODUPLICATES

Table 2-3 (Cont.):

SORT Qualifiers in a DCL Command Line

Qualifiers

Subqualifiers and Values

Notes

/STATISTICS
/NOSTATISTICS

/WORK__FILES=

/SPECIFICATION=

Input File Qualifiers
/FORMAT

NUMBER: {0,3-10}
,DEVICE:ddnn:{uic,ppn)
ALLOCATION:1-(232-1)
JINOICONTIGUOUS
SIZE:1-255

file-specification

[FILE__SIZE:1-(232 -1)]

,RECORD__SIZE:1-32767

/INDEXED__SEQUENTIAL= 1-255

/SHAREABLE
/NOSHAREABLE

/TREE_SPACE=

Output File Qualifiers
/FORMAT=

/SEQUENTIAL
/RELATIVE

0-100

FIXED(:1-32767]
VARIABLE[:1-32767]
RMS_STREAM
STREAM
CONTROLLEDI:1-32767]
[LFSZ:1-255)

{,BLOCK__SIZE:18-8192]

/INDEXED_SEQUENTIAL= 1-255

/OVERLAY
/NOOVERLAY

/ALLOCATION=

/CONTIGUOUS
/NOCONTIGUOUS

/LOAD__FILL

/BUCKET__SIZE=

1-(232-1)

Required for files not on
disk or magnetic tape

Required for files not on
disk or magnetic tape, or
when LRL is unavailable

Use with CONTROLLED
records

Use with tape files

Use with INDEXED-
SEQUENTIAL files to
specify fill factor

For RSX systems
For RSTS/E systems

Use with disk files

Invoking SORT and MERGE at the Command Level 2-19

Table 2-4:

SORT Switches in an MCR/CCL Command Line

Switch Values

Notes

Output File Switches

/AL:
/BL:
/BU:

/CN

/CO

/FO:

/IN

/1O
/OV

/RE
/SE
/SI:

0-(232-1)
18-8192

n

{:n]

CONTROLLED:n
FIXED:n
RMS_STREAM:n
STREAM:n
UNKNOWN:n
VARIABLE:n

[:1-255)

Input File Switches

/AL:
/BK:
/BL:

/CO

/CS:

/DE;

/FI:

0-(232-1)
1-(232 1)
18-8192

EBCIDC

ASCII
MULTINATIONAL

ddnn:[uic,ppn])

{50!

CONTROLLED:n
FIXED:n
RMS_STREAM:n
STREAM:n
UNKNOWN:n
VARIABLE:n

|

Specifies file allocation in blocks
Specifies block size for nonstandard magnetic tapes

Specifies RMS bucket size — 1 to 32 for
RSX-11M/M-PLUS, 1 to 15 for RSTS/E

Identifies the file to be chained to, where n is a decimal
number that represents the line number in the pro-
gram being chained to (RSTS/E only)

Specifies contiguous allocation

Specifies record format. Also specifies maximum rec-
ord size (from 1 to 32767)

Requests indexed-sequential file organization. File
must already exist and be empty; by default, it is over-
laid

Use with indexed-sequential files to specify fill factor

Specifies that the output is to be written to a file that
already exists and is empty

Requests relative file organization
Requests sequential file organization

Specifies the clustersize for RSTS/E or the retrieval
window size for RSX-11M/M-PLUS

Specifies file size for the initial allocation of work files
Specifies file size for files not on disk or magnetic tape
Specifies block size for nonstandard magnetic tapes
Specifies contiguous allocation for work files

Specifies collating sequence for character data

Use to place work files on an alternate device

Specifies the maximum number of work files to be used

Specifies record format. Also specifies maximum
record size [from 1 to 32767]

2-20 Invoking SORT and MERGE at the Command Level

Table 2-4 (Cont.): SORT Switches in an MCR/CCL Command Line

Switch Values Notes

Input File Switches

/IN [:1-255] Required for indexed-sequential files. The number of
index keys defaults to 1 if n is not specified

/KE: Specify key field information in this order: data type,
sort order, key position, key size
A ASCII Floating
B COBOL COMP-6, word signed binary
C Character
D Decimal, unsigned or trailing, overpunched sign
F Floating-point
i Decimal, leading separate sign
J Decimal, trailing separate sign
K Decimal, leading overpunched sign
L Decimal, DIBOL zoned
P Packed decimal
S Signed binary
U Unsigned binary
Z ASCII zoned
N Ascending
0 Descending
1-65535 Position
1-255 Size
/ND Specifies that the output file will have no duplicate
records; may not be used with /ST switch
/PR: Specifies SORT process:
R) Record
T Tag
A s Address
1 Index
/PT:n 0-100 Specifies percentage of available work area assigned to
SORT/MERGE data structures
/SF Identifies a specification file
/SH Specifies that an input file is to be opened as
write-shareable; specify for each shareable file
/SI: n Specifies RSTS/E clustersize or RSX retrieval window
size for work files
/SS Requests that statistics be written to the default out-
put device
/ST Requests a stable sort; use /-ST only to override a
/-ST stable sort in a specification file

Invoking SORT and MERGE at the Command Level ~ 2-21

Table 2-5: MERGE Qualifiers in a DCL Command Line

Qualifiers Subqualifiers and Values Notes

Command Qualifiers

/KEY POSITION:1-255 Always include a value for
POSITION and a value for
SIZE when using /KEY

,SIZE: 1-255 For CHARACTER data
1,2, 4,0r8 For BINARY data
1-31 For DECIMAL data

™ ,ASCENDING
| .DESCENDING

[~ ,CHARACTER

LASCII_FLOATING

,ASCIL_ZONED

,BINARY
 SIGNED

L ,UNSIGNED:]

,DECIMAL

[,SIGNED
L ,UNSIGNED

" TRAILING_SIGN }
| ,LEADING_SIGN

" ,OVERPUNCHED__SIGN
| ,SEPARATE__SIGN

,DIBOL__ZONED

,D_FLOATING
,F_FLOATING
| ,PACKED_ DECIMAL |
/STABLE)
/NOSTABLE
/DUPLICATES Do not use both /STABLE
/NODUPLICATES and /NODUPLICATES
/CHECK_SEQUENCE
/NOCHECK__SEQUENCE
/PROCESS= RECORD
TAG
) ADDRESS
INDEX
/COLLATING_SEQUENCE= (¢ ASCII
EBCDIC
MULTINATIONAL
/STATISTICS
/NOSTATISTICS

2-22 Invoking SORT and MERGE at the Command Level

Table 2-5 (Cont.): MERGE Qualifiers in a DCL Command Line

Qualifiers Subqualifiers and Values Notes

Command Qualifiers

/WORK_FILES= NUMBER:{0,3-10}
,DEVICE:ddnn:[uic,ppn]
,ALLOCATION:1-(232 -1)
,INOJICONTIGUOUS

,SIZE:1-255
/SPECIFICATION= file-specification
Input File Qualifiers v
/FORMAT (FILE_SIZE:1-(232 -1)] Required for files not on
disk or magnetic tape
,LRECORD__SIZE:1-32767 Required for above files, or

when LRL is unavailable
/INDEXED__SEQUENTIAL= 1-255

/NOSHAREABLE
/SHAREABLE

/TREE__SPACE= 0-100

Output File Qualifiers

/FORMAT= FIXEDI{:1-32767]
VARIABLE[:1-32767]
RMS__STREAM
STREAM
. CONTROLLED(:1-32767)
[LFSZ:1-255) Use with CONTROLLED
records
LBLOCK__SIZE:18-8192] Use with tape files
/SEQUENTIAL
/RELATIVE.
/INDEXED:_SEQUENTIAL- 1-255
/OVERLAY
/NOOVERLAY
/ALLOCATION= 1-(232)
/CONTIGUOUS
/NOCONTIGUOQUS
/LOAD__FILL Use with INDEXED-
SEQUENTIAL files to
specify fill factor
/BUCKET__SIZE= 1-32 For RSX systems
1-16 For RSTS/E systems

Use with disk files

Invoking SORT and MERGE at the Command Level 2-23

" Table 2-6: MERGE Switches in an MCR/CCL Command Line

Switch Values Notes

Output File Switches

JAL: 0-(232-1) Specifies file allocation in blocks
/BL: 18-8192 Specifies block size for nonstandard magnetic tapes
/BU: n Specifies RMS bucket size — 1 to 32 for RSX-11M/M-PLUS, 1 to

15 for RSTS/E

/CN {:n) Identifies the file to be chained to, where n is a decimal number
that represents the line number in the program being chained to
(RSTS/E only)

/CO Specifies contiguous allocation
/FO: C:n Specifies record format — CONTROLLED, FIXED, RMS__
F:n STREAM, STREAM, UNKNOWN, or VARIABLE, where n rep-
R:n resents maximum record size (from 1 to 32767)
S:n
U:n
V:n
/IN [:1-255) Requests indexed-sequential file organization. File must already
exist and be empty; by default, it is overlaid
/LO Use with indexed-sequential files to specify fill factor
/OV Specifies that the output is to be written to a file that already
exists and is empty .
/PT:n 0-100 Specifies percentage of available work area allocated to MERGE
data structures
/RE Requests relative file organization
/SE Requests sequential file organization
/SI: n Specifies the clustersize for RSTS/E or the retrieval window size

for RSX-11M/M-PLUS

Input File Switches

/BK: 1-(232-1) Specifies file size for files not on disk or magnetic tape
/BL: 18-8192 Specifies block size for nonstandard magnetic tapes
/CH Specifies sequence checking. Use /~CH if you want to override a
/~-CH request for sequence checking in a specification file
/CS: A Specifies collating sequence for character data — ASCII, EBCDIC,
{ E } or MULTINATIONAL
M
/FO: C:n Specifies record format — CONTROLLED, FIXED, RMS__
F:n STREAM, STREAM, UNKNOWN, or VARIABLE, where n rep-
R:n resents maximum record size (from 1 to 32767)
S:n
U:n
V:n
/IN [:1-255] Required for indexed-sequential files. The number of index keys

defaults to 1 if n is not specified

2-24 Invoking SORT and MERGE at the Command Level

Table 2-6 (Cont.):

MERGE Switches in. an MCR/CCL Command Line

Switch Values

Notes

Input File Switches

/KE:

/88

/ST
/-ST

CZ NCcrwrxR~—"T="mgQw»

1-65535
1-255

Specity key field information in this order: data type, sort order,
key position, key size

ASCII Floating

COBOL COMP-6, word signed binary
Character

Decimal, unsigned or trailing, overpunched
Floating-point

Decimal, leading separate sign

Decimal, trailing separate sign

Decimal, leading overpunched sign
Decimal, DIBOL zoned

Packed decimal

Signed binary

Unsigned binary

ASCII zoned

Ascending

Descending

Position

Size

Specifies that the output file will have no duplicate records; cannot
be used with /ST switch

Identifies a specification file

Specifies that an input file is to be opened as write-shareable;
specify for each shareable file

Specifies that statistics be written to the default output device

Specifies a stable sort; use /-ST only to override a stable sort in a
specification file

Invoking SORT and MERGE at the Command Level 2-25

Chapter 3
Using a Specification File

A specification file is a file you create with a text editor that provides parame-
ters and qualifiers for a sort or merge operation, supplementing and extending
the SORT or MERGE command line. You can use a specification file to give
you added control over your sorting and merging operations. It can include
instructions to accomplish any or all of the following:

e Change the format and length of the records in the output file

¢ Conditionally alter record order and data fields

¢ Specify certain records for the sort or merge process to include or omit

* Modify one of the predefined collating sequences or specify one of your own
¢ Reassign work files

e Specify an alternate record-padding character

You must use a specification file when you want to do any of the following:
* Reformat the output records

¢ Use conditional keys or data

e Specify multiple record formats

e Create or modify a collating sequence

You can also use a specification file to reassign work files or to define sort or
merge operations that you use frequently. Many of the sort or merge tasks
described in Chapter 2 can be done using a specification file.

This chapter describes how to create and use a specification file. A syntax
summary and sample specification file are provided at the end of the chapter.

3.1 Creating A Specification File

Use a text editor to create a specification file. Many keywords used in specifi-
cation files are similar to the DCL qualifiers used in the command line, as
described in Chapter 2. Table 3-1 lists the main keywords and the function of
each.

3-1

Table 3-1: Specification File Keywords

Keyword Function

/KEY Specifies the key(s)

/FIELD Defines the fields in the input file(s)

/DATA Specifies the fields in the output file

/STABLE Specifies whether or not you want a stable sort or merge for
/NOSTABLE equal keys

/PROCESS Defines the processing method for your sorting operation

/COLLATING_SEQUENCE

/WORK__FILES

/CHECK_SEQUENCE
/NOCHECK_SEQUENCE

/CONDITION

/INCLUDE
/OMIT

/PAD

(SORT only)

Specifies one of three predefined collating orders or a user-
defined sequence for character key field(s)

Specifies the reassignment of work files

Specifies whether or not you want sequence checking
(MERGE only)

Defines conditions for key and data handling and for record
selection

Specify record selection, as well as multiple record formats

Specifies a new record-padding character

In most instances, you can specify the keywords in a specification file in any
order. The order does become significant, however, when you use the specifi-
cation file to do any of the following:

* Sort on more than one key field

® Describe the output format

* Define multiple record types

¢ Use subqualifiers within the /COLLATING_SEQUENCE keyword

To use a specification file at the DCL interface, you use a command line with

the following format:

& SO0RT/SPECIFICATION=specification-Tile ineput-filei(s) output-file

For example, the following DCL command line means that the input files
SALES1.LIS and SALES2.LIS are sorted into an output file named
SALES.LIS based on the instructions in the specification file named
SPEC1.SRT. (The default file type for a specification file is .SRT.)

$ SORT/SPECIFICATION=S5PEC] SALESL.LIS:5ALESZ.LIS SALES.LIS

With the MCR/CCL interface, the command line is

SRT: output-file=dinput-filel(s) specification-file/GF
For example,
SRT> GALES.LIS=58ALESL.LIS5ALES2 . LIS SPECL/SF

Even though you use a specification file, you can also include in the command
line any qualifiers that you might otherwise use in the SORT command line

3-2 Using a Specification File

(without a specification file). Any qualifier that you use in the DCL or
MCR/CCL command line overrides a qualifier that is in the specification file.
For example, assume you have a specification file named SPEC1.SRT that
includes the qualifier /PROCESS = TAG and you use the DCL command line

% SORT/PROCESS = INDEX/SPECIFICATION=SPECI SALESL.LIS SALES.LIS

Even though the specification file SPEC1.SRT calls for a TAG sort, the file
SALES1.LIS is sorted based on the INDEX process, since the command line
qualifier (/PROCESS=INDEX) overrides the specification file qualifier
(/PROCESS=TAG).

When you call SORT or MERGE from an application program, you can use a
specification file either by identifying a specification file in your command
line buffer or placing the text of the specification file in a buffer within the
program, then passing the buffer to SORT or MERGE. When you place text
of a SORT or MERGE specification file within an application program, do not
use comment characters (!), since they may not be correctly interpreted when
running the program.

Chapter 4 of this manual discusses using SORT and MERGE directly from an
application program.

3.1.1 Entering Text In A Specification File

When you create a specification file, it is good practice to place each qualifier
on a separate line. You can use an exclamation point (!) anywhere on a line in
a specification file for internal documentation; all text that follows the excla-
mation point (on the same line) is considered by SORT to be a comment. For
example,

/KEY = YEAR 'Primary HKevy
/REY = MONTH !Secondary Kevy
/REY = DAY ' Third-leuvel kev

+
+

+

However, you should not use any comment characters if your specification file
will be used by an application program.

You can begin your specification file text by specifying instructions for the
sort process, equal keys, and sequence checking. The default values for key-
words in a specification file are the same as the default values for the corre-
sponding qualifiers used in a command line.

3.1.2 Using Qualifiers In The Specification File
Specify record, tag, address, or index sort with the /PROCESS statement.

/PROCESS = { RECORD l
TAG
ADDRESS{
INDEX

Using a Specification File 3-3

Chapter 2 discusses the four different SORT processes in detail. Record sort is

the default. If you intend to reformat the output records, you cannot use
address or index sort. Use /PROCESS with SORT only.

Use the /STABLE qualifier to ensure that the order of records with equal keys

will be the same in the output file as in the input files. The default is
/NOSTABLE.

By default, MERGE checks that your input files are sorted. To override the

default, use the /INOCHECK_SEQUENCE qualifier in your specification
file.

3.2 Specifying Record Fields

34

When you use a specification file, you must provide information about each
field in the records that you are using whenever you wish to override the
default values for fields and keys. You must always provide the following
information:

¢ A name that you assign to each field
» The position (in the record) and size of the field
e The data type of the field

To supply this information, you include a line (for each field) in the specifica-
tion file using this syntax:

JFIELD = (NAME = field-rname sPOSITION = nsSIZE = ns:data-tyvee)

The field name must begin with an alphabetic character; it can include only
alphabetic characters, numeric characters, or underscores (but no blank
spaces); and it can have no more than eight characters.

The position of the field is evaluated in the same way as the POSITION
subqualifier used with the /KEY qualifier (as described in Chapter 2). That is,
the position is equal to the number of characters (bytes) from the beginning of
the record.

The SIZE subqualifier gives the length of the field in bytes. You determine
the size of the field exactly as when you use the SIZE subqualifier with the
/KEY qualifier (as explained in Chapter 2).

The default data type with the /FIELD qualifier is character; you are not

required to include the field’s data type if it is character. These data types are
recognized by PDP-11 SORT/MERGE.

ASCII_FLOATING

ASCII_ZONED

BINARYI[,SIGNED]

BINARY,UNSIGNED

CHARACTER

DECIMAL[TRAILING_SIGN,OVERPUNCHED__SIGN]
DECIMAL,LEADING_SIGN,OVERPUNCHED_ SIGN
DECIMAL,LEADING_SIGN,SEPARATE__SIGN
DECIMAL, TRAILING_SIGN,SEPARATE_SIGN
DECIMAL,UNSIGNED

Using a Specification File

DIBOL_ZONED (decimal, trailing overpunched sign)
D_FLOATING

F_FLOATING

PACKED_DECIMAL

For example,in the sample magazine subscription file shown in Chapter 1, the
title headings and data were

Name Street Citvy - State Exep Date
(1-19) (20-39) (40-51) {52-589) (BO-B3)
Yellen Mark 90 Lyrwood Lane Westfield MA 8412231
Germont Alfredo 15 Town House Dr Waltham MA 830301
Thomepzon Lynda 395 N Main St Easton MA 831130
Fallon Curtis 56 Juniper Lane Lenox MA gdi1101
Tosca Floria 108 Winfield Dr Salisbury MA 8S0630

You could use the following lines in the specification file to identify these
fields.

/FLELD = (NAME = custmname POSITION = 1,8IZE = 19)
/FIELD = (NAME = street POSITION = Z0,5IZE = 20)
/FIELD = (NAME = cityPOSITION = 40,8IZE = 1)
/JFIELD = (NAME = state:POSITION = S52,51ZE = 8)
/FIELD = (NAME = exp.date:POSITION = BO8IZE = B)

In this example, all of the fields have a character data type, so it is not
necessary to specify the data type within the /FIELD qualifier.

PDP-11 SORT/MERGE assumes that the size of all data types is specified in
byte lengths when you use the SIZE subqualifier. However, if you want to be
compatible with VAX-11 SORT/MERGE (in order to transport the applica-
tion from PDP-11 SORT/MERGE to VAX-11 SORT/MERGE), you can spec-
ify the size of decimal data types in digits by using the DIGITS subqualifier
instead of SIZE. (VAX-11 SORT/MERGE requires the DIGITS subqualifier.)
For example,

/FIELD = (NAME = percent POSITION = 2B8:DIGITS = 4,DECIMAL)

When you use the DIGITS subqualifier, PDP-11 SORT/MERGE makes the
conversion to byte lengths.

The size of a key field that contains character data cannot exceed 32,767
characters. Specify a value of 1, 2, 4, or 8 for the size of a field containing
binary data. The size of a field containing decimal data cannot exceed 31
bytes. Do not specify size for floating-point data, because these data types
have implicit sizes.

You can shorten any keyword to its unique abbreviation (for example, /F1
instead of /FIELD or POS instead of POSITION). Enclose the set of subquali-
fiers for each /FIELD clause entry in parentheses; separate the subqualifiers
with commas. The default values for sizes and signs are the same as with DCL
(see Table 2-1).

3.2.1 Specifying Keys

If you are sorting on the entire record and have character data, there is no
need to specify your key field. Otherwise, you must use a /KEY clause for each

Using a Specification File 3-5

3-6

of the keys on which you want to sort, in the order of their priority. You can
sort on as many as 16 key fields. Use the /KEY clause to provide information
about how to sort for a particular field. You identify a field to SORT/MERGE
by using the name that you assigned in the /FIELD clause.

You can indicate multiple keys to SORT/MERGE with a series of /KEY
clauses. The first key that you list is the primary key, the next key is the
secondary key, and so on. For example, assume your specification file includes
the following three /KEY clauses:

/KEY = CUSTNAME
/RKEY = CITY
/KEY = EXP_DATE

The primary key is the field named CUSTNAME, the secondary key is the
field named CITY, and the third-level key is the field named EXP_DATE.

The default sorting order is ascending; you must specify sort order for a key
field only if you want the field sorted in descending order. Indicate descending
order for a key in the /KEY clause, for example:

/KEY = (EXP_DATEDESCENDING)

In this example, the name of the field is EXP_DATE and it is sorted in
descending order. Separate the subqualifiers in a /KEY clause with commas.

3.2.2 Formatting Data for the Output File

By default, the format of data for an output file is the same as that for the
input file. For example, assume you indicate the data for your input file
as follows:

/FIELD = (NAME = CUSTNAME,POS = 1,517 = 20)
/FIELD = (NAME = STREET,P0S = 21,512 = 2m)
/FIELD = (NAME = CITY:P0OS = 41,517 = 15)
/FIELD = (NAME = STATE.POS = 56,517 = 2)

When you sort this file, the data in the output file has the same format.
However, you can override this default format with the /DATA statement. For
example, assume that you want the sorted (output) data from this example
formatted as follows:

STATE CIrry CUSTOMER NAME STREET
(1-2) (G-20) (24-43) (47-66)

You would use /DATA statements in your specification file.

/DATA = STATE
/DATA = " v
/DATA = CITY
/DATA = v
/DATA = CUSTNAME
/DATA = " v
/DATA = STREET

The order in which you list the /DATA statements, using the field names
defined by previously-issued /FIELD clauses, determines the ordering of fields
in your output file. You can use the /DATA statement with a pair of quotation
marks to include spaces between fields; the number of spaces between the
quotation marks is the number of spaces that is inserted between the fields. If

Using a Specification File

/FIELD

you use the /DATA statement to change the formatting of your output file
records, you must have a /DATA statement for each field that you direct to
your output file.

3.2.3 Defining and Using Conditions

When you use a specification file, you can have your records sorted based
upon certain conditions that you specify using the /CONDITION clause. The
/CONDITION clause is used afer a /FIELD clause; it can establish a means of
sorting or reordering a field based on data that does not exist (by itself) in any
specific field.

For example, assume that you have a series of customer records in the format
shown in the previous section, and that your sales area is divided into three
regions, depending on the customer’s home state. You can use the
/CONDITION clause, followed by a /KEY clause and (optionally) a /DATA
statement, to sort your records by sales region even though you do not have a
field devoted specifically to sales region. Use the /CONDITION clause as
follows:

(NAME = STATE,,POS = 56,512 = 2)

/JCONDITION = (NAME = REGIONL,» TEST = (S5TATE EQ "NY"))
/CONDITION = (NAME = REGIONZ.: TEST = (STATE EQ "NJ" OR STATE EOQ “PA"}1)
/CONDITION = (NAME = REGION3: TEST = (STATE EQ "DE" OR
STATE EO "MD" OR
STATE EG “Ua"))

/KEY = (IF REGION1 THEN 1 ELSE

IF REGIONZ THEN 2 ELSE

IF REGION3 THEN 3 ELSE

' a4

/JDATA =(IF REGION!I THEN "REGION 1" ELSE

IF REGIONZ THEN "REGION 2" ELSE

IF REGION3 THEN "REGION 3" ELSE

"ERROR ")

/DATA = STATE
/DATA = " "
/DATA = CITY
/DATA = " "
/DATA = CUSTNAME
/DATA = " "
/DATA = STREET

The information in the /FIELD clause identifies the field on which the condi-
tional testing is to be done. The /CONDITION clause tests for matches be-
tween record data and the values that you specify; when data in a record field
matches a value in a /CONDITION clause, the associated sorting tag is given
to the record field. In the example shown, REGION1 is the name of a test that
succeeds when the value “NY” is in the STATE field, REGION2 is a test that
succeeds when “NJ”” or “PA” is in the STATE field, and REGION3 is a test
that succeeds when “DE”, “MD”, or “VA” is in the STATE field. The /KEY
clause then assigns a sorting value to the tested field (in this case, the digits 1
through 3 for the three regions, and the digit 4 for all other values). When your
records are sorted on this key, then the values that you assign in the /KEY
clause are the basis for sorting. That is, all of the records with value “1”
(which was defined as the test REGION1, which was in turn defined as the

Using a Specification File 3-7

3-8

value “NY” in the STATE field) are listed followed by the records with value
“2”, and so on. The /DATA clause attaches a text string to the output file. In
this example, the records with the REGION1 sort tag have the text string
“REGION 17, and so on. Thus, the output for each record includes the cus-
tomer’s name, street address, city, and state, as well as a designation of
“REGION 17, “REGION 2”, or “REGION 3”. Any customer address that is
not entered with an acceptable state code (NY, NJ, PA, DE, MD, or VA) is
output with the message “ERROR”.

You use the TEST= clause with the following two-letter operators to define
conditionals:

Operator Meaning

EQ Equal to

NE Not equal to

GT Greater than

GE Greater than or equal to
LT Less than

LE Less than or equal to

Use the keywords AND and OR to include more than one conditional test in a
TEST= clause; enclose the TEST= clause in parentheses. If the data in the
field is alphabetic and you use the greater than or less than cperators (GT,
GE, LT, or LE), then the ASCII value of the alphabetic data is compared to
the ASCII value of the text in the TEST= statement.

You can use the /CONDITION clause to change the contents of a field. For
example, suppose that some of the data in your records erroneously spelled
the city “CINCINNATI” as “CINNCINATTI”. You could use the
/CONDITION clause to correct this as follows:

/FIELD = (NAME = CITY.POS = 6.5I7 = 15}
/JCONDITION = (NAME = CINCI
’ TEST = (CITY EQ "CINCINNATI" OR

CITY EQ "CINNCINATTI"})
Next, you define the text that you want to replace either of the two conditions
by using the /DATA clause:
/DATA=(IF CINCI THEN "CINCINNATI")
When the data is sorted, all references in the field CITY to either
CINCINNATI or CINNCINATTI will appear in the output file as CINCIN-

NATI. Since there was no /KEY clause used with the /CONDITION clause,
there is no effect on the order of the sorted output.

3.2.4 Specifying Record Selection

You can also use the /CONDITION clause to select those records to include or
exclude from the sort or merge process by using the condition clause as a
subqualifier to an /INCLUDE or /OMIT statement. For example, if you

Using a Specification File

wanted to sort only the records of customers in California, you could use the

following:
/FIELD = (NAME = STATE:PDS = 5G68IZ = 2}
/JCONDITIDON = (NAME CALIF

TEST ({STATE EQ "CA"))

/INCLUDE=(CONDITION = CALIF)

In this example, only those records that satisfy the condition named CALIF
(that is, only those records with “CA” in the STATE field) are included in the
sorting or merging process defined in the remainder of the specification file. If
you use the /CONDITION clause with an /OMIT statement, all records satis-
fying the named condition are excluded from the sorting or merging process.

The order in which you list /INCLUDE or /OMIT statements is the order in
which they are evaluated. Thus, if you exclude a record with an /OMIT
statement and subsequently include the record with an /INCLUDE state-
ment, the record will be included in the output file. However, only the keys
that were indicated prior to the /OMIT statement and after the /INCLUDE
statement will be sorted.

When you use /OMIT or /INCLUDE, you can either specify the criteria for
omission or inclusion (/OMIT=(CONDITION=condition-name) or not specify
any criteria (/OMIT without a CONDITION statement). If the last instruc-
tion is /OMIT that specifies criteria, then everything not specifically omitted
is included; if the last instruction is /INCLUDE that specifies criteria, then
everything not specifically included is omitted. If the last instruction is
/INCLUDE or /OMIT that does not specify criteria, then everything not spe-
cifically omitted is included (with /INCLUDE), or everything not specifically
included is omitted (with /OMIT).

3.3 Sorting Files With More Than One Record Format

By specifying condition tests and record selection, you can sort records that
have their fields formatted differently. Suppose you have two files from two
different branches of a real estate agency. The records in the first file start
with an “A” in the first position and are formatted as follows (the beginning
position of each field is indicated below the format):

A PRICE TAXES STYLE 2IP
1 2 10 14 24

The records in the second file start with a “B” in the first position but have
the style and zip code fields reversed, as follows:

B PRICE TAXES ZIR STYLE
1 2 10 14 19

Suppose you want these two files sorted on the zip code field in the format of
record ‘““A”. For this sort operation, you indicate the following information in

Using a Specification File 3-9

/FIELD
/FIELD
/FIELD
/FIELD
/FIELD
/FIELD
/FIELD

L LI N £ SN € T | IO | I 14

/CONDITION

/CONDITION

/INCLUDE

/INCLUDE

(NAME=REC_TY¥PE: PO=1, SIZ=1)
(NAME=PRICE: PO=2y SIZ=8)
(NAME=TAXES: PD=10, SIZ=5)
(NAME=STYLE_A, PO=14, S5IZ=10)
(NAME=STYLE_B, P0O=19, S5IZ=10)
(NAME=ZIP_A, PD=24, SIZ=5)
(NAME=ZIP_B+ PO=14, 512=5)

H

your specification file. (Comments are permitted in the text of a specification
file and begin with an exclamation mark, as shown in this example. Do not

use comments if you will use the specification file in an application program
that calls SORT or MERGE.)

Record’s tvepey one-bvte field
Price fields both files

Taxes field, both files

Stvle fields format A file
Stvle field, format B file
Zir code field, format A file
Zirp code fields format B file

= (NAME=FORMAT A ! Condition test:s format A file
TEST=(REC_TYPE EQ "A"))

= (NAME=FORMAT_B: I Condition test» format B file
TEST=(REC_TYPE EQ "B"))

(CONDITION=FORMAT_A I Output format, tvrPe~-A records

KEY=ZIP_A,

DATA=PRICE

DATA=TARES s

DATA=STYLE.A

DATA=ZIP_A)

(CONDITION=FORMAT_B . I Qutput format., tvpe-B regords
KEY=ZIP_.B:

DATA=PRICE s

DATA=TAXES s

DATA=STYLE_ B+

DATA=2IP_B)

Thus, on output, this sort operation changes the format of the records of type
B to that of the records of type A.

NOTE

If you specify any key or data fields in an /INCLUDE clause,
you must explicitly specify all the key and data fields for your
sort operation in the /INCLUDE clause(s).

By default, the key fields are not prefixed to the output record. However, you
can specify conditional key and data fields, as explained in the previous
example, to override this default.

At the end of this chapter is a sample specification file that shows the use of
the /CONDITION statement.

3.4 Special Considerations

You can use specification file instructions in combination with
SORT/MERGE command line instructions, whether entered interactively or
passed at the program level, but instructions entered at either command or
program level override corresponding entries in the specification file. For ex-
ample, if you specify any /KEY qualifier in the DCL or MCR/CCL command
line, SORT/MERGE will ignore all /KEY, /DATA, /INCLUDE, and /OMIT
clauses in the specification file.

3-10 Using a Specification File

Note that in the specification file syntax, whenever you have quotation marks
within a quoted string, you must double each quotation mark. For example,
“A”“B” specifies the three-character string A*“B.

One special use of the specification file is in combination with MERGE on a
single file that may or may not have been previously sorted. The specification
file gives you access to such features as record omission and record reformat-
ting. For a single-file merge, you can specify /NOCHECK _SEQUENCE, so
that MERGE will not check the order of the input records.

3.5 Specifying A Collating Sequence

The default collating sequence for character data is ASCII. You can specify
ASCII, EBCDIC, MULTINATIONAL, or your own collating sequence, as

follows:

/COLLATING_ _SEQUENCE= fSEQUENCE= (ASBCII
AEBCDIC
MULTINATIONAL
wser-defined-seauence

3.5.1 Defining Your Own Collating Sequence

You can modify the ASCII, EBCDIC, and MULTINATIONAL collating
sequences, as described in the next section, but if none of these collating
sequences is suited to your particular application, you can define your own.
(You can modify your own collating sequence also. See the next section.)

You define your own collating sequence by specifying a string of characters
(single or double), or ranges of single characters. A double character is any set
of two single characters that you want to collate as if they were a single
character. Enclose each character in quotation marks, separate characters (or
sets or ranges) by commas, and enclose the entire list in parentheses. For
example:

JCOLLATING.SEQUENCE=(SEQUENCE=("A" - "L" ¢ "LL" »"M"-"R" JURR" ("5"-"2" 00

This sequence signifies that the double character LL collates as a single char-
acter between L and M, and that RR collates as a single character between R
and S. These double characters would otherwise appear in their normal alpha-
betical order as two characters in alphabetical sequence (that is, “L” followed
by “L” and “R” followed by “R”).

When you specify a collating sequence, upper case characters and lower case
characters are treated separately. For example, assume that you have the
following clause in your specification file:

JCOLLATING_SEQUENCE=(SEQUENCE=("A"-"2Z" "a"-"z"])

The records are collated first using upper case A-Z and then lower case a-z, as
shown in the following example:

APPLES

MUSHROOMS
ZUCCHINI

Using a Specification File 3-11

3-12

cucumbers
daffodils
sorrel

SORT/MERGE creates an ordering table based on the sequence that you
define. This table replaces the predefined ASCIl, EBCDIC, or
MULTINATIONAL tables. When you have finished creating your own collat-
ing sequence, the corresponding ordering table will represent a complete spec-
ification of all the characters appearing in the character keys in your sort or
merge operation. SORT/MERGE ignores any character to which you have not
given a collating value.

You must observe the following rules when defining your collating sequence:

* Do not define a character more than once, by whatever representation,
including octal, decimal, and so on.

* Do not specify the null character with the ‘“”’ construct. Instead, use a radix
operator, such as %:X0.

* Specify the quotation mark character by doubling its occurrence within
quotes: “7*”’, or by using a radix operator.

3.5.2 FOLD and TIE_BREAK

You can cause upper case and lower case characters to be collated together by
using the keyword FOLD in the /COLLATING_SEQUENCE clause. That is,
when you use FOLD, then SORT/MERGE does not discriminate between
upper and lower case characters when collating the records. For example,
when you sort the previous list using the clause

/COLLATING.SEQUENCE= (SEQUENCE=("A"-"Z" ¢"a"-"z" ,FOLD))

the output is as follows:

APPLES

cucumbers
daffodils
MUSHROOMS
sorrel
ZUCCHINT

You can also represent characters by their corresponding octal, decimal, or
hexadecimal values, by using the radix operators %0, %D, or %X.

FOLD causes all lowercase characters to be given the collating value of their
uppercase equivalents. In effect, FOLD is the same as using the expression

MODIFICATION = ("a"="A",,"b"="B",,,,"z"="2")

It you specify FOLD after you define a double character that contains no
lowercase letters (for example, “CH”>“C”’), then any lowercase or mixed-case
combinations of the defined double character will have a collating value
equivalent to the original double character. (For example, “ch”, “Ch”, and
“CH” all have the same collating value greater than “C”.) However, if you
specify FOLD before you define the “CH”’>““C” double character, then only
the uppercase “CH” collates greater than “C”.

Using a Specification File

Use TIE_BREAK to indicate that you want further processing to be done
after an initial comparison of collating values results in equal values. This tie-
breaking process basically arranges the characters according to a predefined
order, as shown in the multinational character set collating sequence table.
For ASCII, EBCDIC, and any user-defined collating sequence, the tie-break-
ing is based on the numeric code values of the characters. You must explicitly

specify tie-breaking for these character sets; you should usually use tie-break-
ing after specifying FOLD or MODIFICATION.

For the multinational collating sequence, tie-breaking is automatically done
unless you explicitly specify NOTIE_BREAK. If you use NOTIE_BREAK in
a multinational collating sequence, only an initial comparison of the collating
values is made, and some unexpected ordering may result.

3.5.3 Modifying the Collating Sequence

You can modify whatever collating sequence you select by instructing
SORT/MERGE to change the order in which certain characters appear in the
given sequence. You use the keyword MODIFICATION within the
/COLLATING_SEQUENCE clause to indicate your instructions for any
modifications, along with your request for the basic collating sequence, as
follows:

/JCOLLATING _SEQUENCE=(SEQUENCE=collating-sequence

character » character
+MDODIFICATION= character « character [svy]
character = character

Remember the following rules when you use the /COLLATING_SEQUENCE
clause:

* You must use a comma between keyword clauses

* You must enclose the characters to be modified in quotation marks or use a
radix

¢ You can make more than one modification to your collating sequence,
separating them with commas

If you want to modify any of the predefined collating sequences (ASCII,
EBCDIC, or MULTINATIONAL) in any way, or if you want to use FOLD,
IGNORE, or TIE_BREAK, you are required to specify this sequence in the
JCOLLATING_SEQUENCE clause (for example, /COLLATING_
SEQUENCE = (SEQUENCE = EBCDIC,MODIFICATION=...)).

The following information describes the kinds of changes permitted in the

MODIFICATION clause.

* You can equate a single or double character to a single character. The
second character must already have a collating value.

Thus, if you want to modify the previous example of the user-defined collat-
ing sequence so that M has the same collating value as N, specify the
following:

+MODIFICATION=("N"="M")

Using a Specification File 3-13

3-14

* You can have a single or double character collate after a single character
that has already been assigned a collating value.

For example, if you want M to collate after N, express this modification as
follows:
yMODIFICATION=("M" "N")

® You can have a single or double character collate before a single character
that has already been assigned a collating value.

If, for example, you want the double character CH to collate after C and
before D, you specify this modification in either of the two following ways:
yMODIFICATION("CH"<"D")

sMODIFICATION=("CH">"C")
¢ You can equate a double character to a previously defined double character.
For example, if you have previously assigned a value to the double character

PH, you can then equate the double character GH to it, as follows:
JMODIFICATION=("GH"="PH")

¢ You can equate a single character to a two-character sequence.

Thus, if you want ligature A to collate the same as the two-character
sequence of AE, you specify , MODIFICATION=("Z"="AE").

You can also request that SORT/MERGE ignore a character or character
range within the given collating sequence, as follows:

+ IGNORE=(character)

For example, the clause
yIGNORE=("-"," ")

would cause the following fields to be compared as equal:

2532-3412
252 3412
2323412

In the MULTINATIONAL collating sequence, there are two defaults that are

not assumed in the ASCII and EBCDIC collating sequences, FOLD and TIE__
BREAK.

If you do not want the default tie-breaking algorithm when using the
MULTINATIONAL collating sequence, specify the keyword NOTIE_
BREAK. For tie breaking in the other collating sequences, specify the key-
word TIE_BREAK.

3.5.4 Example of a User-Defined Collating Sequence

Suppose you want to reorder a file named SEMNAR.DAT that contains a
schedule of seminars. The file was previously sorted by seminar title. Now you
want to order it by seminar date. The file SEMNAR.DAT is set up as follows:

16 NOV 1984 Communication SKills
03 APR 1983 Coringd with Alcoholism

Using a Specification File

11 Jan ‘83 How to Be Assertive

12 0OCT 1984 Improving Productivity

15 MAR 1983 Living with Your Teenader
08 FEB 1983 Single Parenting

07 Dec ‘84 Stress -- Causes and Cures
14 SEP 1984 Time Manadement

The primary key is the year field; the secondary key is the month field.
Because the month field is not numeric and you want the months ordered
chronologically, you must define your own collating sequence. You can do this
by sorting on the second two letters of each month —- in their chronological
sequence —— giving each month a unique key value.

Specify the specification file text for this sort operation in the following file,
SPEC.SRT:

/FIELD= (NAME=DAY »P0=1,51Z=
/FIELD=(NAME=MONTH P0O=3,51Z
/FIELD=(NAME=YEAR s+P0=8,51Z=

2)

FREY=YEAR b Primary Kev
/KEY=MONTH I Secondary Hev
/KEY=DAY ' Third-leuel Kevy

/COLLATING.SBEQUENCE= (SEQUENCE=
(VAN GVEBY 2 "ARY SUPRY SUAY Y SUUN" SV ULY

User-defined seauence
that dives each month

PUGY s PEPY g MCT QU B NECT s 08" a uniaue value in its
chronwolodical order

MODIFICATION=("" /="19"),

FOLD)

Include this specification file in a SORT command string as follows:

e DCL -
% SORT/SPECIFICATION=SPEC.S5RT SEMNAR.DAT SCHED.DAT

* MCR/CCL -
SRT» SCHED.DAT=SEMNAR.DAT :SPEC.SRT/SF

The output from this sort operation appears as follows:

14 SEP 1984 Time Manadement

12 0CT 1984 Improving Productivity

16 NOY 1984 Communication SKHills

07 Dec ‘84 Stress - Causes and Cures
11 Jan ‘83 How to Be Assertive

08 FEB 1983 &Sindle Parenting

1% MAR 1983 Living with Your Teenader
05 APR 1983 Coringd with Alcoholism

3.6 Reassigning Work Files

You can improve the performance of SORT by placing work files on different
disk-structured devices. You must use a specification file if you want to reas-
sign work files. Specify this reassignment as follows:

/WORK _FILES={(workfilesworkfilesres

where workfile is in the format ‘“ddnn:[uic,ppn]” (for example, /WORK __
FILES = (“db0”,dm0:[250,3]”). The first work file is placed on the first
device listed, the second work file on the second device listed, and so on.

Using a Specification File 3-15

3.7 Specifying a New Pad Character

By default, SORT/MERGE uses a null character to pad records. However,
you can specify your own pad character to reformat records or to compare
strings of different lengths by using the /PAD qualifier in your specification
file. You cannot specify a double character as a pad character, even if you
equate a double character to a single character elsewhere in the specification
file. The format for specifying a pad character is as follows:

/PAD = ¥
where X is one of the following:

%D<decimal-digit>
%0 <octal-digit>
%X <hex-digit>
‘“<character>”

3.8 Specification File Summary

Table 3-2 lists the statements and qualifiers that you can use in a specifica-
tion file.

Table 3-2: Specification File Summary

/PROCESS= ‘ RECORD)
TAG
I ADDRESS
INDEX
/WORK__FILES=(workfile,workfile,...)

!where workfile is in the format "ddnn:[uic,ppn]"

/INOICHECK__SEQUENCE

3-16 Using a Specification File

Table 3-2 (Cont.): Specification File Summary

/FIELD= NAME-=field-name,POSITION=integer, | SIZE=1-255 !for character data
1, 2, 4,8 !for binary data

1-31
IDIGITS~1—31 !for decimal data

[,CHARACTER
,ASCII_FLOATING
,ASCIL_ZONED
BINARY

,SIGNED
| ,UNSIGNED

,DECIMAL
" SIGNED
| ,UNSIGNED

[TRAILING__SIGN
| ,LEADING__SIGN

,OVERPUNCHED__SIGN
,SEPARATE__SIGN
,DIBOL_ZONED
,D_FLOATING
,JF_FLOATING
,PACKED__DECIMAL

JCONDITION= /NAME~—condition-name,
TEST= / field-namel [EQ {field-name}

NE } \constant
GT
GE
LT
LE
AND field-namel | EQ | {field-name
OR NE} \constant
GT
GE
LT
LE
/KEY=key-data-clause
/DATA=key-data-clause
<key-data-clause>= [field-name
constant
field-name
constant

IF condition-name THEN constant
[HELSE] IF condition-name THEN constant] ...}
ELSE constant
,ASCENDING
[,DESCENDING

,KEY=key-data-clause...

/INCLUDE | = <CONDITION:condition-name
,DATA=key-data-clause...

Using a Specification File 3-17

Table 3-2 (Cont.): Specification File Summary

/OMIT[=([CONDITION=condition-name])]

/COLLATING_SEQUENCE= SEQUENCE= { ASCII I
EBCDIC
MULTINATIONAL ’
user-defined-sequence

,MODIFICATION=(char char ,...)

>
<

JGNORE={)char
char-rangef ,...

[,FOLD]
[INOITIE__BREAK)

/PAD = %D <decimal-digit>
‘ %0 <octal-digit>
I %X <hexadecimal-digit>
"<character>"

<char> :== { <single-char>
<double-char>

<single-char> :== { <character>
%D <decimal-digits>
%0 <octal-digits>
%X <hex-digits> j

"<character>"

<double-char> :== { <single-char><single-char>
"<character> <character>"

<char-range> :== <single-char> - <single-char>
- <user-defined-sequence> :== f<char>
<char-range>, ...

<constant> :== (<decimal-digits>
%0 <octal-digits> I
%X <hex-digits> s
"<character>"

3-18 Using a Specification File

3.9 Sample Specification File

! S0ORT SPECIFICATION FILE

|

/FIELD=(NAME=AGENT sPOSITION=1,5IZE=13)

/FIELD=(NAME=ZIP,POSITION=16:+8IZE=3)

/FIELD=(NAME=STYLE +POSITION=21,51ZE=1)

/FIELD=(NAME=CONDITION POSITION=22,81ZE=1)

/FIELD=(NAME=PRICE POSITION=23,81ZE=8)

/FIELD=(NAME=TAXES +POSITION=31,81ZE=4)

|

/CONDITION= (NAME=LOCATION,TEST=(ZIP EQ "0O1863"))

/JCONDITION=(NAME=GAMBREL »TEST=(ETYLE EQ "1"))

/CONDITION=(NAME=SPLIT :TEST=(STYLE EQ "Z2"))

/CONDITION= (NAME=TRILEV ,TEST=(8TYLE EQ "3"))

/JCONDITION=(NAME=RANCH TEST=(STYLE EQ "4"))

|

/KEY=(IF LOCATION THEN 1 ELSE 2}

/KEY=21F

/DATA=ZIP

/DATA=" "

/DATA=PRICE

/DATA="

/DATA=TAXES

/DATA=" "

/DATA=(IF GAMBREL THEN "GAMBREL " ELSE
IF SPLIT THEN "SPLIT LEVEL" ELSE
IF TRILEY THEN "TRI-LEVEL " ELSE
IF RANCH THEN "RANCH " ELSE

CUNKNOWN ")

/DATA=" "

-/DATA=CONDITION

/DATA=" "

/DATA=AGENT

NOTE

Comment characters (!) are included in this sample specifica-
tion file. If you plan to use the specification file text in the
buffer of an application program, do not use any comment
characters.

Using a Specification File 3-19

Chapter 4
Using SORT and MERGE in Application Programs

You can invoke SORT and MERGE from an application program by using a
sequence of callable.subroutines that SORT/MERGE provides. This chapter
describes how to usé. callable subroutines to access SORT/MERGE from a
program at run time. This feature is especially useful when you want to
process and then sort data from a program; you process the data and write
data files using standard program logic, using SORT or MERGE to arrange
the data before and/or after the data is processed by the program. This
chapter

® Discusses the languages that support PDP-11 SORT/MERGE
¢ Describes the two callable interfaces for SORT and MERGE

¢ Discusses the SORT/MERGE subroutines and their parameters (manda-
tory and optional)

Appendix B of this manual contains six sample programs that demonstrate
how to use the callable SORT and MERGE subroutines.

4.1 Language Support

You can call the SORT/MERGE subroutines from the following PDP-11 na-
tive-mode languages:

e BASIC-PLUS-2

e PDP-11 FORTRAN-77
e MACRO-11

e PDP-11 FORTRAN-IV
e PDP-11 PASCAL

e COBOL-81

Note that COBOL-81 includes the COBOL syntax for many SORT and
MERGE functions. For those functions that are not provided by the ANSI
COBOL standard syntax, direct subroutine calls to PDP-11 SORT/MERGE
can be made.

4-1

Individual calls from your program can access a specific SORT or MERGE
subroutine and pass parameters to it. You code the MCR/CCL syntax in a
buffer of your calling program to define your sort or merge operation.

Calls and the associated parameters conform to the calling standard of
PDP-11 FORTRAN. The parameters used in calling SORT/MERGE are
passed by reference.

BASIC and COBOL allow you to pass data descriptors for string or character
fields. BASIC uses two types of descriptors, string descriptors and array des-
criptors. The BASIC string descriptor is two words, containing the address
and the length. The BASIC array descriptor is also two words, but it lists the
length and then the address. The COBOL descriptors used for
SORT/MERGE are all two-word descriptors, containing a length and then an
address. See the BASIC or COBOL documentation for your operating system
to learn about using BASIC or COBOL descriptors and the required order for
passing information.

If you write your program in BASIC or COBOL and pass information by
descriptor, the SORT subroutine names are slightly different from the subrou-
tine names for the other supported languages. If you use BASIC or COBOL
and do not pass information by descriptor, use the same SORT subroutines as
for all of the other supported languages.

All those parameters for which SORT/MERGE requires only an address, and
not a length, are passed by reference.

Because programming languages express parameters differently, this chapter
does not give detailed instructions for each language. For help, see the refer-
ence manual or user’s guide for the PDP-11 programming language in which
you are writing your program.

At installation time, the SORT/MERGE subroutines are placed in the system
library directory. When permitted by your programming language, it is good
practice to use function references to invoke the subroutines.

4.2 The Two Callable SORT and MERGE Interfaces

4-2

You can access the SORT or MERGE subroutines through one of two inter-
faces, the file interface or the record interface. These alternative interfaces
allow you to submit your records for sorting or merging either as complete files
(file interface) or as individual records (record interface). You can use both
interfaces within the same SORT or MERGE operation by using one interface
for input and the other for output; this is called a mixed-mode interface.

When your program submits one or more files to SORT or MERGE (resulting
in the creation of one sorted or merged output file), you are using the file
interface. When your program submits records one at a time and then receives
the ordered records one at a time, you are using the record interface. You can
combine the file interface with the record interface in either of two ways: -

¢ Have your program submit file(s) as input and receive the ordered records
as output

e Have your program release records as input and have the ordered records
written to an output file

Using SORT and MERGE in Application Programs

The file interface executes faster than the record interface and is easier to
incorporate into your program. When you use this interface, you sort (or
merge) all records in the file(s) without processing them either before or after
sorting. When you use the record interface, you can perform an operation on
each record before or after sorting. For example, you would use the record
interface if you want to keep a tally of the number of duplicate records that
are returned to your program.

If you use the mixed-mode interface with the file interface on input, then you
can perform an operation on the records after they are sorted. In the mixed-
mode interface with the file interface on output, you can perform an operation
on the records before they are sorted. The calls that you use in your program
differ for the file and record interfaces, as described later in this chapter.

4.3 Specifying Your Own Routines

You can specify your own routines to accomplish special tasks for your sort or
merge operation. For example, you can specify your own key comparison
routine. (All these routines are explained in detail in the descriptions of the
subroutine parameters later in this chapter.) However, since a BASIC routine
can be called only by another BASIC routine, these user-defined routines
cannot be written using BASIC-PLUS-2.

Depending on what your programming language allows, you specify the use of
your own routine(s) in one of two ways:

1. If permitted by the language you are using, you specify the address(es) of
your routine(s) as an optional parameter in the first SORT/MERGE sub-
routine called in your program.

2. If you cannot use this method with your programming language, then you
write these routines as separate subprograms. You must use the same
global symbols for the entry points as SORT and MERGE use for their
default processing — SRTxxx for SORT, and MRGxxx for MERGE.
When task building, you must modify the appropriate SORT or MERGE
ODL file, as explained later in this chapter. In this way, the addresses of
the routines will be resolved with your object module, rather than with the
default SORT/MERGE subroutines.

Pass all parameters to these routines by reference. Begin each argument list
with a word containing the number of parameters being passed. Register 5
(R5) must be used as the linkage register.

4.4 Calling the SORT Subroutines

You provide the same types of information when you use SORT at the pro-
gram level as when you use SORT at the command level or from a specifica-
tion file. Specifically, you provide SORT with:

e File specifications (when you use the file or mixed-mode interface)
e Information about keys (for example, position, size, and data type)

¢ Instructions about the sorting process

Using SORT and MERGE in Application Programs 4-3

4-4

You pass this information to SORT by using subroutine parameters. After
being called, each subroutine performs its function and then returns control to
your program. One of the parameters to SORT and MERGE subroutine calls
is a four-word error buffer. The routine status is placed in word 1 before
control is returned to your program. Words 2, 3, and 4 may contain additional
information, depending on the nature of any error that occurs. For example, if
an I/O error occurs during a call to SORT, words 2 and 3 of the error buffer
will contain the error’'s STS/STV values. You can have your program test the
values of words 1-4 to determine success or failure conditions.

When you use a SORT subroutine, there are both required and optional
parameters. Required parameters appear first in the argument list; you can
include optional parameters only after you have listed all of the required
parameters. Include all parameters in the order in which they are positioned
in the argument list, using a comma between parameters. Null parameters are
indicated when no value follows the comma in the parameter’s position in the
argument list. If your programming language does not permit null parame-
ters, use a 0 or -1 to indicate them in the parameter’s position in the argument
list. You can end your argument list any time after you have specified all the
required parameters.

Table 4-1 lists the standard calls for the record and file interfaces and briefly
describes the function of each. The following sections describe each SORT
subroutine in detail, including required and optional parameters.

Table 4-1: SORT Subroutines

Subroutine Function

File Interface

SRTINI Initializes sort operation by passing file names, key information, and sort
options

SRTSRT Reads the input file(s), sorts the records, and writes the records to the output file

SRTEND Does cleanup functions, such as closing files and releasing memory

Record Interface

SRTINI Initializes sort operation by passing key information and sort options
SRTRLS Passes one input record to SORT; must be called once for each record
SRTRTN Returns one sorted record to your program; must be called once for each record

SRTEND Performs cleanup functions, such as closing files and releasing memory

File Interface

For a sort task using the file interface, first call the initialization subroutine
SRTINI. Remember that if you are using BASIC or COBOL and pass infor-
mation by descriptor, you use different entry points to initialize a sort opera-
tion: the initializing subroutine for BASIC is SRTINB; the initializing sub-
routine for COBOL is SRTINC. (If you write your program in BASIC or
COBOL and you do not pass information by descriptor, use the SRTINI
subroutine.)

Using SORT and MERGE in Application Programs

The first parameters passed to SRTINI define the address of an error buffer
and set up work areas. Then you pass the address of a command line buffer, in
which you use an MCR command line to specify your input and output file
names and your instructions about keys and sort options. You also indicate
whether you want key comparisons to be done by SORT or by your own key
comparison routine. You may want to provide your own comparison routine to
handle special sorting requirements — for example, if you are using a data
type not supported by SORT.

The next step is to call SRTSRT (SRTSRB for BASIC, SRTSRC for COBOL)
to execute the sort and to direct the sorted records to the output file. Finally,
call SRTEND (SRTENB for BASIC, SRTENC for COBOL) to end the sort
and to release resources.

Your program may call the SRTEND subroutine at any time between calls to
the other subroutines to abort a sort and to release all resources allocated to
the sort or merge process. If a fatal error condition occurs, SORT automati-
cally releases all allocated resources.

Record Interface

When you are using the record interface, first call SRTINI (SRTINB for
BASIC, SRTINC for COBOL). As with the file interface, this subroutine sets

up work areas and passes parameters that define keys and sort options.

Next, call SRTRLS (SRTRLB for BASIC, SRTRLC for COBOL) to release a
record to the sort process. Your program must call SRTRLS once for each
record to be released.

Now, call SRTRTN (SRTRTB for BASIC, SRTRTC for COBOL) to return
the sorted records to your program. Your program must call SRTRTN once for
each record to be returned. When all the records have been returned, an end-
of-file code is returned to the error buffer on the next call to SRTRTN.

After each record has been returned, call the last subroutine, SRTEND
(SRTENB for BASIC, SRTENC for COBOL), to complete the sort task and
release memory.

Mixed-mode interface

When you are using a mixed-mode interface, order the SORT subroutine calls
to match your output interface. If you use the file interface on output, use the
calls SRTINI and SRTRLS once for each record, SRTSRT and SRTEND. If
you use the record interface on output, use the SRTINI, SRTSRT, and
SRTRTN subroutines once for each record, followed by the SRTEND subrou-
tine to end the MERGE operation.

4.4.1 Passing File Names and Initializing Your Sort

As described in the previous section, each interface (file, record, and mixed-
mode) begins with a call to the SRTINI subroutine. (For BASIC, the corre-
sponding subroutine is SRTINB; for COBOL, it is SRTINC.) You use this
subroutine to pass files, if there are any, and to pass key information and key
options.

Using SORT and MERGE in Application Programs 4-5

4-6

When you call the SRTINI initializing subroutine, there are six required
parameters that you must include and eight optional parameters that you
may include, depending on your requirements. The SRTINB (for BASIC) and
SRTINC (for COBOL) subroutines each have four required parameters and
six optional parameters. Table 4-2 lists the required and optional parameters
for SRTINI and usage information for SRTINB and SRTINC. A discussion of
each parameter follows the table. (You pass all parameters by reference unless
otherwise noted.)

Table 4-2: Parameters for SRTINI, SRTINB, and SRTINC

Parameters BASIC/COBOL Usage Information
1. Error address

2. Work area address Pass by descriptor

3. Work area length Omit

4. Command line buffer Pass by descriptor

5. Command line length Omit

6. Longest record length !

7. Specification file buffer 2 Pass by descriptor

8. Spec. file buffer length 2 Omit

9. LUN buffer 2 Pass by descriptor in COBOL; by array descriptor in

BASIC
10. LUN buffer length 2 Omit

11. Input file size 2

12. Warning routine address 2
13. Comparison routine address 2
14. Equal-key routine address 2

1. Required when LRL is unavailable
2. Optional

1. Error address

Specify a four-word buffer for this required parameter that will contain

~ the SORT status code and any other information that can be returned to
the calling program, such as the STS and STV codes for errors involving
I/0. Your program must check the status code when control is returned.
Otherwise, the results of subsequent SORT/MERGE calls may be unde-
fined.

The SORT/MERGE error codes returned in the first word of the error

buffer are as follows:

Zero = Success
Positive number = Exception code or warning
Negative number = Fatal error

2. Work area address

Specify the work area to be used by your sort operation, including the sort
tree and any needed buffers for work files and 1/0, in this required param-
eter.

Using SORT and MERGE in Application Programs

Only as much memory is used for a sort as is necessary. The amount
required varies greatly with the parameters of the sort. In general, the
more memory provided the faster the sort. Excess memory is used for
multi-blocking the I/O reads and writes. The following formulas can be
used for rough calculations of the minimum memory needed for a particu-
lar sort. All sizes are in bytes and values in decimal.

Let INP = number of input files
OUT = number of output files
WRK = number of work files
TAP = total number of input and output files on tape
IDX = total number of indexed keys in all input and output files

IKS = maximum size of all input and output indexed keys
TBS — maximum tape block size of all input and output files on
tape

LRL = maximum length of all input records in all input files
The formula for a sort operation is:

(100 * INP) + ((800 + LRL) * WRK) + ((800 + LRL) * OUT)
+ ((2 * IKS + 600) * KEY) + (TBS * TAP) + (4 * LRL) + 1000

Some sort operations may require more or less than the amounts given by
the above formula. In situations where work area is at a premium, some
fine tuning may be needed. Otherwise, as much work area as possible
should be given to increase the performance of the operation.

In BASIC (SRTINB) or COBOL (SRTINC) programs, pass this parame-
ter by descriptor.

Work area length

For supported languages other than BASIC or COBOL, you must specify a
word containing the length of the work area in bytes. In BASIC or COBOL
programs, you do not pass this parameter for calls to SRTINB and
SRTINC, because you specified this length as part of the work area ad-
dress descriptor.

Command line buffer

For this required parameter, specify a word that gives the address of the
buffer containing the MCR/CCL command line for your sort operation.
Chapter 2 describes the use of the MCR/CCL switches.

The command line in this buffer differs from the MCR/CCL line used at
the command level only when you are not passing files either on input or
output. For the record interface, specify only the MCR/CCL switches that
define the sort operation (but not those that define the input or output
files). When you use the record interface only for output, include the input
file specification(s) and any switches that describe the input file(s). When
you use the record interface only for input, include the output file specifi-
cation and any switches that describe the output file. The following exam-
ple shows a command line buffer with the file interface used on output
and the record interface used on input.

Using SORT and MERGE in Application Programs 4-7

4-8

SRTLIS.DAT=/KE:DBB.4/FD:U:71/BK:3
For SRTINB and SRTINC, pass this parameter by descriptor.

If you are using the record interface on input, and if you do not specify any
output file switches in your command line buffer, SORT provides the
following output defaults:

¢ Noncontiguous, sequential file with variable-length records

e Maximum record size equal to the length of the longest input record, as
specified in the LRL parameter to SRTINI

e Bucket size of one

¢ Retrieval window size (RSX-11M/M-PLUS) or clustersize (RSTS/E)
of zero

If you are using the record interface on input, you can perform only a
record sort process. However, you can specify any one of the four sort
processes for the file interface on input in your command line buffer.

Command line length

For this required parameter, provide a word giving the length of the com-
mand line in bytes. For the following example, you would specify a com-
mand line length of 33 bytes.

SRTLIS.DAT=/KE:068.,4/F0:V:71/BK:3

Do not use this parameter if you are using BASIC or COBOL and passing
parameters by descriptor, since the command line length was included in
the command line buffer descriptor.

Longest record length (LRL)

This parameter is required in the following instances.
¢ When you use the record interface on input

* When you have input files not on disk

¢ In any other instance where the input file LRL is not available

Provide a word giving the size of the longest record that will be released for
sorting. If you do not specify the LRL, and an LRL is not available from
RMS, SORT returns a fatal error status.

Specification file buffer

Use this optional parameter when you want to define specification file text
in your program without using an external specification file. Specify a
word that gives the address of the buffer containing your specification file
text. Chapter 3 discusses how to specify instructions for a sort operation in
a specification file. Also, remember that you should not use any comment
characters (!) in the specification file text placed in an internal buffer.

For SRTINB and SRTINC, pass this parameter by descriptor.

As an alternative to using this parameter to pass specification file text to
SORT, you can specify the /SF switch and the specification file name in

Using SORT and MERGE in Application Programs

10.

11.

the MCR/CCL command line buffer. However, if both methods of passing
specification file information to SORT are present in the same call to
SRTINI, SORT returns a fatal error status.

Specification file buffer length

If you pass the specification file buffer parameter, you must also pass the
length of this buffer. Specify a word giving the length of the specification
file text in bytes.

Do not use this parameter for SRTINB or SRTINC, since the length is
included in the previous parameter passed by descriptor.

LUN (Logical Unit) buffer

SORT needs a logical unit (often called a channel in RSTS/E documenta-
tion) for each work file requested, for each input file, if any, and for the
output file, if any. Use this optional parameter if the default LUN assign-
ments are inadequate for your sort operation.

The default LUNs that SORT uses are determined when SORT is in-
stalled. Unless otherwise specified at installation time, the default LUNs
are as follows:

LUN 2 - for specification file
LUN 3 - for output file
LUN 4 - for 1st input file

After LUN 4, there is an additional LUN for each input file, followed by
one LUN for each scratch file. (For example, if you have two input files
and two scratch files, LUN 5 is for the second input file, and LUNs 6
and 7 are for the two scratch files.)

Specify a word giving the address of a buffer that contains a word for each
LUN that SORT is to use. The LUNs passed need not be consecutive;
however, if SORT needs more LUNs than are passed, it will number the
additional LUNs consecutively from the last number passed.

For SRTINB, pass this parameter by array descriptor; for SRTINC, pass
it by descriptor.

LUN buffer length

If you pass the LUN buffer parameter, you must also pass this parameter
to specify a word giving the length of the LUN buffer in words. Do not use
this parameter with SRTINB or SRTINC, since the information was
passed by descriptor with the previous parameter.

Input file size

You can use this optional parameter to improve the efficiency of your
particular sort operation by overriding the default resources allocated by
SORT. By default, SORT estimates work file requirements by using:

e Input file size for the file interface when the input file is on disk

e 1000 blocks for the file interface when the input file is not on disk

Using SORT and MERGE in Application Programs 4-9

4-10

12.

13.

¢ 1000 blocks for the record interface

To use this parameter, specify a word containing the input file size in
blocks.

Warning routine address

Use this optional parameter to declare a warning handler and override the
default actions for warning situations. To use the parameter, specify the
address of a warning condition handling routine that SORT is to call when
a warning situation occurs. The warning handler routine should evaluate
any warning and return a value to SORT that indicates whether the sort
operation terminates or continues.

SORT calls this routine with two parameters passed by reference, the
error buffer address and a return status code address. The error buffer is
the four-word error buffer that you specified in the first parameter passed
to the SRTINI subroutine. The second parameter, a return status code
address, is the address of a word in which you will place the return status
code value:

+1 for continuation
0 for termination

Any value other than +1 or 0 causes abnormal termination of the sort
process.

This routine is called with the global symbol SRTWRN. If your language
requires that you write this routine as a separate subprogram, you must
use the same global symbol for the entry point. When task building, you
must specify the object module for this subprogram. See Section 4.6.2 for
information about the use of ODLs.

Comparison routine address

You can use this optional parameter to use your own comparison routine
rather than the key comparisons that SORT provides. SORT calls this
routine with five reference parameters:

® The address of the buffer containing the first record

® The length of the first record

® The address of the buffer containing the second record
® The length of the second record

¢ The status code return

The routine that you write must pass a parameter back to SORT using the
following status code values:

e -1 if the first record collates before the second
¢ O if the records collate as equal”
e 11 if the first record collates after the second

Any other value will cause abnormal termination of the sort process.

Using SORT and MERGE in Application Prograrﬁs

14.

Do not call this routine if you give key specifications in the command line
buffer or specification file text.

Use the global symbol SRTCMP to call this routine. If your language
requires that you write this routine as a separate subprogram, you must
use the same global symbol for the entry point. When task building, you
must specify the object module for this subprogram. See Section 4.6.2 for
information about the use of ODLs.

Equal-key routine address

For keys that collate as equal, you can specify the address of an equal-key
routine. Using an equal-key routine gives you control over record deletion,
which you cannot achieve through the use of the /ND (NODUPLICATES)
switch. Do not use this parameter, however, if you specify the /ST

(STABLE) or /ND switch in the command line buffer. Note also that you
can pass this parameter only if you are using a record sort process.

SORT calls the equal-key routine with five reference parameters:
e The address of the buffer containing the first record

e The length of the first record

® The address of the buffer containing the second record

¢ The length of the second record

¢ The status code return

The routine must pass a parameter back to SORT with one of the follow-
ing status code values:

® 0 = delete both records

e 1 = keep the first record only

* 2 = keep the second record only

® 3 = keep both records

Any other value will cause abnormal termination of the sort process.

You can modify the records passed to this routine before returning the
status value. For example, you may want to reformat the records or mod-
ify a nonkey field. Suppose you are sorting, by employee name, a file that
contains all the pay checks issued for one year. If you need only the total
amount paid to each employee, you can add one pay check amount into a
second duplicate record and then delete the first record.

-Call this routine with the global symbol SRTCLB. If your language re-

quires that you write this routine as a separate subprogram, you must use
the same global symbol for the entry point. When task building, you must
specify the object module for this subprogram. See Section 4.6.2 for infor-
mation about the use of ODLs.

Using SORT and MERGE in Application Programs 4-11

4-12

4.4.2 Passing Records to SORT

When you use either the record interface or a mixed-mode interface with the
record interface on input, you must call SRTRLS in order to pass records to
SORT. Call this subroutine once for each record to be sorted. For BASIC, use
the subroutine SRTRLB; for COBOL, use SRTRLC. You must set up a record
buffer in your program’s data area that will be used to contain the records.

‘SRTRLS has three required parameters (two for SRTRLB and SRTRLC), as

shown in Table 4-3.

Table 4-3: Parameters for SRTRLS, SRTRLB, and SRTRLC

Parameters BASIC/COBOL Usage Information
1. Error address

2. Record buffer Pass by descriptor

3. Record length Omit

1. Error address

The error address, a required parameter for the SRTRLS call, is the same
as for the SRTINI subroutine, as described earlier in this chapter.

2. Record buffer

For the required record buffer parameter, provide a word giving the ad-
dress of the buffer that contains the record to be sorted. For BASIC
(SRTRLB) and COBOL (SRTRLC), you pass this parameter by descrip-
tor.

3. Record length

For this parameter, which is required for all languages other than BASIC
and COBOL (for which the information was passed by descriptor in the
previous parameter), you specify a word that gives the length of the record
to be sorted.

4.4.3 Returning Records to Your Program

When you use either the record interface or a mixed-mode interface with the
record interface on output, you must call SRTRTN to return the sorted re-
cords to your program. Call this subroutine once for each record that is to be
sorted. SRTRTN places the record in a record buffer that you set up in your
program’s data area, returning an end-of-file status (+1) in the first parameter
if there are no more records. If your application program is written in BASIC
and you are passing information by descriptor, use the subroutine call
SRTRTB; if your program is in COBOL and you are passing information by
descriptor, use the subroutine call SRTRTC.

Table 4-4 shows the parameters for the SRTRTN subroutine.

Using SORT and MERGE in Application Programs

Table 4-4: Parameters for SRTRTN, SRTRTB, and SRTRTC

Parameters BASIC/COBOL Usage Information
1. Error address

2. ‘Record buffer Pass by descriptor

3. Record buffer length Omit

4, Returned record length

5. Record location

Note that when you use SRTRTN, you must pass either a record buffer OR a record location.
When you pass a record buffer, you must also pass the record buffer length. If you use BASIC
(SRTRTB) or COBOL (SRTRTC), pass the record buffer by descriptor and omit the record
buffer length.

1. Error address

The error address is the same as for the SRTINI subroutine, as described
earlier in this chapter.

2. Record buffer

For the record bufter parameter, provide a word that gives the address of
the buffer that is to contain the returned record. For SRTRTB and
SRTRTC, pass this parameter by descriptor.

If you do not pass this parameter, you must pass the record location
parameter.

3. Record buffer length

Provide a word giving the length of the record buffer. If you use the
SRTRTB (BASIC) or SRTRTC (COBOL) subroutine, do not include this
parameter since the information will have been passed by descriptor in the
previous parameter.

4. Returned record length

For this parameter, specify the address of a word that is to receive a value
representing the length of the returned record.

N

Record location

Use this parameter if you want SORT to return the address of the re-
turned record (in the SORT internal buffer) rather than move the re-
turned record to a buffer in your program. You must specify either a
record buffer and length or a record location.

4.4.4 Sorting the Records

When you use either the file or mixed-mode interfaces, you must call the
SRTSRT subroutine to sort the records. When you use the file interface on
input, SRTSRT is the second subroutine that you call; it reads the input
file(s) and sorts the records. If you use the file interface on output and record
interface on input, SRTSRT is the third subroutine that you call; it sorts the
records and writes them to the output file. For BASIC, the corresponding
subroutine is named SRTSRB; for COBOL, it is SRTSRC.

Using SORT and MERGE in Application Programs 4-13

SRTSRT has one required parameter — error address. This parameter is the
same as the error address parameter for SRTINI and each of the other sub-
routines discussed thus far.

4.4.5 Ending Your Sort

Call the SRTEND subroutine to end a sort process; use SRTEND either at
the end of a successful sorting operation or when the program encounters an
error during a sorting operation. This subroutine closes files, cleans up sort
work areas, and releases memory. For BASIC, the corresponding subroutine is

named SRTENB; for COBOL, it is SRTENC.

If an error occurs during the sort operation, SORT automatically closes files,
cleans up work areas, arid releases memory.

SRTEND has one required parameter — error address. The error address
parameter for SRTEND is the same as the error address parameter for each of
the other subroutine calls discussed in this chapter.

If you are using SORT from your program more than once, you must use
SRTEND once for each time that you use SRTINI. That is, you must issue a
call to the SRTEND subroutine to end a sort operation before you issue a
subsequent call to SRTINI to begin another sorting operation.

4.5 Calling the MERGE Subroutines

4-14

You use MERGE from an application program in the same way as you use
SORT. For a merge operation at the program level, you must provide
MERGE with the number of input files, the file specifications (when using
either file or mixed-mode interface), information about keys, and an input
routine (when using either record interface or mixed-mode with record inter-
face on input).

As with SORT, you pass this information to MERGE by using subroutine
parameters. After being called, each subroutine performs its function and
returns control to your program. You must also pass the address of the first
word in a four-word error buffer to each of the subroutines.

MERGE returns a value to the error buffer to indicate the success or error
status for each call that you issue. You can have your program test that value
to determine success or failure.

When you use a MERGE subroutine, there are both required and optional
parameters. Required parameters appear first in the argument list. Include all
parameters in the order in which they are positioned in the argument list,
separating them with commas. Null parameters are indicated when no value
follows the comma in the parameter’s position in the argument list. If your
programming language does not permit null parameters, use a 0 or -1 to
indicate them in the parameter’s position in the argument list. You can end
your argument list at any time after you have specified all the required
parameters.

Using SORT and MERGE in Application Programs

Table 4-5 shows the standard calls for record and file interfaces and briefly
describes the function of each. The sections that follow describe each of these
subroutine calls.

Table 4-5: MERGE Subroutines

Subroutine Function

File Interface

MRGINI Initializes merge operation by passing file names, key information, and merge
options
MRGMRG Reads the input file(s), merges the records, and writes the records to the

output file

MRGEND Does cleanup functions, such as closing files and releasing memory

Record Interface
MRGINI Initializes merge operation by passing key information and merge options

MRGRTN Calls input routine and returns one merged record to your program; must be
called once for each record

MRGEND Does cleanup functions, such as closing files and releasing memory

File Interface

For a merging task using the file interface, the first step is to call the initiali-
zation subroutine MRGINI. (As with SORT, if you are using BASIC or
COBOL and pass information by descriptor, you use different entry points to
initialize a merge operation. The initializing subroutine for BASIC is
MRGINB; for COBOL it is MRGINC.)

The first parameters passed to MRGINI define the address of an error buffer
and set up work areas. Then you pass the address of a command line buffer, in
which you specify your input and output file names and your instructions
about keys and merge options. You can merge up to 10 input files; you always
have one and only one output file.

You also indicate whether you want key comparisons to be done by MERGE
or by your own key comparison routine. You may want to provide your own
comparison routine to handle special sorting requirements — for example, if
you are using a data type not supported by MERGE.

The next step when using the file interface in your program is to call
MRGMRG (MRGSRB for BASIC, MRGSRC for COBOL) to execute the sort
and to direct the sorted records to the output file. Finally, call MRGEND
(MRGENB for BASIC, MRGENC for COBOL) to end the sort and to release
resources.

Your program may call the MRGEND subroutine at any time between calls to
the other subroutines to abort a merge and to release all resources allocated to
the sort or merge process. If a fatal error condition occurs, SORT automati-
cally releases all allocated resources.

Using SORT and MERGE in Application Programs 4-15

4-16

Record Interface

When you are using the record interface, first call MRGINI (MRGINB for
BASIC, MRGINC for COBOL). As with the file interface, this subroutine sets
up work areas and passes parameters that define keys and merge options.
When you use the record interface to MERGE, you must also provide the
address of a user-defined input routine when you call MRGINI. This is ex-
plained later in this chapter in the discussion of MRGINI.

Next, call MRGRTN (MRGRTB for BASIC, or MRGRTC for COBOL) to
return the merged records to your program. MRGRTN calls the input routine
as needed. MERGE, unlike SORT, does not need to hold all the records before
it can begin returning them in the desired order. The releasing, merging, and
returning of records all take place in this phase of the merge. You must call
the MRGRTN subroutine once for each record to be returned and pass a
parameter that tells MERGE where to place the merged record.

After all the records have been returned, call the last subroutine, MRGEND
(MRGENB for BASIC, MRGENC for COBOL), to release resources.

Mixed-mode Interface

When you are using a mixed-mode interface, order the MERGE subroutine
calls to match your output interface. If you use the file interface on output,
use the calls MRGINI, MRGMRG, and MRGEND. If you use the record
interface on output, use the MRGINI, MRGMRG, and MRGRTN subroutines
once for each record, followed by the MRGEND subroutine to end the
MERGE operation.

The following section describes only the parameters passed in the initializa-
tion subroutine that are unique to MERGE. Unless otherwise specified in the
following sections, the parameters passed for calls to MERGE subroutines are
identical to the parameters passed for calls to SORT subroutines.

4.5.1 Initializing Your Merge

Regardless of the interface that you use (file, record, or mixed-mode) you
must first call MRGINI to initialize the merge process. For BASIC, the corre-
sponding subroutine is called MRGINB, and for COBOL it is called
MRGINC. This subroutine passes parameters that provide the number of
input files, the key specifications, and merge options.

When you call the MRGINI initializing subroutine, there are seven required
parameters that you must include and nine optional parameters that you may
include, depending on your requirements. The MRGINB (for BASIC) and
MRGINC (for COBOL) subroutines each have five required parameters and
seven optional parameters. Table 4-6 shows the required and optional param-
eters for MRGINI and usage information for MRGINB and MRGINC. Follow-
ing the table is a discussion of those parameters which are different for

MERGE than for SORT.

Using SORT and MERGE in Application Programs

Table 4-6: Parameters for MRGINI, MRGINB, and MRGINC

Parameters BASIC/COBOL Usage Information
1. Error address

2. Work area address Pass by descriptor

3. Work area length Omit

4. Command line buffer Pass by descriptor

5. Command line length Omit

6. Longest record length !

7. Merge order 2

8. Specification file buffer 3 Pass by descriptor

9. Spec. file buffer length 3 Omit

10. LUN buffer 3 Pass by descriptor in COBOL, by array descriptor in

BASIC

11. LUN buffer length 3 Omit

12. Input file size 3

13. Input routine address 2:3

14. Warning routine address 3
15. Comparison routine address 3
16. Equal-key routine address 3

1. Required when LRL is unavailable
2. Required for record interface, or in mixed-mode interface with record interface on input
3. Optional

2. Work area address

You must specify the size of the work area to be used by your merge operation.
To estimate, in bytes, the minimum size of this area, use the following algo-
rithm.

Let INP = number of input files
OUT = number of output files
WRK = number of work files
TAP = total number of input and output files on tape

Il

IDX = total number of indexed keys in all input and output files
IKS = maximum size of all input and output indexed keys
TBS = maximum tape block size of all input and output files on tape

LRL = maximum length of all input records in all input files
The formula for a merge operation is:

((800 + 2 * LRL) = INP) + ((800 + LRL) = OUT)
+ ((2 = IKS + 600) * KEY) + (TBS = TAP) + 1000

A particular merge operation may require more or less than the amounts given
by the above formula. In situations where work area is at a premium, some
fine tuning may be needed. Otherwise, as much work area as possible should
be given to increase the performance of the operation.

For BASIC (MRGINB) and COBOL (MRGINC), pass this parameter by de-
scriptor,

Using SORT and MERGE in Application Programs 4-17

4-18

7. Merge order

Specify this required parameter by providing a word that gives the number of
input files. You can have up to 10 input files for a merging operation. MERGE
ignores this value if you are using the file interface or mixed-mode interface
with file interface on input.

13. Input routine address

This parameter is required when you use either the record interface or the
mixed-mode interface with the record interface on input. In either of these
cases, you must write an input routine that releases a record to the merge.
Give the address of the routine that you created for this parameter. MRGINI
and MRGRTN call this routine until all records have been passed.

Your routine must read (or construct) a record, place it in a record buffer,
store its length in an output parameter, and then return control to MERGE.
MERGE compares keys and returns records in merged order until it has
processed all records.

The input routine must accept four parameters and return a status value in
one of them. Specify the following four reference parameters, in order, in your
input routine:

® The address of the buffer in which the record will be placed

* A word in which to place the length of the record read

e A word containing the file number from which to input a record (the first
file is 1, the second 2, and so on)

e The status code return

The routine must pass a parameter back to MERGE with one of the following
status code values:

¢ -1 for a fatal error; end the MERGE

¢ (for a successful read
® 11 when end-of-file status is reached

Any other value will cause abnormal termination of the merge process. When
the input routine returns an end-of-file status, it means that there is no valid
record in the buffer.

Call this routine with the global symbol MRGINP. If your language requires
that you write this routine as a separate subprogram, you must use the same
global symbol for the entry point. When task building, you must specify the
object module for this subprogram. See Section 4.6.2 for information about

the use of ODLs.
14. Warning routine address

Call this routine with the global symbol MRGWRN. Otherwise, this parame-
ter is identical to the SORT warning routine address parameter.

15. Comparison routine address

Call this routine with the global symbol MRGCMP. Otherwise, this parame-
ter is identical to the SORT comparison routine address parameter.

Using SORT and MERGE in Application Programs

16. Equal-key routine address

Call this routine with the global symbol MRGCLB. Otherwise, this parameter
is identical to the SORT equal-key routine address parameter.

4.5.2 Summary of SORT Subroutine Calls

Table 4-7: Summary of SORT Subroutine Calls for File Interface
Subroutine Parameters BASIC/COBOL Usage Information
SRTINI Error address
SRTINB Work area address Pass by descriptor
SRTINC Work area length Omit
Command line buffer Pass by descriptor
Command line length Omit
Longest record length 1
Spec. file buffer 2 Pass by descriptor
Spec. file buffer length 2 Omit
LUN buffer 2 Pass by descriptor in COBOL; pass by array
descriptor in BASIC
LUN buffer length 2 Omit
Input file size 2
Warning routine address 2
Comparison routine address 2
Equal-key routine address 2
SRTSRT Error address
SRTSRB
SRTSRC
SRTEND Error address
SRTENB
SRTENC

1. Required if unavailable from record

2. Optional
Table 4-8: Summary of SORT Subroutine Calls for Record Interface
Subroutine Parameters BASIC/COBOL Usage Information
SRTINI Error address
SRTINB Work area address Pass by descriptor
SRTINC Work area length Omit
Command line buffer Pass by descriptor
Command line length Omit
Longest record length 1
Spec. file buffer 2 Pass by descriptor
Spec. file buffer length 2 Omit
LUN buffer 2 Pass by descriptor in COBOL; pass by
array descriptor in BASIC
LUN buffer length 2 Omit

Input file size 2

Warning routine address 2
Comparison routine address 2
Equal-key routine address 2

1. Required if unavailable from record

2. Optional

Using SORT and MERGE in Application Programs 4-19

Table 4-8 (Cont.): Summary of SORT Subroutine Calls for Record

Interface

Subroutine Parameters BASIC/COBOL Usage Information
SRTRLS Error address

SRTRLB Record buffer Pass by descriptor

SRTRLC Record length Omit
SRTRTN Error address

SRTRTB Record buffer 3 Pass by descriptor

SRTRTC Record buffer length 3 Omit

Returned record length
Record location 3

SRTEND Error address
SRTENB
SRTENC

3. Use either record buffer and record buffer length OR record location

Table 4-9: Summary of SORT Subroutine Calls for File Interface Input,
Record Interface Output

Subroutine Parameters BASIC/COBOL Usage Information
SRTINI Error address
SRTINB Work area address Pass by descriptor
SRTINC Work area length Omit
Command line buffer Pass by descriptor
Command line length Omit
Longest record length 1
Spec. file buffer 2 Pass by descriptor
Spec. file buffer length 2 Omit
LUN buffer 2 Pass by descriptor in COBOL; pass by
array descriptor in BASIC
LUN buffer length 2 Omit

Input file size 2

Warning routine address 2
Comparison routine address 2
Equal-key routine address 2

SRTSRT Error address
SRTSRB
SRTSRC
SRTRTN Error address
SRTRTB Record buffer 3 Pass by descriptor
SRTRTC Record buffer length 3 Omit

Returned record length
Record location 3

SRTEND Error address
SRTENB
SRTENC

1. Required if unavailable from record
2. Optional
3. Use either record buffer and record buffer length OR record location

4-20 Using SORT and MERGE in Application Programs

Table 4-10: Summary of SORT Subroutine Calls for Record Interface
Input, File Interface Output

Subroutine Parameters BASIC/COBOL Usage Information
SRTINI Error address
SRTINB Work area address Pass by descriptor
SRTINC Work area length Omit
Command line buffer Pass by descriptor
Command line length Omit
Longest record length !
Spec. file buffer 2 Pass by descriptor
Spec. file buffer length 2 Omit
LUN buffer 2 Pass by descriptor in COBOL; pass by
array descriptor in BASIC
LUN buffer length 2 Omit
Input file size 2
Warning routine address 2
Comparison routine address 2
Equal-key routine address 2
SRTRLS Error address
SRTRLB Record buffer Pass by descriptor
SRTRLC Record length Omit
SRTSRT Error address
SRTSRB
SRTSRC
SRTEND Error address
SRTENB

SRTENC

1. Required if unavailable from record
2. Optional

4.6 Task Building

Because the callable SORT/MERGE subroutines are overlaid, you must cre-
ate an Overlay Descriptor Language (ODL) file in order to use the subroutines
in your program. This section describes the use of ODL files, Logical Units,
and user-defined routines for task building. For general information about
task building and ODL files, refer to the appropriate manual in your operating
system documentation set.

4.6.1 Overlay Descriptor Language (ODL) Files

SORT/MERGE provides seven ODL files. When you use SORT/MERGE in
an application program, you must create your own ODL file that references
one of the SORT/MERGE ODL files. You reference a SORT/MERGE ODL
file by using the @ symbol followed by the SORT/MERGE ODL file specifica-
tion in the ODL file that you create. SORT/MERGE provides seven ODL
files; the one that you reference depends on

¢ The operation that you are doing — SORT, MERGE, or a combination of
both

® The interface — File, record, or mixed-mode

Using SORT and MERGE in Application Programs 4-21

4-22

¢ Use of the SORT/MERGE resident library — Whether or not you are using
the SORT/MERGE resident library

Table 4-11 lists the SORT/MERGE ODL files, their use, and the approximate
amount of memory that they require.

Table 4-11: SORT/MERGE ODL Files

Memory

Requirements
Operation Interface File Name (in words)
SORT File or mixed-mode ~ SRTFIL.ODL 8750
SORT Record SRTREC.ODL 7750
MERGE File or mixed-mode MGEFIL.ODL 8600
MERGE Record MGEREC.ODL 7500
Combined SORT/MERGE File or mixed-mode STMGFL.ODL 10,250
Combined SORT/MERGE Record STMGRC.ODL 9100
Combined SORT/MERGE File, record, or SMSHR.ODL 8350

Resident Library mixed-mode

Note that the file/mixed-mode interface requires RMS11X.0ODL. The record interface requires only sequen-
tial I/0 and can use RMS11S.0DL.

On RSTS/E systems, the SORT/MERGE ODL files reside in LB:. On
RSX-11M and RSX-11M-PLUS systems, the ODL files reside in LB:[1,1].
You reference the SORT/MERGE ODL file from the ODL file that you create.

Whichever ODL file you use, the .ROOT statement in your ODL file must
refer to the SORT or MERGE root portion and co-trees. You must concate-
nate SMROT (code for SORT/MERGE non-overlaid portion) with your root
segments and make SMOVR (code for SORT/MERGE overlaid portion) and

- STMGIN (code for SORT/MERGE callable interface routines) co-trees with

RMS.

The following example shows an ODL file created for a FORTRAN program

that uses the file interface to SORT on an RSX system. The program name is
YEARLY.FOR; the object file is YEARLY.OBJ. Any line that begins with a
semicolon (;) is a comment line.

H ODL File YEARLY.ODL

H

H reference prodram YEARLY:
;

YEARLY : +FCTR YEARLY.0OBJ

reference FORTRAN OTS:

3

b

H

F7707S: +FCTR LB:L1+11F4POTS/LB

3

H reference the arpropriate SORT ODL:
3

Using SORT and MERGE in Application Programs

BLB:L1,138RTFIL.ODL

3

H reference the RMS 0ODL:
3
@LB:C1+,11JRME11X.0DL
3
H combine all the rParts:
H
+NAME TSTF77
M$PROG : JFCTR YEARLY-F7707S
M&ROOT +FCTR TSTF77-M$PROG-RMEROT-SHMROT

1

+ROODT M&ROOT sRMSALL .SMOVUR ,STMGIN
+END

NOTE

If you use the COBOL-81 SORT/MERGE syntax, you auto-
matically create the ODL file when you use the COBOL-81
Build ODL Utility, and no further work with ODL files is re-
quired. However, if a COBOL-81 program calls SORT or
MERGE directly using the CALL verb (rather than using the
embedded SORT/MERGE syntax), the procedures described
above for creating an ODL file must be followed.

Use the file SMSHR.ODL when task building with the SORT/MERGE resi-
dent library, which is (optionally) created when SORT/MERGE is installed
on your system. (Check with your system manager to be sure that
SMSHR.ODL is installed on your system.) The SORT/MERGE resident li-
brary is called SMRES, and it is designed to be used in a cluster with RMS
and your programming language. In order to cluster SORT/MERGE, SMRES
must appear in your task builder CLSTR option. For example, in order to
cluster SMRES with RMS and the COBOL-81 resident library, you would
pass the following option to the task builder:

CLSTR = CBI1LIBRMSRES:SMRES:RO

4.6.2 Task Building with User-Defined Routines

SORT/MERGE allows you to use four user-defined routines in your applica-
tion program:

e Key comparison routine

¢ Equal key callback routine

¢ Warning handler routine

¢ MERGE input routine (not available for SORT)

In most cases, you indicate that you want to use one of these routines by
passing SORT/MERGE the address of the routine as one of the optional
parameters to the SRTINI (SRTINB, SRTINC) or MRGINI (MRGINB,
MRGINC) calls. However, if your programming language does not allow you
to pass this address, you can still use your own routines by making a copy of
the SORT/MERGE ODL file that you will use and then altering the appropri-
ate line in the ODL file.

Using SORT and MERGE in Application Programs 4-23

CAUTION

Before you alter the SORT/MERGE ODL file, make sure that
you are changing your local copy and not the ODL file in the
system library.

The following chart shows the line of the ODL file that you should edit in
order to use your own routine. In each instance, replace only the information
that follows *.FCTR’ with the name of the .OBJ file of your subroutine.

* To use your own SORT or MERGE key comparison routine, edit the line
SCMP: +FCTR LB:L1,11SRTLIB/LB:$VCCMP

MCMP : +FCTR LB:[1,1IMGELIB/LB:$UCCMP

® To use your own SORT or MERGE equal key callback routine, edit the line
SCLB: +FCTR LB:[1,115RTLIB/LB:$UCCLE: CALLBK

MCLB: WFCTR LB:[1,1IMGELIB/LB:$YCCLB:CALLBK

® To use your own SORT or MERGE warning routine, edit the line

SWRN : WFCTR LB:[1/,1I1SRTLIB/LB:$UCWRN:SRTHURN

MWRN : WFCTR LB:[1,1IMGELIB/LB:$YCWRN:SRTWRN

® To use your own MERGE input routine, edit the line

MINP: +FCTR LB:[1,1IMGESHR/LB:$VCINP:MRGINP

Note that you must edit this line to reference your own merge input routine if
you are using the record interface to MERGE (that is, using either

MGEREC.ODL or STMGRC.ODL).
NOTE

If you use the SORT/MERGE resident library and task build
against the file SMSHR.ODL, then the ODL file will read
SRTSHR or MGESHR rather than SRTLIB or MGELIB. For
example, the line for a SORT key comparison routine using the
resident library is

SCMP: +FCTR LB:C1+11SRTSHR/LB:$VCCHMP

For example, suppose you write a program in COBOL that calls SORT di-
rectly (using the record interface), you do not use the ANSI COBOL syntax,
and you want to use your own equal key callback routine. The name of the
object file for your equal key callback routine is EQUAL.OBJ.

Make a copy of SRTREC.ODL, and then modify the line
SCLB: .FCTR LB:L[1.11SRTLIB/LB:$UCCLB:CALLEK

to read
SCLB: FCTR EQUAL.OBJ

4-24 Using SORT and MERGE in Application Programs

If you use both SORT and MERGE in the same task (therefore using either
STMGFL.ODL or STMGRC.ODL) and want to use your own routine in both
SORT and MERGE, you must change both the SORT and MERGE lines in
the ODL file.

SCLB: +FCTR EQUAL.O0BJ
MCLB: +FCTR EQUAL.DBJ

The symbols MINP, SCLB, MCLB, SWRN, MWRN, SCMP, and MCMP are
referenced later in the ODL files, so be sure that you do not change any of
these when modifying the ODL file.

4.6.3 LUN Usage

SORT requires the following number of LUNs:
1 LUN for a specification file (if used)

1 LUN for the output file

1 LUN for each input file

1 LUN for each work file

MERGE requires the same number of LUNs as SORT, except that MERGE
does not use work file LUNSs.

Using SORT and MERGE in Application Programs 4-25

Chapter 5
Improving SORT Efficiency

PDP-11 SORT/MERGE is designed for an environment of random access disk
devices, fairly large files, and medium size records. PDP-11 SORT/MERGE

automatically provides an efficient sort or merge for the data type of your
key(s).

Rather than use the defaults provided by PDP-11 SORT/MERGE, you can
design your ordering routine to work at maximum efficiency in the environ-
ment in which it is likely to be used most frequently. The environment in-
cludes such things as types of I/O devices, key data types, file sizes, and key
and record sizes.

So that you can better understand the factors to consider when fine-tuning
your ordering operations, this chapter

e Provides a brief description of how SORT operates internally
e Explains the meaning and use of SORT/MERGE statistics

e Suggests procedures for tailoring ordering operations to your environment

5.1 How SORT Operates

The following description of SORT’s internal operation does not try to give all
the details of the process. Instead, it gives a summary of what happens during
a sorting operation, paying special attention to the internal sorting data struc-
ture and work files, because these can be modified by the user for greater
SORT efficiency.

You can use SORT in either of two ways:

e As a utility program that you invoke with a DCL or MCR/CCL command
line

e As a package of subroutines that you call from an application program

The utility uses the subroutines to perform a sort operation. There is almost
no difference in the way that the utility and a user-written program operate.
The following sections describe the phases of a sort operation.

5-1

5.1.1 |Initialization Phase

During the initialization phase, SORT does the following:
1. Interprets the command line

2. Interprets the specification file (if any)

3. Opens all the input files to determine longest record length, total input
allocation, and file format and organization

4. Opens the output file

5. Divides the memory between SORT or MERGE data structures and 1/0
work area

6. Initializes the SORT or MERGE data structures
7. Creates and opens specified number of work files

SORT uses a replacement selection algorithm to create ordered strings (or
runs) which are then merged using a polyphase merge algorithm. The replace-
ment selection algorithm uses a tree structure made up of nodes of informa-
tion about the records being sorted. The internal node size varies depending
upon the type of sort being performed. Node size is discussed further in
Section 5.2.

First, certain data structures containing information about keys, record for-
mats, collating sequences, and so on, are set up in the data structure portion
of the work area; then the remaining area is given to the tree. The number of
nodes in the tree is determined by dividing this area by the internal node size.
In most cases, the more nodes that there are in the tree, the faster is the sort.

The I/O area is set up with all the required RMS data structures as well as
some necessary sort I/O-related data structures. Then the remaining I/O area
1s divided into blocks and dynamically assigned as buffers for multi-block
reads and writes.

Before the polyphase merge begins, a second initialization phase occurs in
which the work area is redistributed. Since the merge normally involves sig-
nificantly less work area for the data structure (there are fewer nodes), a
greater proportion of the work area is allocated for I/O use. This allows larger
multi-block counts during the merge phase.

The MERGE utility (not to be confused with the merge phase of SORT) uses
a straight n-way merging algorithm to merge the n input files together. This
requires n nodes plus one or two extra nodes for certain kinds of processing
during the merge. Since there usually are fewer merge nodes than sort nodes,
less space is needed for the merge data structures. Therefore, the proportion of
memory given for 1/0 area is larger, and more multi-blocking occurs for 1/0
reads and writes.

5.1.2 Sort Phase

After the initialization phase, SORT reads the input records (or has the re-
cords released to it), converts them to the internal format, and places them in

5-2 Improving SORT Efficiency

the sort data structure, calling the key-comparison and equal-key routines as
needed. This continues until the sort data structure is full or all records have
been read. If all records fit into the sort data structure, they are sorted in
memory, and the work files that were created are not used.

If the sort data structure becomes full, SORT selects the record with the
smallest value for a given key from the sort data structure (or the largest value
if descending sort order is specified), and writes it to a work file. This frees
space for the next record to be read. SORT then reads another record into the
sort data structure. Again, it selects the record with the smallest value for a
given key (but not smaller than that of the record just written to the work
file), and writes it to the work file.

This process continues, producing a string of records that are in sequence
(called a “run’), either until all the records have been read or there is no
record in the data structure with a key that is larger than the previous record
written to the work file. If there is such a record, SORT begins building a
second run, again first selecting the record with the smallest value for a given
key from those in the sort data structure, and continues reading records and
writing them to the work files.

The runs thus produced are distributed among (n-1) of the n work files in
such a way that the number of runs in the work files approximates a general-
ized Fibonacci number. Since the number of runs produced depends on the
data, there may be some instances when not all the work files are used even
though there are many input records, and there may be some instances when
all of the work files are used with a relatively small number of records. (For a
discussion of generalized Fibonacci numbers, as well as the replacement selec-
tion and polyphase merge algorithms, see Donald Knuth’s Sorting and
Searching in his multivolume set The Art of Computer Programming.)
Dummy runs (containing no records) are assumed to exist in work files as
needed so that the number of runs in the work files exactly equals a general-
ized Fibonacci number. The distribution is carried out in such a way as to
minimize the number of dummy runs used. After all the records have been
read, the sort data structure is emptied to the work files as one or two final
runs. In general, the higher the Fibonacci level reached, the longer the po-
lyphase merge will take. The more work files available, the lower the resulting
Fibonacci level.

Therefore, it would appear to be best to use the maximum number of work
files. There is a tradeoff, however, since the more work files there are, the less
I/O multi-blocking space that is available for each work file, thus increasing
the time required for work file reads and writes.

The default number of work files that SORT/MERGE provides has been
shown to demonstrate the best performance for most operations. You can
change this default when you install SORT/MERGE, but DIGITAL recom-
mends that you use caution when changing the default. For any particular
SORT or MERGE operation, you can change the number of work files using
the /WORK_FILES qualifier (with DCL) or the /FI:n switch (with
MCR/CCL).

Improving SORT Efficiency 5-3

5.1.3 Merge Phase of the SORT

If the Fibonacci level reached is greater than Level One (that is, at least one
work file contains more than one run), then SORT merges runs from (n-1)
work files to the empty work file. Whenever a work file becomes depleted of
runs (including dummy runs), the next lower Fibonacci level is reached. That
work file then receives the merged output from the other (n-1) work files.
When Fibonacci Level One is reached, there is one run in each work file. At
that point, SORT either merges the (n-1) work files with runs in them to the
output file or returns them to the calling program.

5.1.4 Cleanup Phase

After the last record is written, SORT closes the input and output files (for
utility sort and file interface), and then closes and deletes the work files.
When requested by the user, the utility displays the SORT statistics after the
last record has been written and all files have been closed.

5.2 Understanding and Using SORT/MERGE Statistics

5-4

Using the /STATISTICS qualifier (with DCL) or the /SS switch (with
MCR/CCL) causes SORT/MERGE to display statistics on your output de-
vice. You can also have statistics returned from a callable sort or merge.

You can use these statistics to evaluate the efficiency of your ordering opera-
tion and to determine adjustments that could improve its performance. The
statistics also include information about the sort or merge to help you deter-
mine if the processing went as you had intended. The statistics include the
following information:

* Identification — The version and maintenance release numbers. For exam.-
ple, V3.1 is version 3, maintenance release number 1.

* Elapsed time — The clock time from the beginning of the initialization
phase to just before the statistics are output. Do not confuse this with CPU
time. Clock time may vary considerably for different instances of the same
sort or merge, depending upon other activity on the system.

* Process — Shows the process type (record, tag, index, address, or merge),
whether it was stable or nonstable, whether or not duplicate records were
allowed, and whether the sort was external (that is, required work files) or
internal.

* Collating sequence — Shows whether the collating sequence used was
ASCII, EBCDIC, multinational, or user-defined. This statistic also indi-
cates whether or not the basic collating sequence was modified (using a
specification file).

* Input files — Shows the number of input files that were sorted or merged.

* Work files (SORT only) — Shows the number of work files that were used. If
a work file was opened but data was not written to it, the work file is still
counted. All work files are opened at the same time.

Improving SORT Efficiency

* Number of records output — Shows exactly how many records were written
to the output file or returned to the calling program.

* Number of records input — Shows how many records were read from the
input files or passed to the callable subroutines.

* Number of records omitted — Shows how many records were omitted from
the sort or merge. Records are omitted because of an /OMIT clause in a
specification file, a /NODUPLICATES qualifier (or /ND switch), or because
an equal key callback routine returned a request that deleted a record.

* Number of keys — Shows the number of key fields used in the sort or merge.

* Total key size — Shows the maximum length of the key fields of the record
formats in the sort or merge.

¢ Total input allocation — Shows the total allocation (in blocks) for all input
files.

¢ Total work allocation (SORT only) — Shows the total allocation (in blocks)
for all work files in a sort. This is the final allocation after all necessary
extensions have been made during the sort.

* Total output allocation — Shows the total allocation (in blocks) for the
output file. This is the final allocation after all necessary extensions have
been made during the sort.

* Longest input record. found — Shows the length of the longest input record
found: i the input files, including omitted records. The Longest Record
Length (LRL) information kept by RMS on a file may not be accurate if
records: have been deleted from the file.

¢ Node size — The internal node size varies depending upon the type of sort
being performed.. For a record sort or for a merge, the node size is approxi-
mately the sum of the following:

a. The maximum longest record Iength for the: input files:
b. About 6 to 10 bytes of information about the record

c. About 8 bytes of pointers for the replacement selection, polyphase
merge, or merge algorithm

For a tag, index, or address sort, the node size is approximately the sum of:
a. The total key size for the sort
b. About 12 to 16 bytes of information about the record

c. About 8 bytes of pointers for the replacement selection or polyphase
merge-algorithm

For large record size and small key size, the tag sort process will have a
smaller internal node size than a record sort process. It will therefore have
more tree nodes, fewer runs, and a lower Fibonacci level. It may still run
slower, however, since it requires reaccessing the input file randomly to
retrieve the output data from the input records.

Improving SORT Efficiency 5-5

¢ Number of nodes — Shows the number of nodes in the replacement selec-
tion tree for a sort, or the number of nodes in the merge list for a merge. In a
sort, if the number of nodes initially allocated to the tree is larger than the
number of records being sorted, SORT uses only the smallest subtree neces-
sary. The statistics nevertheless reflect the total number of nodes initially
allocated to the tree.

e Initial I/O area size — Shows the size (in bytes) of the area provided for I/0
data structures and buffers. For a sort, this applies only to the sort distribu-
tion phase. Generally, more area is given for I/O during the polyphase merge
phase.

e Number of initial runs (SORT only) — Shows the number of ordered strings
(runs) written to work files during the sort distribution phase.

¢ Fibonacci level (SORT only) — Shows the Fibonacci level, as discussed in-
the previous section. If the sort was internal (that is, it required no work
files), the Fibonacci level is zero.

* Merge order (MERGE only) — Shows the number of input files.

5.2.1 Using Statistics with Callable SORT/MERGE

If you generate statistics when using SORT or MERGE from an application
program, the statistical information is placed at the beginning of the work
buffer that you specify. The following list shows the order in which the statis-
tics are listed in the work buffer; the numbers in parentheses indicate the
space (in words) that is allocated for each statistic.

1. SORT or MERGE version number

Binary number specifying major release number (1 word)
Binary number specifying update number (1 word)

(In Version 3.0, for example, the two words would contain 000003 and
000000)

2. Process Type (1 word)

0 = Record sort
1 = Tag sort

2 = Address sort
3 = Index sort’
4 = Merge

3. Collating sequence (1 word)

0 = Unmodified ASCII

1 = Unmodified EBCDIC

2 = Unmodified Multinational
3 = User-defined

4 = Modified ASCII

5 = Modified EBCDIC

6 = Modified Multinational

5-6 Improving SORT Efficiency

4. Stable/nostable (1 word)

0 = Nostable
1 = Stable

5. Duplicates/noduplicates (1 word)

0 = Noduplicates
1 = Duplicates

6. Number of input files (1 word)

7. Total input file allocation (2 words)

8. Number of work files (1 word)

9. Total work file allocation (2 words)

10. Final output file allocation (2 words)

11. Size of sort tree node (1 word)

12. Number of nodes in sort/merge structure (1 word)

13. Size of 1/O buffer area (1 word)

14. Number of input records (2 words)

15. Number of bytes in longest input record (1 word)

16. Number of records sorted or merged (2 words)

17. Number of records omitted during record selection (2 words)
18. Number of records output (2 words)

19. Number of keys (1 word)

20. Total composite key size (1 word)

21. Number of initial runs produced by SORT (1 word)

22. Fibonacci level for sort or merge order for MERGE (1 word)

23. Elapsed clock time in hrs, mins, secs, 1/100 secs (4 words)

5.3 What The User Can Do

After evaluating the variables in the environment for your sort or merge oper-
ation, you can consider a number of possibilities for improving SORT
efficiency:

e Sorting fewer records — You can use the specification file to include only
those records that are needed in the output.

e Sorting shorter records — You can also use the specification file to reformat
records to eliminate fields that are not needed in the output.

You should also consider these additional options for improving efficiency,
described in detail in the following sections.

Improving SORT Efficiency 5-7

5-8

* Changing the number or assignment of work files
® Specifying input file allocation

¢ Adjusting output file allocation

* Changing the sort process

¢ Using the /TREE__SPACE qualifier or /PT switch

5.3.1 Work Files

Unless you specifically request that no work files be created, (/WORK_
FILES=NUMBER:0 or /FI:0), SORT creates the work files during the initiali-
zation phase to ensure that there will be sufficient disk space to perform the
sort operation. By default, five work files are created, and this number pro-
vides the best performance for typical sort operations. Sometimes, however, it
is necessary or useful to increase the number of work files. For example, if the
available disks are too small or too full for SORT work files, you can increase
the number of work files to make each work file smaller; you can also assign
the work files to different devices. Remember that the more work files there
are, the less I/0 area each work file receives for multi-blocking, thus tending
to slow down the sort.

There are also conditions where you can improve performance by using fewer
work files. For example, if you know that the input file is almost in the desired
order to begin with and will therefore produce only one or two long initial
runs, the use of fewer work files is likely to improve the performance. Chapter
2 shows you how to specify the number of work files.

In addition to specifying the number of work files, you can also improve
SORT efficiency by assigning the location of your work files to alternate
random-access, mass-storage devices, such as disks. You can place work files
on the fastest device available, the device having the least activity, or the

least full device available. Use the /WORK_FILES=DEVICE qualifier or

/DE switch, as described in Chapter 2, to select a different device for the work
files.

When you use the /WORK_FILES qualifier (/DE switch) in a SORT com-
mand line, the work files are assigned to a single alternate device for the entire

sort operation. If you use a specification file for SORT, you can assign individ-
ual work files to separate devices.

You can further increase SORT efficiency by specifying contiguous allocation
for your work files. The initial block allocation for each work file is derived as
follows: First, multiply the estimated number of input records by the node
size; next, divide the product by one less than the number of work files.
Divide this figure by 512 and round the result up to the next integer. This is
the initial allocation, in blocks.

You can request that this allocation be contiguous, if possible. You can also
change the initial allocation of the work files. However, no indication will be
given if it is necessary to extend a work file during the sort, making the
allocation noncontiguous.

Improving SORT Efficiency

Chapter 2 shows the syntax for using the ALLOCATION:n and
CONTIGUOUS subqualifiers with the /WORK_FILES qualifier (for DCL)
and the /AL:n/CO input file switch (for MCR/CCL).

You can also specify the RSTS/E file clustersize or the RSX-11M/M-PLUS
retrieval window size for your work files using the SIZE:n subqualifier or the
/SI:n input file switch. See your operating system documentation for more
information.

DCL users should remember to enclose any group of subqualifiers in
parentheses.

5.3.2 Input File Allocation

SORT uses input file size information to determine the size of the work files.
Usually, RMS determines the file size. However, if you are sorting files not
residing on disk or standard ANSI magnetic tape and you do not provide the
file size, SORT assumes a file size of 1000 blocks. The default for the record
interface on input is also 1000 blocks.

If this allocation is too large, SORT will overestimate its memory and work
file requirements. In this instance, therefore, your sort operation is more effi-
cient if you specify a smaller input file size. If the default of 1000 blocks is too
small, SORT will underestimate its memory requirements, and you will need
to specify a larger input file size.

Chapter 2 describes the use of the FILE__SIZE subqualifier and /BK:n switch
to specify file size.

5.3.3 Output File Preallocation

SORT/MERGE preallocates space for your output file based on total input
file allocation. This avoids the overhead of extending the file every time an-
other few blocks are written to it.

However, if you know that your output file allocation will differ substantially
from the total input file allocation (for example, because you are reformatting
data or omitting records), you can specify the number of blocks to be preallo-
cated for the output file using the /ALLOCATION qualifier or the /AL:n
output file switch. See Chapter 2 for information about using these.

By default, SORT/MERGE does not allocate the output file in contiguous
blocks. You can request that the output file be stored in contiguous disk
blocks, thereby decreasing access time, by using the /CONTIGUOUS qualifier
or the /CO output file switch. However, if the preallocated space is too small,
RMS may be unable to extend the file contiguously.

Two other output file options are available for fine-tuning your ordering oper-
ations: specifying the fill factor (LOAD_FILL qualifier or /L.O switch) and
the bucket size (BUCKET_SIZE=n qualifier or /BU:n switch).

You can specify the fill factor only for indexed-sequential files. RMS loads the
buckets according to the fill size established when the file was created, min-
imizing bucket splitting if many records are added later.

Improving SORT Efficiency 5-9

If you use relative or indexed-sequential output, you can specify the bucket
size to indicate RMS bucket size (that is, the number of 512-byte blocks per
bucket). If the output file organization is the same as for the input file(s), the
default value is the same as for the input file bucket size. If output file

organization is different, the default value is 1. The maximum number of
blocks per bucket is 32 for RSX-11M/M-PLUS and 15 for RSTS/E.

Syntax information for the fill factor and bucket size options is provided in
Chapter 2.

The /TREE_SPACE qualifier (in DCL) or /PT switch (in MCR/CCL) lets you
override the default division of work area space and choose the distribution of
available work area between SORT/MERGE data structures and I/O data
structures. By default, 55% of the work area is used for data structures for a
SORT operation, and 30% of the work area is used for data structures for a
MERGE operation. Chapter 2 shows the syntax for using the /TREE_SPACE
qualifier and /PT switch.

5.3.4 Process

Although you usually select a sort process for reasons other than performance,
there are differences in speed among the four sort processes. See Chapter 2 for
a description of these differences. In any operation in which the sorted records
will be retrieved in order, record sort is usually the fastest sort process. If
limited work space is a problem, or your records are very large relative to the
total key size, consider using tag sort, which requires less space than record
sort.

5.4 What the System Manager Can Do

5-10

The system manager can designate one batch queue for sorting jobs and

. provide this queue with characteristics that improve system and/or sort per-

formance. In addition, job process parameters can be adjusted for greatest
SORT efficiency.

Although the default SORT/MERGE installation yields optimum sort and
merge performance for most applications, your special needs may require that
different defaults be installed. See the Installation Guide for your operating
system to learn how to install SORT/MERGE with different default
parameters.

Improving SORT Efficiency

Appendix A
Error Messages

This appendix lists the error messages generated by the SORT and MERGE
utilities. If you use SORT or MERGE from a DCL or MCR/CCL command
line, error messages are displayed on your output device as an error code (for
example, %SORT_F_EXTSRT) followed by a brief explanation of the error
(for example, SORT requires work files).

The error messages listed are all for SORT. MERGE error messages are iden-
tical to SORT messages, except that they begin with %MERGE rather than
%SORT.

If you use the callable SORT or MERGE subroutines from an application
program, a numeric code for the error messages is placed in the first word of
your error buffer. In this case, a positive number at the beginning of the word
indicates a nonfatal exception or warning message, and a negative number
indicates a fatal error message.

The table that begins on page A-2 lists the error messages in the order of their
error code. The numeric code shown with the error message is the number that
is returned to the error message buffer.

Following the table are all of the SORT/MERGE error messages listed in
alphabetical order.

Number Message Number Message Number Message

Code Code Code Code Code Code

0 %SORT_W__SUCCESS 32 %SORT_F__XSLUNS 65 %SORT_F_MISPRM
1 %SORT_W_EQOFEXC 33 %SORT_F_NUFRAB 66 %SORT_F_BADVAL
2 %SORT_W_BUFOVR 34 %SORT_F_NUFBUF 67 %SORT_F__INVSWH
3 %SORT__W__MRGORD 35 %SORT__F_EXTSRT 68 %SORT__F_MAXINP
4 %SORT_W__LCKBKT 36 %SORT_F_CRSF00 69 %SORT__F_MAXOUT
5 %SORT_W_WRTSHR 37 %SORT__F__CNSF00 70 %SORT_F__MISLRL
6 %SORT_W__SPCIVC 38 %SORT__F_WRSF00 71 %SORT_F__NOTMRG
7 %SORT_W__SPCIVD 39 %SORT_F_RDSF00 72 %SORT_F_NOTSRT
8 %SORT__W__SPCIVF 40 %SORT___F_DCSF00 73 %SORT_F_BADSEQ
9 %SORT_W__SPCIVI 41 %SORT_F_RWSF00 74 %SORT__F_ZMGORD
10 %SORT_W__SPCIVK 42 %SORT_F__CLSF00 75 %SORT_F_CHNPRS
11 %SORT_W_SPCIVP 43 %SORT_F__OPIF00 76 %SORT__F_CHNERR
12 %SORT._W__SPCIVS 44 %SORT__F__CNIF00 77 %SORT_F__CHNFIL
13 %SORT_W__SPCIVX 45 %SORT__F__RDIF00 78 %SORT.__F__ODADTR
14 %SORT_W__SPCMIS 46 %SORT__F_DCIF00 79 %SORT_F_MEMPRO
15 %SORT__W_SPCOVR 47 %SORT_F__CLIF00 80 %SORT__F__BPTBIT
16 %SORT_W__SPCSIS 48 %SORT_F_CROF00 81 %SORT_F__IOTTRP
17 %SORT_W__TRNREC 49 %SORT__F__OPOF00 82 %SORT__F__ILOPTR
18 %SORT_W_NUMTRN 50 %SORT_F_CNOF00 83 %SORT_F_EMTTRP
19 %SORT._W_LSTWRN 51 %SORT_F_WROF00 84 %SORT_F_TRPTRP
20 %SORT_F_BADFLD 52 %SORT_F_DCOF00 85 %SORT_F__FPTRAP
21 %SORT_F_MIXKEY 53 %SORT__F_CLOF00 90 %SORT_F__SPCADJ
22 %SORT_F__GCMBAD 54 %SORT_F__OPSP00 91 %SORT__F_SPCPLX
23 %SORT._._F__MULSPC 55 %SORT._F_CNSP00 92 %SORT_F_SPCCHR
24 %SORT_F_NOIORM 56 %SORT._F_RDSPO0 93 %SORT_F__SPCPAD
25 %SORT_F__ILCALL 57 %SORT__F_DCSP00 94 %SORT_F_SPCTHR
26 %SORT._F_WKAREA 58 %SORT_F__CLSP00 95 %SORT_F_INCNOKEY
27 %SORT__F__RLFAIL 60 %SORT_F_INTERR 96 %SORT__F_INCNODATA
28 %SORT__F__RSFAIL 61 %SORT__F_BADCMP 97 %SORT_F_WRTI00
29 %SORT_F_NSFRAB 62 %SORT_F_BADCLB 133 %SORT_F_BADORG
30 %SORT__F_NSFBUF 63 %SORT__F_BADINP 139 %SORT_F__LSTMSG
31 %SORT_F_NOSCBF 64 %SORT_F_NOMSG

%SORT_F_BADCLB: Bad return from equal key callback routine

Explanation: User-supplied equal key callback routine has returned
illegal status.

Callable returned error buffer: First word = -62
%SORT_F_BADCMP: Bad return from comparison routine

Explanation: User-supplied comparison routine has returned illegal
status.

Callable returned error buffer: First word = -61

A-2 Error Messages

¢%SORT_F_BADFLD: Bad field in record number:

Explanation: Given record contains a bad field. Record number dis-
played assumes all input files are concatenated.

Callable returned error buffer: First word = --20
Second word = low word of record
number
Third word = high word of record
number

%SORT_F_BADINP: Bad return from merge input routine

Explanation: User-supplied merge input routine has returned illegal
status.

Callable returned error buffer: First word = -63
%SORTFBADOQRG: Organization of existing'file incorrectly specified

Explanation: The user specified a file organization in the command line
that did not match the actual organization of an existing input or output
file. For output files, this can occur only if the user is attempting to
overlay an existing output file. For input files, this can occur if the user
specifies as indexed-sequential a file that was not index-sequential, or if
the user fails to specify an index-sequential file as being such.

Callable returned error buffer: First word = 133
%SORT_F_BADSEQ: Bad sequence in input file
Explanation: Given input file is out of sequence for merge

Callable returned error buffer: First word = -73
Second word = input file number

%SORT_F_BADVAL: Bad switch value
Explanation: Command line has bad switch value.
Callable returned error buffer: First word = -66

Second word = offset into command
line of bad switch

%SORT_F_BPTBIT: Breakpoint or T-bit exception
Explanation: Register dump will follow. Please submit with SPR.

Callable returned error buffer: No return to callable.
%SORT_W_BUFOVR:

Explanation: User-supplied buffer was not big enough to hold returned
record. Normally just a warning. Record is truncated. If this message
occurs in utility, please submit SPR.

Callable returned error buffer: First word = 2
Second word = length of output

record
Third word = buffer size

Error Messages A-3

%SORT_F_CHNERR: Failed to chain: .RUN return status —
(RSTS/E only)
Explanation: SORT or MERGE was unable to chain to requested task.

Callable returned error buffer: First word — -76
Second word = .RUN directive
return status

%SORT__F_CHNFIL: Bad chain file specification: XRB flag2/flagl:
(RSTS/E only)

Explanation: Chain file as specified by user was invalid.

Callable returned error buffer: First word = -77
Second word = XRB flag 2
Third word = XRB flag 1

9%SORT_F_CHNPRS: Error parsing chain file: .FSS return status —
(RSTS/E only)
Explanation: Unable to parse chain file specification.

Callable returned error buffer: First word - -75
Second word = .FSS directive
return status

“%eSORT_F_CLIF00: Error closing input file: RMS codes
Explanation: RMS could not close the given input file.

Callable returned error buffer: First word = -47
Second word RMS STS code
Third word = RMS STV code
Fourth word Input file number

“%SORT_F_CLOFO00: Error closing output file: RMS codes
Explanation: RMS could not close the output file.

I

Callable returned error buffer: First word = -53

Second word RMS STS code
Third word = RMS STV code

“eSORT_F__CLSF00: Error closing work file: RMS codes
Explanation: RMS could not close the given work file.

Callable returned error buffer: First word = -492
Second word = RMS STS code
Third word = RMS STV code

Fourth word = Work file number
‘eSORT_F_CLSP00: Error closing specification file: RMS codes

Explanation: RMS could not close the specification file.

I

Callable returned error buffer: First word = -58
Second word = RMS STS code
Third word = RMS STV code

A-4 Error Messages

%SORT_F_CNIF00: Error connecting to input file: RMS codes
Explanation: RMS could not connect to the given input file.

Callable returned error buffer: First word = -44
Second word = RMS STS code
Third word = RMS STV code
Fourth word = Input file number

%SORT_F_CNOFO00: Error connecting to output file: RMS codes
Explanation: RMS could not connect to the output file.

Callable returned error buffer: First word = -50
Second word = RMS STS code
Third word RMS STV code

%SORT_F_CNSFO00: Error connecting to work file: RMS codes

Explanation: RMS could not connect to the given work file.

I

Callable returned error buffer: First word = -37
Second word = RMS STS code
Third word = RMS STV code
Fourth word = Work file number

%SORT_F_CNSP00: Error connecting to specification file: RMS codes
Explanation: RMS could not connect to the given specification file.

Callable returned error buffer: First word = -55
Second word = RMS STS code
Third word = RMS STV code

%SORT_F_CROF00: Error creating output file: RMS codes
Explanation: RMS could not create the output file.

Callable returned error buffer: First word = -48
Second word = RMS STS code
Third word = RMS STV code

%SORT_F_CRSF00: Error creating work file: RMS codes
Explanation: RMS could not create the given work file.

Callable returned error buffer: First word = -36
Second word = RMS STS code
Third word = RMS STV code
Fourth word = Work file number

¢SORT_F__DCIF00: Error disconnecting from input file: RMS codes

Explanation: RMS could not disconnect from the given input file.

Callable returned error buffer: First word = -46
Second word = RMS STS code
Third word RMS STV code
Fourth word Input file number

Il

Error Messages A-5

A-6

“¢SORT_F_DCOF00: Error disconnecting from output file: RMS codes
Explanation: RMS could not disconnect from the given output file.

Callable returned error buffer: First word = -59
Second word = RMS STS code
Third word = RMS STV code

%SORT_F_DCSF00: Error disconnecting from work file: RMS codes
Explanation: RMS could not disconnect from the given work file.

Callable returned error buffer: First word = -40
Second word = RMS STS code
Third word = RMS STV code
Fourth word = Work file number

%SORT_F_DCSP00: Error disconnecting from specification file: RMS codes

Explanation: RMS could not disconnect from the given specification
file.

Callable returned error buffer: First word = -57
Second word = RMS STS code
Third word = RMS STV code

%SORT_F_EMTTRP: Non-RSX EMT trap
Explanation: Register dump will follow. Please submit with SPR.
Callable returned error buffer: No return to callable.
%SORT_W_EOFEXC:

Explanation: End of file returned from callable interface. If this message
occurs in utility, please submit SPR.

Callable returned error buffer: First word = 1
9%SORT_F_EXTSRT: SORT requires work files: RMS codes

Explanation: User indicated no work files, but sort could not be done
internally.

Callable returned error buffer: First word = -35
Second word = RMS STS code
Third word = RMS STV code
Fourth word = Input file number

%SORT_F_FPTRAP: Floating-point exception
Explanation: Register dump will follow. Please submit with SPR.

Callable returned error buffer: No return to callable.

Error Messages

%SORT_F_GCMBAD: Cannot get command line: GCML error

Explanation: RMS was unable to get a command line. The GCML
error codes are as follows:

-1 1/0 error occurred during command line input

-2 Unable to open command file. (Make sure that
command file name is correct and exists)

-3 Syntax error in command file name

-4 Command file nesting level exceeded

-5 Command line in file is too long. (Use continuation
character (-) to divide line into smaller units)

-40 Command line input buffer too small for total com-
mand line. (Shorten your command line)

Callable returned error buffer: First word = -22
Second word = GCML error code

%SORT_F_ILCALL: Illegal calling sequence: state

Explanation: User called sort or merge subroutines in incorrect order. If
this message occurs in utility SORT or MERGE, please submit an SPR.

Callable returned error buffer: First word = -25
Second word = SORT or MERGE
internal state code
If necessary

submit with SPR
%SORT_F_ILOPTR: Illegal instruction trap
Explanation: Register dump will follow. Please submit with SPR.
Callable returned error buffer: No return to callable.-
%SORT_F_INCNODATA: INCLUDE specification references no data

Explanation: In specification file, INCLUDE specification has to con-
tain a DATA clause.

Callable returned error buffer: First word = -96
Second word = specification file line
number

%SORT_F_INCNOKEY: INCLUDE specification references no keys

Explanation: In specification file, INCLUDE specification has to con-
tain a KEY clause. '

Callable returned error buffer: First word = -95
Second word = specification line
number

%SORT_F_INTERR: Internal SORT/MERGE error
Explanation: Please submit an SPR.

Callable returned error buffer: First word = -60

Error Messages A-T7

%SORT_FJNVSWH: Invalid or redundant switch

Explanation: Command line has invalid switch or two switches which
cannot occur together.

Callable returned error buffer: First word = -67
Second word location (offset into
command line) of
bad switch

%SORT_F_IOTTRP: IOT trap
Explanation: Register dump will follow. Please submit with SPR.
-Callable returned error buffer: No return to callable.
%SORT_W_LCKBKT: Locked bucket in input file

Explanation: RMS attempted to read bucket which was locked in input
file. SORT/MERGE will retry reading bucket the number of times speci-
fied at installation. If retry fails, a read error will be issued.

Callable returned error buffer: First word = 4
Second word = Input file number

%SORT__F_LSTMSG:

Explanation: Too large vmessage code detected. Probably an internal
error. Please submit an SPR.

Callable returned error buffer: First word = -139
Second word = message number

%SORT_W_LSTWRN:

Explanation: Too large warning message code detected. Probably an
internal error. Please submit an SPR.

Callable returned error buffer: First word = 19
Second word = message number

%SORT_F_MAXINP: Too many input files
Explanation: Too many input files specified in command line.
Callable returned error buffer: First word = -68
%SORT_F_MAXOUT: Too many output files
Explanation: Too many output files specified in command line.
Callable returned error buffer: First word = -69
%SORT_F_MEMPRO: Memory protect error
Explanation: Register dump will follow. Please submit with SPR.

Callable returned error buffer: No return to callable.

A-8 Error Messages

%SORT_F_MISLRL: No LRL found for file

Explanation: The longest record length for each input file must be made
known to SORT or MERGE either through RMS or by format switch.

Callable returned error buffer: First word = -70
Second work = input file number

%SORT_F_MISPRM: Missing required parameter

Explanation: User did not pass a required parameter to callable subrou-
tine.

Callable returned error buffer: First word = -65

%SORT_F_MIXKEY: Incompatible key comparison

Explanation: SORT or MERGE attempted to compare two keys which
were not compatible. This should only occur when using a specification
file to specify multiple record formats.

Callable returned error buffer: First word = -21

%SORT_W_MRGORD:

Explanation: User passed merge order to callable file interface which
did not equal the number of files specified in the passed MCR command
line. The passed merge order will be ignored. If you are not using callable
file or mixed file-to-record interface please submit an SPR.

Callable returned error buffer: First word = 3
%SORT_F_MULSPC: Multiply defined specification file

Explanation: The user passed a specification file buffer as well as a
command line containing a file specification for a specification file. If
this message occurs in the utility SORT or MERGE please submit an
SPR.

Callable returned error buffer: First word = -23
%SORT__F_NOIORM: No room for I/O pool space

Explanation: The I/O area provided for the SORT or MERGE was not
big enough for the current operation. For callable SORT, pass a larger
work area. Or use the /PT switch to allocate more of the given work area

for I/O use.
Callable returned error buffer: First word = -24
%SORT_F_NOMSG: Message number

Explanation: This is an internal error; please submit an SPR.

Callable returned error buffer: First word = -64
Second word = bad message
number

Error Messages A-9

%SORT_F_NOSCBF: Out of work file I/O buffer space
Explanation: This is probably an internal error; please submit an SPR.
Callable returned error buffer: First word = -31
%SORT_F_NOTMRG: Non-MERGE switch

Explanation: User specified a MERGE command line switch which is
only valid for SORT.

Callable returned error buffer: First word
Second word

-71

location of switch
(offset into MCR
command line)

%SORT_F_NOTSRT: Non-SORT switch

Explanation: User specified a SORT command line switch which is only
valid for MERGE.

-72
offset into MCR
command line

Callable returned error buffer: First word
Second word

ol

%SORT_F_NSFBUF: Out of work file buffer space

Explanation: This is probably an internal error; please submit an SPR.

Callable returned error buffer: First word = -30
%SORT_F_NSFRAB: Out of work file RAB space

Explanation: This is probably an internal error; please submit an SPR.

Callable returned error buffer: First word = -29
%SORT_F_NUFBUF: Out of user file buffer space

Explanation: This is probably an internal error; please submit an SPR.

Callable returned error buffer: First word = -34
%SORT_F_NUFRAB: Out of user file RAB space

Explanation: This is probably an internal error; please submit an SPR.

Callable returned error buffer: First word = -33
%SORT_W_NUMTRN: Number of records truncated:

Explanation: See warning message %SORT_W__TRNREC.

Callable returned error buffer: First word = 18
Second word = low word of number
.of records truncated
Third word = high word of
number of records
truncated

Error Messages

%SORT_F_ODADTR: Odd address trap
Explanation: Register dump will follow. Please submit with SPR.
Callable returned error buffer: No return to callable.
%SORT_F_OPIF00: Error opening input file: RMS codes
Explanation: RMS could not open the given input file.

Callable returned error buffer: First word = -43
Second word = RMS STS code

Third word = RMS STV code
Fourth word = Input file number

%SORT_F_OPOF00: Error opening output file: RMS codes
Explanation: RMS could not open the given output file.

Callable returned error buffer: First word = -49
Second word RMS STS code
Third word = RMS STV code

%SORT_F_OPSP00: Error opening specification file: RMS codes

Explanation: RMS could not open the given specification file.

Callable returned error buffer: First word = -54
Second word = RMS STS code
Third word = RMS STV code

%SORT_F_RDIFO00: Error reading from input file: RMS codes
Explanation: RMS failed while trying to read the given input file.

Callable returned error buffer: First word = -45
Second word = RMS STS code
Third word = RMS STV code
Fourth word = Input file number

%SORT_F_RDSF00: Error reading from work file: RMS codes
Explanation: RMS failed while trying to read the given work file.

Callable returned error buffer: First word = -39
Second word = RMS STS code
Third word = RMS STV code
Fourth word = Work file number

%SORT__F_RDSP00: Error reading from specification file: RMS codes
Explanation: RMS failed while trying to read the specification file.

Callable returned error buffer: First word = -56
Second word = RMS STS code
Third word = RMS STV code

%SORT_F_RLFAIL: Failure to release allocated pool block

Explanation: This is probably an internal error; please submit an SPR.

Callable returned error buffer: First word = -27

Error Messages A-11

%SORT_F;RSFAIL: Failure to allocate requested pool block
Explanation: This is probably an internal error; please submit an SPR.
Callable returned error buffer: First word = -28

%SORT_F_RWSF00: Error rewinding work file: RMS codes
Explanation: RMS could not rewind the given work file.

Callable returned error buffer: First word = -41
Second word = RMS STS code
Third word = RMS STV code
Fourth word = Work file number

%SORT_F_SPCADJ: Invalid collating sequence definition
Explanation: Collating sequence in specification file is not valid.
Callable returned error buffer: First word = -90

%SORT_F__SPCCHR: Invalid character definition
Explanation: Character definition in specification file is not valid.
Callable returned error buffer: First word = -92

%SORT_W_SPCIVC: Invalid collating sequence, on line

Explanation: Collating sequence in specification file is not valid.

Callable returned error buffer: First word = 6
Second word = specification file line
number

%SORT_W__SPCIVD: Invalid data type, on line

Explanation: Data type found in specification file is not valid.

Callable returned error buffer: First word = 7
Second word = specification file line
number

%SORT_W__SPCIVF: Invalid field, on line

Explanation: Field definition in specification file is not valid.

Callable returned error buffer: First word = 8
Second word = specification file line
number

9%SORT_W_SPCIVI: Invalid include or omit, on line

Explanation: Include or omit definition in specification file is not valid.

Callable returned error buffer: First word = 9
Second word = specification file line
number

A-12 Error Messages

%SORT_W_SPCIVK: Invalid key or data, on line
Explanation: Key definition in specification file is not valid.

Callable returned error buffer: First word = 10
Second word specification file line
number

l

%SORT_W_SPCIVP: Invalid sort process, on line

Explanation: Sort process found in specification file is not valid.

Callable returned error buffer: First word = 11
Second word = specification file line
number

%SORT_W__SPCIVS: Invalid specification line

Explanation: Bad specification in specification file.

Callable returned error buffer: First word = 12
Second word = specification file line
number

%SORT_W_SPCIVX: Invalid condition, on line

Explanation: Condition definition in specification file is not valid.

Callable returned error buffer: First word = 13
Second word = specification file line
number

%.SORT_W_SPCMIS: Invalid merge specification, on line

Explanation: Specification given in MERGE specification file that is
only valid for SORT.

Callable returned error buffer: First word = 14
Second word = specification file line
number

.SORT_W__SPCOVR: Specification overridden, on line

Explanation: Specification has been overridden by command line or
callable parameter.

Callable returned error buffer: First word = 15
Second word = specification file line
number

CoSORT_F_SPCPAD: Invalid pad character
Explanation: Pad character definition in specification file is not valid.
Callable returned error buffer: First word = -93
©SORT_F_SPCPLX: Collating sequence too complex

Explanation: In the specification file, the user tried to define a collating
sequence that had too many different collating values.

Callable returned error buffer: First word = -91

Error Messages A-13

%SORT_W_SPCSIS: Invalid sort specification, on line

Explanation: Specification given in SORT specification file that is only
valid for MERGE.

Callable returned error buffer: First word = 16
Second word = specification file line
number

%SORT_F_SPCTHR: Cannot define three-byte collating value

Explanation: User attempted to define three-byte collating value in
specification file collating sequence clause.

Callable returned error buffer: First word = -94

%SORT_W_SUCCESS:

Explanation: Success returned from callable interface. If this message
occurs in utility, please submit SPR.

Callable returned error buffer: First word = 0

%SORT_W_TRNREC: Truncating records longer than specified LRL of

Explanation: At least one record in an input file was longer than the
LRL specified by the user. All such records will be truncated.

Callable returned error buffer: First word = 17
Second word = specified LRL

%SORT_F_TRPTRP: TRAP instruction execution
Explanation: Register dump will follow. Please submit with SPR.
Callable returned error buffer: No return to callable.
%SORT_F_WKAREA: Insufficient work area (bytes):

Explanation: Work area supplied is insufficient for the SORT or
MERGE.

Callable returned error buffer: First word = -26
Second word = number of bytes of
work area supplied

%SORT_F__WROF00: Error writing to output file: RMS codes
Explanation: RMS failed while trying to write to the given output file.

Callable returned error buffer: First word = -51
Second word = RMS STS code
Third word = RMS STV code

%SORT__F_WRSF00: Error writing to work file
Explanation: RMS failed while trying to write to the given work file.

Callable returned error buffer: First word = -38
Second word RMS STS code
Third word = RMS STV code
Fourth word = Work file number

II

A-14 Error Messages

%SORT_F_WRTI0O0: Error writing to terminal device
Explanation: RMS failed while trying to write to the terminal device.
Callable returned error buffer: First word = -97
%SORT_W_WRTSHR: Input file opened allowing writes - file number

Explanation: Warning that the input file could be modified during the
SORT or MERGE. :

Callable returned error buffer: First word = 5
Second word = input file number

%SORT_F_XSLUNS: Too many LUNs required (required/max allowed):

Explanation: The total number of LUNSs required because of the number
of input, output, work, and specification files exceeds the maximum
allowed on the system. :

Callable returned error buffer: First word -32
Second word = number of LUNs
required
Third word = maximum LUNs
allowed

%SORT_F_ZMGORD: Invalid merge order

Explanation: User passed a zero merge order to a callable record merge.

Callable returned error buffer: First word = -74

Error Messages A-15

Appendix B
Sample Programs

This appendix includes sample application programs that demonstrate the
use of the callable SORT and MERGE subroutines. The purpose of the sam-
ple programs is to show the subroutines in program source code; the programs
have not necessarily been designed to demonstrate common applications, per-
formance optimization, or programming practices.

There are six sample programs in this appendix.
e A BASIC-PLUS-2 program using the MERGE file interface
¢ A BASIC-PLUS-2 program using both SORT and MERGE mixed-mode

interfaces
e A COBOL-81 program using the MERGE record interface
¢ A COBOL-81 program using the SORT record interface
e A FORTRAN program using the MERGE file interface
e A FORTRAN program using the SORT file interface

The BASIC-PLUS-2 and COBOL programs pass arguments by descriptor, so
they use the special subroutine names for BASIC and COBOL (for example,
SRTINB and SRTINC). The FORTRAN programs use the standard subrou-
tine names (for example, SRTINI).

BASIC-PLUS-2 program using the MERGE file interface

1 EX
10 DECLARE

20 DECLARE

{TEND

INTEGER

Tlun.baf (O%)
err_buff(di)

STRING

command_line

40 MAP(WORK)
STRING wrk_area = 135000 &

1910 command.line = "ouwtpPuts

1920 lun.buf (o) = B%

1990

2000

2100

2110
2120
2130
2140

2200

2300
3000
3100

3110
3120
3130
3140
3150

4980
SO0

5105

3110
5120
9130
2140

30000

B-2

!
PRINT

“calling MRGINB™"

CALL MRGINB (err_buff ()

1

wrk_ar
comman
an BY
0% BY
o% BY
lun_bu
0% BY
0% BY
0% BY
Q% BY
0% BY

IF err.buff(0) = O THEN

!
PRINT
PRINT
PRINT
PRINT

"error in MRGINB:

GOTO 30200

!
PRINT

"calling MRGMRB"

CALL MRGMRB (err_tuff ()
IF errobuff(0) = 0 THEN

1

PRINT
PRINT
PRINT
PRINT

"error in MRGMRB:

GDTO 30000

!
PRINT

"calling MRGENB"

CALL MRGENB (err.buff()

!

IF err.buff(0o) = O THEN

!
PRINT
PRINT
PRINT
PRINT
!

END

"error in MRGENB:

Sample Programs

&

bmgfil/foruv:BOsbmgfll/foruv:BO/Kericalil/ss™"

BY REF
ea BY DESC.

j_lime BY DESC.

VALUE 4
UALUE +
UALUE »
f() BY DESC.
VALUE +
YALUE +
VALUE 4
YALUE »
UaLUE)

GOTO 2300

err_buff{0o)
err-buff(l)
err.buff(2)
err_buff(3)

BY REF)
GOTO 4990

err_buff(o)
err_buff(l)
err_buff(2)
err_buff(3)

BY REF)

GOTO 30000

err_buff(0)
err.buffcl)
err_buff(2)
err.buff(3)

"

"

rerrobuff(o)
serrbuff(l?
serr_ buff(2)
serr_buff(3)

rerr_ buff (o)
serr_buffl)
rerr_buff(2)
serr_buff(3)

serr_buffin)
rerr_buffil)
serr_buff(2)
serr_buff(3)

B

BASIC-PLUS-2 program using both SORT and MERGE mixed-mode interfaces

1 HKTEND
10 DECLARE &
INTEGER &
lunbuf (O%) B
err_buff(di), &
ine_1rl
20 DECLARE &
STRING B
command.line 8
|
25 MAP(DISK) &
STRING rec_buf = BO B:
1
40 MAP(WORK) B
STRING wrk_area = 10000 B
|
1900 ON ERROR GOTO 30000 8
I DEFINE THE ENUVIRONMENT '
1910 command_.line = "templ/al:B=/Ke:col.,1/pt:30/f1:3" B
|
1905 inp_lrl = BOY
1920 lun-buf(0) = B% &

|

1990 PRINT Mcalling SRTINB"

2000 CALL SRTINB (err_buff() BY REF.
wrKk_area BY DESC:
command.line BY DESBC
inp.lrl BY REF,

0% BY UALUE »
lun_buf () BY DESC:
0% BY VALUE
0% BY VALUE .
0% BY VALUE
0% BY WVALUE)

1

2100 IF erc_buff(Q) = O THEN GOTO 2300 8
|

2110 PRINT "error in SRTINB: err_buff (o)

"yerr_buff ()

2120 PRINT " err_hbuff(l) = "serr-buff(l)
2130 PRINT " err_buff(2) = "yerr_buff(2)
2140 PRINT " err_buff(3) = “serr_buff(3)
2200 GOTO 30900 &

!
2250 PRINT "open the input file”

2300 OPEN "BSMMIX.DAT" FOR INPUT AS FILE 1% 8
ORGANIZATION SEQUENTIAL FIXED: B:
MAP DISK: 8:
ACCESS READ. &
ALLOW NONE B
|
2800 GET =1 8
|
2890 PRINT "calling SRTRLB"
3000 CALL SRTRLB (err_buff () BY REF, 8
rec.buf BY DESC)
3100 IF err_buff(Q) = O THEN GOTO Z800 8
1
3110 PRINT "error in SRTRLB: err_buff(d) = "serr_buff(d)
3120 PRINT " err.buff(1) = "serr_buff(il)
3130 PRINT " err_buff(2) = "yerr_buff(2)
3140 PRINT ™ errbuff(3) = “serr_buff(3)
31350 GOTO 30900 B

Sample Programs B-3

3300
4000
4100

4110
4120
4130
4140
4130

4990
SO00

5105
5110
5120
5130
5140

150

n

[}

155
53160
GOOO

G100

G110
G120
5130
6140
B200

B300

G400
7000
7100
7110
7120
7130
7140
7130

7200

7300

B-4

PRINT
CALL SRTSRB
IF err_buff(o) =
1

PRINT

"calling SRTSRB"
(err_buff()
O THEN

BY REF)
GOTO 4980

"error in SRTSRB: err_buff(o)
PRINT " err_buff{l)
PRINT " err_buff(2)
PRINT " err_buff(3)

GOTO 30900
, .
PRINT "calling SRTENB"

CALL SRTENB (err_buff ()
!

A

BY REF)

IF err.buff(0) = O THEN GOTO 51350

1

PRINT "error in SRTENB: err_huff(0)
PRINT " err_buff(l)
PRINT " err.buff(2)
PRINT " err_buff{3)

command_line = "=BSMMIX/FQO:V:B0/ke:co

|

CLOSE #1

PRINT "calling SRTINB"

CALL SRTINB (err_buff ()
wrk.area BY
command_line BY
inp.lrl BY REF,
0% BY UVALUE,
Tun_buf () BY
0% BY VALUE
0% BY VALUE
0% BY VALUE .
0% BY VALLUE

Y REF
DESC +

DESC

DESC »

i
IF err_buff(o) =
|

PRINT "error
PRINT "
PRINT "
PRINT ' .
GOTO 30900

1

O THEN GDTO B300

SRTINB: err_buff(Q)
err_buff(l)
err_buffi2)
err_buff(3)

in

1

n

"

rerr_buffCo)
rerr_buff(l)
serr_buyff(2)
serr_buff(3)

rerr_buff(0)
serr_buff(l)
rerr buff(2)
serr_buff(3)

cl1/ptr30/F1:23"

OPEN "TEMPZ2.DAT" FOR OUTPUT AS FILE 1%,
ORGANIZATION SEQUENTIAL FIXED:

MAP DISK .
ACCESS WRITE +
ALLOW NONE

|

PRINT "calling SRTSRB"

CALL SRTSRB f(err.buff{) BY REF)

IF err_buff(0) = O THEN GOTO 7200

1

PRINT "error in SRTSRB: err_ buff(0)
PRINT * err_buff(l)}
PRINT * err_buff(2)
PRINT * err_buff(3)

GOTO 30900

1

CALL SRTRTB (err.buff() BY REF.,
rec_buf BY DESC:
rtn_len BY REF)

}

IF err_buff(Q) =
!

0 THEN GOTO 7400

Sample Programs

1

serr_buff(o)
serr_buff(l)
serr_buff(2)
rerr_buff(3)

serr_buff(0)
serr_buff(l)
serr_buff(2)
serr_buff(3)

B

[cadii il * ol = i = o e

7305

7310
7320
7330
7340
7330

7400

7410

7900
7510

7513

7600
7610
7620
7830

7700

7800

7990
BOOO

8100

8110
8120
8130
8140
8200

8275
8300
8310

8320
8340
8350
8360
8370

asoo

IF err_buff(0) = 1 THEN GOTO 7300

!

PRINT "error in SRTRTB:
PRINT "

PRINT "

PRINT "
GOTO 30900

1

PUT =1

!

GDTO 7200 'loop back
|

PRINT "callind SRTENB"

CALL SRTENB (err_buff()
|
IF err_buff{0) = O THEN
|

PRINT "error in SRTENB:

PRINT err_buffil)
PRINT ¢ err_buff(2)
PRINT " err_buff(3d)
!
CLOSE =1
!
' mow for a merde mixed file to re
!
command_line = "=templ/FO:UV:80tempP2/

!
PRINT "callind MRGINB"

CALL MRGINB (err_buff()

wrk_are
command
inp_1lrl

err.buffco)
err_buffi(l)
err_buff(2)
err_buff(3)

- on

i

for mext outeput

BY REF)

GOTO 7700

err_buff (o)

Y REF +
a BY DESC:

~linme BY DESC

BY REF

0% BY VALUE .,
0% BY VALUE,
lun_buf () BY DESC.
0% BY UVALUE.
0% BY UALUE .
0% BY MVALUE
07 BY VALUE,
0% BY VALUE)

IF err.buff(0) = O THEN
|

PRINT "error in MRGINB:
PRINT "

PRINT

PRINT *

GOTO 30900

\

PRINT "calling MRGMRB"
CALL MRGMRB (err_buff()
IF err_buff(0o) = 0 THEN
]

PRINT "error in MRGMRB:
PRINT "

PRINT

PRINT "

GOTO 30900

|

GDTO BE7S

err_buff(o
err.buff{l
err.buff(2

3

)
)
)
err.buff(3)

BY REF)
GOTD 8500

err_buff(o)
err_buff(l)
err_buff(2)
err_buff(3)

1t

"

i

- n

cor

fo:

"

~-

OPEN "OUTPUT.DAT" FOR QUTPUT AS FILE 1%

ORGANIZATION SEQUENTIAL FIXED:

MAP DISK .,
ACCESS WRITE
ALLOW NONE

serr_buff(0)
rerr_buffil)
rerr_buff(2)
rerr_buff(3)
&

record &

rerr_buff(0)

rerrobuff(l)
rerr_buff(2)

rerr_buff(3)
8
B:

5| B

viB0/Kescol !

serr_buffo)
rerr_buffCl)
yerr_buff(2)
rerr_buff(3)

&

serr_buff(0)
rerr_buff(l)
serr_buff(2)
rerr_buff(3)
&

&

Sample Programs

B-5

!
BG0OG PRINT "calling MRGRTB™

8620 CALL MRGRTB (err_buff() BY REF., 8
rec_buf BY DESC: 8
rtn_len BY REF) B
1
8640 IF err_buff(0) = O THEN GOTO 8900 &
!
8650 IF err_buff(0) = 1 THEN GOTO 9000 B:

]
B660 PRINT "error in MRGRTB: err_buff(Q)

i

"yerr_buff(Q)

8670 PRINT * err_buff(l) = ",err_buff(i)

8673 PRINT " err_buff(2) = "yerr_buff(2)

BEBO PRINT err_buff(3) = “serr_buff(3)

BEY0O GOTO 30800 8
!

8900 PUT #1 B
!

8910 GOTO BBZO loop hack for next output record &
!

9000 PRINT "callind MRGENB"

9010 CALL MRGENB (err_buff() BY REF) &
|

9020 IF err_buff(0) = O THEN GOTO 30800 8

!
9030 PRINT "error in MRGENB: err_buff(o)

"serrobuff0)

040 PRINT " err_buff(1) = “serr_buff(i)
9050 PRINT " err_buff{(2) = ",err_buff(2)
goB0d PRINT * err_buff(3) = "serr_buff(3) &
!
Q070 GOTO 30300 'it’s all ower 8
1
30000 1 &
! ERROR HANDLER B
!
30100 IF ERR = 11% AND &
ERL = 2800 B
THEN RESUME 3300 it was end of input file &

!
30300 PRINT “fallivg throudh error handler”
30900 ON ERROR GOTO O
32000 END

COBOL-81 program using the MERGE record interface

IDENTIFICATION DIVISION.
PROGRAM-ID. CBL1TST,

ENVIRONMENT DIVISION.
CONFIGURATION SECTION,
SOURCE-COMPUTER. PDP-11,
OBJECT-COMPUTER . RDP-11,
INPUT-OUTPUT SECTION,
FILE-CONTROL .
SELECT OUTFIL ASSIGN TO "OUTRUT.DAT",

DATA DIVISION.

* PIC X IS5 ALPHA-NUMERIC

* PIC 2 IS NUMERIC (S5 MEANS SIGNED)

* COMP IS BINARY S8(4) COMP IS BINARY STORED IN ONE-WORD

B-6 Sample Programs

FILE SECTION.
FD OUTFIL

Q1

LA
ou

BEL RECORD STANDARD.
TREC PIC X(100).

WORKING-STORAGE SECTION.
01 SRT-WRK-AREA PIC X(9000).

01

SRT

~-WRK-LEN PIC S9(d4)

01 ERR-BUF.
SRT-CODE PIC S9(4) COMP,

01
01
01
01
01
01

01
01
01
01

01

03
03
03
03
CMD
CMD
INP
MRG
SPE
LB,
03
03
LUN
REC
RTN
MIS
03
03
03
03
DIS
03

03

03

03

03

03

03

03

03

03

03

03

RMSSTS PIC §9¢4) COMP,
RMSSTY PIC 8589(4) COMP,
SRT-EXTRA PIC S9(4d)
-BUF PIC X(1)
-BUF-LEN PIC 89(4)
-LRL PIC 889(4)

-0RD PIC S8¢4)

C-BUF PIC 59(4)

LBX PIC 59(4)
LUN-BUF REDEFINES LBX
-BUF-LEN PIC 88(4)
-LEN PIC S589(4)
~LEN PIC S904)
C-AREA.

INCTR PIC 9(4)
RELCTR PIC 84)
RTNCTR PIC 9(4)
QUTCTR PIC 8(4)
P-AREA.

LINE-1.
0% FILLER PIC X(17)
LINE-2.
0% FILLER PIC X(17)
05 D-INCTR PIC 9(3)
LINE-3.
0% FILLER PIC X(17)
05 D-RELCTR PIC 9(3)
LINE-4.

05 FILLER PIC X(17)
5 D-RTNCTR PIC 2(35)
LINE-3.
05 FILLER PIC X(17)
05 D-OUTCTR PIC 9(3)
LINE-5A,

05 FILLER PIC X(17)
LINE-B.

0% FILLER PIC X(17)
05 D-SRT-CODE PIC S89(G)
LINE-7.

05 FILLER PIC X(17)
05 D-RMESTE PIC 589(6)
LINE-B.
05 FILLER PIC X(17)
05 D-RMSSTY PIC S59(B6)
LINE-8A,
05 FILLER PIC X(17)

LINE-9,
05 FILLER PIC X(17)
LINE-10,
05 FILLER PIC X(17)
05 D-RTN-LEN PIC 88(G)

COoMP

COMP
COMP YALUE 100,
CoMP VALUE B6G.

UALUE "RECORDS READ HE
VALUE O,

VALUE 9000,

COMP .,
VALUE "=",
comp
COMP UALUE B8O,
COMP UALUE 3.
COMP VALUE ©.

VALUE 1.

COMP VJALUE 6.

PIC XX,
VALUE 1.

COMP VALUE ©.
COMP UALUE 0,
COMP WALUE ©O.
COMP VALUE 0,

VAL UE "RECORDS RELEASED:"
YALUE O,

VALUE "RECORDS RETURNED:"
UALUE O,

VALUE "RECORDS WRITTEN ="
VALUE O,

YALUE "SORT ERROR REPORT"

UALUE "SORT ERROR CODE "

YALUE ©.

VALUE "RMS 5T VALUE H
VALUE G

YALUE "RM& STU WALUE HE
VALUE 0.

VALUE "EXTRA SORT INFO "
05 D-SRT-EXTRA PIC S9(B6)

YALUE O,

VALUE “"EMCEPTION REPORT "

YALUE "“SRT RTN LENGTH "

VALUE O,

VALUE "SORT TEST DISPLAY"™.

Sample Programs

B-7

PROCEDURE DIVISION,
START-UP,
OPEN OUTPUT QUTFIL.
DISPLAY "CALLING MRGINC",
CALL "MRGINC" USING BY REFERENCE ERR-BUF,
BY DESCRIPTOR SRT-WRK-AREA .
BY DESCRIPTOR CMD-BUF
BY REFERENCE INP-LRL
BY REFERENCE MRG-0ORD .
BY REFERENCE SPEC-BUF .,
¥ DESCRIPTOR LUN-BUF,
IF SRT-CODE NOT = 0O
FPERFORM ERROR-RTN
GO TO THE-END.
DISPLAY "CALLING MRGRTC",
RTN-LOOP,
CALL "MRGRTC" USING BY REFERENCE ERR-BUF .
BY DESCRIPTOR OUTREC.
¥ REFERENCE RTN-LEN.
IF SRT-CODE NOT = @
PERFORM ERROR-RTN
GO TO THE-END.
ADD 1 TO RTNCTR.
WRITE OUTREC,
ADD 1 TO DUTCTR.
GO TO RTN-LOOP.
THE-END,
DISPLAY "CALLING MRGENC",
CALL "MRGENC" USING BY REFERENCE ERR-BUF.
MOVE INCTR TO D-INCTR,
MOVE RELCTR TO D-RELCTR,
MOYE RTNCTR TO D-RTNCTR,
MOYE OUTCTR TO D-QUTCTR.
DISPLAY LINE-~1.
DISPLAY LINE-2Z,
DISPLAY LINE-3.
DISPLAY LINE-4,.
DISPLAY LINE-S.
CLOSE DUTFIL.,
STOP RUN.
ERROR-RTN,
MOVE SRT-CODE TO D-SRT-CODE.
MOYE RMSSTS TO D-RMSSTS.
MOYE RMSSTY TO D-RMSSTY,
MOVE SRT-EXTRA TO D-SRT-EXTRA.
DISPLAY LINE-5A,
DISPLAY LINE-G.
DISPLAY LINE-7.
DISPLAY LINE-B,
DISPLAY LINE-B8A,

* ok ok ok ok Kk &k ok ¥

COBOL-81 program using the SORT record interface

IDENTIFICATION DIVISION.
PROGRAM-ID, CBITES.
ENVIRONMENT DIVISION,
CONFIGURATION SECTION.
SOURCE-COMPUTER. PDP-11,
OBJECT-COMPUTER. PDP-11,
INPUT-DUTPUT SECTION,

B-8 Sample Programs

FILE-CONTROL.
SELECT INFILE ASSIGN TO
SELECT OUTFIL ASSIGN TO
DATA DIVISION,
* PIC X IS5 ALPHA-NUMERIC
* PIC 9 IS NUMERIC (5 MEANS
* COMP 15 BINARY S8(4) COMP
FILE SECTION,
FD INFILE
_ABEL RECORD STANDARD.
01 INREC PIC X(100).
FD DOUTFIL
LABEL RECORD STANDARD.
01 DUTREC PIC X(100),
WORKING-STORAGE SECTION.
01 SRT-WRK-AREA PIC X(9000).
01 SRT-WRK-LEN PIC 59(4) COM
01 ERR-BUF.
03 SRT-CODE PIC s59(4) CO
03 RMSSTS PIC S9(4) COMP
03 RMSSTY PIC 59¢4) COMP
03 SRT-EXTRA PIC S5904) C

"CBIREC.DAT".
"OUTPUT.DAT",

SIGNED)

IS5 BINARY STORED IN ONE-WORD

P VALUE 2000,

MP

‘

OMP .

01 CMD-BUF PIC (1d) VALUE "/KE:CN1.,2/F1:3",

01 CMD-BUF-LEN PIC S58(04) COM
01 INP-LRL PIC S9(4) COMP YA
01 SPEC-BUF PIC S59(4) COMP ¥
01 LB.
03 LB} PIC 58(4) COMP VA
03 LUN-BUF REDEFINES LBX
01 LUN-BUF-LEN PIC S9(4) COM
01 REC-LEN PIC S89(4) COMP YA
01 RTN-LEN PIC S59(4) COMP VA
01 MISC-AREA,
03 INCTR PIC 9(4) COMP VA
03 RELCTR PIC 9(4) COMP U
03 RTNCTR PIC 9¢4) COMP ¥
03 OUTCTR PIC 9(4) COMP U
01 DISP-AREA.
03 LINE-1.
05 FILLER PIC X(17) VA
03 LINE-Z
05 FILLER PIC X(17) VYA
05 D-INCTR PIC 8¢(5) VA
03 LINE-3.
05 FILLER PIC X(17) UA
05 D-RELCTR PIC 9¢(35) W
03 LINE-4.
05 FILLER PIC X(17) UA
05 D-RTNCTR PIC 9(5) V
03 LINE-5.
05 FILLER PIC X(17) VA
05 D-QUTCTR PIC 9(3) VY
03 LINE-SA,
05 FILLER PIC X(17) VA
03 LINE-B.
05 FILLER PIC X(17) VA
0% D-SRT-CODE PIC S9(6
03 LINE-7.
05 FILLER PIC X(17) VA
05 D-RMS5STS PIC S9(G6)
03 LINE-8,
05 FILLER PIC X(17) VA
05 D-RMSSTY PIC S589(8)
03 LINE-BA,
05 FILLER PIC X(17) YA
05 D-SRT-EXTRA PIC S59(¢

P UALUE 14,
LUE 100,
ALUE O,

LUE B,

PIC XX.

P UALUE 1.
LUE 100,
LUE G666,

LUE O,
ALUE O,
ALUE O,

ALUE O,

LUE "SOBRT TEST DISPLAY™.

LUE "RECORDS
LUE 0.

LUE "RECORDS RELEASED:

ALUE 0.

LUE "RECORDS RETURNED:

ALUE 0.

LUE "RECORDS
ALUE O,

LUE "SORT ERROR

READ

WRITTEN

LUE "SORT ERROR CODE

Y VALUE ©.

LUE "RMS 5TS
UALUE Q.

LUE "RME GSTU
YALUE .

YaALUE

YalLue

LUE "EXTRA SORT INFO

B) VALUE .

"

REPORT"

G

Sample Programs

B-9

03 LINE-9.

08 FILLER PIC X(17) VALUE "EXCEPTION REPORT "
03 LINE-10.
053 FILLER PIC X(17) VUALUE "SRT RTN LENGTH "

03 D-RTN-LEN PIC S9(B&)

YALUE 0.

PROCEDURE DIVISION,
START-UP.

OPEN INPUT INFILE.
OPEN OUTPUT QUTFIL.

REFERENCE ERR-BUF
DESCRIPTOR
DESCRIPTOR CMD-BUF 4
REFERENCE INP-LRL
REFERENCE SPEC-BUF »

DISPLAY "CALLING SRTINC",
CALL "SRTINC" USING BY

BY

v

v

BY

BY

IF SRT-CODE NOT = ©
PERFORM ERROR-RTN
GO TO THE-END.

DESCRIPTOR LUN-BUF.

"ENTERING SRTRTC LOOP"

REFERENCE ERR-BUF »

DISPLAY "ENTERING SRTRLC LOOQP",
READ-LOQP,
READ INFILE
AT END
DISPLAY
GO TO RTN-LOOP.
ADD 1 TO INCTR.
CALL "SRTRLC" USING BY
BY

IF SRT-CODE NOT = O
PERFORM ERROR-RTN
GO TO THE-END.

ADD 1 T0 RELCTR.

GO TO READ-LOOP.

RTN-LOOP.

CALL "SRTRTLC" USING BY

v
¥

BY
IF SRT-CODE NOT = O
PERFORM ERROR-RTN
GO TO THE-END.
ADD 1 TO RTNCTR.
IF RTN-LEN NOT = 100
THEN MOVE RTN-LEN

DESCRIPTOR INREC.

REFERENCE ERR-BUF .
DESCRIPTOR OQUTREC .
REFERENCE RTN-LEN,

TO D-RTN-LEN

DISPLAY LINE-9
DISPLAY LINE-10

PERFORM ERROR-RTN

GO TD THE-END,
WRITE OUTREC.
ADD 1 TO OUTCTR.
GO TO RTN-LOOP,

REFERENCE ERR-BUF.

THE-END.

DISPLAY "CALLING SRTENC".
CALL "SRTENC" USING BY
MOUVE INCTR TO D-INCTR,
MOVE RELCTR TO D-RELCTR.
MOVE RTNCTR TO D-RTNCTR.
MOVE OUTCTR TO D-OUTCTR.
DISPLAY LINE-1.

DISPLAY LINE-2.

DISPLAY LINE-3.

DISPLAY LINE-4,

DISPLAY LINE-3,.

CLOSE INFILE,
CLOSE OUTFIL.
STOP RUN.,

B-10 Sample Programs

SRT-WRK-AREA »

+

ERROR-RTN.,

MOVE SRT-CODE TO D-SRT-CODE.
MOVE RMSSTS T0O D-RMSSTS.

MOVE RMSSTY TO D-RMGEGSTU.

MOVE SRT-EXTRA TO D-SRT-EXTRA.
DISPLAY LINE-SA.

DISPLAY LINE-G.

DISPLAY LINE-7.

DISPLAY LINE-8,

DISPLAY LINE-BA.

FORTRAN program using the MERGE file interface

o]

3 [I o I e N o R | OO0 o000 [on | 0000

[iRw]

[I]

)

o000

PROGRAM FMGFIL
THIS PROGRAM TESTS THE MERGE FILE INTERFAbE.

INTEGER*2 TERROR(4) ., I1LUN, IWKSIZ, IWORK(BOOO)

RETURN FIRST SCR. WORK
STATUS MERGE AREA AREA
(4 WORDS) LUN SIZE

INTEGER*2 ILUNLN
LUN BUFFER LENGTH

INTEGER*2 MAXREC, ICOMLN, MRGEOF
MAXIMUM COMMAND MERGE

INPUT LINE ERROR
RECORD LENGTH CODE (END OF FILE ERROR)
S5I7E

INTEGER#2Z INPSIZs LENGTH:; INRECS, OUTRCS
TOTAL INPUT INPUT ouTPUT
INPUT RECORD RECORD RECORD
FILES LENGTH COUNT COUNT
SIZE

INTEGER*Z ENDFIL
END OF FILE FLAG

CHARACTER RUTINE*8, COMAND*3S, ACBO)
ROUTINE MERGE MISC.,
RETURNING COMMAND STRING

THE ERROR LINE
KTERNAL MRGINI, MRGMRG: MRGEND
MERGE-11 SUBROUTINES
DATA IT1LUN,ILUNLN,IWKSIZ/6+1,16000/
DATA MAXREC ,IERROR/Z0 00,00/

COMAND = ‘DUT=FMGFIL/FO:F:20FMGFL1/FO:F:20/KE:CO1.20"
ICOMLN = 43

Sample Programs

C INITIALIZE MERGE PARAMETERS
C
RUTINE=' MRGINI -
TYPE 902, RUTINE
CALL MRGINI(IERROR »IWORK sIWKSIZ sCOMAND » ICOMLN sMAXREG »0 400
X TILUN»TLUNLN)
C
C CALL THE MERGE-11 INITIALIZE ROUTINE
C
IF (IERROR(1) JNE. O) THEN
GOTO 900
ENDIF
C
C EXIT AND TYPE AN ERROR MESSAGE IF MRGINI WAS UNSUCCESSFUL.
C
C
INRECS = 0
OUTRCS = O
ENDFIL = 0O
IFILE = 1
C
C
C
RUTINE=‘' MRGMRG '
TYPE 902, RUTINE
150 CALL MRGMRG(IERROR)
C
C START THE MERGING PROCEDURE
C
IF (IERRORC(1) .NE. 0) THEN
GOTO 900
ENDIF
C
C EXIT AND TYPE AN ERROR MESSAGE IF MRGRLS WAS UNSUCCESSFUL.
C
RUTINE='" MRGEND
TYPE 902, RUTINE
CALL MRGEND(IERROR)
C
C CALL THE MERGE-11 CLEAN-UP ROUTINES.
C
C
IF (IERROR(1) NE.) THEN
GOTO 900
ENDIF
C
C AIT AND TYPE AN ERROR MESSAGE IF UNSUCCESSFUL.,
c
STOP 'SUCCESSFUL FORTRAN MERGE TEST.’
C
C
C
c
C
900 TYPE 901, RUTINE
go1 FORMAT(/* ERROR OCCURRED IN ‘+A8//)
goz FORMAT (/' CALLING ‘' ,AB//)
c
c TYPE ERROR MESSAGE GIVING FAILING ROUTINE.
c

TYPE 903, IERROR

B-12 Sample Programs

‘

03 FORMAT ('’ ERROR STATUS = “+I6://’ ST8= '»IB+BXy’ §TU= 1G6G)

TYPE RETURNED STATUS UVALUES.

[2 o T I o I v B 4a

STOP ‘AN ERROR OCCURRED CALLING MERGE FROM FORTRAN.
END

FORTRAN program using the SORT file interface

PROGRAM FORFIL

C
C THIS PROGRAM TESTS THE SORT FILE INTERFACE.
C
INTEGER*Z TERROR(4) s T1LUN, TWKSIZ. TWORK(BOOO)
C RETURN FIRST - SCR. WORK
C STATUS SORT AREA AREA
C (4 WORDS) LUN SIZE
C
INTEGER#*2 ILUNLN
C LUN BUFFER LENGTH
C
INTEGER*2 MAXREC,» ICOMLN:. SRTEOF
C MAXIMUM COMMAND SORT
C INPUT LINE ERROR
C RECORD LENGTH CODE (END OF FILE ERROR)
C SIZE
C
INTEGER*2 INPSIZy» LENGTH, INRECS. OQOUTRCS
C TOTAL INPUT INPUT OuUTPUT
C INPUT RECORD RECORD RECORD
C FILES LENGTH COUNT COUNT
C SIZE
C
INTEGER*Z ENDFIL
C END OF FILE FLAG
C
C
CHARACTER RUTINE*8, COMAND*405 ACBO)
C ROUTINE S0RT MISC.
C RETURNING COMMAND STRING
C THE ERROR L INE
C
EXTERNAL SRTINI, SRTSRT, SRTEND
C
C S0RT-11 SUBROUTINES
C
C
DATA TI1ILUNSsTLUNLNIWKSIZ/G 1416000/
DATA MAXREC+IERROR/Z0 004040/
COMAND = ‘OUT=FORFIL/FO:F:20/KE:CNL{.20/FI1:3/PT:30"
ICOMLN = 39
C
C INITIALIZE SORT PARAMETERS
C

RUTINE=' SRTINI ’

TYPE 902, RUTINE

CALL. SRTINI(IERROR sIWORK sIWKSIZ »COMAND »ICOMLN MAXRED 10,0
T1ILUN»TLUNLN)

Sample Programs

B-13

o000]

0 ooo0on 0o aono- I}
)

o]

o0 oo

[}

qoa
9ot
902

903

oo o0an

CALL THE SORT-11 INITIALIZE ROUTINE
IF (IERRDRC(1) .NE. 0O) THEN
GOTO 8900
ENDIF
XIT AND TYPE AN ERROR MESSAGE IF SRTINI WAS UNSUCCESSFUL.
INRECS = ©
QUTRCS = 0

ENDFIL = ©
IFILE = 1

RUTINE=' SRTRLS -
TYPE 902, RUTINE
CALL SRTSRT(IERROR)
START THE SORTING PROCEDURE
IF (IERRORC(1) JNE., 0) THEN
GOTO 8900
ENDIF
EXIT AND TYPE AN ERROR MESSAGE IF SRTRLS WAS UNSUCCESSFUL.
RUTINE=' BRTEND '
TYPE B0Z, RUTINE
CALL SRTEND(IERROR)
CALL THE SORT-11 CLEAN-UP ROUTINES,
IF (IERRDR(1) +NE, Q) THEN
GOTO 9ao
ENDIF

EXIT AND TYPE AN ERROR MESSAGE IF UNSUCCESSFUL.

STOP ’'SUCCESSFUL FDRTRAN/SORT TEST.'

TYPE 801, RUTINE
FORMAT(/’ ERROR DCCURRED IN ' ,A8//)
FORMAT (/7 CALLING ‘AB//)
TYPE ERROR MESSAGE GIUVING FAILING ROUTINE.

TYPE 8903 IERROR
FORMAT ('’ ERROR STATUS = “,1G6://' §TS= ',I6,3X’ &TW= '1I6)

TYPE RETURNED STATUS UVALUES.

STOP ‘AN ERROR OCCURRED CALLING SORT FROM FORTRAN,’
END

Sample Programs

Appendix C
Specification File Transiator

C.1 Converting Version 2 Specification Files

You can convert specification files that used the format of the previous version
of SORT-11 by using the translator utility provided with Version 3. To invoke
the translator utility, use either of the following from the MCR/CCL interface:

¢ TRN output-file = input-file
or

¢ TRN <RET>
TRN> output-file = input-file

Input-file is the name of the specification file from a previous version. Output-
file is the name of the specification file (having the new format) that the
translator utility creates. There is no default file type for the input file; the
default file type for the new output specification file is SRT.

The translator utility includes the specifications from the old format in the
file with the new format, setting them off with comment markers. Any errors
found during the conversion of the old specification file are displayed on your
output device.

C.2 Translator Error Messages

The error messages listed in this section are generated by the specification file
translator. When the translator encounters an error, it displays the message
code (for example, SRTTRN-I-ADDINCKEY) followed by a brief explana-
tion (for example, ‘Keys added to avoid comparing incompatible keys’). The
error message is displayed on your default output device.

For some of the error messages listed, a more detailed explanation is provided
in this appendix. Other messages refer to an error within a given line of the
specification file. Although the line number containing the error will not be
specified, you can identify the line causing an error by directing the output
from the translator to a terminal, and then noting where the errors are issued.

C-2

If a message is given indicating a syntax error in the old specification file, but
the old specification file works with SORT-11 V2.0, please notify DIGITAL by
submitting an SPR.

SRTTRN-I-ADDINCKEY, Keys added to avoid comparing incompatible
keys

Multiple record formats as specified might cause incompatible keys to be
compared. To avoid this, constant keys are added which ensure that the
incompatible keys will never be compared.

SRTTRN-F-BADLOGIC, Internal logic error detected
Please submit an SPR.

SRTTRN-E-CLOSEDEL, Error closing <file_descriptor>
SRTRTN-I-ADDSTS, additional status <sts> / <stv>

See RMS documentation for meaning of STS and STV codes.

SRTTRN-E-CLOSEIN, Error closing <file__descriptor> as input
SRTRTN-I-ADDSTS, additional status <sts> / <stv>

See RMS documentation for meaning of STS and STV codes.

SRTTRN-E-CLOSEOUT, Error closing <file__descriptor> as output
SRTRTN-I-ADDSTS, additional status <sts> / <stv>

See RMS documentation for meaning of STS and STV codes.

SRTTRN-E-COMPLEX, Specification file is very complex - verify output

It is unlikely that you will encounter this error. It occurs when over 255
different record formats having incompatible key data types are specified
in your specification file. See error message SRTTRN-I-ADDINCKEY.

SRTTRN-F-INSVIRMEM, Insufficient virtual memory
Old specification file was too long or too complex to be translated using
available work area.
SRTTRN-F-INV_ALT, Invalid alternate collating sequence field in header
SRTTRN-F-INV_CONST, Invalid F/C field in include or omit line

SRTTRN;F—INV_CONT, Invalid continuation field in include or omit line

SRTTRN-F-INV_DATA, Invalid data type field in include, omit, or field
line

Specification File Translator

SRTTRN-F-INV_FIELD, Invalid field type in field line
SRTTRN-E-INV_LIMIT, Invalid field limit in include, omit, or field line
SRTTRN-E-INV_PROCESS, Invalid sort process field in header line
SRTTRN—F—INV_QUAL, Invalid qualifier
You included a command line qualifier when you invoked the translator.
There are no valid qualifiers.
SRTTRN-F-INV_SEQ, Invalid sequence field in header line
SRTTRN-F-INV_STRIP, Invalid key strip field in header line
SRTTRN-F-INV_TYPE, Invalid line type in specification file

SRTTRN-W-LINE__NUM, Line numbers out of sequence

SRTTRN-F-NO_COMMAND, Error reading command line

Translator was unable to obtain command line from system.

SRTTRN-F-NO_FORCE_TO, Missing force column information in force
line

SRTTRN-W-NO_HEADER, Missing header line in specification file

Old specification file is missing the header line.
SRTTRN-W-NO__PAIRS, No replacement pairs in altseq line
SRTTRN-F-OPENIN, Error opening <file__descriptor> as input

SRTRTN-I-ADDSTS, additional status <sts> / <stv>
See RMS documentation for meaning of STS and STV codes.

SRTTRN-F-OPENOUT, Error opening <file__descriptor> as output
SRTRTN-I-ADDSTS, additional status <sts> / <stv>

See RMS documentation for meaning of STS and STV codes.
SRTTRN-E-READERR, Error reading <file__descriptor>
SRTRTN-I-ADDSTS, additional status <sts> / <stv>

Specification File Translator C-3

See RMS documentation for meaning of STS and STV codes.

SRTTRN-F-SYSERROR, System service error

Should not occur; please submit an SPR.

SRTTRN-W-UNX_ALTSEQ, Unexpected altseq line, see column 26 of
header

SRTTRN-F-UNX_FORCE, Unexpected continuation of force key
SRTTRN-E-WRITEERR, Error writing <file__descriptor>

SRTRTN-I-ADDSTS, additional status <sts> / <stv>
See RMS documentation for meaning of STS and STV codes.

C-4 Specification File Translator

Appendix D
Multinational Collating Sequence

HEX Octal Decimal Char or Description

Code Code Code Abbrev.

00 000 000 NUL null character

01 001 001 SOH start of heading

02 002 002 STX start of text

03 003 003 ETX end of text

04 004 004 EOT end of transmission
05 005 005 ENQ enquiry

06 006 006 ACK acknowledge

07 007 007 BEL bell

08 010 008 BS backspace

09 011 009 HT horizontal tabulation
0A 012 010 LF line feed

0B 013 011 vT vertical tabulation
0C 014 012 FF form feed

0D 015 013 CR carriage return

0E 016 014 SO shift out

OF 017 015 SI shift in

10 020 016 DLE data link escape

11 021 017 DC1 device control 1

12 022 018 DC2 device control 2

13 023 019 DC3 device control 3

14 024 020 DC4 device control 4

15 025 021 NAK negative acknowledge
16 026 022 SYN synchronous idle

17 027 023 ETB end of transmission block
18 030 024 CAN cancel

19 031 025 EM end of medium

1A 032 026 SUB substitute

1B 033 027 ESC escape

1C 034 028 FS file separator

1D . 035 029 GS group separator

1E 036 030 RS record separator

1F 037 031 us unit separator

20 040 032 SP space

21 041 033 ! exclamation point
22 042 034 " quotation marks (double quote)
23 043 035 # number sign

HEX Octal Decimal Char or Description

Code Code Code Abbrev,

24 044 036 dollar sign

25 045 037 Ce percent sign

26 046 038 & ampersand

27 047 039 ’ apostrophe (single quote)

28 050 040 (opening parenthesis

29 051 041)] closing parenthesis

2A 052 042 * asterisk

2B 053 043 + plus

2C 054 044 , comma

2D 055 045 - hyphen or minus

2E 056 046 . period or decimal point

2F 057 047 / slash

30 060 048 0 Zero

31 061 049 1 one

32 062 050 2 two

33 063 051 3 three

34 064 052 4 four

35 065 053 5 five

36 066 054 6 six

37 067 055 7 seven

38 070 056 8 eight

39 071 057 9 nine

3A 072 058 : colon

3B 073 0569 ; semicolon

3C 074 060 < less than

3D 075 061 = equals

3E 076 062 > greater than

3F 077 063 ? question mark

40 100 064 @ commercial at

61 141 097 a lowercase a

41 101 065 A uppercase A

EO 340 224 a lowercase a with grave accent
Co 300 192 A uppercase A with grave accent
E1l 341 225 é lowercase a with acute accent
Cl1 301 © 193 A uppercase A with acute accent
E2 342 226 a lowercase a with circumflex
C2 302 194 A uppercase A with circumflex
E3 343 227 a lowercase a with tilde

C3 303 195 A uppercase A with tilde

E4 344 228 a lowercase a with umlaut, (diaeresis)
C4 304 196 A uppercase A with umlaut, (diaeresis)
62 142 098 b lowercase b

42 102 066 B uppercase B

63 143 099 c lowercase ¢

43 103 067 C uppercase C

E7 347 231 ¢ lowercase ¢ with cedilla

C7 307 199 C uppercase C with cedilla

64 144 100 d lowercase d

44 104 068 D uppercase D

65 145 101 e lowercase e

45 105 069 - E uppercase E

E8 350 232 e lowercase e with grave accent
C8 310 200 E uppercase E with grave accent
E9 351 233 é lowercase e with acute accent
C9 311 201 E uppercase E with acute accent
EA 352 234 é lowercase e with circumflex

D-2 Multinational Collating Sequence

HEX
Code

CA
EB
CB
66
46
67
47
68
48
69
49
EC
CcC
ED
CD
EE
CE
EF
CF
6A
4A
6B
4B
6C
4C
6D
4D
6E
4E
F1
D1
6F
4F
F2
D2
F3
D3
F4
D4
F5
D5
F6
D6
F7
D7
70
50
71
51 -
72
52
73
53
DF
74
54

Octal
Code

312
353
313
146
106
147
107
150
110
151
111
354
314
355
315
356
316
357
317
152
112
153
113
164
114
155
115
156
116
361
321
157
117
362
322
363
323
364
324
365
325
366
326
367
327
160
120
161
121
162
122
163
123
337
164
124

Decimal
Code

202
235
203
102
070
103
071
104
072
106
073
236
204
237
205
238
206
239
207
106
074
107
075
108
076
109
077
110
078
241
209
111
079
242
210
243
211
244
212
245
213
246
214
247
215
112
080
113
081
114
082
115
083
223
116
084

Char or
Abbrev.

’_aﬂ.cawm w»—gop k=] 98 o;o:o,o: oo O o,o;ooz,:;;zs gg r"_zwhu_t—(:—‘: [Iy ,_‘,...,H....m:,..mm o g

Description

uppercase E with circumflex
lowercase e with umlaut, (diaeresis)
uppercase E with umlaut, (diaeresis)
lowercase f

uppercase F

lowercase g

uppercase G

lowercase h

uppercase H

lowercase 1

uppercase 1

lowercase i with grave accent
uppercase I with grave accent
lowercase 1 with acute accent
uppercase I with acute accent
lowercase i with circumflex
uppercase I with circumflex
lowercase i with umlaut, (diaeresis)
uppercase I with umlaut, (diaeresis)
lowercase]

uppercase J

lowercase k

uppercase K

lowercase 1

uppercase L

lowercase m

uppercase M

lowercase n

uppercase N

lowercase n with tilde

uppercase N with tilde

lowercase o

uppercase O

lowercase o with grave accent
uppercase O with grave accent
lowercase o with acute accent
uppercase O with acute accent
lowercase o with circumflex
uppercase O with circumflex
lowercase o with tilde

uppercase O with tilde

lowercase o with umlaut, (diaeresis)
uppercase O with umlaut, (diaeresis)
lowercase oe ligature

uppercase OF ligature

lowercase p

uppercase P

lowercase g

uppercase Q

lowercase r

uppercase R

lowercase s

uppercase S

German lowercase sharp s
lowercase t

uppercase T

Multinational Collating Sequence

HEX Octal Decimal Char or Description

Code Code Code Abbrev.

75 165 117 u lowercase u

55 125 085 U uppercase U

F9 371 249 a lowercase u with grave accent
DY 331 217 U uppercase U with grave accent
FA 372 250 u lowercase u with acute accent
DA 332 218 U uppercase U with acute accent
FB 373 251 q lowercase u with circumflex
DB 333 219 U uppercase U with circumflex
FC 374 252 u lowercase u with umlaut, (diaeresis)
DC 334 220 U uppercase U with umlaut, (diaeresis)
76 166 118 v lowercase v

56 126 086 \Y% uppercase V

77 167 119 w lowercase w

57 127 087 w uppercase W

78 170 120 X lowercase x

58 130 088 X uppercase X

79 171 121 y lowercase y

59 131 089 Y uppercase Y

FD 375 253 ¥ lowercase y with umlaut, (diaeresis)
DD 335 221 Y uppercase Y with umlaut, (diaeresis)
TA 172 122 z lowercase z

5A 132 090 Z uppercase Z

E6 346 230 x lowercase ae diphthong

C6 306 198 Y o) uppercase AE with diphthong
F8 370 248 o lowercase o with slash

D8 330 216 %) uppercase O with slash

E5 345 229 a lowercase a with ring

Ch 305 197 A uppercase A with ring

5B 133 091 [opening bracket

5C 134 092 \ backslash

5D 135 093] closing bracket

5E 136 094) circumflex

5F 137 095 _ underline (underscore)

60 140 ~ 096) grave accent

7B 173 123 { opening brace

7C 174 124 | vertical line

7D 175 125 } closing brace

7E 176 126 ~ tilde

7F 177 127 DEL delete, rubout

84 204 132 IND index

85 205 133 NEL next line

86 206 134 SSA start of selected area

87 207 135 ESA end of started area

88 210 136 HTS horizontal tab set

89 211 137 HTJ horizontal tab set with justification
8A 212 138 VTS vertical tab set

8B 213 139 PLD partial line down

8C 214 140 PLU partial line up

8D 215 141 RI reverse index

8K 216 142 SS2 single shift 2

8F 217 143 SS3 single shift 3

90 220 144 DCS device control string

91 221 145 PU1 private use 1

92 222 146 PU2 private use 2

93 223 147 STS set transmit state

94 224 148 CCH cancel character

D-4 Multinational Collating Sequence

HEX
Code

95
96
97
9B
9C
9D
9E
9F
Al
A2
A3
A5
A7
A8
A9

AB
BO
B1
B2
B3
B5
B6
B7
B9
BA
BB
BC
BD
BF

Octal
Code

225
226
227
233
234
235
236
237
241
242
243
245
247
250
251
252
2563
260
261
262
263
265
266
267
271
272
273
274
275
2717

Decimal
Code

149
150
151
155
156
157
158
159
161
162
163
165
167
168
169
170
171
176
177
178
179
181
182
183
185
186
187
188
189
191

Char or
Abbrev.

MwW
SPA
EPA
CSI
ST
0SsC
PM
APC

Description

message waiting

start of protected area

end of protected area
control sequence introducer
string terminator

operating system command
privacy message
application

inverted exclamation mark
cent sign

pound sign

yen sign

section sign

general currency sign
copyright sign

feminine ordinal indicator
angle quotation mark left
degree sign

plus/minus sign
superscript 2

superscript 3

micro sign

paragraph sign, pilcrow
middle dot

superseript 1

masculine ordinal indicator
angle quotation mark right
fraction one quarter
fraction one half

inverted question mark

Multinational Collating Sequence

D-5

Appendix E
Compatibility with PDP-11 SORT/MERGE Version 2

With some minor changes, the PDP-11 SORT/MERGE Version 3.0 SORT
stand-alone utility package is upwardly compatible with SORT-11 Version
2.0. The incompatibilities detailed below were made necessary by the nature
of the new functionality and design of Version 3.

The installation procedure for PDP-11 SORT/MERGE Version 3.0 leaves
SORT-11 Version 2.0 intact on your system while installing the Version 3.0
product. While the Version 2.0 task image remains on your system, typing in
SRT or issuing the DCL command SORT will call Version 3.0 instead of
Version 2.0.

The callable subroutines shipped with PDP-11 SORT/MERGE Version 3.0
are not compatible with the SORT-11 Version 2.0 callable subroutines. The
Version 2.0 subroutines are left on your system during the PDP-11
SORT/MERGE Version 3.0 installation. Since the entry point names are
different in the two versions, there is no conflict.

In PDP-11 SORT/MERGE Version 3.0 the DCL /SPECIFICATION qualifier
or MCR/CCL /SF switch is required for specification files. In SORT-11 Ver-
sion 2.0, SORT accepted only a single input file. If a second input file was
listed, it was assumed to be a specification file. In version 3.0, SORT and
MERGE allow multiple input files. The /SPECIFICATION qualifier or /SF
switch is mandatory for specification files in order for SORT/MERGE to
identify them as such.

In the SORT-11 Version 2.0 the /FO switch is required for the input file. In
PDP-11 SORT/MERGE Version 3.0, this switch, or the /FORMAT qualifier
in DCL, is optional. If it is not specified, the information is assumed to be
supplied by RMS-11 when the files are opened. If record length information
cannot be obtained by SORT/MERGE, and the /FO switch or /FORMAT
qualifier is not present, SORT/MERGE terminates with a fatal error. Addi-
tionally, the Version 2.0 input record format designation is no longer meaning-
ful. The Version 3.0 command parser will accept them to ensure upward
compatibility, but gets the record format information from RMS-11 when the
files are opened. If specified, they must represent a valid Version 2.0 input
record format.

E-2

The SORT-11 Version 2.0 specification files will not work with PDP-11
SORT/MERGE Version 3.0. The translator utility supplied with Version 3.0
will convert Version 2.0 specification files to the new Version 3.0 format. The
translator utility is described in Appendix C.

When using a SORT-11 Version 2.0 specification file, the default condition for
key stripping is not to strip the keys from the output record. In PDP-11
SORT/MERGE Version 3.0, keys are not prefixed to the output record. How-
ever, the same results can be obtained by using /FIELD and /DATA state-
ments in the specification file. Appropriate changes to a Version 2.0 specifica-
tion file are made by the specification file translator so that the intended

" processing is done.

Through the use of the specification file, SORT-11 Version 2.0 allows the
comparison of an ascending key with a descending key. This is a Version 2.0
bug which has been fixed for Version 3.0.

In SORT-11 Version 2,0, you could use key data type “D’” for FORTRAN
data formats E, F, D, G and H. In PDP-11 SORT/MERGE Version 3.0, a new
key data type, “A” (ASCIL_FLOATING), has been introduced for these
FORTRAN formats. Key data type “D” is no longer appropriate for these
data types.

SORT-11 Version 2.0 does not handle multiword binary data correctly. The
“B” designation for data type was designed to handle PDP-11 COBOL
COMPUTATIONAL-6 type data, and normal multiword binary was sorted
improperly. In PDP-11 SORT/MERGE Version 3.0, two new data types have
been introduced to handle normal binary (integer) data. These are “S”
(SIGNED BINARY) and “U” (UNSIGNED BINARY). Data type “B” has
been implemented as it was in Version 2.0 for compatibility, but it can only be
used at the MCR/CCL level. No support for data type “B” exists at the DCL
level.

Compatibility with PDP-11 SORT/MERGE Version 2

Index

A

Address sort, 2-10
Application program
calling standard, 4-2
calling subroutines, 4-3
choosing between file and record
interface, 4~3
generating SORT/MERGE statistics
from, 5-6
initializing, 4-5
MERGE file interface
subroutines, 4-15
MERGE mixed-mode interface
subroutines, 4-16
MERGE record interface
subroutines, 4-16
MERGE subroutines, 4-15t
passing parameters in BASIC and
COBOL, 4-2
sample
BASIC-PLUS-2 (MERGE), B-2
BASIC-PLUS-2 (SORT and
MERGE), B-3
COBOL-81 (MERGE), B-6
COBOL-81 (SORT), B-8
FORTRAN (MERGE), B-11
FORTRAN (SORT), B-13
SORT file interface
subroutines, 4-4
SORT mixed-mode interface
subroutines, 4-5

Application program (Cont.}

SORT record interface
subroutines, 4-5

SORT subroutines, 4-4t

statistics, space required, 5-6

subroutine location, 4-2

supported languages, 4-1

task building, 4-21

using a specification file with, 3-3

using MERGE, 4-14

using specification file text with, 3-3

using your own routines, 4-3

Ascending order

specifying, 2-5

Batch processing, 1-7
BINARY (data type)

size rules for, 2-8

Block size, specifying for output file,

2-16

Bucket size, specifying, 5-9

c

Callable subroutines

see Application program or individual
subroutine

Chaining (RSTS/E only), 2-16
CHARACTER (data type)

size rules for, 2-8

Index-1

Collating sequence

default, 2-8

defining in a specification file, 3-11

defining your own, 3-11

example of, 3-14

modifying, 3-13

multinational, D-1

specifying, 2-8

using IGNORE clause in, 3-14
Command line buffer parameter, 4-7
Command line length parameter, 4-8
Comparison routine address parameter

MERGE, 4-18

SORT, 4-10
CONDITION clause

example of, 3-7

using in a specification file, 3-7

using with TEST, 3-8

D

DATA statement
in a specification file, 3-6
using to format output data, 3-6
Data types
BINARY, size rules for, 2-8
CHARACTER, size rules for, 2-8
DECIMAL, size rules for, 2-8
determining, 2-6
floating point, size rules for, 2-8
size rules for, 2-8
specifying in DCL, 2-7
supported, 2-6
DCL
data types, 2-6
default file types, 2-3
qualifiers
see Qualifiers
sequence checking, 2-17
specifying a collating sequence, 2-8
specifying file size, 2-13
specifying key field position in, 2-4
specifying key field size in, 2-4
specifying record size, 2-12
specifying work area division, 2-13
using a specification file with, 3-2
DCL command line
MERGE, 1-6
SORT, 1-2
DECIMAL (data type)
size rules for, 2-8
Descending order
specifying, 2-5

Index-2

DIGITS qualifier
using in a specification file, 3-5

E

EBCDIC collating sequence
specifying, 2-8
Equal keys
ordering of, 2-9
using NODUPLICATES option with,
2-9
using STABLE option with, 2-9
Equal to, in TEST clause, 3-8
Equal-key routine address parameter
MERGE, 4-19
SORT, 4-11
Error address parameter, 4-6
Error messages
See Appendix A

F

FIELD clause
in a specification file, 3-4
Field name
in specification file, 3-4
rules for defining, 3-4
Fields
identifying in a specification file, 3-4
identifying position of, 2-4
identifying size of, 2-4
File attributes
specifying, 2-12
File format
rules for identifying, 2-12
File interface
SORT subroutines, 4-4
using in an application program, 4-3
File names ‘
default for MCR/CCL, 2-3
File size
default allocation, 2-13
maximum, 2-13
specifying, 2-13
File support, 1-2
File type
default for DCL, 2-3
default for MCR/CCL, 2-3
Fill factor, specifying, 5-9
Floating point (data type)
size rules for, 2-8
FOLD, in a specification file, 3-12

G

Greater than, in TEST clause, 3-8

I/0 requirements
adapting work area for, 2-13
IGNORE clause, in a specification file,
3-14
INCLUDE statement
using in a specification file, 3-8
Index sort, 2-10
Indexed-sequential files
maximum LRL, 2-12
rules for, 2-13
specifying, 2-13
using /OVERLAY with, 2-15
writing records to, 2-15
Input file size parameter, 4-9
calculating default values for, 4-9
Input files
maximum number of, 1-2
multiple, 1-5
size allocation, 5-9
specitying, 1-5
Input routine address parameter, 4-18

K

KEY clause
in a specification file, 3-5
Key field
specifying position of, 2-4
KEY qualifier
example, 1-4
Keys
order of information in MCR/CCL, 2-7
specifying, 2-4
Keywords (specification file), 3-2t

L

Language support (application programs),
4-1

Less than, in TEST clause, 3-8
Logical unit

see LUN
Longest Record Length

see LRL
Longest record length parameter, 4-8
LRL

calculating with multiple input files,

2-12

LRL (Cont.)
maximum, by file organization type,
2-12
specifying, 2-12
LUN buffer length parameter, 4-9
LUN buffer parameter, 4-9
default values for, 4-9
LUN usage
MERGE, 4-25
SORT, 4-25

M

MCR/CCL
chaining to another executable image
(RSTS/E only), 2-16
command line, 2-1
data types, 2-7
default file names and type, 2-3
default values, 2-3
key information, 2-7
multiple key syntax rules, 2-6
sequence checking, 2-17
specifying a collating sequence, 2-8
specifying file size, 2-13
specifying key field position in, 2-4
specifying key field size in, 2-4
specifying keys
order of information, 2-7
specifying record format, 2-13
specifying record size, 2-13
specifying work area division, 2-13
switches, 2-2
see also Switches
using a specification file with, 3-2
using MERGE with, 2-1
using SORT with, 2-1
using specification file translator from,
C-1
MERGE
choosing a sort process, 2-17
DCL command line, 1-6
file interface, subroutines, 4-15
MCR/CCL command line, 2-1
mixed-mode interface, subroutines,
4-16
record interface, subroutines, 4-16
specifying work files with, 2-17
using with an application program,
4-14
Merge order parameter, 4-18
Mixed-mode interface
SORT subroutines, 4-5
using in an application program, 4-3

Index-3

MODIFICATION clause, in a
specification file, 3-13
MRGCLB subroutine, 4-19
MRGCMP subroutine, 4-18
MRGINB subroutine, 4-16
MRGINC subroutine, 4-16
MRGINI
description, 4-16
parameters, 4-17
MRGINP subroutine, 4-18
MRGWRN subroutine, 4-18
Multinational character set, D-1
MULTINATIONAL collating sequence
ordering procedure, 2-8
specifying, 2-8
Multiple keys
identifying a primary key, 2-5
identifying a secondary key, 2-5
MCR/CCL syntax rules, 2-6
specifying, 2-5

N

Not equal to, in TEST clause, 3-8
o)

ODL files
list of, 4-22¢t
memory requirements, 4-22t
referencing, 4-21
selecting, 4-21
using with SORT/MERGE resident
library, 4-23
OMIT statement
using in a specification file, 3-8
Order
specifying ascending or descending, 2-5
Output file
format, 2-14
organization, 2-14
size allocation, 5-9
with different record format than first
input file, 2-15
Overlay descriptor language files
see ODL files

P

Pad character, specifying, 3-16
PAD statement
in a specification file, 3-16
Parameters (subroutines)
command line buffer, 4-7

Index-4

Parameters (subroutines) (Cont.)
command line length, 4-8
comparison routine address (MERGE),
4-18

comparison routine address (SORT),
4-10

equal-key routine addess (MERGE),
4-19

equal-key routine address (SORT),
4-11

error address, 4-6

input file size, 4-9

input routine address, 4-18

longest record length, 4-8

LUN buffer, 4-9

LUN buffer length, 4-9

merge order, 4-18

record buffer, 4-12

record length, 4-12

record location, 4-13

specification file buffer, 4-8

specification file buffer length, 4-9

warning routine address (MERGE),
4-18

warning routine address (SORT), 4-10

with MERGE, 4-14

work area address (MERGE), 4-17

work area address (SORT), 4-6

work area length, 4-7

Position
specifying in DCL, 2-4
specifying in MCR/CCL, 2-4

POSITION subqualifier, 2-4
example, 1-4
identifying, 1-4

Primary key
definition, 1-4
identifying, 2-5
identifying in a specification file, 3-6

Programming
see Application program

Q

Qualifiers
abbreviating, 2-6
/BUCKET_SIZE, 5-9
/CHECK_SEQUENCE, 2-17
/COLLATING_SEQUENCE, 2-8
/DUPLICATES, 2-9
/FORMAT, 2-12
/INDEXED_SEQUENTIAL, 2-13,

2-14

/KEY, 2-4

Qualifiers (Cont.)
list of, 2-2t
/LOAD_FILL, 5-9
/NOCHECK_SEQUENCE, 2-17
/NODUPLICATES, 2-9
/NOSHAREABLE, 2-14
/NOSTABLE, 2-9
/JOVERLAY, 2-15
/PROCESS, 2-10
purpose, 1-3
/RELATIVE, 2-14
/SEQUENTIAL, 2-14
/SHAREABLE, 2-14
specifying, 1-3
/STABLE, 2-9
/STATISTICS, 5-4
summary (for MERGE), 2-22t, 2-24t
summary (for SORT), 2-18t
/TREE_SPACE, 2-13
/WORK_FILES

using to improve performance, 5-3

R

Radix operators, in a specification file,
3-12
Record buffer parameter, 4-12
Record interface
SORT subroutines, 4-5
using in an application program, 4-3
Record length parameter, 4-12
Record location parameter, 4-13
Record size
specifying, 2-12
Record sort, 2-10
Records
using CONDITION to selectively
include, 3-8
Relative files
maximum LRL, 2-12

S

Secondary key

definition, 1-4

example, 1-4

identifying, 2-5

identifying in a specification file, 3-6
Sequence checking, 2-17
Sequential files

maximum LRL, 2-12
Shareable files, specifying, 2-14
Size

specifying in DCL, 2-4

Size (Cont.)
specifying in MCR/CCL, 2-4
SIZE subqualifier, 2-4
example, 1-4
SORT
cleanup phase, 5-4
DCL command line, 1-2
file interface, subroutines, 4-4
initialization phase, 5-2
MCR/CCL command line, 2-1
merge phase, 5-4
mixed-mode interface, subroutines, 4-5
record interface, subroutines, 4-5
replacement selection algorithm, 5-2
SORT phase, 5-2
Sort process
default, 2-10
description, 2-10t, 2-10 :
performance considerations, 5-10
selection criteria, 2-11
specifying, 2-10
use of temporary storage space, 2-11
with MERGE, 2-17
Specification file
abbreviating keywords in, 3-5
CHECK_SEQUENCE statement, 3-4
default file type, 3-2
defining a collating sequence in, 3-11
defining your own collating sequence in,
3-11
evaluating field position with, 3-4
evaluating field size (length) with, 3-4
format of, 3-3
formatting output data in, 3-6
identifying data type with, 3-4
identifying field names in, 3-4
keywords, 3-2t
modifying a collating sequence in, 3-13
NOCHECK_SEQUENCE statement,
3-4
NOSTABLE statement, 3-4
order of instructions, 3-2
placing in an application program
buffer, 4-8
PROCESS statement, 3-3
reassigning work files from, 3-15
sample, 3-18
separating subqualifiers in, 3-5
sorting records with varying formats,
3-9 '
specifying a pad character from, 3-16
specifying descending order in, 3-6
specifying key fields, 3-5
specifying record fields in, 3-4

Index-5

Specification file (Cont.)

STABLE statement, 3-4

summary of statements and qualifiers,
3-16t

upgrading from Version 2, C-1

using /KEY command line qualifier
with, 3-10

using a comment character in, 3-3

using command line qualifiers with,
3-2

using conditional statements in, 3-7

using FOLD with, 3-12

using from an application program, 3-3

using IGNORE clause in, 3-14

using radix operators in, 3-12

using the DIGITS subqualifier, 3-5

using TIE_BREAK with, 3-12

using to combine upper and lower case
characters, 3-12

using with DCL interface, 3-2

using with MCR/CCL, 3-2

WORK__FILES statement, 3-15

Specification file buffer length parameter,

4-9
Specification file buffer parameter, 4-8
Specification file translator, C-1 to C-4
error messages, C-1
using, C-1
SRTCLB subroutine, 4-11
SRTCMP subroutine, 4-11
SRTEND
description, 4-14
parameter, 4-14
SRTINI
description, 4-5
parameters, 4-6t
SRTRLS
description, 4-12
parameters, 4-12t
SRTRTN
description, 4-12
parameters, 4-13t
SRTSRT
description, 4-13
parameters, 4-14
SRTWRN subroutine, 4-10
Statistics
collating sequence, 5-4
elapsed time, 5-4
Fibonacci level, 5-6
generating from an application
program, 5-6
identification, 5-4
initial I/O area size, 5-6

Index-6

Statistics (Cont.)
input files, 5-4
key size, 5-5
longest input record, 5-5
merge order, 5-6
node size, 5-5
number of initial runs, 5-6
number of keys, 5-5
number of nodes, 5-6
number of records input, 5-5
number of records output, 5-5
process, 5-4
records omitted, 5-5
total input allocation, 5-5
total output allocation, 5-5
total work allocation, 5-5
using the DCL qualifier, 5-4
work files, 5-4
Subqualifiers
abbreviating, 2-6
specifying, 1-3
using more than one, 1-3
Subroutines
calling, 4-3
location, 4-2
MERGE file interface, 4-15
MERGE mixed-mode interface, 4-16
MERGE record interface, 4-16
MERGE, summary of, 4-15t
MRGCLB, 4-19
MRGCMP, 4-18
MRGINB, 4-16
MRGINC, 4-16
MRGINI, 4-16
MRGINP, 4-18
MRGWRN, 4-18
SORT file interface, 4-4
summary, 4-19t
SORT mixed-mode interface, 4-5
summary, 4-20t to 4-21t
SORT record interface, 4-5
summary, 4-19t
SORT, summary of, 4-4t
SRTCLB, 4-11
SRTCMP, 4-10
SRTENB, 4-14
SRTENC, 4-14
SRTEND, 4-14
SRTINB, 4-5
SRTINC, 4-5
‘SRTINI, 4-5
SRTRLB, 4-12
SRTRLC, 4-12
SRTRLS, 4-12

Subroutines (Cont.)

SRTRTB, 4-12

SRTRTC, 4-12

SRTRTN, 4-12

SRTSRB, 4-13

SRTSRC, 4-13

SRTSRT, 4-13

SRTWRN, 4-10

using your own, 4-3 -
comparison routine (MERGE), 4-18
comparison routine (SORT), 4-10
equal-key routine (MERGE), 4-19
equal-key routine (SORT), 4-11
task building, 4-23
warning routine (MERGE), 4-18
warning routine (SORT), 4-10

Switches

/BK, 2-13

/BU, 5-9

/~-CH, 2-17

/CH, 2-17

/CN, 2-16

/CS, 2-8

/F1
using to improve performance, 5-3

/FO, 2-13

/IN, 2-13, 2-14

/KE, 2-4

list of, 2-2t

/LO, 5-9

/ND, 2-9

negative, 2-2

/OV, 2-15

/PR, 2-10

/PT, 2-13

/RE, 2-14

/SE, 2-14

Switches (Cont.)
/SF, 4-8
/SH, 2-14
/SS, 5-4
/-ST, 2-9
/ST, 2-9
summary (for SORT), 2-20t
using in MCR/CCL, 2-2

T

Tag sort, 2-10
Task building, 4-21 to 4-25
with your own subroutines, 4-23
TEST clause
defining conditions with, 3-8
example of, 3-8
using with CONDITION, 3-8
TIE__BREAK, in a specification file,
3-12

w

Warning routine address parameter
MERGE, 4-18
SORT, 4-10
Work area
adapting for I/0 requirements, 2-13
division of, 2-13
Work area address parameter
calculating size for, 4-7
MERGE, 4-17
SORT, 4-6
Work area length parameter, 4-7
Work files
optimum use of, 5-3
reassigning in a specification file, 3-15

with MERGE, 2-17

Index-7

PDP-11 SORT/MERGE
User’s Guide
AA-C167A-TC

READER’'S COMMENTS
NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the

company’s discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

[Assembly language programmer
[Higher-level language programmer
{7 Occasional programmer (experienced)
{] User with little programming experience
{7] Student programmer
[1J Other (please specify)
Name Date
Organization
Street
City » State Zip Code

or Country

— — Do Not Tear - Fold Here and Tape

~— == Do Not Tear - Fold Here

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD

NASHUA, NEW HAMPSHIRE 03062-2698

No Postage
Necessary
if Mailed in the
United States

Cut Along Dotted Line

