ORACLE

DATA BASE ADMINISTRATOR'S GUIDE

Oracle Programmer's Guide - Version 2.3

Copyright (c) April 1981
By Relational Software Incorporated
All rights reserved. Printed in U.S.A.

ORACLE

DATABASE ADMINISTRATOR'S GUIDE

TABLE OF CONTENTS

I. INTRODUCTION 7-1
II. DATABASE DIRECTORY FUNCTIONS (DBF)
Introduction 7-2
Operation 7-3
DBF Functions 7-5
ITI. DATABASE RECOVERY FUNCTIONS (JNL)
Introduction 7-13
Journal Procedures 7-16
JNL Functions 7-18
JNL Messages 7-24
IV. DATABASE LOADER FACILITY (ODL)
Introduction 7-26
Raw Data Requirements 7-26
ODL Operation 7-27
ODL Control Language 7-28
ODL Messages 7-33
Sample ODL Input 7-36
V. UNLOAD/RELOAD FACILITIES '
Introduction 7-37
Unload Tables (EXPORT) 7-38

Reload Tables (IMPORT) 7-40

I. INTRODUCTION

Within an ORACLE environment there are a number of functions
which should be under control of a centralized database
administration. These functions, summarized below, are
described in detail in this manual and in the ORACLE

Installation Guide.

o ORACLE Installation

The ORACLE Installation facilities are described in the

ORACLE Installation Guide.

o ORACLE Initialization
The ORACLE Initialization procedures are described
the ORACLE Installation Guide.

o Database Creation & Directory Functions

Each ORACLE system contains a database directory which
describes existing databases and the operating system
files utilized for them. The DBF utility provides
functions for creating databases, and for adding to,
removing from, and listing information in the database

directory.

o Database Backup & Recovery Procedures

Standard procedures should be established for

periodically saving the files comprising databases,

through use of operating system utilities. The ORACLE
Journal provides a means to recover databases following
hardware failures. The JNL utility provides functions
for controlling the Journal and for applying the

Journal in the recovery process.

o Database Loader

The ORACLE Loader Utility provides facilities for
loading raw data from one or more files into a database

table.

o Table Unload & Reload

The Unload Reload Utility provides functions for
unloading tables from a database and subsequently

reloading those tables 1into the same database
another database.

D BF

DATABASE FILE UTILITY

I. INTRODUCTION

DBF is the ORACLE utility supporting the functions of
establishing a database and mapping that database onto
operating system files. ORACLE maintains a directory of
databases under 1its control. The DBF utility is used to
establish, modify, and delete entries in this directory.
When performing initialization functions on an existing
database, any data in the existing database will be deleted.
The directory contains information on the databases, their
extents, and the physical files used. DBF provides functions

to:
o Establish a database as an existing or new file;

o Add an existing or new file as an extent to an
existing database;

o Remove an existing database from the database
directory;

o Enter the files of an existing database into the
database directory;

o Reallocate an existing database extent to another
file;

o Identify the system database;

o List database directory information.

When ORACLE is installed, the ORACLE system database is the
first database to be created. THE DBF utility is used to
create the system database. Subsequently, whenever the
operating system is initialized, the DBF utility must be used
to identify the system database to ORACLE, before normal

ORACLE processing can proceed.

II. OPERATION

When an ORACLE database 1is opened, ORACLE obtains the
information about that database from the database directory.
From that point on the information is maintained until the
last active user of that database issues a CLOSE. Thus, if
DBF is used to modify information about a database when that
database is opened, ORACLE will not use the new information
until that database is subsequently closed by all active
users of that database, and then reopened.

When a database 1is created or initialized by DBF, that
database is established as a secure or nonsecure database,
through the user-name parameter. Once a database has been
created as a secure database, access to it is restricted to
the user who created it and to any users specified by him
(see DEFINE USER statement in SQL). For a secure database,
all DBF functions (except SYSTEM DATABASE, LIST, and ENTER)
require specification of the user-name/password, and may only
be performed by the creator of that database.

DBF is invoked with the following command:

DBF dbf-command [parameter-list]

where
dbf-command is a code identifying the

function to be performed;

parameter-list 1is an optional list of one
or more parameters used for
the function.

Parameters must adhere to the following conventions:

Database-names consist of any printable characters
and can be up to 16 characters long.

Database-names must be unique.

File-names must follow the conventions of the host
operating system for naming files.

The database-names "ORACLE"™ and "ORAWRK" are reserved
for the system database and the ORACLE Work database.

The user-name consists of any printable characters
and can be up to 20 characters long.

The password consists of any printable characters and
can be up to 20 characters long.

Database-names, user-names, and passwords are
automatically converted to upper-case characters.

For the CREATE and EXTEND functions, the size
parameter refers to the size of the operating system
file being created. It may be expressed as a number
of 512-byte blocks, or as a number followed by the
letter "K", representing the number of 1024-block

units, as follows:

500 means 500 blocks (256,000 bytes)
3K means 3x1024 = 3072 blocks (1,572,864 bytes)

The minimum size of a database is 1024 blocks. The
system database must be a single extent (single file)
and its size must be at least 4096 blocks.

III. DBF FUNCTIONS

Create Database

°

This function creates a file under the host file systenm,
initializes the created file as a database, and enters the
new database into the database directory.

C
DBF CREATE db-name file-name size [user-name/paswrd]
where:

db-name is the name of the newly created
database;

file-name is the name of the file to be
created and initialized as a
database;

size is the size of the file to be
created, expressed as a number of
512-byte blocks, or as a number
followed by the letter "K"
representing a multiple of
1024-block units;

user-name/paswrd is the optional parameter used to

identify the creator of the
database, which must be provided if
the database is to be secure
(protected with the GRANT/REVOKE
privileges). If only a user-name is
specified, DBF will prompt the user
for a password, which when entered
will not be displayed on the screen.

Extend Database

This function creates a file under the host file system,
initializes the created file as an extent to the specified
database, and enters the new extent 1into the database

directory.

E
DBF EXTEND db-name file-name size [user-name/paswrd]
where:

db-name is the name of an existing database
which is to be extended;

file-name is the name of the file to be
created and initialized as an
extent;

size is the size of the file to be
created, expressed as a number of
512-byte blocks, or as a number
followed by the letter "R"
representing a multiple of
1024-block units;

user-name/paswrd is the optional parameter
identifying the user, required for
any secure database. If only a

user-name 1is specified, DBF will
prompt the wuser for a password,
which when entered will not be
displayed on the screen.

Initialize Database

This function initializes an existing file as a database and
enters the new database into the database directory.

I
DBF INIT db-name file-name [user-name/paswrd]
where:

db-name is the name of the newly initialized
database;

file-name is the name of an existing file to
be initialized as a database.

user-name/paswrd is the optional parameter used to

identify the creator of the
database, which must be provided if
the database is to be secure. If
only a user-name is specified, DBF
will prompt the user for a password,
which when entered will not be
displayed on the screen.

Initialize Database Extent

This function initializes an existing file as an extent to
the specified database and enters the new extent into the

database directory.

IE
DBF INITEXTENT db-name file-name [user-name/paswrd]
where:

db-name is the name of an existing database
which is to be extended;

file-name is the name of an existing file to
be initialized as an extent.

user-name/paswrd is the optional parameter
identifying the user, required for
any secure database. If only a

user-name is specified, DBF will
prompt the wuser for a password,
which when entered will not Dbe
displayed on the screen.

Remove Database

This function removes a database from the database directory.

Note that the files belonging to the specified database are
not deleted or in any way removed from the host file system.

Removing a database from a directory would be required when

performing the following functions:

o Moving a database from one ORACLE system to another;

o Renaming a database;

o Taking a database off-line.

R

DBF REMOVE db-name [user-name/paswrd]
where:
db-name is the name of the database to be
removed.
user-name/paswrd is the optional parameter
identifying the user, required for
any secure database. If only a

user-name is specified, DBF will
prompt the user for a password,
which when entered will not be
displayed on the screen.

Enter Database

This function enters a set of existing database extent files
(which have previously been initialized) as a single database
into the database directory. The Enter Database function is
also used to re-enter a previously removed (see REMOVE
function) database, into the database directory.

DBF EBTER db-name fnl ... fnn
where:
db-name is the name of the database to be
entered into the database directory;
fnl .. £nn is the 1list of file-names of the

files which make-up the database.
These files must be entered in
extent number order. If the
file-name list is not entered, DBF
will prompt for each file-name as
follows:

enter extent file n:

Responding to a prompt with a CR or
"Z indicates that all files to be
entered have been specified.

10

Move Extent

This function logically moves an extent of a database from
one file to another and updates the database directory to
reflect the change. Note that no files are copied or
deleted. The file being moved to, must be an exact duplicate
of the specified extent file. When extents are added to an
existing database, the extents are assigned sequential
numbers by ORACLE. The MOVE function requires identification
of the extent to be moved, by extent number.

ME
DBF MOVE db-name file-name ext-num [user-name/paswrd]

where:

db-name is the name of an existing database
to be operated on;

file-name is the name of an existing file
which is an exact duplicate of the
specified extent file;

ext-num is number which specifies the extent
to be moved.

user-name/paswrd is the optional parameter
identifying the user, required for
any secure database. If only a

user-name is specified, DBF will
prompt the wuser for a password,
which when entered will not be
displayed on the screen.

Reinitialize Database

This function re-initializes an existing database. All data
in the database is lost and the database is like a newly

initialized database.

CAUTION! This function deletes the data in an existing
database and should be used with extreme care.

RI

DBF REINIT db-name [user-name/paswrd]
where:
db-name is the name of the database to be
reinitialized.
user-name/paswrd is the optional parameter used to

identify the creator of the
database, which must be provided if
the database is to be secure
(protected with the GRANT/REVOKE
privileges). 1If only a user-name is
specified, DBF will prompt the user
for a password, which when entered
will not be displayed on the screen.

System Database

This function identifies the system database to ORACLE. The
specified file must already exist. When the system database
is created or initialized, this function is automatically
performed. This function is required when bringing up ORACLE
(such as in a newly initialized operating system).

SD
DBF SYSTEMDB file-name
where:
file-name is the name of the file to be known

to ORACLE as the system database.

List Database Information

This function displays information from the database
directory. The display contains information about a database
and its extents. If a database name 1is not specified,
information will be displayed for all databases in the

directory.

For each database the following information is provided:

Database Name;
User Name (Displayed only for secure databases);

Security/Journal Flags
('sS' for Secure database, 'J' for Journaling);

(3) For Each Extent:
(a) Extent Number;
(b) Number of Blocks;
(c) File Name.
(4) If LU is specified, the number of unused blocks
in each database is also displayed.

1
2
2

— e

L
DBF LIST [db-name]
LU
where:
db-name is the optional parameter specifying
the name of the database to be
listed.
SAMPLE DISPLAY
DATABASE NAME FLAGS EXT BLOCKS FILE
USER NAME #
demo sJ 1 1024 DRO:{1,1]DEMO.DBS;1
1024
kcm S 1 4096 DRO:[1,1]KCM.DBS;1
qa . mmmee—
4096
oracle 1 4096 DRO:[1,1]O0RACLE.DBS;1
ora5s —————-
4096

DATABASE RECOVERY FUNCTIONS

(JNL UTILITY)

I. INTRODUCTION

An ORACLE system includes a Journal Task which controls all
writing to the databases. A database may optionally be
journaled, 1in which <case the Journal Task will write
afterimages of the modified blocks, to a Journal file for use
in forward recovery. The Journal Task uses a single Journal
file for the one or more databases being Jjournaled. A
Journal Utility provides functions for:

o Initiating and stopping the Journal during an ORACLE
session;

o Initiating and stopping the Journal for a database;

o Applying the Journal to one or more databases;

o Querying the status of the Journal activity.

The ORACLE Task also maintains a special single-block Data
Protection file on disk. The relationship is as follows:

o ——— +

| (INL) |ommmmmmmme e .
Fom——— + | Journal | |
| [<===>] Utility |<-----com- . I
l | e + I v
! | - ! $mmm e +
| | | o + |Activity|
l | tomm + | Journal | | Log |
| ORACLE| | Protection Blk]| | File | | File |
| Kernal | e + | I fom e +
I l " et + I
I | | - v
I | tmmm—————— + I to——m +
| |<==->| Journal |---------c-e-- ' |Any Op Sys |
et + | Task I |READ Utility]

14

Application of the Journal is used to restore the status of a
database in the following situations:

(o]

Disk Failure

A disk hardware problem can result in the loss of one
or more database extents (files). This can affect
one or more databases, requiring those databases to
be restored. Note that the LIST function in the DBF
utility can be used to determine the extents which
comprise each database.

System Failure

A system failure can be the result of an Operating
System crash, a power failure, or an ORACLE problem.
When ORACLE terminates as a result of an ORACLE
problem, an ORACLE cleanup task assures that the
database 1is 1left in a wvalid state. During an
Operating System crash or power failure, the
integrity of the database will be compromised only in
the event that the incident occurs during the actual
writing of blocks to that database. At system start
up time (such as following a crash or power failure),
the ORACLE initialization routine should include the
DISPLAY STATUS function of the JNL utility to
indicate which databases, if any, were affected.
Note that since the ORACLE initialization procedure
initializes the Data Protection Block, it is
imperative that the DISPLAY STATUS function be
performed ©prior to initialization, 1in order to
ascertain the status of the databases.

The application of the Journal can only be used to restore
database integrity. The determination as to whether or not
specific SQL Data Manipulation (DML) statements (such as a
global updates) were successfully executed, requires SQL
queries to determine if the update activity was completed.

Note that for the special case of Data Definition (DDL)
statements (CREATE TABLE, EXPAND TABLE, DROP TABLE, DEFINE
VIEW, and DROP VIEW), integrity is automatically guaranteed.
Thus if a DDL statement was in process, but not yet completed
at the time of the failure, ORACLE will automatically back
out any completed portion of the DDL statement the first time

that database is reopened.

The files involved in the Journal functions are named as
follows:

| Protection Blk | Activity | Journal

| Block File | Log File | File
——————————— o e
VMS | SYSSORACLE : PARAM.JNL | SYSSORACLE:LOG.JNL |user-name
——————————— i e ettt Sttt T e
RSX-11M,IAS|LB:[1,1]PARM.JNL |LB:[1,1]LOG.JNL Juser-name
——————————— e e ettt Sttt T e

UNIX |/oracle/param.jnl | /oracle/log.jnl |[user-name

———————— - —————————————— . — ———————————— — i —————————————

II. JOURNAL PROCEDURES

Proper use of the Recovery Functions in an ORACLE system
requires the establishment of certain operational procedures.
The most important of these involve the periodic saving of
the database (or extents of the database). This is
accomplished with any of a number of facilities available in
a given operating system. Some of the available facilities
and their characteristics are summarized in Table 1. These
back-up procedures should be performed together with the
other operational procedures instituted for a given computer

configuration.

Another important procedure involves the saving and naming
conventions for the files of the Journal. The Journal
consists of a series of disc files. When the Journal is
initialized (at ORACLE system start up), the name (and size)
is provided for the Journal File. When this file is full,
ORACLE will start another file and automatically name the
next file by incrementing a number in the name (indicated by
a special character). Thus during an ORACLE session, there
will probably be multiple files (depending on the file size
and the update activity), all having a common name with an
increment. If the periodic SAVE spans multiple ORACLE
sessions, a naming convention should be used to be able to
easily identify the many files making up the Journal since
the last periodic SAVE. It might also be appropiate to
archive disc Journal files to tape.

The Journal Utility maintains an Activity Log which is useful
in monitoring the historical series of Journal activity.
This log contains date and time entries for the following:

Journal Start and Journal File name
Journal Start for particular database

Journal Stopped
Journal Stopped for particular database

o000

This Activity Log file can be read with any convenient system
utility for reading files. The following is an sample of
information on the log.

Tue Mar 24 13:00:44 1981 Journal started on database pers
Tue Mar 24 13:00:48 1981 Journal started on file PER?.JNL

Tue Mar 24 18:06:50 1981 Journal stopped
Tue Mar 24 18:06:56 1981 Journal stopped on database pers

7-17
OPERATING | UTIL | DISK | FILE | DISK TO | DISK TO |
SYSTEM | PGM | LEVEL | LEVEL | DISK | TAPE | SPEED
—————————— e S e e e itttk s bt
—————————— R i e e e Rt
VMS | BCK | X | X | | X | HIGH
| copy | X | X | X | X | LOW
| DSC [X [| X | X |MEDIUM
| FLX | | X | | X | LOW
—————————— e it e e s stttk
RSX-11M,M+| BRU | X | X | X ! X |HIGH
| PIP | | X l X I | LOW
—————————— it e St Rt e
RSX-11M,M+| DSC | X | | X | X |[MEDIUM
and IAS | FLX | | X | [X | LOW
--------- e kata T T it LT b b Dbt st e
IAS | copy | | X | X | X | LOW
| BCK | I X I X | X |HIGH
————————— i L e e e et bt
UNIX Ver6 |DUMP/ | | I | |
and | RESTORE| | X | | X | MEDIUM
UNIX PWB | CP | X | X | X ! X | LOW
| DD. I X | X I X I X | MEDIUM
| TP | X | X | | X | LOW
————————— S T e st et LTt e Tt
UNIX PWB | VC | X | | X | X |HIGH
only | CPIO | | X I X I X | LOW
————————— e et i et A
TABLE 1

OPERATING SYSTEM BACK-UP UTILITIES

III. JNL FUNCTIONS

JNL is invoked with the following type of command:

JNL jnl-command [parameter-list]

where

is a term specifying the function
to be performed. The jnl-command
may be abbreviated to any unique
subset of the statement verb (ie,
STAR for START or STAT for STATUS).

jnl-command

parameter-list 1is an optional list of one or more
parameters used for the function.

Parameters must adhere to the following conventions:

File names must follow the conventions of the host

l.
operating system for naming files.

2. For the START function, the size parameter refers to
the size of the operating system file being created.
It may be expressed as a size of 512-byte blocks, or
as a number followed by the letter "K", representing
the number of 1024-block units, as follows:

500 means 500 blocks (256,000 bytes)
3K means 3x1024 blocks = 3072 blocks

(1,572,864 bytes)

Start Journal

This function starts

the ORACLE Journal. The Start Journal

function would normally be performed as part of the ORACLE

start up procedure.
JNL START
where:

filename

size

The following example
FEB0O1001. Each file
blocks in size.

filename size

is the name of the operating system
file to be used as the Journal. The
name must contain a "?" in some
character position. This special
character will be replaced by the
3-digit number "001". successive files
of the Journal during this ORACLE
session will receive names with
incremented numbers.

is the threshhold size |used in
determining when to terminate a
physical file in the Journal and start
another one. The actual size of each
file will be slightly larger than this
value. The size 1is expressed as a
number of 512-byte blocks, or as a
number followed by the letter "K"
representing a multiple of 1024-block
units.,

will start a Journal on a file called
of the Journal will be about 3,072

JNL START FEBO1? 3K

Stop Journal

This function stops the ORACLE Journal. It would normally be
performed as part of ending an ORACLE session.

JNL STOP

Start Database Journal

This function starts Journal activity for a database. Once
Journal activity for a database has been initiated in an
ORACLE session, Journal activity for that database will
continue in future ORACLE sessions unless specifically turned

off with the DBSTOP function.
JNL DBSTART dbname

where:

dbname is the name of the ORACLE database.

Stop Database Journal

This function stops Journal activity for a database. This
function would only be used after it was determined that
there was no need to ever have to recover a particular

database.
JNL DBSTOP dbname

where:

dbname is the name of the ORACLE database.

Apply Journal Block Images

This is the function which applies the afterimages from the
Journal to a saved copy of the databases in an ORACLE
environment. When it 1is required to recover one or more
databases in an ORACLE environment, those databases will be
established by copying the saved versions to a disk and then
performing the JNL APPLY function. Note that this function
will apply the Journal images to all databases for which the
Journal was activated, and that during the APPLY function
those databases will be 1locked. If it is not necessary to
involve all of those databases, the databases not being
recovered must temporarily removed (DBF REMOVE function) from
the database directory. The temporarily removed database
could still be active by temporarily entering it (DBF ENTER
function) with a different name.

The JNL APPLY function will automatically process the
multiple files of the Journal for an ORACLE session in
sequence. However if a Journal spans multiple ORACLE
sessions, the JNL APPLY function must be executed for each
session and in the proper sequence (note importance for
effective file naming conventions). 1If, while processing the
multiple Journal files of an ORACLE session, a file is
required which is not available, a message will be displayed
indicating the name of the file and processing will
terminate. The APPLY function may be continued when the
missing file is made available by invoking the JNL CONTINUE

function.

JNL APPLY filename
where:

filename is the name of the Journal file for an
ORACLE session. The name must contain
a "?" to indicate the position of the
3-digit number, incremented across the
multiple files constituting the
Journal for that session. On PDP-11
cpu's, the file may exist on disk or
tape files. On VAX-1l1 cpu's, it must
be a disk file.

Continue Applying Journal Images

The CONTINUE function is used when an APPLY function stops
because a file 1is not available. This function permits
continuation of the APPLY once the missing file is made
available.

JNL CONTINUE

Display Journal Status
JNL STATUS

This function causes a display of the status of the Journal
Activity within the ORACLE environment. The Display function
would always be used following an abnormal termination in
order to determine the status of any database update
activity. The Display function is also used to determine the
size (in blocks) of the current Journal file and the total
size of all Journal files of the current ORACLE session. The
output format of the Display function is as follows:

gy g gt +
|
| DATABASE DDL BAD JNL
' _________________________
ORACLE NO NO NO

358 blocks have been written to the current file.

I
|
!
|
|
I
PERSONNEL NO YES YES I
|
|
|
1969 blocks have been written to the Journal. |

|

|

|

|

|

|

l

| DR1:[1,70]004.JNL is the current Journal file.
|

|

|

I

g gy U B S S +
where:

DATABASE is the name of the database. All open
databases will be included 1in the
report

DDL indicates that a DDL statement was in

process during the failure, and that
any portion of that DDL statement
which was completed, will
automatically be backed out the first
time that database is reopened. Since
DDL statements are single-threaded, if
a DDL statement was interrupted by the
failure, it is impossible for other
activity to have also been
interrupted.

BAD indicates that the failure interrupted
a database write and that the Journal
must be applied to restore integrity
to that database.

JNL indicates that the Journal is active
for that database. If integrity |is
lost in a database for which the

Journal is not active, that database
cannot continue to be used. A back-up
copy must be restored before it can
successfully be returned online.

A "YES" in the DDL column is only to indicate that the DDL
statement in process at the time of the failure will
automatically be backed out. Since the ORACLE system
database is not journaled, a failure on it requires the use
of the DBF utility to re-create it and enter the user

databases.

There are 4 types of messages produced by the JINL utility:

1.
2.
3.
4.

IV JNL. Messages

Successful Completion
Task Failure Reason
General Error
Function-Specific Error

The messages are generally self-explanatory.

Manual).

Successful Completion Messages:

Journal processing complete

Journal started on database <database-name>
Journal stopped on database <database-name>

Journal started
Status report complete
Journal stopped

Task Failure Reason Messages:

General

Journal task canceled because
of bad ORACLE buffer cache
of missing ORACLE buffers
of missing KDA
of a database write failure
of a journal write failure
of a journal read failure

Error Messages:

Not enough arguments

Ambiguous journal command

Invalid journal command

Cannot log on to ORACLE (ORACLE-error)

Cannot open the system database (ORACLE-error)

Journal utility in use
Cannot create journal log file

The <item>
the message examples are replaced by an appropiate data value
when the message is displayed. Those messages notated with
the term " (ORACLE-error)", will be followed
appropriate ORACLE error message (see Messages

~J
I

25

Function-Specific Error Messages:

APPLY Function:
Read failure on journal file <file-name>

Sequence number failure on Jjournal file
<file-name>
Incomplete ddl operation found on database

<database-name>
Invalid journal block on journal file
<file-name>

Journal file <file-name> not available
Type 'jnl continue' when file is available
Cannot create apply context file

Database <database-name> does not exist
Cannot open database <database-name>
Sequence number check

Question mark missing from file name
Invalid file name

DBSTART Function:
Invalid database name

DBSTOP Function:
Invalid database name

CONTINUE Function:
Cannot open apply context file
Cannot read apply context file

START Function:
Invalid size parameter
Question mark missing from file name
Invalid file name
Journal is already active

STATUS Function:
Cannot open parameter file <file-name>
Cannot read parameter file <file-name>

STOP Function:
Journaled databases are active
Journal is not active

26

DATABASE LOADER UTILITY

ODL

1.0 INTRODUCTION

ODL is the ORACLE utility for loading raw data from operating
system files into an ORACLE database. ODL may be used to
initially load a database table or to add records to an
existing table. The ODL program functionally will:

1. read the user's input data;

2. perform the mapping from the raw data to a database
table;

3. load the data records into a database table;

These functions are accomplished by using a description
language as input to the ODL program. The general processing
of the ODL program is as follows:

1. read the description language;
2. create the necessary SQL commands;
3. load the data using SQL INSERT commands.

The database table being loaded must have been created with
the SQL "CREATE TABLE" statement prior to use of the ODL
utility for that table.

2.0 RAW DATA REQUIREMENTS

ODL requires the raw data to consist of one or more files of
fixed-length records of a single format., The fields must
also be fixed-length and those fields being loaded (not all
fields need be loaded) must be of one of the following data

types:

o Character String
o Binary Integer Number
o Floating Point Number

Future releases of ODL will support multiple record types,
variable length records, and all host-supported data types.

3.0 ODL OPERATION

ODL will normally operate as a batch process. Therefore the
control statements for ODL are stored on a control file and
used during execution, A log file is utilized for error
messages and statistics resulting from the execution of ODL.
The raw data files are specified in the control statements.
A reject file is maintained for up to 50 rejected raw data
records (input records are rejected when they can not be
loaded into a table).

$omm———— +
o - + : H
| Cctl | $ommm + | ORACLE |
| File |----—=-=-- > f{=mmmemm > I
te-———— + | | o ——— +
| ODL |
tm——————— + | | e 2
$om—————— + |-——-- > | o= >:Log :
| Rayy | | I == |Filel
| Data | | o + | +-——=+
| Files | | v
| I+ +—————- +
e + IReject|
[File |
$om———— +

ODL is invoked with the following statement:

ODL ctl-file 1log-file database [user-id/pswrd]

where:
ctl-file is the name of the file containing the ODL

Control Language Statements.

log-file 1is the name of the file for 1logging error
messages and statistics of the load processor.

database 1is the name of the database on which the load
is being performed.

user-id is the name of the user as required for a
secure database.

pswrd is the password for that user.

In the following example ODL is being invoked to load data
into the Personnel database (secure). The ODL Control
statements are on a file called loadl.ctl and logging will be
to a file called logl.

ODL LOAD1.CTL LOGl1 PERSONNEL SCOTT/TIGER

The reject file will be given the name of the log file (less
any extensions) plus the extension <.bad>. For example, it
the log file was named <msg.log> (or just <msqg>), the reject
file would receive the name <msg.bad>. In the above example,
the reject file will be named <LOG1l.BAD>

Although ODL will allow up to 50 rejected raw data records
before it terminates, the first record read must be
acceptable or ODL will terminate.

4.0 ODL CONTROL LANGUAGE

The language is composed of definition and action statements.
Definition statements define the raw data formats and the
source files for the raw data. Action statements define the
mapping of the input values and constants into the database

table rows.

4.1 DEFINE RECORD STATEMENT
The DEFINE RECORD statement defines a particular input
record. A list of one or more field definitions separated by
commas, defines the raw data fields to be loaded.

DEFINE RECORD rec-name AS [fld-def,...] fld-def;
where:

rec-name is a name used to refer to the raw data record.

fld-def is the data field definition described as
follows:

fld-def = fld-name (fld-type [, fld-loc])
where:

fld-name 1is a name used to refer to a raw data
field.

fld-type defines the data type as follows:

| FLOAT l

| INTEGER | [(size))

| CHAR |
corresponding to a floating point,
binary integer, and character. The
size in bytes (enclosed in

parenthesis) is optional and is
required for sizes other than
defaults, Acceptable sizes and
defaults are as follows:

defaults
data type sizes PDP-11 VAX-11
FLOAT 8, 4 8 8
INTEGER 4, 2, 1 2 4
CHAR 1 thru 254 1 1

fld-loc defines the position of the field in
the raw data record as follows:

| + number |
LOC (| = number |)
| number |

An integer number without any sign is
an absolute location from the
beginning of the record. A sign in
front of the number means the
position 1is relative to the end of
the last field. The minus sign is
positioned towards the beginning of
the record and the plus sign is
positioned towards the end. The
default position is at the end of the
previous field or the beginning of
the record for the first field.

If a database column is defined as NUMBER type and the raw
data field 1is an ASCII string representing a numerical
quantity, then the data type of the DEFINE RECORD filed must
be CHAR. ORACLE handles the conversion to numerical format.

The following is a sample DEFINE RECORD statement:

DEFINE RECORD REC1 AS
FLD1 (CHAR(6)), FLD2 (CHAR(25)),
FLD3 (FLOAT, LOC (+3))

“e

4.2 DEFINE SOURCE STATEMENT

The DEFINE SOURCE statement defines the input mediums to ODL
and the records contained within this source.

DEFINE SQURCE src—-name src—-parms
CONTAINING rec-name ;

where:
src-name is a symbolic name for this source.

src-parms provide the information necessary to read the
source as follows:

FROM file-name [,file-name]...
LENGTH number

where:

file-name is the operating system file name of
a raw data file. Multiple file names
(separated by commas) can be used to
refer to concatenated files.

length is the raw data record length.

rec-name is the record name used in the DEFINE RECORD
statement.

Future releases will provide for multiple record types within
a source and for multiple sources during a load.

The following is an example of a DEFINE SOURCE statement.

DEFINE SOURCE SRC1
FROM FILEl, FILE2, FILE3
LENGTH 80
CONTAINING REC1

4.3 FOR EACH STATEMENT

The FOR EACH statement is a loop mechanism that reads one raw
data record for each 1iteration. The FOR EACH statement
defines the SQL INSERT statement to be executed for each
record read. Future releases will provide for the use of
multiple INSERT statements involving multiple database
tables, and nested FOR EACH statements for hierarchical data.

FOR EACH RECORD in-stmt NEXT RECORD

where:

(in-stmt) is the SQL INSERT statement as follows:

INSERT INTO tab-name
(col-name,...) : < src-data,... >

where:

tab-name identifies the database table.

col-name 1is the list of one or more columns,
enclosed in parenthesis for which

values are being loaded.

src-data 1is the 1list of raw data field names
and data values, enclosed in angle
brackets and separated by commas.
The 1list can contain any of the
following:

o raw data field-name
o character string
o number
(string of digits
or scientific notation)
o NULL

Note that the "NEXT RECORD" phrase is required (to terminate
the loop function).

The following is an example of a FOR EACH statement.

FOR EACH RECORD
INSERT INTO EMP (EMPNO, EMPNAME, SALARY, COMM) :
< FLD1, FLD2, FLD3, NULL >

NEXT RECORD

5.0 ODL MESSAGES

All ODL messages are written to the log file. The following
statistical messages are written to the log file:

records successfully read
records successfully loaded

When an error occurs on processing a record, the following
message is produced:

RECORD # REJECTED
where # is the relative number of the record being read.

There are three types of errors which can occur during ODL
processing:

o Control Statement Errors
o ODL Fatal Errors
o ORACLE Errors

When an error occurs during processing of a raw data record,
that record 1is written to the reject file, ODL will
terminate after 50 records have been written to the reject
file. If there is a problem during processing of the first
raw data record, ODL will terminate without 1loading any

records.
1. Control Statement Errors

These messages include information to help locate the error
in the statement. There are 3 formats used as follows: ,

1) message ON LINE # COLUMN #
where message is one of the following:

Number too large
String to large
Bad number
Missing exponent
Identifier too large
Illegal character
Quoted literal not ended

7-34

2) SYNTAX ERROR LINE # ON INPUT symbol
where symbol 1identifies where the error

detected

3) symbol : message ON OR ABOUT LINE #
where symbol and message are as follows:

rec field
source
source
source
source
rec name
rec name
table
table
symbol
symbol
symbol
symbol
symbol

message
Field name is ambiguous
Field is improperly aligned
Inconsistent rec field definition
Field location too negative
Bad location field expression
Inconsistent location field
Unsupported field length
Source from clause is missing
Source length clause missing
Multiple sources not supported
Bad source length clause
Record too large for source
Multiple records not supported
Table col/field count mismatch
Multiple tables not supported
Not a record field
Undefined record field
Previously defined
Record name expected
Undefined record name

was

2. ODL Fatal Errors

These errors occur because of an internal problem or because
of a resource, such as memory, being exhausted. The format

is as follows:
ODL FATAL ERROR : message
where message is as follows:

Out of parse stack space
Out of heap space *
Out of table space *

Those messages which can be corrected by linking ODL with
more memory are indicated with an asterisk.

There are a set of fatal messages which can occur if other
errors exist before the fatal error. These errors will
usually disappear when the original error is corrected.
These errors are as follows:

excsub : invalid kind
Illegal insert field definition
defsyn : unknown type

unreachable code - optional length
unreachable code - default length

3. ORACLE Errors
ORACLE error messages have the following format:
call ERROR : message

where:

call is the name of the ORACLE interface subroutine
which failed;

message is the ORACLE error message as listed in the
ORACLE Messages and Codes Manual.

6.0 SAMPLE ODL CONTROL LANGUAGE INPUT

The following ODL control language sequence defines a record
containing an employee name, grade and salary. the salary
field is located 10 bytes away from the end of the grade

field.

The input source has two files with a record length of 80.

The database table EMPMAIN is loaded with fields
EMPLOYEE raw data records and with some constants.

DEFINE RECORD EMPLOYEE AS
NAME (CHAR (20)),
GRADE (INTEGER(2)),
SALARY (FLOAT(4), LOC(+10));

define source tape
from dr0:[1,110]filel, file 2
length 80
containing EMPLOYEE ;

FOR EACH RECORD
INSERT INTO EMPMAIN
(NAME, PERFORMANCE, GRADE, GROSS,
NULCOL, SALARY, START)
<{NAME, 87.6543, EMPLOYEE GRADE, .86e + 6,
NULL, SALARY, 356 >
NEXT RECORD

from the

~
|

37

ORACLE
UNLOAD/RELOAD DATABASE UTILITY

This utility provides the function of unloading tables of an
ORACLE database onto a sequential file and later reloading
them into a database. This is useful for:

o physically reordering rows of a table;

o unloading a table, changing column size, nonull, or
image specifications, and reloading that table;

o moving a database between versions of ORACLE when the
internal format of the database changes.

The following specific functions are supported:

o Unload all tables and/or views of a database;

o) Unload selected tables and/or views of a database ;
o Unload tables and/or views without GRANT privileges;
o Unload only the table and view definitions;

o Relocad the previously unloaded tables and/or views;

(o} Reload the tables and/or views without GRANT
privileges;

o Reload previously unloaded tables by inserting into
existing tables;

o Display the names of tables and views on an unloaded
database.

Tables and views of a secure database may only be unloaded
and reloaded by the owners of the data (creators of the
tables or definers of the views). Therefore Unload/Reload
operations on a secure database require the use of the
user-name/password parameter.

Unloading a database 1is called EXPorting and reloading a
database is called IMPorting.

EXP will
database.
unloaded,
unloaded.

EXP db-name

where:

EXPORT (Unload Tables)

unload one

or more tables and/or views of a

EXP will display the names of tables and views

and will

db-name

dumpfile

user—-name/
paswrd

[user-name/paswrd] [dumpfile] [-

display row counts for each table

oo g3

is the name the database being
unloaded.

is the optional name which if
provided, will be used to name the
output file. Otherwise, the file
name will be <database-name>.

is the user-name and password
required when unloading tables from
a secure database.

is the option which causes EXP to
prompt the user for the table-names
identifying the tables to be
unloaded. Entering a <return> in
answer to the prompt signifies that
no more tables are to be unloaded.

is the option which causes EXP to
prompt the user for the view-names
identifying the views to be
unloaded. Entering a <return> in
answer to the prompt signifies that
no more views are to be unloaded.

G is the option which precludes the
unloading of GRANT privileges
associated with the tables and views
being unloaded.

D is the option to unload only the
table/view definitions and GRANT
privileges.

Cn is the option which overrides the
default value for the size of the
SWA (SQL Work Area) in ORACLE. The
size is expressed as a number (n=1
to 16} of KBytes. The default is 3.

EXAMPLE 1 EXP PERSONNEL SCOTT/TIGER PERS.SAV -C5

EXAMPLE 2 EXpP CREDIT -TV

The first example will cause the entire PERSONNEL database
(secure) to be unloaded to a file called PERSONNEL.SAV. 1In
this example the SWA is being overridden and set to 5 KB.

The second example will cause selected tables and views of
the CREDIT (non-secure) database to be unloaded to a file
called CREDIT.EXP. The users will will be prompted for the
tables and views to be unloaded.

IMPORT (Reload Tables)

IMP will reload the one or more tables and/or views of a
previously unloaded database. If for some reason, a table
cannot be <created 1in the reloaded database, processing
continues with the next table. If a record can not be
accepted, that record will be displayed and processing will
continue with the next record. If a view definition is
rejected, it will be displayed.

IMP will display the names of tables and views being
reloaded, and for each table reloaded, will display the rows
inserted. If the number of rows actually loaded is different
than the rows read, this is indicated with a count of rows

read.

T
\"
IMP db-name [user-name/paswrd] [dumpfile] [- G]
D
1
Cn
where: db-name is the name of the database being

reloaded. This may or may not be
the same as the name of the database

which was unloaded.

dumpfile is the optional name which 1if
provided, is used to reference the
input file. Otherwise, the name of
the input file will be assummed to
be <database-name>.

user-name/ is the user—-name and password
paswrd required when reloading tables to a
secure database.

T is the option which prevents
reloading of tables.

\Y% is the option which prevents
reloading of views.

G is the option which prevents the
inclusion of GRANT privileges on the
tables and/or views being reloaded.

D is the option which overrides all
load options and simply displays the
names of tables and views 1in the
dump file

I is the option which specifies that
the reload is taking place against
an existing table and the rows are
to be inserted into that table. If
this parameter is not specified, a
reload against an existing table
would result in no rows being
inserted in that table.

Cn is the option which overrides the
default value for the size of the
SWA (SQL Work Area) in ORACLE. The
size is expressed as a number (n=1
to 16) of KBytes. The default is 3.

EXAMPLE 1 : IMP PERSONNEL SCOTT/TIGER PERS.SAV -C5

EXAMPLE 2 : IMP CREDIT -VI

The first example will cause the PERSONNEL database (secure)
to be reloaded from a file called PERS.SAV with a SQL Work

Area of 5KB.

The second example will cause only the tables of the unloaded
CREDIT database (non-secure) to be reloaded from a file
called CREDIT, and if any tables being reloaded are already
in the database, the rows will be inserted.

