
PDP-11 C Run-Time Library Reference Manual

Available tables:

● Contents (422 entries)

● Examples (22 entries)

● Figures (5 entries)

● Tables (35 entries)

● Index (765 entries)

Contents

(422 entries)

CONTENTS

● Title Page

● Copyright Page

● Preface

● 1 PDP-11 C Standard Libraries

● 1.1 The <assert.h> Header File

● 1.2 The <ctype.h> Header File

● 1.3 The <errno.h> Header File

● 1.4 The <float.h> and <limits.h> Header Files

● 1.5 The <locale.h> Header File

● 1.6 The <math.h> Header File

● 1.7 The <setjmp.h> Header File

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.decw$book (1 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● 1.8 The <signal.h> Header File

● 1.9 The <stdarg.h> Header File

● 1.10 The <stddef.h> Header File

● 1.11 The <stdio.h> Header File

● 1.12 The <stdlib.h> Header File

● 1.13 The <string.h> Header File

● 1.14 The <time.h> Header File

● 2 PDP-11 C Standard Input and Output

● 2.1 Streams and Files

● 2.1.1 Text and Binary Streams

● 2.1.2 Compatibility with VAX C

● 2.2 Streams and Operating Systems

● 2.2.1 RSX Operating System and Text Files

● 2.2.2 RSX File Attributes

● 2.2.3 RSX Operating System and Binary Files

● 2.2.4 RSTS/E Operating System and Stream Files

● 2.2.5 RSTS/E Operating System and Text Files

● 2.2.6 RSTS/E Operating System and Binary Files

● 2.2.7 RT-11 Operating System and Stream Files

● 2.2.8 RT-11 Operating System and Text Files

● 2.2.9 RT-11 Operating System and Binary Files

● 2.3 The <stdio.h> Header

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.decw$book (2 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● 2.4 Conversion Specifications

● 2.4.1 Converting Input Information

● 2.4.2 Converting Output Information

● 2.5 The /CP Taskbuilder Switch

● 2.6 Input/Output Support Package

● 2.7 Reserving LUNs

● 2.8 Program Examples

● 3 Character-Handling Functions and Macros

● 3.1 Character-Testing Macros

● 3.2 Character Case-Mapping Functions and Macros

● 4 Localization Functions and Macros

● 4.1 The lconv Type

● 4.2 The setlocale Function

● 4.3 The localeconv Function

● 4.4 Including Run-time Support for setlocale Function

● 5 General Utility Functions

● 5.1 String Conversion Functions

● 5.2 Pseudorandom Sequence Generation

● 5.3 Memory Management Functions

● 5.3.1 The calloc Function

● 5.3.2 The malloc Function

● 5.3.3 The realloc Function

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.decw$book (3 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● 5.3.4 The free Function

● 5.3.5 Program Example

● 5.4 Environmental Communication Functions

● 5.4.1 The abort and exit Functions

● 5.4.2 The getenv Function

● 5.4.3 The system Function

● 5.5 Search and Sort Functions

● 5.6 Integer Arithmetic Functions

● 5.7 Multibyte Character and String Functions

● 6 Math Functions

● 7 Using PDP-11 C with Record Management Services

● 7.1 RMS Functions

● 7.2 PDP-11 C and RMS Header Files

● 7.2.1 The <rms.h> Header

● 7.2.2 The <rmsops.h> Header

●

● 7.2.3.1 Declaring and Initializing Control Blocks at Compile Time

● 7.2.3.2 Declaring and Initializing Control Blocks at Compile Time with Default Values

● 7.2.3.3 Setting Control Block Fields

● 7.2.4 The <rmsdef.h> Header

● 7.3 Declaring RMS-11 Facilities

● 7.4 Defining Pool Space

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.decw$book (4 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● 7.5 Calling Operation Macros

● 7.6 Writing Completion Handlers

● 7.7 Using Get-Space Routines

● 7.7.1 The RMS$GETGSA$ Routine

● 7.7.2 The RMS$SETGSA$ Macro

● 7.7.3 Receiving Parameters Passed by R0, R1, and R2 During an RMSGSA or RMS$SETGSA

$ Macro

● 7.8 Using PDP-11 C to Write RMS Programs

● 7.9 RMS Example Program

● 8 Using PDP-11 C with File Control Services

● 8.1 Introduction to the FCS Extension Library

● 8.2 Declaring and Initializing the File Descriptor Block

● 8.2.1 The <fcs.h> Header File

● 8.2.2 Compile-Time Initialization of the FDB

● 8.2.3 Compile-Time Initialization of the Default Filename Block

● 8.2.4 Run-Time FDB Initialization and the File Storage Region

● 8.3 File Processing

● 8.4 FCS Example Program

● 9 Operating System Services and System Directives

● 9.1 System Directives

● 9.2 RSX System Services

● 9.2.1 RSXDIR Function

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.decw$book (5 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● 9.3 RT-11 SYSLIB Routines

● 9.4 RSTS/E SYSLIB Routines

● 9.5 Qualifications on Using the TIME , EXIT , and ABORT Functions

● 10 Linkages Supported by PDP-11 C

● 10.1 PDP-11 C Linkage

● 10.2 FORTRAN Linkage

● 10.3 Pascal Linkage

● 10.4 RSX AST And SST Linkages

● 10.5 The RSX CSM Linkage

● 10.6 Linkages and Other Languages

● 10.7 Data Sharing with Fortran and BP2

● 10.8 Restrictions and Notes

● Reference Section

● 1 PDP-11 C Standard Library Macros and Functions

● abort

● abs

● acos

● _ _ alr50

● asctime

● asin

● _ _ asr50

● assert

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.decw$book (6 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● atan

● atan2

● atexit

● atof

● atoi, atol

● bsearch

● cabs

● calloc

● ceil

● clearerr

● clock

● cos

● cosh

● ctime

● difftime

● div

● exit

● exp

● fabs

● _ _ fbuf

● fclose

● feof

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.decw$book (7 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● ferror

●

● _ _ fger

● fgetc

● fgetpos

● fgets

● _ _ fgnm, fgetname

● floor

● _ _ flun

● fmod

● fopen

● fprintf

● fputc

● fputs

● fread

● _ _ frec

● free

● freopen

● frexp

● fscanf

● fseek

● fsetpos

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.decw$book (8 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● ftell

● fwrite

● getc

● getchar

● getenv

● gets

● gmtime

● hypot

● isalnum

● isalpha

● isascii

● _ _ ischar

● iscntrl

● isdigit

● isgraph

● islower

● isprint

● ispunct

● isspace

● isupper

● isxdigit

● labs

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.decw$book (9 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● ldexp

● ldiv

● localeconv

● localtime

● log, log10

● longjmp

● _ _ lr50a

● malloc

● mblen

● mbstowcs

● mbtowc

● memchr

● memcmp

● memcpy

● memmove

● memset

● mktime

● modf

● perror

● pow

● printf

● putc

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.decw$book (10 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● putchar

● puts

● qsort

● raise

● rand

● realloc

● remove

● rename

● rewind

● RSXDIR

● scanf

● setbuf

● setjmp

● setlocale

● setvbuf

● signal

● sin

● sinh

● _ _ sleep, sleep

● sprintf

●

● srand

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.decw$book (11 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● _ _ sr50a

● sscanf

● strcat

● strchr

● strcmp

● strcoll

● strcpy

● strcspn

● strerror

● strftime

● strlen

● strncat

● strncmp

● strncpy

● strpbrk

● strrchr

● strspn

● strstr

● strtod

● strtok

● strtol

● strtoul

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.decw$book (12 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● strxfrm

● system

● tan

● tanh

● time

● tmpfile

● tmpnam

● toascii

● tolower

● _tolower

● toupper

● _ _ tzset

● ungetc

● va_arg

● va_end

● va_start

● vfprintf

● vprintf

● vsprintf

● wcstombs

● wctomb

● 2 FCS Extension Library Macros

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.decw$book (13 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● FCS$ASCPP

● FCS$ASLUN

● FCS$CLOSE$

● FCS$CTRL

● FCS$DELET$

● FCS$DLFNB

● FCS$ENTER

● FCS$EXPLG

● FCS$EXTND

● FCS$FDBDF$

● FCS$FIND

● FCS$FINIT$

● FCS$FLUSH

● FCS$FSRSZ$

● FCSGET

● FCSGETR

● FCSGETS

● FCS$GTDID

● FCS$GTDIR

● FCS$MARK

● FCS$MRKDL

● FCS$OFID$x

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.decw$book (14 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● FCS$OFNB$x

● FCS$OPEN$x

● FCS$OPNS$x

● FCS$OPNT$D

● FCS$OPNT$W

● FCS$PARSE

● FCS$POINT

● FCS$POSIT

● FCS$POSRC

● FCS$PPASC

● FCS$PRINT$

● FCS$PRSDI

● FCS$PRSDV

● FCS$PRSFN

● FCSPUT

● FCSPUTR

●

● FCS$RDFDR

● FCS$RDFFP

● FCS$RDFUI

● FCS$READ$

● FCS$REMOV

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.decw$book (15 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● FCS$RENAM

● FCS$RFOWN

● FCS$TRNCL

● FCS$WAIT$

● FCS$WDFDR

● FCS$WDFFP

● FCS$WDFUI

● FCS$WFOWN

● FCS$WRITE$

● FCS$XQIO

● 3 RMS Extension Library Macros

● RMS$CLOSE

● RMS$CONNECT

● RMS$CREATE

● RMS$DELETE

● RMS$DISCONNECT

● RMS$DISPLAY

● RMS$ENTER

● RMS$ERASE

● RMS$EXTEND

● RMS$FIND

● RMS$FLUSH

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.decw$book (16 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● RMS$FREE

● RMS$GET

● RMS$NXTVOL

● RMS$OPEN

● RMS$PARSE

● RMS$PUT

● RMS$READ

● RMS$RELEASE

● RMS$REMOVE

● RMS$RENAME

● RMS$REWIND

● RMS$SEARCH

● RMS$SPACE

● RMS$TRUNCATE

● RMS$UPDATE

● RMS$WAIT

● RMS$WRITE

● A PDP-11 C and VAX C Compatibility Issues

● B PDP-11 C Run-Time Modules and Entry Points

EXAMPLES

● 2- 1 Output of the Conversion Specifications

● 2- 2 Using the Standard I/O Functions

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.decw$book (17 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● 3- 1 Character-testing Macros

● 3- 2 Changing Characters to and from Uppercase Letters

● 5- 1 Allocating and Deallocating Memory for Structures

● 5- 2 Searching the Environment for a String

● 6- 1 Checking the Variable errno

● 6- 2 Calculating and Verifying a Tangent Value

● 7- 1 Receiving Parameters

● 7- 2 External Data Declarations and Definitions

● 7- 3 Main Program Section

● 7- 4 Function to Initialize RMS Data Structures

● 7- 5 Internal Functions

● 7- 6 Utility Function: Adding Records

● 7- 7 Utility Function: Deleting Records

● 7- 8 Utility Function: Typing the File

● 7- 9 Utility Function: Printing the File

● 7- 10 Utility Function: Updating the File

● 7- 11 Reserving a LUNfor Use by RMS

● 8- 1 External Data Declarations and Definitions

● 8- 2 Main Program Section

FIGURES

● 8- 1 PDP-11 C Integer Storage

● 10- 1 Stack Usage Using C Linkage

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.decw$book (18 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● 10- 2 Register 5 Usage Using FORTRAN Linkage

●

TABLES

● 1- 1 Standard Library Header Files

● 1- 2 Sizes of Integral Types

● 1- 3 Characteristics of Floating Types

● 1- 4 Signal-Handling Conditions

● 1- 5 Variable Argument Macros

● 1- 6 Implementation-Defined Types and Macros

● 1- 7 String Functions

● 1- 8 Date and Time Functions

● 2- 1 I/O Macros and Functions

● 2- 2 File Sizes

● 2- 3 RSX Attributes and Behavior

● 2- 4 Conversion Specifiers for Formatted Input

● 2- 5 Optional Conversion Modifiers

● 2- 6 Conversion Specifiers for Formatted Output

● 2- 7 Optional Conversion Modifiers for Formatted Output

● 2- 8 Optional Conversion Flag Characters

● 3- 1 Character- and List-Handling Functions and Macros

● 3- 2 Character Values

● 4- 1 PDP-11 C Character-Set and Collating Sequence Locales

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.decw$book (19 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● 4- 2 PDP-11 C Monetary and Numeric Locales

● 4- 3 PDP-11 C Time Locales

● 5- 1 Summary of General Utility Functions

● 5- 2 Environment List

● 6- 1 Summary of Math Functions

● 7- 1 PDP-11 C RMS Macros

● 7- 2 Common RMS Run-Time Processing Functions

● 7- 3 Control Block Types

● 7- 4 PDP-11 C Symbols for Defining Pool Space

● 7- 5 PDP-11 C Data Structures and Headers

● 8- 1 PDP-11 C FCS Macros

● 9- 1 Directive Identification Codes

● 9- 2 FIRQB and XRB Data Structures

● 10- 1 Register Usage for PDP-11 C-Supported Linkages

● B- 1 PDP-11 C Run-Time Entry Points

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.decw$book (20 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

Available tables:

● Contents (422 entries)

● Examples (22 entries)

● Figures (5 entries)

● Tables (35 entries)

● Index (765 entries)

Contents

(765 entries)

CONTENTS

● Title Page

● Copyright Page

● Preface

● 1 PDP-11 C Standard Libraries

● 1.1 The <assert.h> Header File

● 1.2 The <ctype.h> Header File

● 1.3 The <errno.h> Header File

● 1.4 The <float.h> and <limits.h> Header Files

● 1.5 The <locale.h> Header File

● 1.6 The <math.h> Header File

● 1.7 The <setjmp.h> Header File

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tContents.decw$book (1 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● 1.8 The <signal.h> Header File

● 1.9 The <stdarg.h> Header File

● 1.10 The <stddef.h> Header File

● 1.11 The <stdio.h> Header File

● 1.12 The <stdlib.h> Header File

● 1.13 The <string.h> Header File

● 1.14 The <time.h> Header File

● 2 PDP-11 C Standard Input and Output

● 2.1 Streams and Files

● 2.1.1 Text and Binary Streams

● 2.1.2 Compatibility with VAX C

● 2.2 Streams and Operating Systems

● 2.2.1 RSX Operating System and Text Files

● 2.2.2 RSX File Attributes

● 2.2.3 RSX Operating System and Binary Files

● 2.2.4 RSTS/E Operating System and Stream Files

● 2.2.5 RSTS/E Operating System and Text Files

● 2.2.6 RSTS/E Operating System and Binary Files

● 2.2.7 RT-11 Operating System and Stream Files

● 2.2.8 RT-11 Operating System and Text Files

● 2.2.9 RT-11 Operating System and Binary Files

● 2.3 The <stdio.h> Header

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tContents.decw$book (2 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● 2.4 Conversion Specifications

● 2.4.1 Converting Input Information

● 2.4.2 Converting Output Information

● 2.5 The /CP Taskbuilder Switch

● 2.6 Input/Output Support Package

● 2.7 Reserving LUNs

● 2.8 Program Examples

● 3 Character-Handling Functions and Macros

● 3.1 Character-Testing Macros

● 3.2 Character Case-Mapping Functions and Macros

● 4 Localization Functions and Macros

● 4.1 The lconv Type

● 4.2 The setlocale Function

● 4.3 The localeconv Function

● 4.4 Including Run-time Support for setlocale Function

● 5 General Utility Functions

● 5.1 String Conversion Functions

● 5.2 Pseudorandom Sequence Generation

● 5.3 Memory Management Functions

● 5.3.1 The calloc Function

● 5.3.2 The malloc Function

● 5.3.3 The realloc Function

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tContents.decw$book (3 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● 5.3.4 The free Function

● 5.3.5 Program Example

● 5.4 Environmental Communication Functions

● 5.4.1 The abort and exit Functions

● 5.4.2 The getenv Function

● 5.4.3 The system Function

● 5.5 Search and Sort Functions

● 5.6 Integer Arithmetic Functions

● 5.7 Multibyte Character and String Functions

● 6 Math Functions

● 7 Using PDP-11 C with Record Management Services

● 7.1 RMS Functions

● 7.2 PDP-11 C and RMS Header Files

● 7.2.1 The <rms.h> Header

● 7.2.2 The <rmsops.h> Header

●

● 7.2.3.1 Declaring and Initializing Control Blocks at Compile Time

● 7.2.3.2 Declaring and Initializing Control Blocks at Compile Time with Default Values

● 7.2.3.3 Setting Control Block Fields

● 7.2.4 The <rmsdef.h> Header

● 7.3 Declaring RMS-11 Facilities

● 7.4 Defining Pool Space

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tContents.decw$book (4 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● 7.5 Calling Operation Macros

● 7.6 Writing Completion Handlers

● 7.7 Using Get-Space Routines

● 7.7.1 The RMS$GETGSA$ Routine

● 7.7.2 The RMS$SETGSA$ Macro

● 7.7.3 Receiving Parameters Passed by R0, R1, and R2 During an RMSGSA or RMS$SETGSA

$ Macro

● 7.8 Using PDP-11 C to Write RMS Programs

● 7.9 RMS Example Program

● 8 Using PDP-11 C with File Control Services

● 8.1 Introduction to the FCS Extension Library

● 8.2 Declaring and Initializing the File Descriptor Block

● 8.2.1 The <fcs.h> Header File

● 8.2.2 Compile-Time Initialization of the FDB

● 8.2.3 Compile-Time Initialization of the Default Filename Block

● 8.2.4 Run-Time FDB Initialization and the File Storage Region

● 8.3 File Processing

● 8.4 FCS Example Program

● 9 Operating System Services and System Directives

● 9.1 System Directives

● 9.2 RSX System Services

● 9.2.1 RSXDIR Function

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tContents.decw$book (5 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● 9.3 RT-11 SYSLIB Routines

● 9.4 RSTS/E SYSLIB Routines

● 9.5 Qualifications on Using the TIME , EXIT , and ABORT Functions

● 10 Linkages Supported by PDP-11 C

● 10.1 PDP-11 C Linkage

● 10.2 FORTRAN Linkage

● 10.3 Pascal Linkage

● 10.4 RSX AST And SST Linkages

● 10.5 The RSX CSM Linkage

● 10.6 Linkages and Other Languages

● 10.7 Data Sharing with Fortran and BP2

● 10.8 Restrictions and Notes

● Reference Section

● 1 PDP-11 C Standard Library Macros and Functions

● abort

● abs

● acos

● _ _ alr50

● asctime

● asin

● _ _ asr50

● assert

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tContents.decw$book (6 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● atan

● atan2

● atexit

● atof

● atoi, atol

● bsearch

● cabs

● calloc

● ceil

● clearerr

● clock

● cos

● cosh

● ctime

● difftime

● div

● exit

● exp

● fabs

● _ _ fbuf

● fclose

● feof

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tContents.decw$book (7 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● ferror

●

● _ _ fger

● fgetc

● fgetpos

● fgets

● _ _ fgnm, fgetname

● floor

● _ _ flun

● fmod

● fopen

● fprintf

● fputc

● fputs

● fread

● _ _ frec

● free

● freopen

● frexp

● fscanf

● fseek

● fsetpos

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tContents.decw$book (8 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● ftell

● fwrite

● getc

● getchar

● getenv

● gets

● gmtime

● hypot

● isalnum

● isalpha

● isascii

● _ _ ischar

● iscntrl

● isdigit

● isgraph

● islower

● isprint

● ispunct

● isspace

● isupper

● isxdigit

● labs

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tContents.decw$book (9 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● ldexp

● ldiv

● localeconv

● localtime

● log, log10

● longjmp

● _ _ lr50a

● malloc

● mblen

● mbstowcs

● mbtowc

● memchr

● memcmp

● memcpy

● memmove

● memset

● mktime

● modf

● perror

● pow

● printf

● putc

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tContents.decw$book (10 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● putchar

● puts

● qsort

● raise

● rand

● realloc

● remove

● rename

● rewind

● RSXDIR

● scanf

● setbuf

● setjmp

● setlocale

● setvbuf

● signal

● sin

● sinh

● _ _ sleep, sleep

● sprintf

●

● srand

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tContents.decw$book (11 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● _ _ sr50a

● sscanf

● strcat

● strchr

● strcmp

● strcoll

● strcpy

● strcspn

● strerror

● strftime

● strlen

● strncat

● strncmp

● strncpy

● strpbrk

● strrchr

● strspn

● strstr

● strtod

● strtok

● strtol

● strtoul

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tContents.decw$book (12 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● strxfrm

● system

● tan

● tanh

● time

● tmpfile

● tmpnam

● toascii

● tolower

● _tolower

● toupper

● _ _ tzset

● ungetc

● va_arg

● va_end

● va_start

● vfprintf

● vprintf

● vsprintf

● wcstombs

● wctomb

● 2 FCS Extension Library Macros

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tContents.decw$book (13 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● FCS$ASCPP

● FCS$ASLUN

● FCS$CLOSE$

● FCS$CTRL

● FCS$DELET$

● FCS$DLFNB

● FCS$ENTER

● FCS$EXPLG

● FCS$EXTND

● FCS$FDBDF$

● FCS$FIND

● FCS$FINIT$

● FCS$FLUSH

● FCS$FSRSZ$

● FCSGET

● FCSGETR

● FCSGETS

● FCS$GTDID

● FCS$GTDIR

● FCS$MARK

● FCS$MRKDL

● FCS$OFID$x

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tContents.decw$book (14 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● FCS$OFNB$x

● FCS$OPEN$x

● FCS$OPNS$x

● FCS$OPNT$D

● FCS$OPNT$W

● FCS$PARSE

● FCS$POINT

● FCS$POSIT

● FCS$POSRC

● FCS$PPASC

● FCS$PRINT$

● FCS$PRSDI

● FCS$PRSDV

● FCS$PRSFN

● FCSPUT

● FCSPUTR

●

● FCS$RDFDR

● FCS$RDFFP

● FCS$RDFUI

● FCS$READ$

● FCS$REMOV

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tContents.decw$book (15 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● FCS$RENAM

● FCS$RFOWN

● FCS$TRNCL

● FCS$WAIT$

● FCS$WDFDR

● FCS$WDFFP

● FCS$WDFUI

● FCS$WFOWN

● FCS$WRITE$

● FCS$XQIO

● 3 RMS Extension Library Macros

● RMS$CLOSE

● RMS$CONNECT

● RMS$CREATE

● RMS$DELETE

● RMS$DISCONNECT

● RMS$DISPLAY

● RMS$ENTER

● RMS$ERASE

● RMS$EXTEND

● RMS$FIND

● RMS$FLUSH

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tContents.decw$book (16 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● RMS$FREE

● RMS$GET

● RMS$NXTVOL

● RMS$OPEN

● RMS$PARSE

● RMS$PUT

● RMS$READ

● RMS$RELEASE

● RMS$REMOVE

● RMS$RENAME

● RMS$REWIND

● RMS$SEARCH

● RMS$SPACE

● RMS$TRUNCATE

● RMS$UPDATE

● RMS$WAIT

● RMS$WRITE

● A PDP-11 C and VAX C Compatibility Issues

● B PDP-11 C Run-Time Modules and Entry Points

EXAMPLES

● 2- 1 Output of the Conversion Specifications

● 2- 2 Using the Standard I/O Functions

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tContents.decw$book (17 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● 3- 1 Character-testing Macros

● 3- 2 Changing Characters to and from Uppercase Letters

● 5- 1 Allocating and Deallocating Memory for Structures

● 5- 2 Searching the Environment for a String

● 6- 1 Checking the Variable errno

● 6- 2 Calculating and Verifying a Tangent Value

● 7- 1 Receiving Parameters

● 7- 2 External Data Declarations and Definitions

● 7- 3 Main Program Section

● 7- 4 Function to Initialize RMS Data Structures

● 7- 5 Internal Functions

● 7- 6 Utility Function: Adding Records

● 7- 7 Utility Function: Deleting Records

● 7- 8 Utility Function: Typing the File

● 7- 9 Utility Function: Printing the File

● 7- 10 Utility Function: Updating the File

● 7- 11 Reserving a LUNfor Use by RMS

● 8- 1 External Data Declarations and Definitions

● 8- 2 Main Program Section

FIGURES

● 8- 1 PDP-11 C Integer Storage

● 10- 1 Stack Usage Using C Linkage

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tContents.decw$book (18 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● 10- 2 Register 5 Usage Using FORTRAN Linkage

●

TABLES

● 1- 1 Standard Library Header Files

● 1- 2 Sizes of Integral Types

● 1- 3 Characteristics of Floating Types

● 1- 4 Signal-Handling Conditions

● 1- 5 Variable Argument Macros

● 1- 6 Implementation-Defined Types and Macros

● 1- 7 String Functions

● 1- 8 Date and Time Functions

● 2- 1 I/O Macros and Functions

● 2- 2 File Sizes

● 2- 3 RSX Attributes and Behavior

● 2- 4 Conversion Specifiers for Formatted Input

● 2- 5 Optional Conversion Modifiers

● 2- 6 Conversion Specifiers for Formatted Output

● 2- 7 Optional Conversion Modifiers for Formatted Output

● 2- 8 Optional Conversion Flag Characters

● 3- 1 Character- and List-Handling Functions and Macros

● 3- 2 Character Values

● 4- 1 PDP-11 C Character-Set and Collating Sequence Locales

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tContents.decw$book (19 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● 4- 2 PDP-11 C Monetary and Numeric Locales

● 4- 3 PDP-11 C Time Locales

● 5- 1 Summary of General Utility Functions

● 5- 2 Environment List

● 6- 1 Summary of Math Functions

● 7- 1 PDP-11 C RMS Macros

● 7- 2 Common RMS Run-Time Processing Functions

● 7- 3 Control Block Types

● 7- 4 PDP-11 C Symbols for Defining Pool Space

● 7- 5 PDP-11 C Data Structures and Headers

● 8- 1 PDP-11 C FCS Macros

● 9- 1 Directive Identification Codes

● 9- 2 FIRQB and XRB Data Structures

● 10- 1 Register Usage for PDP-11 C-Supported Linkages

● B- 1 PDP-11 C Run-Time Entry Points

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tContents.decw$book (20 of 20)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

Available tables:

● Contents (422 entries)

● Examples (22 entries)

● Figures (5 entries)

● Tables (35 entries)

● Index (765 entries)

Examples

(765 entries)

EXAMPLES

● 2- 1 Output of the Conversion Specifications

● 2- 2 Using the Standard I/O Functions

● 3- 1 Character-testing Macros

● 3- 2 Changing Characters to and from Uppercase Letters

● 5- 1 Allocating and Deallocating Memory for Structures

● 5- 2 Searching the Environment for a String

● 6- 1 Checking the Variable errno

● 6- 2 Calculating and Verifying a Tangent Value

● 7- 1 Receiving Parameters

● 7- 2 External Data Declarations and Definitions

● 7- 3 Main Program Section

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tExamples.decw$book (1 of 2)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● 7- 4 Function to Initialize RMS Data Structures

● 7- 5 Internal Functions

● 7- 6 Utility Function: Adding Records

● 7- 7 Utility Function: Deleting Records

● 7- 8 Utility Function: Typing the File

● 7- 9 Utility Function: Printing the File

● 7- 10 Utility Function: Updating the File

● 7- 11 Reserving a LUNfor Use by RMS

● 8- 1 External Data Declarations and Definitions

● 8- 2 Main Program Section

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tExamples.decw$book (2 of 2)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

Available tables:

● Contents (422 entries)

● Examples (22 entries)

● Figures (5 entries)

● Tables (35 entries)

● Index (765 entries)

Figures

(765 entries)

FIGURES

● 8- 1 PDP-11 C Integer Storage

● 10- 1 Stack Usage Using C Linkage

● 10- 2 Register 5 Usage Using FORTRAN Linkage

●

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tFigures.decw$book1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

Available tables:

● Contents (422 entries)

● Examples (22 entries)

● Figures (5 entries)

● Tables (35 entries)

● Index (765 entries)

Tables

(765 entries)

TABLES

● 1- 1 Standard Library Header Files

● 1- 2 Sizes of Integral Types

● 1- 3 Characteristics of Floating Types

● 1- 4 Signal-Handling Conditions

● 1- 5 Variable Argument Macros

● 1- 6 Implementation-Defined Types and Macros

● 1- 7 String Functions

● 1- 8 Date and Time Functions

● 2- 1 I/O Macros and Functions

● 2- 2 File Sizes

● 2- 3 RSX Attributes and Behavior

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tTables.decw$book (1 of 3)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● 2- 4 Conversion Specifiers for Formatted Input

● 2- 5 Optional Conversion Modifiers

● 2- 6 Conversion Specifiers for Formatted Output

● 2- 7 Optional Conversion Modifiers for Formatted Output

● 2- 8 Optional Conversion Flag Characters

● 3- 1 Character- and List-Handling Functions and Macros

● 3- 2 Character Values

● 4- 1 PDP-11 C Character-Set and Collating Sequence Locales

● 4- 2 PDP-11 C Monetary and Numeric Locales

● 4- 3 PDP-11 C Time Locales

● 5- 1 Summary of General Utility Functions

● 5- 2 Environment List

● 6- 1 Summary of Math Functions

● 7- 1 PDP-11 C RMS Macros

● 7- 2 Common RMS Run-Time Processing Functions

● 7- 3 Control Block Types

● 7- 4 PDP-11 C Symbols for Defining Pool Space

● 7- 5 PDP-11 C Data Structures and Headers

● 8- 1 PDP-11 C FCS Macros

● 9- 1 Directive Identification Codes

● 9- 2 FIRQB and XRB Data Structures

● 10- 1 Register Usage for PDP-11 C-Supported Linkages

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tTables.decw$book (2 of 3)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

● B- 1 PDP-11 C Run-Time Entry Points

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tTables.decw$book (3 of 3)1/25/06 3:56 PM

PDP-11 C Run-Time Library Reference Manual

Available tables:

● Contents (422 entries)

● Examples (22 entries)

● Figures (5 entries)

● Tables (35 entries)

● Index (765 entries)

Index

(765 entries)

INDEX

A

● abort function

● abs function

● acos function

● _ _ alr50 function

● asctime function

● asin function

● _ _ asr50 function

● assert macro

● assert.h header file

● atan function

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (1 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● atan2 function

● atexit function

● atof function

● atoi function

● atol function

B

● Binary stream

● bsearch function

C

● C linkage

● C$RHLP routine

● cabs function

● calloc function

● ceil function

Character case-mapping

● functions

● macros

● Character case-mapping functions

● _ _ alr50

● _ _ asr50

● _ _ lr50a

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (2 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● program example

● _ _ sr50a

● strtoul

● tolower

● toupper

● Character case-mapping macros

● toascii

● _tolower

Character-testing

● functions

● macros

● Character-testing functions

● isalnum

● _ _ ischar

● iscntrl

● isdigit

●

● islower

● isprint

● ispunct

● isspace

● isupper

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (3 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● isxdigit

● program example

● Character-testing macros

● isascii

● clearerr function

● clock function

$CLOSE

● RMS function

● Completion handlers, for RMS

$CONNECT

● RMS function

Control block

● declaring at compile time

● declaring with default values

● setting fields

● types of

Conversion flags

● output, table of characters

Conversion modifiers

● input, table of characters

● output, table of characters

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (4 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

Conversion specifications

● for I/O functions

● output, table of characters

Conversion specifiers

● input, table of characters

● cos function

● cosh function

● /CP

$CREATE

● RMS function

● ctime function

● ctype.h header file

D

Data sharing

● BP2

● Fortran

Data structures

● RMS

● definition modules

● initialized prototypes

● Date and Time functions

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (5 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

Definition modules

● for RMS structures

$DELETE

● RMS function

● DFB, initialization at compile-time

● difftime function

$DISCONNECT

● RMS function

● div function

E

● EDOM return value

Entry points

● to PDP-11 C Run-Time Library

Environment

● list for getenv

● Environmental communication functions

● ERANGE return value

$ERASE

● RMS function

● errno variable

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (6 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● errno.h header file

Error-Handling functions

● abort

● exit

● perror

● strerror

● exit function

● exp function

F

FAB

● RMS data structure

FAB

● definition module

● fab.h header file

● fabs function

● _ _ fbuf function

● fclose function

● FCS Extension Library

● FCS file processing

● FCS for file input/output

FCS functions

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (7 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● FCS$ASCPP

● FCS$ASLUN

● FCS$CLOSE$

● FCS$CTRL

● FCS$DELET$

● FCS$DLFNB

● FCS$ENTER

● FCS$EXPLG

●

● FCS$FDBDF$

● FCS$FIND

● FCS$FINIT$

● FCS$FLUSH

● FCS$FSRSZ$

● FCSGET

● FCSGETR

● FCSGETS

● FCS$GTDID

● FCS$GTDIR

● FCS$MARK

● FCS$MRKDL

● FCS$OFID$x

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (8 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● FCS$OFNB$x

● FCS$OPEN$x

● FCS$OPNS$x

● FCS$OPNT$D

● FCS$OPNT$W

● FCS$PARSE

● FCS$POINT

● FCS$POSIT

● FCS$POSRC

● FCS$PPASC

● FCS$PRINT$

● FCS$PRSDI

● FCS$PRSDV

● FCS$PRSFN

● FCSPUT

● FCSPUTR

● FCSPUTS

● FCS$RDFDR

● FCS$RDFFP

● FCS$RDFUI

● FCS$READ$

● FCS$REMOV

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (9 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● FCS$RENAM

● FCS$RFOWN

● FCS$TRNCL

● FCS$WAIT$

● FCS$WDFDR

● FCS$WDFFP

● FCS$WDFUI

● FCS$WFOWN

● FCS$WRITE$

● FCS$XQIO

FCS header files

● fcs.h

●

● fcsiff.h

● FCS macros

● fcs.h header file

● fcsfhb.h header file

● fcsiff.h header file

● FDB, declaring and initializing

● FDB, initialization at compile-time

● feof function

● ferror function

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (10 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● fflush function

● _ _ fger function

● fgetc function

● fgetname function

● fgetpos function

● fgets function

● _ _ fgnm function

File Control Services(FCS)

● example program

● File Descriptor Block

● float.h header file

● macros found in

● floor function

● _ _ flun function

● fmod function

● fopen function

● FORTRAN linkage

● fprintf function

● fputc function

● fputs function

● fread function

● _ _ frec function

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (11 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● free function

● freopen function

● frexp function

● fscanf function

● fseek function

● fsetpos function

● ftell function

Functions

● character case-mapping

● character-testing

● entry points of

● environmental communication

● integer arithmetic

● localization

● math summary

● memory management

●

● pseudorandom sequence

● RMS

● search and sort

● standard I/O

● string conversion

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (12 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● utility

● fwrite function

G

$GET

● RMS function

● Get-space routine

● RMSGSA

● RMS$SETGSA$

● getc function

● getchar function

● getenv function

● gets function

● gmtime function

H

● Header files

● assert.h

● ctype.h

● errno.h

● fab.h

● fcs.h

● fcsfhb.h

● fcsiff.h

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (13 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● float.h

● limits.h

● locale.h

● math.h

● nam.h

● rab.h

● rms.h

● rmsdef.h

● rmsops.h

● rmsorg.h

● rmspoo.h

● rstsys.h

● rsxsys.h

● rtsys.h

● setjmp.h

● signal.h

● stdarg.h

● stddef.h

● stdio.h

● stdlib.h

● string.h

●

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (14 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● xab.h

● hypot function

I

● I/O support routines

● FCS

● RMS

#include modules

● for RMS data structures

● Initializing RMS data structures

Input and output (I/O)

● conversion specifications

● isalnum function

● isalpha function

● isascii macro

● _ _ ischar function

● iscntrl function

● isdigit function

● isgraph function

● islower function

● isprint function

● ispunct function

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (15 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● isspace function

● isupper function

● isxdigit function

L

● labs function

● lconv type

● ldexp function

● ldiv function

● limits.h header file

● macros found in

Linkages

● FORTRAN

● Pascal

● PDP-11 C

● RSX AST

● RSX CSM

● RSX SST

● using other languages

List-handling macros

● va_arg

● va_end

● va_start

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (16 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● locale.h header file

● localeconv function

Locales

● character-set

● collating sequence

●

● numeric

● time

● Localization

● Localization macros

● LC_ALL

● LC_COLLATE

● LC_CTYPE

● LC_MONETARY

● LC_NUMERIC

● LC_TIME

● localtime function

● log function

● log10 function

● longjmp function

● _ _ lr50a function

● LUNs

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (17 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

M

Macros

● character case-mapping

● character-testing

● FCS

● localization

● RMS

● RMS operation

● malloc function

● Mapping binary streams to file types

● RSTS/E operating system

● RSX operating system

● RT-11 operating system

● Mapping text streams to file types

● RSTS/E operating system

● RSX operation system

● RT-11 operating system

● Math functions

● abs

● acos

● asin

● atan

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (18 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● atan2

● cabs

● ceil

● cos

● cosh

● div

● errno values

● exp

● fabs

● floor

● frexp

● hypot

● labs

● ldexp

● ldiv

● log

● log10

● modf

● pow

● rand

● sin

● sinh

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (19 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● sqrt

● srand

● tan

● tanh

● math.h header file

● mblen function

● mbstowcs function

● mbtowc function

● memchr function

● memcmp function

● memcpy function

● memmove function

● Memory allocation functions

● calloc

● free

● malloc

● program example

● realloc

● memset function

● mktime function

● modf function

N

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (20 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

NAM

● RMS data structure

● nam.h header file

O

$OPEN

● RMS function

Operating Systems

● RSTS/E binary files

● RSTS/E stream files

● RSTS/E text files

● RSX binary files

● RSX text files

● RT-11 binary files

● RT-11 stream files

●

P

● Pascal linkage

PDP-11 C

● restrictions and notes

● PDP-11 C/VAX C compatibility

● perror function

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (21 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● Pool space, defining

● pow function

● printf function

$PUT

● RMS function

● putc function

● putchar function

● puts function

Q

● qsort function

R

RAB

● RMS data structure

● rab.h header file

● raise function

● rand function

● realloc function

● Record Management Services (RMS)

● data structures

● example program

● extended attribute blocks

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (22 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● file access blocks

● functions

● name blocks

● record access blocks

● return status values

● remove function

● rename function

● Reserving LUNs

Return status value

● RMS

$REWIND

● RMS function

● rewind function

● RMS facilities, declaring each

● RMS file organization

● RMS for file input/output

RMS functions

● RMS$CLOSE

● RMS$CONNECT

● RMS$CREATE

● RMS$DELETE

● RMS$DISCONNECT

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (23 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● RMS$DISPLAY

● RMS$ERASE

● RMS$EXTEND

● RMS$FIND

● RMS$FLUSH

● RMS$FREE

● RMS$GET

● RMS$NXTVOL

● RMS$OPEN

● RMS$PARSE

● RMS$PUT

● RMS$READ

● RMS$RELEASE

● RMS$REMOVE

● RMS$RENAME

● RMS$REWIND

● RMS$SEARCH

● RMS$SPACE

● RMS$TRUNCATE

● RMS$UPDATE

● RMS$WAIT

● RMS$WRITE

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (24 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● RMS header files

● fab.h

● nam.h

● rab.h

● rms.h

● rmsdef.h

● rmsops.h

● rmsorg.h

● rmspoo.h

● xab.h

RMS Macro

● RMS$SETGSA$

● RMS programs, using C to write

RMS prototype data structures

● examples using

● RMS$CLOSE function

● RMS$CONNECT function

● RMS$CREATE function

● RMS$DELETE function

● RMS$DISCONNECT function

● RMS$DISPLAY function

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (25 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● RMS$ENTER function

● RMS$ERASE function

● RMS$EXTEND function

● RMS$FIND function

●

● RMS$FREE function

● RMS$GET function

● RMS$GETGSA$ routine

● RMSGSA macro

● RMS$NXTVOL function

● RMS$OPEN function

● RMS$PARSE function

● RMS$PUT function

● RMS$READ function

● RMS$RELEASE function

● RMS$REMOVE function

● RMS$RENAME function

● RMS$RENAME macro

● RMS$REWIND function

● RMS$SEARCH function

● RMS$SETGSA$ macro

● RMS$SPACE function

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (26 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● RMS$TRUNCATE function

● RMS$UPDATE function

● RMS$WAIT function

● RMS$WAIT macro

● RMS$WRITE function

● rms.h header file

● rmsdef.h header file

● rmsops.h header file

● rmsorg.h header file

● rmspoo.h header file

● RSTS/E SYSLIB routines

● rstsys.h header file

● RSX AST linkage

● RSX CSM linkage

● RSX SST linkage

● RSX system services

● RSXDIR function

● rsxsys.h header file

● RT-11 SYSLIB routines

● rtsys.h header file

S

● scanf function

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (27 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● setbuf function

● setjmp macro

● setjmp.h header file

setlocale

● run-time support

● setlocale function

● setvbuf function

● signal function

Signal-Handling functions

● longjmp

● raise

● signal

Signal-Handling macros

● setjmp

● signal.h header file

● macros found in

● sin function

● sinh function

● _ _ sleep function

● sleep function

● sprintf function

● sqrt function

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (28 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● _ _ sr50a function

● srand function

● sscanf function

Standard I/O

● using

Standard I/O functions

● clearerr

● _ _ fbuf

● fclose

● feof

● ferror

● fflush

● _ _ fger

● fgetc

● fgetname

● fgetpos

● fgets

● _ _ fgnm

● _ _ flun

● fopen

● fprintf

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (29 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● fputc

● fputs

● fread

● _ _ frec

● freopen

● fscanf

● fseek

● ftell

● functions and macros

● fwrite

● getc

● program example

● putc

●

● RSXDIR

● setbuf

● sleep

● _ _ sleep

● sprintf

● sscanf

● taskbuilder switch

● tmpfile

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (30 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● tmpnam

● ungetc

● stdarg.h header file

● macros found in

● stddef.h header file

● macros found in

● stdio.h header file

● stdlib.h header file

● strcat function

● strchr function

● strcmp function

● strcoll function

● strcpy function

● strcspn function

● strerror function

● strftime function

● String functions

● String-handling conversion

String-Handling functions

● atof

● atoi

● atol

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (31 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● memchr

● memcmp

● memcpy

● memmove

● strcat

● strchr

● strcmp

● strcpy

● strcspn

● strlen

● strncat

● strncmp

● strncpy

● strpbrk

● strrchr

● strspn

● strtol

●

● strlen function

● strncat function

● strncmp function

● strncpy function

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (32 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● strpbrk function

● strrchr function

● strspn function

● strstr function

● strtod function

● strtok function

● strtol function

● strtoul function

● strxfrm function

● System directives

● system function

System functions

● asctime

● assert

● atexit

● bsearch

● clock

● ctime

● difftime

● fmod

● getenv

● gmtime

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (33 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

● localtime

● memset

● mktime

● qsort

● remove

● rename

● setvbuf

● strtod

● strtok

● system

● time

● vfprintf

● vprintf

● vsprintf

System service header files

● rstsys.h

● rsxsys.h

● rtsys.h

T

● tan function

● tanh function

● Taskbuilder switch

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (34 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

Terminal I/O

● program example

Terminal I/O functions

● getchar

● gets

● printf

● putchar

● puts

● scanf

● Text stream

● time function

Time function

● _ _ tzset

● time.h header file

● tmpfile function

● tmpnam function

● toascii macro

● _tolower macro

● tolower function

● toupper function

● _ _ tzset function

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (35 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

U

● ungetc function

V

● VAX C compatibility

● va_arg macro

● va_end macro

● va_start macro

● vfprintf function

● vprintf function

● vsprintf function

W

● wcstombs function

● wctomb function

X

XAB

● RMS data structure

● xab.h header file

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.tIndex.decw$book (36 of 36)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

1989, 1990, 1992Digital Equipment Corporation

 PDP-11 C
 Run-Time Library Reference
 Manual

 January 1992
 This manual describes the functions and macros in the PDP-11 C
 Run-Time Library.

 Revision/Update Information: This is a revised manual.
Operating System and Version: Micro /RSX Version 4.3 or higher
 RSTS/E Version 10.0 or higher
 RSX-11M (mapped) Version 4.6 or
 higher
 RSX-11M-PLUS Version 4.3 or
 higher
 RT-11 Version 5.5 or higher
 VMS Version 5.4 or higher

 Software Version: PDP-11 C Version 1.2

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p5.decw$book1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 The information in this document is subject to change without notice and should
 not be construed as a commitment by Digital Equipment Corporation. Digital
 Equipment Corporation assumes no responsibility for any errors that may appear in
 this document.
 The software described in this document is furnished under a license and may be
 used or copied only in accordance with the terms of such license.
 No responsibility is assumed for the use or reliability of software on equipment that
 is not supplied by Digital Equipment Corporation or its affiliated companies.
 Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject
 to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data
 and Computer Software clause at DFARS 252.227-7013.
 © Digital Equipment Corporation 1989, 1990, 1992.
 All Rights Reserved.
 Printed in U.S.A.
 The Reader's Comment form at the end of this document requests your critical
 evaluation to assist in preparing future documentation.
 The following are trademarks of Digital Equipment Corporation: DEC, PDP, PDP-11,
 Micro /RSX, RSTS, RSTS/E, RSX, RSX-11M, RSX-llM-PLUS, RSX-11S, RT-11,
 RX-11, VAX, VAXcluster, VAX-11 RSX, VMS, and the DIGITAL logo.
 This document is available on CDROM.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p6.decw$book1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Preface
 This manual provides reference information on the PDP-
 11 C Run-Time Library functions and macros that
 provide input/output, character and string manipulation,
 mathematical functions, error detection, file creation, and
 system access. PDP-11 C was developed in compliance
 with the Draft Proposed American National Standard for
 Information Systems-Programming Language C.
 Intended Audience

 This manual is intended for both experienced and novice
 programmers who need reference information on the
 functions and macros found in the PDP-11 C Run-Time
 Library.
 Document Structure

 This manual describes the PDP-11 C Run-Time Library. It
 provides information about portability concerns between
 operating systems and categorical descriptions of the
 functions and macros. This manual has ten chapters, a
 reference section, and two appendixes. They are as follows:

 .
 Chapter 1 provides an overview of the PDP-11 C
 Standard Libraries.
 .
 Chapter 2 describes the PDP-11 C Standard I/O functions
 and macros.
 .
 Chapter 3 describes the character-handling functions
 and macros.
 .
 Chapter 4 describes the localization functions and macros.
 .
 Chapter 5 describes string conversion, pseudorandom se-
 quence generation, memory management, environmental
 communication, search and sort, integer arithmetic, and
 multibyte character and string functions.
 .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p11.decw$book (1 of 4)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

 Chapter 6 describes the math functions.
 .
 Chapter 7 describes how to use PDP-11 C programs with
 Record Management Services (RMS).
 .
 Chapter 8 describes how to use PDP-11 C with File
 Control Services (FCS).
 .
 Chapter 9 describes operating systems services and
 system directives.
 .
 Chapter 10 describes how to use PDP-11 C with other
 PDP-11 languages.
 .
 The Reference Section describes alphabetically the
 functions and macros contained in the PDP-11 C Run-
 Time Library.
 .
 Appendix A describes compatibility issues between the
 PDP-11 C and VAX C languages.
 .
 Appendix B provides a description of the PDP-11 C
 modules and the PDP run-time modules used in this
 implementation.
 Associated Documents

 You may find the following documents useful when
 programming in the PDP-11 C language:

 .
 Guide to PDP-11 C -For programmers who need
 additional information on using the PDP-11 C language.
 .
 PDP-11 C Installation Guide -For system programmers
 who install the PDP-11 C software.
 .
 The C Programming Language

 1
 - For those who need a
 more intensive tutorial than that provided in the Guide to
 PDP-11 C .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p11.decw$book (2 of 4)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

 PDP-11 C contains features and enhancements to the
 C language as it is defined in The C Programming
 Language . Therefore, the Guide to PDP-11 C should be
 used for a full description of PDP-11 C.
 Conventions

 Convention Meaning

 Ctrl/ x The symbol Ctrl/ x , where letter x rep-
 resents a terminal control character, is
 generated by holding down the Ctrl key
 while pressing the key of the specified
 terminal character.
 . . . Horizontal ellipsis indicates that you can
 enter additional parameters, values or
 other information. A comma that pre-
 cedes the ellipsis indicates that successive
 items must be separated by commas.
 .
 .
 .

 A vertical ellipsis indicates that not all of
 the text of a program or program output
 is illustrated. Only relevant material is
 shown in the example.
 [] Brackets usually indicate optional syntax.
 However, brackets that are part of direc-
 tory names and brackets that are used to
 delimit the dimensions of a multidimen-
 sional array in PDP-11 C source code do
 not indicate optional syntax.
 UPPERCASE WORDS Uppercase words and letters in syntax
 formats indicate that you enter the word
 or letter exactly as shown.
 lowercase words Lowercase words or letters in syntax
 formats indicate that you substitute a
 word or value of your choice.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p11.decw$book (3 of 4)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

 boldface Boldface type used in interactive exam-
 ples represents user input. Boldface
 type in the text identifies language
 keywords and the names of PDP-11 C
 Run-Time Library functions.
 italic Italic type is used to identify variable
 names and the names of definition mod-
 ules.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p11.decw$book (4 of 4)1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 1. PDP-11 C Standard Libraries
 This chapter describes the PDP-11 C Standard Library
 functions, which includes those functions specified by the
 ANSI Standard, as well as some extensions to the PDP-11 C
 language.

 To use a library function, the PDP-11 C source program
 should use a #include statement to include the appropriate
 header file that defines the function. A header file contains
 a set of definitions or declarations of related functions, types,
 and macros. To include a header file, use the #include
 preprocessor directive, which generally appears at the
 beginning of the program in the following format:
 #include <filename.h>

 See the Guide to PDP-11 C for more information on the
 #include directive.

 The name of a header file is filename.h. Table 1-1 lists and
 briefly describes the PDP-11 C Standard Library header files.

 Note

 All PDP-11 C header files are source files.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p13.decw$book1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 1.1 The <assert.h> Header File
 The <assert.h> header file defines the macro assert .
 The assert macro puts diagnostics into programs. If the
 argument given to assert evaluates to false (0), the error
 status of the failed call is written, using the implementation-
 defined format, on the standard error file. Then, the abort
 function is called.

 The format for the message output by the assert macro is:
 assert error: expression = <exp>, in file
 <file>, at line <line>

 In this message, <exp> is the text of the argument to assert ,
 <file> is the value of the _ _FILE_ _ preprocessing macro,
 and <line> is the value of the _ _LINE_ _ preprocessing
 macro.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p15.decw$book1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 1.2 The <ctype.h> Header File
 The <ctype.h> header file declares the functions and macros
 used for testing and mapping characters. These functions
 and macros are divided into two classes: character-testing
 and character case-mapping. See Table 3-1 for a list of the
 functions and macros declared in the <ctype.h> header file.

 Character-Testing Functions and Macros
 Character-testing functions take an argument of type int .
 The input value of the character-testing macro must be
 either the value defined as EOF or a value between 0 and
 255. If the value is outside that range, the value returned by
 the character-testing macro is undefined.

 Character-testing macros are defined by including #include
 <ctype.h> in a source file. When the <ctype.h> header
 file is included, the macro form of character-testing and
 mapping is used. To call the function form of the character-
 testing functions, include the header file and use the #undef
 directive to undefine the macro form.

 Although character-testing macros are available as functions,
 it is recommended that the macro versions be used because
 they execute much faster. However, for the locale functions
 to work properly, the function form must be used.

 Character Case-Mapping Functions and Macros
 Character case-mapping functions are defined by putting
 #include <ctype.h> in a source file. The character mapping
 functions take an argument of type int . The input value
 must be either the value defined as EOF or a value between 0
 and 255. If the value is outside that range, the value returned
 for either the character-mapping function or macro is
 undefined.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p16.decw$book1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 1.3 The <errno.h> Header File
 The <errno.h> header file declares the modifiable lvalue,
 errno . At program start-up, errno is initialized to zero.

 Many Standard Library functions deposit a nonzero value
 in errno when an error occurs during the execution of the
 function. If a program deposits a zero in errno before calling
 a Standard Library function, errno can be checked after
 the function completes for a zero value to determine if the
 function completed correctly. The lvalue errno contains a
 zero value if the function has completed correctly; otherwise,
 it contains a nonzero value indicating that an error has
 occurred.

 The <errno.h> header file also defines a number of macros
 which define values that may be placed into errno by
 Standard Library functions.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p17.decw$book1/25/06 3:57 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 1.4 The <float.h> and <limits.h> Header Files
 The <float.h> and <limits.h> header files define a number
 of macros that expand to various limits and parameters.
 The size and a brief description of each macro defined by
 <limits.h> are listed in Table 1-2.

 The characteristics of floating types describe a representation
 of floating-point numbers and values that provide
 information about floating-point arithmetic. Table 1-3
 lists the macros defined by the <float.h> header file, as well
 as a brief description of each macro.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p18.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 1.5 The <locale.h> Header File
 The <locale.h> header file declares two functions, setlocale
 and localeconv , and one type, struct lconv , and defines
 several macros used for setting the character set, collating
 sequence, monetary format, decimal-point character, and
 date and time formats. For more information, refer to
 Chapter 4.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p21.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 1.6 The <math.h> Header File
 The <math.h> header file declares the mathematical
 functions and the macro HUGE_VAL which is the largest
 representable double precision value.

 For each function, a domain error occurs if the input
 argument is outside the domain of the mathematical function.
 The function returns a value of 0 and places the value of the
 macro EDOM in errno .

 The value assigned to HUGE_VAL is equal to the value
 assigned to the macro DBL_MAX .

 A range error occurs if the result of the function cannot
 be represented as a double value. The value of the macro
 HUGE_VAL is returned and the value of errno is set to the
 value of the macro ERANGE .

 If there is an underflow error, the function returns zero and
 errno is set to the value of the macro ERANGE .

 See Table 6-1 for a listing of the functions declared by the
 <math.h> header file.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p22.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 1.7 The <setjmp.h> Header File
 The <setjmp.h> header file declares the type jmp_buf , the
 longjmp function, and the setjmp macro which are used
 to bypass normal function returns and allow an immediate
 return from a nested function call.

 The type jmp_buf is declared as an array of int.
The setjmp macro saves the current context of the function
 in a data area of type jmp_buf and returns a value of zero.
 A call to setjmp can only occur in the context of a test
 of if, switch, and loops, and then only in simple relational
 expressions.

 The longjmp function restores the context saved by the
 setjmp macro. Control appears to transfer from the macro
 setjmp and returns a nonzero value.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p23.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 1.8 The <signal.h> Header File
 The <signal.h> header file declares the functions raise ,
 signal , and _ _sleep , as well as the type and macros that
 handle various conditions that may be reported during the
 execution of a program; these conditions are referred to as
 signals. Table 1-4 lists the signal-handling macros and the
 conditions associated with them.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p24.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 1.9 The <stdarg.h> Header File
 The <stdarg.h> header file declares the type, functions,
 and macros that are used for advancing through a list of
 arguments whose number and types are not known at
 compile time. Table 1-5 lists and briefly describes these
 macros. For more information, refer to the Reference
 Section.

 Chapter 2 of the Guide to PDP-11 C provides an example on
 including the <stdarg.h> header file in a parameter list.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p26.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 1.10 The <stddef.h> Header File
 The <stddef.h> header file contains a number of type and
 macro definitions, many of which are implementation-
 defined. Table 1-6 lists the types and macros that are
 implementation-defined and the definitions assigned to them
 by PDP-11 C.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p28.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 1.11 The <stdio.h> Header File
 The <stdio.h> header file declares three types and several
 macros and functions that perform input and output. This
 includes writing to files, reading from files, opening and
 closing files, and maneuvering in files. For more information
 and a list of these types, functions, and macros, refer to
 Chapter 2.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p30.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 1.12 The <stdlib.h> Header File
 The <stdlib.h> header file defines several macros and
 declares four general utility types and several functions,
 including string conversion, memory management,
 environmental communication, string and sorting utility, and
 multibyte character and string functions. For a list of these
 macros, types, and functions, as well as more information,
 refer to Chapter 5.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p31.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 1.13 The <string.h> Header File
 The <string.h> header file declares several functions and one
 type, size_t . It also defines one macro, NULL , for use as a
 null pointer constant. Table 1-7 lists and briefly describes the
 copy, comparison, search, concatenation, and miscellaneous
 functions.

 For further information on the functions, refer to the
 Reference Section.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p32.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 1.14 The <time.h> Header File
 The <time.h> header file defines two macros, CLOCKS_
 PER_SEC , the value returned by the clock function, and
 NULL . It also declares three types, a structure, and several
 functions for time manipulation.

 The types are:

 .
 clock_t and time_t , arithmetic types representing time
 .
 size_t , the unsigned int result of the operator sizeof .

 The structure declared is tm , which holds the components of
 calendar time, referred to as broken-down time .

 The functions manipulate calendar time, which represents
 the current date according to the Gregorian calendar; local
 time, which represents calendar time expressed for a specific
 time zone; and Daylight Saving Time, which represents a
 temporary change for determining local time. Local time and
 Daylight Saving Time are implementation-defined.

 Table 1-8 lists and briefly describes the date and time
 functions. For more information, refer to the Reference
 Section.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p34.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 2. PDP-11 C Standard Input and Output
 This chapter describes the I/O capabilities of the PDP-11 C
 Standard Libraries. Table 2-1 lists all the I/O functions and
 macros found in the PDP-11 C Run-Time Library. These
 functions and macros are defined in the <stdio.h> header file.
 For more detailed information, see the Reference Section.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p36.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 2.1 Streams and Files
 The PDP-11 C language refers to the logical data path upon
 which standard input/output occurs as a stream. A stream
 is a path from the program to and from the data stored in
 a file. Two types of streams are used in PDP-11 C: text and
 binary.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p38.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 2.1.1 Text and Binary Streams
 The choice between text and binary streams is made when
 the user program opens the file. Certain functions operate
 differently, depending on whether they are used with text or
 binary streams.

 A text stream is an ordered sequence of characters composed
 into lines that allow a C program to create text files that
 are readable by other programs, especially text editors. Each
 line consists of zero or more characters plus a terminating
 newline character. A one-to-one correspondence between
 the characters in the text stream and those in the file is not
 necessary.

 A binary stream maps data one-to-one with the data in the
 file. Although the newline character has meaning for binary
 streams, it must map to one character in the file.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p39.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 2.1.2 Compatibility with VAX C
 VAX C does not distinguish between text and binary streams;
 however:

 .
 All files created by PDP-11 C are read by VAX C with no
 conversion.
 .
 Files created by VAX C are read as binary stream files
 by PDP-11 C with no conversion. However, text files
 created by VAX C must be converted before they are read
 as text files on PDP-11 C.

 For more information on PDP-11 C and VAX C compatibil-
 ity, refer to Appendix A.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p40.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 2.2 Streams and Operating Systems
 Mapping from a PDP-11 C stream to a file system is
 dependent on the following:

 .
 The operating system
 .
 If the stream is text or binary
 .
 If the file exists or is being created
 .
 If the target of the stream is a physical device or a file on
 a supported file system (FCS or RMS)

 The following sections describe how PDP-11 C maps text and
 binary streams to the file types on each operating system.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p41.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 2.2.1 RSX Operating System and Text Files
 On RSX operating systems, when a text stream is mapped
 to a file and the file is being created, PDP-11 C creates a
 sequential file with variable-length record format, implied
 carriage control record attributes, and no defined maximum
 record length.

 PDP-11 C scans the output data for a newline character
 when placing the data to the output text file. All data up to
 but not including the newline character is put in the file as a
 file record. All data after the newline character becomes part
 of the next record. The newline character is never part of the
 file, but it is represented implicitly by the end of each record
 in the file.

 When data is read from an external file, a record is read
 from the file and a newline character is appended to that
 data. PDP-11 C has a default maximum line length of 512
 characters including one for the newline character. The
 PDP-11 C Standard Library places the first 511 characters
 in the file buffer. Additional characters are placed at the
 beginning of the file buffer where they form the characters of
 the next line in the text file.

 The size of the internal buffer, and therefore line size, can
 be modified with the setvbuf function. The modified buffer
 size determines the maximum line length of the PDP-11 C
 program. If the buffer size is not modified by setvbuf , an
 error occurs when the program attempts to read a record
 larger than 511 bytes from a file.

 Before an existing text file can be opened as a text stream,
 the file must be sequential and the record format must be
 variable length. It is not possible to open a relative or indexed
 file or a file with fixed-length records as a text stream using
 the PDP-11 C Standard I/O library.

 If the defined maximum record size or longest record length
 is greater than 511 bytes, PDP-11 C allocates an internal

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p42.decw$book (1 of 2)1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

 buffer size equal to the defined size plus 1 byte for the newline
 character. If the defined maximum record size is less than
 511 bytes and is opened for reading, PDP-11 C allocates
 storage space for the actual length of the record.

 Table 2-2 shows the internal line size allocated when an
 existing file is opened as previously discussed.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p42.decw$book (2 of 2)1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 2.2.2 RSX File Attributes
 Although PDP-11 C Standard I/O allows a program to create
 a sequential file with implicit carriage control, other record
 formats can be read and written when an existing file is
 opened using standard input/output.

 Table 2-3 shows how PDP-11 C interprets different RSX
 record types on existing text streams.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p44.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 2.2.3 RSX Operating System and Binary Files
 When creating a new binary stream file on the RSX
 operating system, PDP-11 C creates a sequential file with
 a fixed record size of 512 bytes. The file has no record
 attributes.

 All data is moved to and from the file in 512-byte increments
 unless the function setvbuf is used to change the internal
 buffer size or a device is being opened. The buffer size for an
 open device is the same as the record size of the device. If the
 last block of the file is not full, NUL characters will be used
 to fill in the block.

 The newline character is represented by a L
 F

 during output to
 all binary files. During input all L
 F

 characters are interpreted
 as newline characters.

 PDP-11 C can open any file as a binary stream.
Any user-accessible device may be opened as a binary file.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p46.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 2.2.4 RSTS/E Operating System and Stream Files
 PDP-11 C uses a RSTS/E-native stream file as the system
 file to map to C streams.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p47.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 2.2.5 RSTS/E Operating System and Text Files
 PDP-11 C creates a RSTS/E-native stream file when it
 creates a text stream file. Newline characters are converted
 to C
 R

 L
 F

 during output, and C
 R

 L
 F

 is converted to a newline
 character during input.

 Additional terminator characters are:

 .
 L
 F

 C
 R

 NUL Translated to a newline character
 .
 L
 F

 Passed unmodified
 .
 F
 F

 Passed unmodified
 .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p48.decw$book (1 of 2)1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

 ESC Passed unmodified
 .
 VT Passed unmodified

 All null characters read from a RSTS/E-native file are
 ignored.

 PDP-11 C opens a RSTS/E-native file when it opens an
 existing file as a text stream or when it opens a text stream
 on a device. There is no restriction on nonrecord-oriented
 devices. Additionally, all RMS files that can be read on RSX
 systems as text files can be opened and read as text files on
 the RSTS/E system.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p48.decw$book (2 of 2)1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 2.2.6 RSTS/E Operating System and Binary Files
 PDP-11 C creates a RSTS/E-native file when it creates a
 binary stream file. The newline character is represented by a
 L
 F

 character on output, and the L
 F

 character is converted to
 a newline character on input.

 Besides supporting RSTS/E-native files as binary input files,
 PDP-11 C allows all RMS files with sequential organization
 and fixed-length records to be opened as a binary stream.
 Refer to Section 2.2.3 for further information on file behavior.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p49.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 2.2.7 RT-11 Operating System and Stream Files
 The RT-11 operating system supports only one file format.
 Although RT-11 has object, stream, save image, and other
 file types , there is no way of determining what the file type is
 by looking at the file or the data in it.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p50.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 2.2.8 RT-11 Operating System and Text Files
 On the RT-11 operating system any file can be opened as
 a text stream. PDP-11 C converts a C
 R

 L
 F

 sequence to a
 newline character. All other characters, except NUL, pass
 unmodified. Ctrl/Z denotes the end of a text file. All null
 characters are ignored.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p51.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 2.2.9 RT-11 Operating System and Binary Files
 All files can be opened as binary streams. PDP-11 C
 represents the newline character as a L
 F

 in the file. The
 L
 F

 is interpreted as a newline character during input. The
 end of the binary file is the physical end of the file.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p52.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 2.3 The <stdio.h> Header
 Table 2-1 lists the functions and macros which the <stdio.h>
 header file declares. For detailed descriptions of the Standard
 I/O functions, refer to the Reference Section.

 The <stdio.h> header file declares two types:

 FILE
 fpos_t

 The PDP-11 C FILE type is a type capable of recording the
 information needed to control a stream. It is declared as an
 incomplete structure. Because only pointers to the object of
 type FILE are used by Standard Library I/O Functions, it is
 not necessary to declare the full contents of the FILE object.
 Access to key elements of this structure may be obtained
 by the _ _fgnm , _ _fger , _ _flun , _ _fbuf , and _ _frec
 functions.

 The PDP-11 C fpos_t type consists of four 16-bit words
 capable of recording the information needed to uniquely
 specify positions within a file.

 The <stdio.h> header defines stderr , stdin , and stdout , which
 point to the FILE objects associated with the standard error
 stream, the standard input stream, and the standard output
 stream, respectively.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p53.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 2.4 Conversion Specifications
 Several Standard I/O functions use conversion characters
 to specify data formats for input and output. Consider the
 following example:
 int x = 5;
 FILE *outfile;
 .
 .
 .
 fprintf(outfile, "The answer is %d.\n", x);

 The decimal value of the variable x replaces the conversion
 specification %d in the string to be written to the file
 associated with the identifier outfile.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p54.decw$book1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 2.4.1 Converting Input Information
 A format specification for the input of information can
 include three kinds of items:

 .
 White-space characters (spaces, tabs, and newlines),
 which match optional white-space characters in the
 input field.
 .
 Ordinary characters (not %), which must match the next
 nonwhite-space character in the input.
 .
 Conversion specifications, which govern the conversion
 of the characters in an input field and their assignment
 to an object indicated by a corresponding input pointer.
 Conversion specifications must begin with the percent
 sign (%).

 Each input pointer is an address expression indicating an
 object whose type matches that of a corresponding conversion
 specification. Conversion specifications form part of the
 format specification. The indicated object is the target that
 receives the input value. There must be as many input
 pointers as there are conversion specifications, and the
 addressed objects must match the types of the conversion
 specifications.

 Table 2-4 describes the conversion specifiers for formatted
 input.

 Refer to Table 2-5 for optional conversion modifiers for
 formatted input.

 Remarks
 .
 The modifiers precede the conversion specification
 characters. For example, when the modification
 character l is added to the conversion specification
 character x, a long integer of the specified radix (lx)

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p55.decw$book (1 of 3)1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

 is expected.
 .
 The delimiters of the input field can be changed with
 the bracket ([]) conversion specification. Otherwise,
 an input field is defined as a string of nonwhite-space
 characters. It extends either to the next white-space
 character or until the field width, if specified, is exhausted.
 The function reads across line and record boundaries,
 since the newline character is a white-space character.
 .
 A call to one of the input conversion functions resumes
 searching immediately after the last character processed
 by a previous call.
 .
 If the assignment-suppression character (
 *

) appears
 in the format specification, no assignment is made. The
 corresponding input field is interpreted and then skipped.
 .
 The arguments must be pointers or other address-valued
 expressions, since C permits only calls by value. To read a
 number in decimal format and assign its value to n, you
 must use the following form:
 scanf("%d", &n)

 not
 scanf("%d", n)
 .
 White space in a format specification matches optional
 white space in the input field. Consider the following
 format specification:
 field = %x

 This format specification matches the following forms:
 field = 5218
 field=5218
 field= 5218
 field =5218

 The format specification does not match the following:
 file d=5218

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p55.decw$book (2 of 3)1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p55.decw$book (3 of 3)1/25/06 3:58 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 2.4.2 Converting Output Information
 The format specification string for the output of information
 may contain the following kinds of items:

 .
 Ordinary characters, which are simply copied to the
 output
 .
 Conversion specifications, each of which causes the
 conversion of a corresponding output source to a
 character string in a particular format

 Table 2-6 describes the conversion specifiers for formatted
 output.

 You can use the characters listed in Table 2-7 between
 the percent sign (%) and the conversion character. These
 characters are optional; if specified, they must occur between
 the percent sign (%) and the conversion specifier.

 Refer to Table 2-8 for descriptions of optional flag characters.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p58.decw$book1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 2.5 The /CP Taskbuilder Switch
 On the RSX operating system, programs that use Standard
 I/O functions must use the /CP taskbuilder switch when
 taskbuilding. This is because the memory management
 functions used by the Standard I/O run-time support routines
 require that the task must be built using the /CP taskbuilder
 switch. For further information, refer to the taskbuilder
 manual for the appropriate operating system.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p62.decw$book1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 2.6 Input/Output Support Package
 PDP-11 C provides support routines which use RMS,
 FCS, and Native I/O to access files when using PDP-11
 C Standard I/O functions. All PDP-11 C tasks that include
 any Standard I/O routines that do input or output include
 support for Native I/O. No user action is required to include
 this support.

 The following table shows the I/O support, the operations
 supported, and the operating system on which they are used:

 Operating
 System Native I/O RMS FCS

 RT All operations N/A N/A
 RSX

 1
 To devices To files To files
 RSTS/E All operations To files N/A

 1
 File deletion and renaming are done using FCS or RMS on RSX.

 The following two sections describe the use of RMS and FCS
 for file input and output.

 RMS for File Input/Output
 The module $PRMXF must be explicitly included in the Task
 Builder .ODL file when tasks are built that use RMS to access
 files through Standard I/O functions. Also, an appropriate
 RMS .ODL must be referenced to include the proper RMS

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p63.decw$book (1 of 2)1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

 support. The following example shows how to build $PRMXF
 and RMS into a task:
 .ROOT USER
 USER: .FCTR SY:TSTREN-LB:[1,1]CFPURSX/LB:$PRMXF-RMSROT-LIBR,RMSALL
 LIBR: .FCTR LB:[1,1]:CFPURSX/LB
 @LB:[1,1]RMS11S
 .END

 FCS for File Input/Output
 The module $PFCXF must be explicitly included in the Task
 Builder .ODL file when tasks are built that use FCS to access
 files through standard I/O functions. The following example
 shows how to build $PFCXF into a task:
 .ROOT USER
 USER: .FCTR SY:TSTREN-LB:[1,1]CFPURSX/LB:$PFCXF-LIBR
 LIBR: .FCTR LB:[1,1]:CFPURSX/LB
 .END

 When including the FCS support package on an RSX
 system, the $PFCXF module allocates enough FCS internal
 storage for three files requiring FCS support to be opened
 concurrently. Should a program require more than three
 FCS files to be opened, it will be necessary for the user to
 increase the size of the $$FSR1 psect. This can be done
 when the task is linked. For more information, see the RSX-
 11M/M-PLUS and Micro /RSX I/O Operations Reference
 Manual .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p63.decw$book (2 of 2)1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 2.7 Reserving LUNs
 When the PDP-11 C Run-Time Library opens a file, it
 allocates one of the Logical Unit Numbers (LUN) available
 to it. By default, a maximum of eight files can be opened
 at once, as indicated by the FOPEN_MAX definition in the
 <stdio.h> header file.

 It is possible for a task to open more than eight files at once
 by patching the symbol $NLUNS to the desired value. Note
 that stdin uses one LUN, while stdout and stderr share
 another. Therefore, if you wanted to have 11 user files at
 once, you need to patch the value 13 into $NLUNS. Do this
 by using the GBLPAT option of the RSX Task Builder or the
 SIPP utility on RT-11.

 When a task is built, the task builder automatically assigns a
 number of LUNs to the task. One LUN is required for every
 file that the program has opened. The number of required
 LUNs is equal to the number of files opened at one time plus
 an additional LUN if standard output is redirected.

 The format of the PDP-11 C Run-Time Library module that
 defines which LUNs are reserved is:
 .TITLE $PRLUN
 $PRLUN::
 .WORD 0 ;Number of "reserve words"
 .END

 The $PRLUN global symbol is the start of the LUN
 reservation table. The first word of the table is the number
 of words that follow in the table. No LUNs are reserved by
 default and the length of the table is zero.

 Reserve words appearing in the table make up the bit vector.
 A bit position in the vector corresponds directly to a LUN
 number. For example, the first reserve word holds bits
 corresponding to LUNs 1 to 16, and the second reserve word
 holds bits corresponding to LUNs 17 to 32. Because no LUNs
 are reserved by default, there are no reserve words in the

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p64.decw$book (1 of 2)1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

 module.

 PDP-11 C provides the user a way to reserve any LUN
 or LUNs by creating a MACRO file to replace the default
 MACRO file included in the task. LUNs are reserved at
 task build time. The following example shows how to reserve
 LUNs 5, 6, and 9 in a MACRO program:
 .TITLE $PRLUN
 $PRLUN::
 .WORD 1 ;Need only 1 reserve word
 .WORD 460 ;Set bits 5, 6, and 9
 .END

 The following example shows how to reserve LUNs 5, 6, and
 9 in a PDP-11 C program:
 #pragma module "$PRLUN", "V01.01"
 const short $PRLUN[2] ={
 1, /* Number of reserve words */
 0460 /* Reserve LUNs 5,6, and 9 */
 };

 Reference can be made to this module in the task's .ODL
 file, through the Task Builder command line, or through the
 Linker command line.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p64.decw$book (2 of 2)1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 2.8 Program Examples
 Example 2-1 shows the printf function.

 The sample output from Example 2-1 is as follows:
 $ run example
 %9.4f: <123345.6000>
 %9f: <123345.600000>
 %9.0f: < 123346>
 %-9.0f: <123346 >
 %11.6e: <1.233456e+05>
 %11e: <1.233456e+05>
 %11.0e: < 1.e+05>
 %-11.0e: <1.e+05 >
 %11g: < 123345>
 %9g: < 123345>
 %d: <67>
 %c: <C>
 %o: <103>
 %x: <43>
 %ld: <-1500000000>
 %lu: <2794967296>
 %lx: <a697d100>
 %s: <thomasina>
 %-9.6s: <thomas >
 %-*.*s: <thoma >
 %6.0s: < >
 $

 Example 2-2 shows the use of the fopen , ftell , sprintf ,
 fputs , fseek , fgets , and fclose functions.

 The sample output to the terminal from Example 2-2 is:
 $ run example
 Data in record 2 is: test data line 2

 The sample output to DATA.DAT from Example 2-2 is:
 test data line 1
 test data line 2
 test data line 3

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p65.decw$book (1 of 2)1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

 test data line 4

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p65.decw$book (2 of 2)1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 3. Character-Handling Functions and Macros
 This chapter describes character-handling functions
 and macros. Table 3-1 lists and briefly describes all the
 character-handling functions and macros contained in the
 PDP-11 C Run-Time Library. These functions and macros
 are defined in the <ctype.h> header file. For more detailed
 information, see the Reference Section.

 Character-handling functions are affected by the currently
 set locale. By default, the C locale is set. See Chapter 4 for
 information on locales.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p68.decw$book1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 3.1 Character-Testing Macros
 In PDP-11 C, the macro version of a function is declared
 in the appropriate header file if a macro version exists. If
 no macro version exists, the function is used. The header
 also declares a prototype for the function and maps it to
 the Run-Time Library (RTL) routine that implements the
 function.

 If the macro exists, using #undef followed by the name of
 the macro ensures that the function is used rather than the
 macro.

 For all macros, a nonzero return value indicates true. A
 return value of 0 indicates false.

 For each character-testing macro, Table 3-2 lists the decimal
 equivalents of the character values which return true for
 each of the PDP-11 C supported locales.

 Example 3-1 shows how to use the character-testing macros.
The sample input and output from Example 3-1 are as
 follows: Ctrl/Z is entered to exit the program.
 $ run example1
 I saw 35 men with mustaches on Christopher Street.
 Ctrl/Z
 Number of letters: 39
 Number of digits: 2
 Number of spaces: 9
 $

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p70.decw$book1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 3.2 Character Case-Mapping Functions and Macros
 The character case-mapping functions and macros perform
 conversions on characters. These functions include toascii ,
 tolower , _tolower , toupper , and _toupper . For more
 information on these functions, see the Reference Section.

 Example 3-2 shows how to use the toupper and tolower
 functions.

 Sample input and output from Example 3-2 are as follows:
 Ctrl/Z is entered to exit the program.
 $ run example2
 LET'S GO TO THE stonewall INN.Ctrl/Z
 let's go to the STONEWALL inn.
 $

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p73.decw$book1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 4. Localization Functions and Macros
 This chapter describes the localization functions and macros
 supported by PDP-11 C. Localization means providing
 support for displaying data in formats used by various
 countries, reflecting differences in language and convention.

 The header file for the localization is <locale.h>. The
 <locale.h> header file declares one type and two functions.
 It also defines several macros used for setting the character
 set, collating sequence, monetary format, decimal-point
 character, and date and time formats.

 PDP-11 C, through the appropriately formatted strftime
 function, supports the following date formats:

 .
 ISO format: 1992-02-10
 .
 Customary Central European and British format:
 10.02.92
 .
 Customary United States format: 02/10/92
 .
 Julian date: 92041
 .
 Airline format 22NOV90

 The following code fragment shows how to place the current
 Julian date into a character array named date.
 #include <time.h>
 #define longest_date_length 11
 #define julian_length 6
 .
 .
 .
 char date[longest_date_length];
 time_t t0;
 t0 = time(NULL);
 .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p75.decw$book (1 of 2)1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

 .
 .
 strftime(date, julian_length, "%y%j", localtime(&t0));
 .
 .
 .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p75.decw$book (2 of 2)1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 4.1 The lconv Type
 The <locale.h> header file declares one type, lconv , which is
 defined as follows:
 struct lconv
 {
 char *decimal_point; /* "." */
 char *thousands_sep; /* "" */
 char *grouping; /* "" */
 char *int_curr_symbol; /* "" */
 char *currency_symbol; /* "" */
 char *mon_decimal_point; /* "" */
 char *mon_thousands_sep; /* "" */
 char *mon_grouping; /* "" */
 char *positive_sign; /* "" */
 char *negative_sign; /* "" */
 char int_frac_digits; /* CHAR_MAX */
 char frac_digits; /* CHAR_MAX */
 char p_cs_precedes; /* CHAR_MAX */
 char p_sep_by_space; /* CHAR_MAX */
 char n_cs_precedes; /* CHAR_MAX */
 char n_sep_by_space; /* CHAR_MAX */
 char p_sign_posn; /* CHAR_MAX */
 char n_sign_posn; /* CHAR_MAX */
 };

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p76.decw$book1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 4.2 The setlocale Function
 The setlocale function specifies the indicated character
 set, collating sequence, monetary format, decimal-point
 character, and time and date format in the run-time
 environment.

 The setlocale function takes two arguments. The first
 argument specifies the category. There are six possible values
 for this argument:

 LC_ALL Indicates all portions of the locale are affected.
 LC_COLLATE Indicates only the collation sequence is af-
 fected.
 LC_CTYPE Indicates only the character set is affected.
 LC_MONETARY Indicates only the monetary formations are
 affected.
 LC_NUMERIC Indicates only the numeric formations are
 affected.
 LC_TIME Indicates only the time is affected.

 The second argument is a character string that specifies the
 character set for the first argument.

 If fewer locale names are supplied than called for by the
 first argument to setlocale , or if a locale is not supported,
 the default locale for the class is used. If more than five
 character set names are supplied, the additional names are
 ignored. If none of the requested locales are supported by the
 running task, the setlocale function will return NULL.

 The following example uses the German collating sequence
 and the Digital Multinational character set:
 setlocale(LC_ALL, "german,dec_mcs")

 To inquire about a locale, you can pass a null pointer as the
 second argument to the setlocale function. The name of the
 current locale for the class indicated by the first argument is
 returned. For example, if the first argument is LC_ALL, the
 name of each locale is returned in the following order:

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p77.decw$book (1 of 2)1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

 .
 Collating sequence
 .
 Character set
 .
 Numeric format
 .
 Monetary format
 .
 Time

 The following tables indicate the locales and locale types
 supported by PDP-11 C.

 .
 Table 4-1 lists the character-set and collating sequence
 locales.
 .
 Table 4-2 lists the monetary and numeric format locales.
 .
 Table 4-3 lists the time locales.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p77.decw$book (2 of 2)1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 4.3 The localeconv Function
 The localeconv function sets the appropriate values for
 formatting monetary quantities as controlled by the current
 locale.

 For a more detailed description of the localeconv function,
 refer to the Reference Section.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p81.decw$book1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 4.4 Including Run-time Support for setlocale Function
 Support for the various locales is not automatically included
 in the user task. In order to include this support, the user
 must, at taskbuild or link time, name the modules required
 by the running task.

 An example is a task that requires support for the German
 character types and support for the French monetary and
 time locales. At taskbuild time, you must refer directly to the
 three modules providing this support. The module names
 are C$GETY for German character types, C$FRTM for the
 French time locale, and C$FRMF for the French monetary
 locale. On RSX or RSTS systems, you can reference these
 names in a taskbuild in the following way:
 > tkb
 TKB> usrtsk/cp=usrtsk
 TKB> lb:[1,1]cfpursx/lb:c$gety:c$frmf:c$frtm
 TKB> lb:[1,1]cfpursx/lb
 TKB> //

 Under RT-11, the global symbols C$GETY, C$FRTM, and
 C$FRMF will be found in the previously named modules
 allowing the following LINK command to include the needed
 locale support:
 . link/include/stack:1100/bot:1100 usrtsk,cfpurtl
 Library search? c$gety
 Library search? c$frtm
 Library search? c$frmf
 Library search?
 .

 RT-11 Link

 Please observe that the stack and bottom settings
 given in the RT-11 LINK example are the minimum
 required by a PDP-11 C task which includes standard
 I/O.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p82.decw$book (1 of 2)1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

 In this way, you can specify the particular setlocale support
 required by a task without including any locales that are not
 required (except perhaps the default C locale).

 A complete list of supported locales, and the module names
 associated with those locales, may be found in Table 4-1,
 Table 4-2, and Table 4-3.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p82.decw$book (2 of 2)1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 5. General Utility Functions
 This chapter lists and briefly describes string conversion,
 memory management, environment communication,
 search and sort, integer arithmetic, pseudorandom sequence
 generation, and multibyte character and string functions.
 Table 5-1 lists and describes the general utility functions
 supported by PDP-11 C. These functions are defined in the
 <stdlib.h> header file. For more detailed information, see the
 Reference Section.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p83.decw$book1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 5.1 String Conversion Functions
 The string conversion functions convert strings to numeric
 values. PDP-11 C supports the following string conversion
 functions: atof , atoi , atol , strtod , strtol , and strtoul .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p85.decw$book1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 5.2 Pseudorandom Sequence Generation
 The pseudorandom sequence generation functions generate
 numbers in a sequence which appears random. PDP-11 C
 supports the following pseudorandom sequence generation
 functions: rand and srand .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p86.decw$book1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 5.3 Memory Management Functions
 The PDP-11 C memory management functions allocate
 memory space, free previously allocated memory space,
 and change the size of a previously allocated memory area.
 The following memory allocation functions are supported by
 PDP-11 C: calloc , malloc , realloc , and free .

 The order and contiguity of storage allocation is unspecified
 when successive calls to the calloc , malloc , and realloc
 functions are made. If space can be allocated, the pointer
 points to the lowest byte address of the allocated space. If
 space cannot be allocated, a NULL pointer is returned. Each
 pointer is aligned on an int boundary. PDP-11 C returns a
 NULL pointer when a request is made for an allocation of
 memory space of 0 bytes.

 The memory management functions that allocate memory
 space round the requested memory size to a size that is
 divisible by 4 bytes. The function call malloc (6) will actually
 return a pointer to an area of memory that is 8 bytes long.

 On the RSX and RSTS/E operating systems and their
 derivatives, programs must be linked using the /CP
 taskbuilder switch. For general information on the
 taskbuilder switch, refer to the taskbuilder manual for the
 appropriate operating system.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p87.decw$book1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 5.3.1 The calloc Function
 The calloc function obtains blocks of memory space to satisfy
 the space requirement of an array of n objects each the
 specified size of each item. If the request cannot be satisfied,
 NULL is returned. If the memory can be allocated, calloc
 initializes the memory to all bits zero.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p88.decw$book1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 5.3.2 The malloc Function
 The malloc function allocates memory space for an object
 whose size is specified. If the request cannot be satisfied,
 NULL is returned. The memory allocated is not initialized.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p89.decw$book1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 5.3.3 The realloc Function
 The realloc function changes the size of an object.

 If the first argument to realloc is not a pointer returned
 by the previous call to the calloc , malloc , or realloc
 functions, or if it points to memory previously freed by the
 free function, a NULL pointer is returned. In the latter case,
 realloc behaves the same as malloc .

 If the request cannot be satisfied, NULL is returned. If the
 size of requested memory is greater than the size of the
 original object, the object may be moved, and the original
 object is no longer valid.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p90.decw$book1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 5.3.4 The free Function
 In PDP-11 C the free function frees space previously
 allocated by the calloc , malloc , or realloc functions.

 If the argument to free is a NULL pointer or if it does not
 point to space previously allocated by the calloc , malloc , or
 realloc functions, no action is taken.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p91.decw$book1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 5.3.5 Program Example
 Example 5-1 shows the use of the malloc , free , and calloc
 functions.

 The sample input and output for Example 5-1 is as follows:
 $ run example
 Type text - terminate with Ctrl/Z
 line one
 line two
 Ctrl/Z
 EXIT
 line one
 line two
 $

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p92.decw$book1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 5.4 Environmental Communication Functions
 The environmental communication functions communicate
 with the host environment to terminate a process, register
 a function to be called at program termination, search the
 environment array for the current process information, and
 pass a given string to the host environment to be executed by
 the host environment's command interpreter.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p94.decw$book1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 5.4.1 The abort and exit Functions
 The abort function causes abnormal termination of the
 program. It returns the value EXIT_FAILURE to the
 operating system unless the signal SIGABRT is caught and
 the signal handler does not return. PDP-11 C attempts to
 flush any buffers and closes any open standard input/output
 files. Note that abort will never return to the function that
 called it.

 The implementation-defined forms of successful and
 unsuccessful termination for the exit function are the values
 EXIT_FAILURE and EXIT_SUCCESS. The exit function
 calls all functions registered by the atexit function in the
 reverse order of their registration.

 The exit function causes normal termination of the program
 and returns a value to the operating system. PDP-11 C
 flushes any buffers and closes any open standard input/output
 files.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p95.decw$book1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 5.4.2 The getenv Function
 The getenv function searches an implementation-defined
 environment list for a string that matches a string pointed
 to by the argument name . The PDP-11 C environment
 list is provided by the host environment. The PDP-11
 C environment list for the getenv function is shown in
 Table 5-2.

 The Example 5-2 shows how to use the getenv function.
The sample input and output for Example 5-2 is as follows:
 $ run getenv
 getenv ("HOME") is DU2:[30,41]
 getenv ("TERM") is VT2XX
 getenv ("PATH") is DU2:[30,41]
 getenv ("USER") is [30,41]
 getenv ("OPSYS") is RSX-11M PLUS
 $

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p96.decw$book1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 5.4.3 The system Function
 The system function returns 1 when called with a NULL
 argument in the RSX execution environment, which
 indicates that the function is supported on the RSX operating
 system. When the system function is called with a nonnull
 argument, it passes the specified string to the current
 command line interpreter, waits for the command to be
 executed, and returns the value returned by the command.

 Passing a command to a command line interpreter is
 not available on RSTS/E and RT-11 operating systems.
 If the execution environment is RSTS/E or RT-11, the
 system function always returns 0, indicating that passing a
 command to a command line interpreter is available on these
 operating systems.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p99.decw$book1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 5.5 Search and Sort Functions
 The search and sort functions and macros search an array
 for a specified object and sort an array of objects. PDP-11 C
 supports the following search and sort functions: bsearch
 and qsort .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p100.decw$book1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 5.6 Integer Arithmetic Functions
 The integer arithmetic functions and macros return the
 absolute value of an integer or long integer, and return the
 quotient and remainder of a division. PDP-11 C supports
 the following integer arithmetic functions: abs , div , ldiv , and
 labs.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p101.decw$book1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 5.7 Multibyte Character and String Functions
 The multibyte character and string functions and macros
 determine the number of bytes in a multibyte character
 or the number of bytes needed to represent the multibyte
 character. They also convert a sequence of multibyte
 characters to a sequence of corresponding code or convert
 a sequence of code to corresponding multibyte characters.
 PDP-11 C supports the following multibyte character and
 string functions: mblen , mbtowc , mbstowcs , wcstombs ,
 and wctomb . PDP-11 C also contains a set of functions that
 allows you to copy buffers containing binary data. Note that
 PDP-11 C multibyte characters are one byte long. For more
 detailed information on the functions that access binary data,
 refer to the Reference Section.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p102.decw$book1/25/06 3:59 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 6. Math Functions
 This chapter summarizes all the math functions contained
 in the PDP-11 C Run-Time Library. These functions,
 which are defined in the <math.h> header file, are listed
 in Table 6-1. For more detailed information, refer to the
 Reference Section.

 To help you detect run-time errors, the <errno.h> header file
 defines the following two symbolic values that are returned
 by many (but not all) of the math functions:

 .
 EDOM indicates that an argument is inappropriate; that
 is, the argument is not within the function's domain. The
 return value is 0.
 .
 ERANGE indicates that a result is out of range; that is,
 the argument is too large or too small to be represented
 by the machine. The return value for overflow is the
 value of the macro HUGE_VAL . An underflow returns
 a value of 0. PDP-11 C sets the value of the expression
 errno to the value of the macro ERANGE.

 The <errno.h> header file also defines the variable errno .
 When using the math functions, check the external variable
 errno for either or both of these values, and take the
 appropriate action if an error occurs.

 In Example 6-1, the program example checks the variable
 errno for the value EDOM, which indicates that a negative
 number was specified as input to the function sqrt .

 Because the sqrt function returns a 0 when a negative
 number is passed, always check the value of errno against
 the symbolic value of EDOM to ensure that you do not get
 any unpredictable results.

 To test for errors, set errno to zero before several operators
 and then test it at the end to see if any operations failed. The

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p103.decw$book (1 of 2)1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

 variable errno is unchanged if there are no errors.

 Example 6-2 shows the functionality of the tan , sin , and cos
 functions.

 The sample output from Example 6-2 is as follows:
 $ run example
 tan of 0.0 = 0.00 0.00
 tan of 0.1 = 0.10 0.10
 tan of 0.2 = 0.20 0.20
 tan of 0.3 = 0.31 0.31
 tan of 0.4 = 0.42 0.42
 tan of 0.5 = 0.55 0.55
 tan of 0.6 = 0.68 0.68
 tan of 0.7 = 0.84 0.84
 tan of 0.8 = 1.03 1.03
 tan of 0.9 = 1.26 1.26
 tan of 1.0 = 1.56 1.56
 tan of 1.1 = 1.96 1.96
 tan of 1.2 = 2.57 2.57
 tan of 1.3 = 3.60 3.60
 tan of 1.4 = 5.80 5.80
 $

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p103.decw$book (2 of 2)1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 7. Using PDP-11 C with Record Management
 Services
 This chapter describes how to use Record Management
 Services (RMS) from PDP-11 C programs. Table 7-1 lists
 and briefly describes the PDP-11 C RMS operation macros.
 Each of these macros are described in the RMS Extension
 Library Macros subsection in the Reference Section of this
 manual. Knowledge of Macro-11 and RMS-11 is assumed.
 For more information refer to the RSX-11M/M-PLUS
 RMS-11 Macro Programmer's Guide . Note that RMS is not
 supported on the RT-11 operating system.

 Introduction to RMS-11
 PDP-11 C provides a set of Run-Time Library functions
 to perform I/O. Some of these functions perform in the
 same manner as I/O functions found on C implementations
 running on UNIX systems.

 The PDP-11 C Run-Time Library routines use RMS or
 File Control Services (FCS) to perform I/O; however, RMS-
 11 may be accessed directly. This chapter introduces the
 following RMS topics:

 .
 RMS functions
 .
 PDP-11 C RMS header files
 .
 PDP-11 C and RMS
 .
 RMS example program

 This chapter briefly reviews the basic concepts and facilities of
 RMS and shows examples of their application in PDP-11 C
 programming. Because this is an overview, the chapter does
 not explain all RMS concepts and features. For language-
 independent information concerning RMS, refer to the
 RSX-11M/M-PLUS RMS-11 Macro Programmer's Guide .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p107.decw$book1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 7.1 RMS Functions
 RMS provides a number of functions that create and
 manipulate files. These functions use RMS data structures
 to define the characteristics of a file and its records. The
 data structures thus are used as indirect arguments to the
 function call.

 The RMS data structures are grouped into four main
 categories, as follows:

 .
 File access block (FAB)

 Defines the file's characteristics, such as file organization
 and record format.
 .
 Record access block (RAB)

 Defines the way in which records are processed, such as
 the record access mode.
 .
 Extended attribute block (XAB)

 Various kinds of extended attribute blocks contain
 additional file characteristics, such as the definition of
 keys in an indexed file. Extended attribute blocks are
 optional.
 .
 Name block (NAM)

 Defines all or part of a file specification to be used when
 an incomplete file specification is given in an OPEN or
 CREATE operation. Name blocks are optional.

 RMS uses these data structures to perform file and record
 operations. Table 7-2 lists some of the common functions.

 All RMS functions are directly accessible from PDP-11 C
 programs by the FORTRAN calling mechanism. The syntax

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p109.decw$book (1 of 2)1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

 for any RMS function is:
 RMS$<operation>

 Use this format for VAX C compatibility
 sys$<operation>

 These two symbols are defined in the <rmsops.h> header file.
In this syntax, <operation> corresponds to the name of the
 RMS function (such as OPEN or CREATE).

 The operations require arguments as described in the RSX-
 11M/M-PLUS RMS-11 Macro Programmer's Guide . In
 general, the address of a FAB is required, but there may be
 additional or optional arguments. The following is a syntax
 example:
 RMS$CREATE (fab);

 Note that these syntax descriptions do not show all the
 options available when you invoke an RMS function. For a
 complete description of the RMS calling sequence, refer to the
 RSX-11M/M-PLUS RMS-11 Macro Programmer's Guide .

 All RMS functions are declared as type void . They do not
 return a value.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p109.decw$book (2 of 2)1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 7.2 PDP-11 C and RMS Header Files
 The following section describes the nine header files supported
 by the PDP-11 C RMS Extension Library. The PDP-11 C
 RMS Extension Library header files functionally replace the
 RMS-11 macros used by MACRO-11 programmers. Before
 one of the PDP-11 C macros is used, the appropriate header
 file must be included by using the #include preprocessing
 directive. It is also possible to declare and initialize RMS
 data structures by using the static or extern storage class
 explicitly at compile time.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p111.decw$book1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 7.2.1 The <rms.h> Header
 The <rms.h> header file includes all of the PDP-11 C RMS
 header files supplied by the PDP-11 C RMS Extension
 Library except the <rmsorg.h> and <rmspoo.h> files.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p112.decw$book1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 7.2.2 The <rmsops.h> Header
 The <rmsops.h> provides functional prototyping of each RMS
 operation routine. Additionally it defines the sys$<operation>
 names used by VAX C to the RMS operation names used by
 PDP-11 C.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p113.decw$book1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 7.2.3 The <fab.h>, <nam.h>, <rab.h>, and <xab.h> Headers
 Control blocks are defined as structures in the header files.
 Including the header files <fab.h>, <rab.h>, <nam.h>, and
 <xab.h> defines the control blocks.

 The <fab.h>, <nam.h>, <rab.h>, and <xab.h> header files
 define RMS data structures and struct definitions including
 bit mask and offsets. The following examples define an offset
 and a bit mask:
 #define FAB$B_BID (00) /
 *

 0$BID
 *

 /

 The offset into the FAB data structure of the BID field is
 defined as 0.
 #define FAB$C_BLN (0120) /
 *

 FB$BLN FAB Length (bytes)
 *

 /

 The BLN bit mask of the FAB data structure is defined to
 have a constant data field size of 0120.

 Declaring and initializing control blocks with a combination
 of default values and selected values can be done at compile
 time or at run time.

 7.2.3.1 Declaring and Initializing Control Blocks at Compile Time
 At compile time, space for the control blocks can be allocated,
 and they can be initialized and declared at this time as well.

 The following example shows how to allocate space for the

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p114.decw$book (1 of 4)1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

 control blocks The second example shows how to declare
 and initialize the control blocks manually. In both examples,
 <class> may be extern or static .

 Example 1:
 <class> struct FAB fab; /* declare a FAB */
 <class> struct S_RAB s_rab; /* declare a synchronous RAB */
 <class> struct A-RAB a_rab; /* declare an asynchronous RAB */
 <class> struct NAM nam; /* declare an NAM XAB */
 <class> struct XABALL all; /* declare an ALL XAB */
 <class> struct XABDAT dat; /* declare a DAT XAB */
 <class> struct XEBEC key; /* declare a KEY XAB */
 <class> struct XABPRO pro; /* declare a PRO XAB */

 Example 2:
 <class> struct XABPRO proxab = {
 XAB$C_PRO, /* O$COD field */
 XAB$C_PROLEN, /* O$BLN field */
 &sumxab, /* O$NXT field */
 20, /* O$PRG field */
 30, /* O$PRJ field */
 255, /* O$PRO field */
 };

 7.2.3.2 Declaring and Initializing Control Blocks at Compile Time with
 Default Values
 To declare and initialize a control block at compile time with
 default values, define the symbol RMSxxx$PROTOTYPE and
 include the appropriate header file, where xxx describes the
 block type. The control block is initialized to default values
 and included in the task. The block is accessed by using
 cc$rms_xxx, where _xxx is the structure to be defined.

 The following example shows how to declare and initialize the
 FAB with default values and selected values prior to including
 the appropriate header file:
 #define RMS_FAB$PROTOTYPE /* Declares cc$rms_fab */
 #include <fab.h> /* Declares cc$rms_fab as default FAB */
 #include <string.h>
 main ()
 {
 struct FAB myfab; /* Declares storage for FAB */
 myfab = cc$rms_fab; /* Copies default values */

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p114.decw$book (2 of 4)1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

 myfab.fab$b_org = FAB$C_REL; /* Sets to relative org */
 myfab.fab$b_lch = 2; /* Uses channel 2 */
 }

 Table 7-3 lists and describes the control block types, which
 may be defined in this manner.

 7.2.3.3 Setting Control Block Fields
 Data fields may be accessed directly and their contents may
 be changed by using PDP-11 C language constructs. The
 following example shows how to set the control block fields:
 #include <rms.h>
 main ()
 {
 struct FAB fabblk; /* Declares a FAB */
 struct S_RAB rabblk; /* Declares a synchronous RAB */
 struct NAM namblk; /* Declares a NAM */
 long alqval;
 short rszsav;
 fabblk.fab$b_bid = FAB$C_BID; /* Copy value from specified field */
 fabblk.fab$l_nam = &namblk; /* Copy value from specified field */
 fabblk.fab$l_alq = alqval; /* Copy value from specified field */
 fabblk.fab$w_fop |= FAB$M_RWC; /* Set bits in 1-byte or 1-word field */
 fabblk.fab$w_fop &= FAB$M_RWC; /* Clear bits in 1-byte or 1-word field */
 alqval = fabblk.fab$l_alq; /* Copy from field to specified location */
 if (rabblk.rab$w_rsz == rszsav) /* Compare field value to specified value */
 { /* Code is executed if true
 .
 .
 . */
 }
 else
 { /* Code is executed if false
 .
 .
 . */
 }
 if (fabblk.fab$b_dev & FAB$M_TRM)/* Are specified bits in field set? */
 { /* Code is executed if true
 .
 .
 . */
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p114.decw$book (3 of 4)1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

 else
 { /* Code is executed if false
 .
 .
 . */
 }
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p114.decw$book (4 of 4)1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 7.2.4 The <rmsdef.h> Header
 The <rmsdef.h> header file defines and declares the values
 defined by the RMS-11 macro, $RMSTAT. This macro
 defines RMS-11 success and error values. The following
 examples show how the bit masks for error codes and success
 codes are defined:

 Error
 #define RMS$_FLD (0xx) /* Comment */
 #define RMS$_CCR (0177340) /* Can't connect RAB */

 The value is octal and enclosed in parentheses.
Success
 #define RMS$SU_FLD (0xx) /* Comment */
 #define RMS$_SUC (01) /* Operation succeeded */

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p116.decw$book1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 7.3 Declaring RMS-11 Facilities
 The <rmsorg.h> header file contains the C language
 statements for including support of the various operations on
 file organizations within the proper PSECTs. The following
 example shows how to define the organization and operation:
 #define RMSORG<org>$<operation>

 In this syntax, $<org> is one of the following:

 IDX Indexed file organization
 DIR Direct file organization
 REL Relative file organization
 SEQ Sequential file organization

 The $<operation> is one of the following:

 CRE CREATE operation
 DEL DELETE operation
 FIN FIND operation
 GET GET operation
 PUT PUT operation
 UPD UPDATE operation

 The file organization and the operation must be defined before
 including the <rmsorg.h> header file. The code for defining
 the RMS facilities is supported by the RMSORG.C file. If you
 include the source code from this file in the C program, the
 file organizations and operations you do not use can be deleted
 or commented out.

 The following example shows how to define a DELETE
 operation for an indexed file, a GET operation for a relative
 file, and a FIND operation for a sequential file:
 #define RMSORGIDX$DEL /* Index file organization, DELETE operation */
 #define RMSORGREL$GET /* Relative file organization, GET operation */
 #define RMSORGSEQ$FIND /* Sequential file organization, FIND operation */
 #include <rmsorg.h>

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p117.decw$book1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 7.4 Defining Pool Space
 The <rmspoo.h> header file contains the C language
 statements for allocating space for the various pools within
 the proper PSECTs. The code for defining pool space is
 supported by the RMSPOO.C file.

 Table 7-4 list the PDP-11 C equivalents of the RMS-11
 macros for defining pool space.

 Pool space must be defined before including the <rmspoo.h>
 header file. The following is an example of defining pool
 space:
 #define RMSPFAB <fabcount>
 #define RMSPIDX <indexcount>
 #define RMSPRAB <rabcount>
 #define RMSPRABK <keysize>
 #define RMSPRABC <keychanges>
 #define RMSPBUF <bufcount>
 #define RMSPBDB <bdbcount>
 #include <RMSPOO.H>

 For further information, refer to the RSX-11M/M-PLUS
 RMS-11 Macro Programmer's Guide .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p118.decw$book1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 7.5 Calling Operation Macros
 Each RMS operation macro has two equivalent macros in the
 PDP-11 C RMS Extension Library. They are RMS$NAME
 and sys$name, where NAME (or name) is the name of the
 operation macro called.

 With the exception of RMS$RENAME and RMS$WAIT, all
 operation macros take three arguments:

 .
 The address of a FAB or RAB
 .
 The address of an error handler for the operation
 .
 The address of a success handler for the operation

 The error and success handlers are optional. If the handlers
 are not desired, simply omit them or pass -1 to indicate that
 no handler is used.

 The RMS$RENAME macro takes a fourth argument: the
 address of a FAB for the new file specification. The first
 argument is the address of a FAB for the old file specification.

 The RMS$WAIT macro takes only one argument: the
 address of the RAB for the operation.

 The following example shows how to call operation macros:
 #include <fab.h>
 #include <rab.h>
 #include <rmsops.h>
 struct FAB onefab;
 struct FAB anotherfab;
 struct S_RAB arab;
 short bdbcount;
 void errh();
 void succh();
 RMS$CREATE (&onefab);
 RMS$OPEN (&anotherfab,errh,succh);

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p120.decw$book (1 of 2)1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

 RMS$RENAME (&onefab,(void (*)())-1, void (*)())-1,&anotherfab);
 RMS$WAIT (&arab);

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p120.decw$book (2 of 2)1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 7.6 Writing Completion Handlers
 Completion handlers are routines that may be called at the
 completion of an RMS operation. They may be specified
 to be invoked upon successful completion of the operation,
 unsuccessful completion of the operation, or both. The
 completion handlers may be written in either Macro-11 or
 C. If the routine is written in C, the fortran calling sequence
 must be specified in the function declaration of the completion
 routine. When the completion handler is called, the four
 arguments to the function are:

 1. The address of the RAB or FAB
 2. The address of the error handler
 3. The address of the success handler
 4. The address of the new FAB if RMS$RENAME is called

 The following example shows how to write a completion
 routine:
 #include <stdio.h>
 #include <fab.h>
 #pragma linkage fortran rmscmp
 void rmscmp (struct FAB *fab,
 void (*perrh)(), /* Error address */
 void (*psuch)(), /* Success address */
 struct FAB *newfab)
 {
 printf ("The RMS STV field is %d\n", fab->fab$w_stv);
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p121.decw$book1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 7.7 Using Get-Space Routines
 The following sections explain how to use the get-space
 routines. The PDP-11 C jacket routine, C$RHLP, calls the
 specified user-provided get-space routine.

 The first section describes the RMS$GETGSA$ routine,
 which returns the address of the getspace function. The
 second section describes the RMS$SETGSA$ function,
 which places the address of the argument's function into
 the PDP-11 C OTS work area. The third section describes
 the parameter passing, which would normally be passed by
 R0, R1, and R2 in a standard RMS call to a user-defined
 get-space routine.

 For additional information, refer to the RSX-11M/M-PLUS
 RMS-11 Macro Programmer's Guide .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p122.decw$book1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 7.7.1 The RMS$GETGSA$ Routine
 The RMS$GETGSA$ routine returns the address of the
 getspace function that is placed in the PDP-11 C OTS work
 area by RMS$SETGSA. Consider the following example:
 #include <rmsops.h>
 short (*getspace) ();
 getspace = RMS$GETGSA$;

 The difference between RMS$GETGSA$ and a direct call to
 the MACRO-11 $GETGSA macro is that $GETGSA returns
 the address of the jacket routine C$RHLP; RMS$GETGSA$
 returns the address of the getspace function placed in the
 OTS work area by the RMS$SETGSA$ macro.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p123.decw$book1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 7.7.2 The RMS$SETGSA$ Macro
 The RMS$SETGSA$ macro places the address of the
 argument's function into the PDP-11 C OTS work area,
 making that routine the one used by RMS-11 to get
 additional space. The following example shows how to use the
 RMS$SETGSA$ macro:
 #include <rmsops.h>
 short getspace();
 short (*pGetspace) ();
 pGetspace = getspace;
 RMS$SETGSA$(pGetspace)

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p124.decw$book1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 7.7.3 Receiving Parameters Passed by R0, R1, and R2
 During an RMSGSA or RMS$SETGSA$ Macro
 The PDP-11 C jacket routine, C$RHLP, calls the get-space
 routine specified by either an RMSGSA or RMS$SETGSA$
 call. When the routine is called, it passes the three
 parameters, which are normally passed by R0, R1, and
 R2 during the RMS$GETGSA$ call, to a user-defined get-
 space routine. The get-space routine must return a pointer
 to a short. If the space allocation is successful, the address
 of the first allocated word should be returned. If the space
 allocation fails, a zero should be returned. Example 7-1
 shows how to receive the parameters passed by R0, R1, and
 R2 and how to use a get-space routine which allows RMS
 to use the PDP-11 C malloc and free functions to get and
 release space.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p125.decw$book1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 7.8 Using PDP-11 C to Write RMS Programs
 PDP-11 C supplies a number of headers that describe the
 RMS data structures and status codes. Table 7-5 lists the
 structure tags, which are defined by the header files, the
 header files, and a description.

 These header files define all the RMS data structures as
 structure tag names. However, they perform no allocation
 or initialization of the structures; these modules describe only
 a template for the structures. To use the structures, you
 must create storage for them and initialize all the structure
 members as required by RMS-11. Note that these header
 files are part of the PDP-11 C RMS-11 RMS Extension
 Library.

 RMS can be used in programs which use PDP-11 C
 Standard Library I/O functions; however, you must reserve
 the ones used in accessing RMS directly. Refer to Section 2.7
 for information on reserving LUNs.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p127.decw$book1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 7.9 RMS Example Program
 The example program in this section uses RMS functions
 to maintain a simple employee file. The file is an indexed
 file with two keys: social security number and last name.
 The fields in the record are character strings defined in a
 structure with the tag record.

 The records have the carriage-return attribute. Individual
 fields in each record are padded with blanks for two reasons.
 First, key fields must be padded in some way; RMS does
 not understand PDP-11 C strings with the trailing NUL
 character. Second, the choice of blank padding as opposed to
 NUL padding allows the file to be printed or typed without
 conversion.

 The program does not perform range or bounds checking.
 Only the error checking that shows the mapping of PDP-11
 C to RMS is performed. Any other errors are considered to
 be fatal.

 The program is divided into the following sections:

 .
 External data declarations and definitions
 .
 Main program section
 .
 Function to initialize the RMS data structures
 .
 Internal functions to open the file, display HELP
 information, pad the records, and process fatal errors
 .
 Utility functions

 - ADD
 - DELETE
 - TYPE
 - PRINT
 - UPDATE

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p129.decw$book (1 of 8)1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

 The complete (by section) example program follows. Notes
 on each section are keyed to the numbers at the left of the
 listing. Example 7-2 shows the external data declarations
 and definitions.

 For information on linking and compiling a PDP-11 C
 program, refer to the Guide to PDP-11 C .

 Key to Example 7-2:

 1 The default FAB, RAB, and KEY data structures are
 brought into the task by defining them before including
 the <rms.h> header file. The RMSORGIDX$xxx
 symbols are defined before <rmsorg.h>.
 2 The <rms.h> header file defines the RMS data structures.
 The <rmsorg.h> header file defines the RMS support that
 is needed. <stdio.h>, <string.h>, and <stlib.h> header files
 contain the definitions for Standard I/O, string functions,
 and common use functions.
 3 Preprocessor variables and macros are defined. A default
 file RMS Extension .DAT is defined.

 The sizes of the fields in the record are also defined. Some
 (such as the social security number field) are given a
 constant length. Others (such as the record size) are
 defined as macros; the size of the field is determined
 with the sizeof operator. PDP-11 C evaluates constant
 expressions, such as KEY_SIZE, at compile time. No
 special code is necessary to calculate this value.
 4 Static storage for the RMS data structures is declared.
 The file access block, record access block, and extended
 attribute block types are defined by the <rms.h> header
 file. One extended attribute block is defined for the
 primary key and one is defined for the alternate key.
 5 The records in the file are defined by using a structure
 with four fields of character arrays.
 6 The BUFSIZ constant defines the size of the array that
 will be used to buffer input from the terminal. The
 filename variable is defined as a pointer to type char .
 7 The variable rms_status is used to receive RMS return
 status information. After each RMS function call, the
 status of the operation is obtained from the STS field of

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p129.decw$book (2 of 8)1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

 the FAB or RAB. This status is used to check for specific
 errors, end-of-file, or successful program execution.
 8 The functional prototypes are defined for the functions
 used in the applications. After the prototypes are defined,
 PDP-11 C checks to ensure that the function calls are
 made with the correct type of parameters.

 The main function, shown in Example 7-3, controls the
 general flow of the program.

 Key to Example 7-3:

 1 The main function is entered with two parameters: the
 first is the number of arguments used to call the program;
 the second is a pointer to the argument list.
 2 This statement checks that you used the correct number
 of arguments when invoking the program.
 3 If a file name is included in the command line to execute
 the program, that file name is used. If no file name is
 specified, then the file name is PERSONNEL.DAT.
 4 The file access block, record access block, and extended
 attribute blocks are initialized by calling initialize.
 5 The file is opened by calling open_file .
 6 The program displays a menu.
 7 A switch statement and a set of case statements control
 the function to be called, determined by the response from
 the terminal.
 8 The program ends when ``E'' is entered in response to the
 menu. At that time, the RMS sys$close function closes
 the employee file.
 9 The rms_status variable is checked for a return status of
 RMS$SU_SUC. If the file is not closed successfully, then
 the error-handling function terminates the program.

 Example 7-4 shows the function that initializes the RMS
 data structures. Refer to the RMS documentation for more
 information about the file access block, record access block,
 and extended attribute block structure members.

 Key to Example 7-4:

 1 The prototype cc$rms_fab initializes the file access block

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p129.decw$book (3 of 8)1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

 with default values. Some members have no default
 values; they must be initialized. Such members include
 the filename string address and size. Other members can
 be initialized to override the default values.
 2 The prototype cc$rms_rab initializes the record access
 block with the default values. In this case, the only
 member that must be initialized is the rab$l_fab member,
 which associates a file access block with a record access
 block.
 3 The prototype cc$rms_xabkey initializes an extended
 attribute block for one key of an indexed file.
 4 The position of the key is specified by subtracting the
 offset of the member from the base of the structure.
 5 A separate extended attribute block is initialized for the
 alternate key.
 6 This statement specifies that more than one alternate key
 can contain the same value (XAB$M_DUP), and that
 the value of the alternate key can be changed (XAB$M_
 CHG).
 7 The key-name member is padded with blanks because it
 is a fixed-length, 32-character field.

 Example 7-5 shows the internal functions for the program.

 Key to Example 7-5:

 1 The open_file function uses the RMS sys$open function
 to open the file. If the file is not found, the RMS
 sys$create function is used to create the file, giving
 the address of the file access block as an argument. The
 status information is obtained from the fab$w_sts field of
 the FAB.
 2 The RMS sys$connect function associates the record
 access block with the file access block.
 3 The type_options function, called from the main function,
 prints help information. Once the help information is
 displayed, control returns to the main function, which
 processes the response that is typed at the terminal.
 4 For each field in the record, the pad_record function fills
 the remaining bytes in the field with blanks.
 5 This function handles fatal errors. It prints the name
 of the function that caused the error, returns a PDP-11
 error code (if appropriate), and exits the program.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p129.decw$book (4 of 8)1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

 Example 7-6 shows the function that adds a record to the file.
 This function is called when ``a'' or ``A'' is entered in response
 to the menu.

 Key to Example 7-6:

 1 A series of do loops controls the input of information.
 For each field in the record, a prompt is displayed.
 The response is buffered, and the field is copied to the
 structure.
 2 When all fields have been entered, the pad_record
 function pads each field with blanks.
 3 Three members in the record access block are initialized
 before the record is written. The record access member
 (rab$b_rac) is initialized for keyed access. The record
 buffer and size members (rab$l_rbf and rab$w_rsz) are
 initialized with the address and size of the record to be
 written.
 4 The RMS sys$put function writes the record to the file.
 5 The rms_status variable is checked. If the return status
 is normal, or if the record has a duplicate key value and
 duplicates are allowed, the function prints a message
 stating that the record was added to the file. Any other
 return value is treated as a fatal error, causing error_exit
 to be called.

 Example 7-7 shows the function that deletes records. This
 function is called when ``d'' or ``D'' is entered in response to
 the menu.

 Key to Example 7-7:

 1 A do loop prompts the user to type a social security
 number at the terminal and places the response in the
 response buffer.
 2 The social security number is padded with blanks.
 3 Some members in the record access block must be
 initialized before the program can locate the record. Here,
 the key of reference (0 specifies the primary key), the
 location and size of the search string (this is the address
 of the response buffer and its size), and the type of record
 access (in this case, keyed access) are given.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p129.decw$book (5 of 8)1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

 4 The RMS sys$find function locates the record specified
 by the social security number entered from the terminal.
 5 The program checks the rms_status variable for the
 values RMS$SU_SUC and RMS$_RNF (record not
 found). A message is displayed if the record cannot be
 found. Any other error is a fatal error.
 6 The RMS sys$delete function deletes the record. The
 status returned in rab$w_sts is only checked for success.

 The type_employees function in Example 7-8 displays the
 employee file at the terminal. This function is called from the
 main function when ``t'' or ``T'' is entered in response to the
 menu.

 Key to Example 7-8:

 1 A running total of the number of records in the file is kept
 in the number_employees variable.
 2 The key of reference is changed to the alternate key, so
 that the employees are displayed in alphabetical order by
 last name.
 3 The file is positioned to the beginning of the first record
 according to the new key of reference, and the status of
 the sys$rewind function is checked for success.
 4 A heading is displayed.
 5 Sequential record access is specified, and the location and
 size of the record is given.
 6 A for loop controls the following operations:

 .
 Incrementing the number_employees counter
 .
 Locating a record and placing it in the record
 structure, using the RMS sys$get function
 .
 Checking the status of the RMS sys$get function
 .
 Displaying the record at the terminal
 7 This if statement checks for records in the file. The
 result is a display of the number of records or a message
 indicating that the file is empty.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p129.decw$book (6 of 8)1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

 Example 7-9 shows the function that prints the file on the
 printer. This function is called by the main function when
 ``p'' or ``P'' is entered in response to the menu.

 Key to Example 7-9:

 1 This function creates a sequential file and outputs it as
 a text file. The file is created by using the Standard I/O
 Run-Time Library function fopen , which associates the
 file with the file pointer, fp.
 2 The key of reference for the indexed file is the primary
 key.
 3 The sys$rewind function positions the file at the first
 record. The status is checked for success.
 4 A heading is written to the sequential file by using the
 Standard I/O function fprintf .
 5 The record access, user buffer address, and user buffer
 size members of the record access block are initialized for
 keyed access to the record located in the record structure.
 6 A for loop controls the following operations:

 .
 Initializing the running total and then incrementing
 the total at each iteration of the loop
 .
 Locating the records and placing them in the record
 structure with the RMS sys$get function, one record
 at a time
 .
 Checking the rms_status information for success and
 end-of-file
 .
 Writing the record to the sequential file
 7 The number_employees counter is checked. If it is 0, a
 message is printed indicating that the file is empty. If it is
 not 0, the total is printed at the bottom of the listing.

 Example 7-10 shows the function that updates the file. This
 function is called by the main function when ``u'' or ``U'' is
 entered in response to the menu.

 Key to Example 7-10:

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p129.decw$book (7 of 8)1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

 1 A do loop prompts for the social security number and
 places the response in the response buffer.
 2 The response is padded with blanks, so that it will
 correspond to the field in the file.
 3 Some of the members in the record access block are
 initialized for the operation. The primary key is specified
 as the key of reference, the location and size of the key
 value are given, keyed access is specified, and the location
 and size of the record are given.
 4 The RMS sys$get function locates the record and places
 it in the record structure. The function checks the rms_
 status value for RMS$_NORMAL and RMS$_RNF
 (record not found). If the record is not found, a message
 is displayed. If the record is found, the program prints
 instructions for updating the record.
 5 For each field (except the social security number, which
 cannot be changed), the program displays the current
 value for that field. If you press the RETURN key, the
 record is placed in the record structure unchanged. If
 you make a change to the record, the new information is
 placed in the record structure.
 6 The fields in the record are padded with blanks.
 7 The RMS sys$update function rewrites the record.
 The program then checks that the update operation was
 successful. Any error causes the program to call the fatal
 error-handling routine.

 Example 7-11 shows how to reserve a lun.

 Key to Example 7-11:

 1 This code programs PDP-11 C Standard I/O to reserve
 LUN 8 for use by RMS because RMS must use a LUN
 to access the file.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p129.decw$book (8 of 8)1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 8. Using PDP-11 C with File Control Services
 This chapter describes how to use File Control Services (FCS)
 with PDP-11 C programs. The reader is assumed to have a
 working knowledge of MACRO-11 and wishes to access FCS
 in a similar fashion through the PDP-11 C FCS Extension
 Library using PDP-11 C language constructs. Refer to the
 RSX-11M-PLUS and Micro /RSX I/O Operations Reference
 Manual for more detailed information. The following topics
 are described in this chapter:

 .
 Compile-time initialization of the File Descriptor Block
 (FDB) and Default Filename Block (DFB)
 .
 The FCS header files
 .
 Run-time initialization of the FDB and file storage region
 (FSR)
 .
 File processing
 .
 File control routines
 .
 Command-line processing

 Table 8-1 lists the macros supported by the PDP-11 C FCS
 Extension Library. Each of these macros are described in the
 FCS Extension Library Macro subsection in the Reference
 Section of this manual.

 For more information about these macros, refer to the
 RSX-11M-PLUS Operations Manual and Micro /RSX I/O
 Operations Manual .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p140.decw$book1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 8.1 Introduction to the FCS Extension Library
 The PDP-11 C FCS Extension Library provides an access
 to FCS which is similar to accessing FCS from MACRO-11.
 The FCS extension library supports file control functions.

 PDP-11 C provides three FCS header files:

 .
 The <fcs.h> header file provides functional prototyping
 for each routine and declares a number of macros for
 accessing FCS with PDP-11 C.
 .
 The <fcsfhb.h> header file defines the file header block.
 .
 The <fcsiff.h> header file defines the index file format.

 Two word quantities, such as the BKVB field of the FDB, are
 interpreted by FCS as shown Figure 8-1, which is opposite
 from how PDP-11 C stores integers of type long :

 Two word fields are defined by the <fcs.h> header file as
 two, short, fields such as fcsfbkvb and fcsfbkvb2. When
 placing the values in these fields, the high-order bits must be
 placed in the first word, fcsfbkvb; the low-order bits must
 be placed in the second word, fcsfbkvb2.

 However, the two MACROs that use long arguments,
 FCS$READ$ and FCS$WRITE$, accept long integers as
 stored by PDP-11 C and convert them to the format expected
 by FCS before sending them to FCS.

 For additional information on MACRO-11 and FCS, refer
 to the RSX-11M-PLUS and Micro /RSX I/O Operations
 Reference Manual .

 FCS can be used in programs which use PDP-11 C Standard
 Library I/O functions; however, you must reserve the ones
 used in accessing FCS directly. Refer to Section 2.7 for
 information on reserving LUNs.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p142.decw$book1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 8.2 Declaring and Initializing the File Descriptor Block
 Before you perform FCS I/O operations, you must declare
 and initialize an FDB for each file. To declare the FDB, use
 the FCS$FDBDF$ macro or explicitly declare an fcs$fdb
 object. To initialize an FDB, explicitly initialize an fcs$fdb
 object during its declaration, directly access and change the
 data structures through run-time FDB initialization, or use
 the file processing macros.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p144.decw$book1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 8.2.1 The <fcs.h> Header File
 The <fcs.h> header file includes a compile-time FDB
 declaration macro but does not include a compile-time
 initialization macro. However, the FDB can be declared
 manually by using the static or extern storage class and
 initialized at compile time, as shown in Section 8.2.2.

 The <fcs.h> header file defines the following fcs$fdb
 structure:

 .
 File attribute section of the FDB
 .
 Record access section of the FDB
 .
 Block access section of the FDB
 .
 File-open section of the FDB
 .
 Block buffer section of the FDB

 You must use the #include <fcs.h> statement to use any of
 the functions defined by the <fcs.h> header file.

 Values used by FCS are defined in the <fcs.h> header file in
 the following manner:
 #define FCSFRTYP (00000) /
 *

 Equivalent to MACRO-11 definition of
 F.RTYPE
 *

 /

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p145.decw$book1/25/06 4:00 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 8.2.2 Compile-Time Initialization of the FDB
 Manual declaration and compile-time initialization of the
 FDB are done by defining the fcs$fdb structure. The fcs$fdb
 structure functionally replaces the FDAT$A, FDRC$A,
 FDBK$A, FDOP$A, and FDBF$A FCS macros. The following
 example shows how to define the fcs$fdb structure (<class>
 may be either static or extern):
 <class> fcs$fdb myfdb = {
 FCSRFIX /* F.RTYP field */
 FCSRFDCR, /* F.RATT field */
 133, /* F.RSIZ field */
 4, /* F.HIBK field */
 3, /* F.EFBK field */
 .
 .
 .
 0, /* F.FNB field */
 };

 For further information, refer to the RSX-11M-PLUS and
 Micro /RSX I/O Operations Reference Manual .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p146.decw$book1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 8.2.3 Compile-Time Initialization of the Default Filename
 Block
 Compile-time initialization of the DFB is done by defining the
 fcs$fnb structure.

 The following example shows how the DFB is initialized at
 compile time (<class> may be either static or extern):
 <class> fcs$fnb myfdb = {
 0, /* N.FID field */
 0,
 0,
 'MYF' __RAD50, /* N.FNAM field */
 'ILE' __RAD50, /* N.FNAM field */
 ' ' __RAD50, /* N.FNAM field */
 'TXT' __RAD50, /* N.FTYP field */
 3, /* N.FVER field */
 FCSNBVER, /* N.STAT field */
 0, /* N.NEXT field */
 0, /* N.DID field */
 0,
 0,
 'SY', /* N.DVNM field */
 0, /* N.UNIT field */
 };

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p147.decw$book1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 8.2.4 Run-Time FDB Initialization and the File Storage
 Region
 Run-time initialization of the FDB and the FSR is done by
 using C language constructs directly to access and change the
 data structures. Run-time initialization functionally replaces
 the FDAT$R, FDRC$R, FDBK$R, FDOP$R, and FDBF$R
 FCS macros. Consider the following examples:
 #include <fcs.h>
 FCS$FDBDF$(auto, myfdb)
 myfdb.fcsfrtyp = FCSRFIX;
 myfdb.fcsfrsiz = 132;
 myfdb.fcsffacc = FCSFAWRT | FCSFASHR;

 The FCS$FDBDF$ macro takes two arguments which
 correspond to the arguments of the MACRO-11 FDBDF$
 macro: the C storage class used to define the FDB, and the
 name of the FDB.
 #include <fcs.h>
 FCS$FSRSZ$(2,1024)

 The FCS$FSRSZ$ macro takes two arguments which
 correspond to the arguments of the MACRO-11 FSRSZ
 macro. PDP-11 C generates the correct PSECT and
 control transfer; therefore, the PSECT of the FSRSZ macro
 argument is not necessary.

 To initialize the file storage region, include the following
 statements:
 #include <fcs.h>
 FCS$FINIT$

 The FCS$FINIT$ macro has no arguments.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p148.decw$book1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 8.3 File Processing
 Each PDP-11 C FCS Extension Library routine takes
 the parameters passed to it and forwards them to the
 corresponding FCS routine. Each of them returns a value of
 1 if the operation is successful and 0 if it is not, as defined in
 the <fcs.h> header file.

 Some of these routines allow user-defined error routines to
 be specified. If user-defined error routines are specified, the
 user must ensure that the error routine does not alter the
 carry-bit of the Processor Status Word (PSW). If the carry-
 bit is changed, it must be changed back to its original status;
 otherwise, an improper return value may result.

 Some FCS file control routines use the carry-bit to indicate
 that they completed successfully; others do not. For those
 routines that use the carry-bit to indicate success, the
 equivalent PDP-11 C routine returns the value TRUE (1) if
 the operation completed successfully and the value FALSE
 (0) if the operation did not complete successfully. For those
 routines that do not use the carry-bit to indicate success,
 the equivalent PDP-11 C routine is declared as a function
 returning void or no value. For further information on the
 FCS file control routines, see the RSX-11M-PLUS and the
 Micro /RSX I/O Operations Reference Manual.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p149.decw$book1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 8.4 FCS Example Program
 The example program in this section uses FCS functions to
 copy a file. The program is divided into two sections:

 .
 External data declarations and definitions
 .
 Main program section

 Example 8-1 shows the external data declarations and
 definitions.

 Key to Example 8-1:

 1 The <fcs.h> header file defines the FCS data structures.
 The <stdio.h> header file defines functions used for
 Standard I/O and the <stdlib.h> header file defines the
 exit function.
 2 The LUNs which access FCS are reserved. This prevents
 PDP-11 C from trying to use them.
 3 FCS$FSRSZ$ defines the size of the FSR.
 4 This line and the next line define the input and output
 FBDs. They state the storage class where the FDB
 resides. The macros define the FDB's as structures which
 allows easy access to the various fields.

 The main function, shown in Example 8-2, controls the
 general flow of the program.

 Key to Example 8-2:

 1 This begins the main function and the declarations of
 local storage. It uses automatic storage for the record
 buffer.
 2 Defines a structure type for a data-set descriptor.
 3 This is the output file data-set descriptor. It is defined as
 a structure and placed in static storage.
 4 This is the input file data-set descriptor. It is defined as a
 structure and placed in static storage.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p150.decw$book (1 of 2)1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

 5 The output and input filenames are placed in static
 storage.
 6 A call to FCS$FINIT$ initializes the file storage region.
 7 This initializes the input file data-set descriptor.
 8 A call to FCS$OPEN$R opens the input file for read.
 9 These statements initialize the output FDB and the output
 file data descriptor.
 10 The FCS$OPEN$W macro is used to open the output file
 for write.
 11 The main processing loop begins by obtaining a record
 using the FCSGET macro.
 12 If a record was successfully obtained, the size of the
 record read is obtained from the NRBD field of the FDB.
 It scans backwards through the record which is in recbuf
 to determine the size of of the record without any trailing
 space characters.
 13 With the size of the output record determined, the
 FCSPUT macro is used to output the record. It then
 loops to get the next record.
 14 This looks into the ERR field of the FDB to see if there is
 an error. If there is an error, an appropriated message is
 displayed on the terminal.
 15 This checks for the end-of-file.
 16 The FCS$CLOSE$ macro closes the output file.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p150.decw$book (2 of 2)1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 9. Operating System Services and System
 Directives
 This chapter describes operating system services and header
 files for the operating systems supported by PDP-11 C: RSX-
 11/M-PLUS, RT-11, and RSTS/E.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p153.decw$book1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 9.1 System Directives
 The process that occurs when a task requests the Executive
 to perform an indicated operation is called a system directive .
 These directives control the execution and interaction of tasks
 and are issued as calls to subroutines contained in the system
 object module library.

 System directives enable tasks to perform the following
 functions:

 .
 Obtain task and system information
 .
 Measure time intervals
 .
 Perform I/O functions
 .
 Spawn other tasks
 .
 Communicate and synchronize with other tasks
 .
 Manipulate a task's logical and virtual address space
 .
 Suspend and resume execution
 .
 Exit

 For more detailed information, refer to the RSX-11M/M-
 Plus Executive Reference Manual , RT-11 Programmer's
 Reference Manual , and the RSTS/E System Directives
 Manual .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p154.decw$book1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 9.2 RSX System Services
 The <rsxsys.h> header file defines the interface to RSX
 Executive Directives. Programs which wish to make calls to
 RSX system services should include the <rsxsys.h> header
 file. The <rsxsys.h> header file defines the directive to the
 FORTRAN routines in the system library. The FORTRAN
 interface is defined as routines with FORTRAN linkages a
 functional prototype.

 Except for the EXIT directive, PDP-11 C supports the
 directive names listed for FORTRAN in the RSX-11M/M-
 Plus Executive Reference Manual . Parameters are called by
 reference. To pass a null parameter, use -1 as the parameter.

 The following example shows how to use the <rsxsys.h>
 header file:
 #include <rsxsys.h>
 extern void P (char *pfilename, short filename_length)
 {
 char *pname; /* Pointer to name of file */
 char exp_name[48]; /* Space for expanded name */
 short exp_size = sizeof exp_name; /* Size of expanded name space */
 short exp_length; /* Space for returned size */
 short idsw; /* Directive status word */
 short rsxfsndf = 010000; /* Argument to PRSFCS */
 /* Expand the file name */
 PRSFCS((short *) -1, (short *) -1, (short *) -1,
 (short *) pfilename, &filename_length, (short *) exp_name,
 &exp_size, &exp_length, (short *) -1,
 (short *) -1, (short *) -1, (short *) -1,
 &rsxfsndf, &idsw);
 if (idsw == 1)
 pname = exp_name; /* Use expanded name */
 else
 { /* Use what you have */
 pname = pfilename;
 exp_length = filename_length;
 }
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p155.decw$book (1 of 2)1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

 The EXIT directive and those directives which do not have
 a FORTRAN interface are also supported. The following
 modules are defined as PDP-11 C linkage routines. Notice
 the use of upper case, which indicates that PDP-11 C expects
 the argument to be passed by reference.

 .
 ASTX
 .
 CINT
 .
 MSDS
 .
 MVTS
 .
 SCAA
 .
 SCAL
 .
 SFPA
 .
 SPEA
 .
 SRRA
 .
 SVDB
 .
 SVTK
 .
 EXIT

 The EXIT routine does the macro form of the EXIT, and not
 the FORTRAN form.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p155.decw$book (2 of 2)1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 9.2.1 RSXDIR Function
 Because not all of the versions of the RSX Executive
 Directives which use the Fortran linkage allow all
 parameters, and because not all RSX Executive Directives are
 available using Fortran linkage, PDP-11 C provides access
 to all RSX Executive Directives using the RSXDIR function.
 This allows all Executive Directives to be called, using any
 available parameter.

 The RSXDIR function, an RSX specific RTL function, is
 defined in the <rsxsys.h> header file. You can issue the RSX
 DIR$ macro from PDP-11 C, using the following form:
 #include <rsxsys.h>
 int RSXDIR(void (*__dpberr) (void), int __diccode, . . .);

 The RSXDIR function allows a user to execute a directive
 with parameters that correspond to a Data Parameter Block
 (DPB), predefined by the $ form of a directive macro. The
 user does not build the DPB; the RSXDIR function builds it.
 errno is set for ENOMEM if a DPB could not be allocated.

 The parameters, _ _dpberr and _ _diccode , must come from
 the macro expansion of the directive. (RSX-11M/M-Plus
 Executive Reference Manual details the macro expansion for
 each directive.) _ _dpberr is the address of an optional error
 routine where control will be transferred if the directive is
 rejected. Use zero (0) if you do not want to use the error
 routine. _ _diccode is the predefined Directive Identification
 Codes (DIC) supplied in <rsxsys.h>. Table 9-1 lists the DIC
 codes.

 The following example issues a QIO that contains an
 Asynchronous System Trap (AST) to handle Ctrl/C.
 #include <stdio.h>
 #define RSXIOATA (001410) /* ATTACH TERMINAL AST */
 short int function_code = RSXIOATA,
 lun = __flun(stdin), /* Get LUN from stdin */
 efn_and_pri = 030, /* EFN and PRI are in same
 word of DPB */

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p156.decw$book (1 of 2)1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

 isb[2],
 ids,
 not_used = -1, /* -1 for unused params */
 status; /* Return value */
 /* Invoke RSXDIR for ASTS:
 derror --- An address of an error routine.
 DIC$QIO --- First word of DPB as defined by RSXSYS.H.
 function_code --- Function code to be issued to the QIO.
 lun --- Logical unit number.
 efn_and_pri --- ***** These two parameters are in the
 same word of the DPB. Make sure
 the PRI is in the high byte and the
 EFN is in the low byte.
 isb --- Two word array for the status codes.
 croutine --- Address of the AST handler when CTRL-C
 is encountered.
 */
 status = RSXDIR(derror,DIC$QIO,function_code,lun,
 efn_and_pri,isb,not_used,not_used,not_used,
 croutine,not_used,not_used,not_used);

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p156.decw$book (2 of 2)1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 9.3 RT-11 SYSLIB Routines
 PDP-11 C supports the SYSLIB routines documented in the
 RT-11 Programmer's Reference Manual . The <rtsys.h>
 header file defines the PDP-11 C interface to the RT-11
 SYSLIB functions and subroutines. These are available when
 PDP-11 C programs are linked with the RT-11 linker.

 The interface used to call SYSLIB routines is the FORTRAN
 subroutine linkage. All parameters are passed by reference
 (see the example at the end of this section). To pass a NULL
 parameter via the FORTRAN subroutine linkage, use (void
 *

)
 -1 as the address of the parameter. For example:
 some_function (a, b, (void *) -1, d);

 Certain RT-11 library routines are unique to FORTRAN IV.
 They reside in FORLIB. Twelve of them are special cases
 since they once resided in SYSLIB until FORTRAN IV/RT-11
 V2.8. The following twelve routines are documented in the
 RT-11 Programmers's Reference Manual although they are
 FORTRAN-dependent and are not supported by PDP-11 C.

 .
 GETSTR -The <stdlib.h> function fscanf provides
 similar capabilities.
 .
 IASIGN -Not supported.
 .
 ICDFN -Not supported.
 .
 IFETCH -The <rtsys.h> function RT$FETCH, described
 below, provides similar capabilities.
 .
 IFREEC -Please refer to Chapter 2 for information on
 reserving LUNs.
 .
 IGETC -Please refer to Chapter 2 for information on

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p158.decw$book (1 of 3)1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

 reserving LUNs.
 .
 IGETSP -The <stdlib.h> functions calloc and malloc
 provide similar capabilities.
 .
 ILUN -Not supported.
 .
 INTSET -Not supported.
 .
 IQSET -Not supported.
 .
 PUTSTR -The <stdlib.h> function printf provides
 similar capabilities.
 .
 SECNDS -Not supported.

 PDP-11 C provides the function RT$FETCH to fetch device
 handlers. You can declare this function in the following way:
 extern short RT$FETCH(short *__addr, short *__dnam);

 This function simply issues a .FETCH directive. The
 parameters are described in the RT-11 Programmer's
 Reference Manual . The function returns a value of 1 for
 success, or a value of zero for failure.

 The following example shows how to use the <rtsys.h>
 header file:
 /* Determine if the device is a random access device */
 #include <rtsys.h>
 #include <errno.h>
 short afun (short *desc_block)
 {
 short device_block[4]; /* Device status block */
 short status;
 status = IDSTAT (&desc_block[0], device_block); /* Get device info */
 if (status)
 return -1; /* Handler not found
 in monitor tables */
 if (device_block[0] & 91<(15)) /* Is it a random
 access device? */
 return 1; /* Yes */
 else
 return 0; /* No */

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p158.decw$book (2 of 3)1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p158.decw$book (3 of 3)1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 9.4 RSTS/E SYSLIB Routines
 The <rstsys.h> header file defines the interface to the RSTS/E
 General Monitor Directives and supported RSX and RT-11
 Emulator Directives. The first list shows the RSX Emulator
 Directives supported under RSTS/E; the second list shows the
 RT-11 Emulator Directives supported by RSTS/E.

 RSX Emulator Directives
 ASLUN-Assign LUN
 ATRG-Attach region
 CRAW-Create address window
 CRRG-Create region
 DTRG-Detach region
 ELAW-Eliminate address window
 EXIT-Task exit
 EXST-Exit with status
 EXTTSK-Extend task
 GETLUN-Get LUN information
 GETMCR-Get MCR command line
 GETPAR-Get partition parameters
 GETTIM-Get time parameters
 GETTSK-Get task parameters
 MAP-Map address window
 QIO-Queue I/O request
 WTQIO-Queue I/O request and wait
 SUSPND-Suspend
 UNMAP-Unmap address window
 WFSNE-Wait for significant event
 WAITFR-Wait for single event flag

 RT-11 Emulator Directives
 CHAIN-Chain to another program
 CLOSEC-Terminate activity
 GTIM-Return current time
 GTJB-Return job information
 GTLIN-Return line of input
 LOOKUP-Lookup associate channel with device
 PRINT-Print output string to console
 PURGE-Deactivate channel
 RCTRLO-Reset the console (Ctrl/O)

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p159.decw$book (1 of 2)1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

 SCCA-Provide Ctrl/C intercept

 Table 9-2 shows the functions, macro definitions, and
 structure definitions that assist in accessing the FIRQB and
 XRB data structures. The functions RSTS$FIRQB and
 RSTS$XRB take no arguments and return no values.

 Refer to the RSTS/E System Directives Manual for more
 information.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p159.decw$book (2 of 2)1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 9.5 Qualifications on Using the TIME, EXIT, and ABORT
 Functions
 If you want to use the SYSLIB version of the functions time ,
 exit , or abort , you must consider which system you are
 using and whether there are conflicting symbols assigned to
 these functions. The following chart shows which symbols
 reference conflicting headers:

 Conflicting Header Files

 External Symbol Standard System Interface

 time <time.h> <rtsys.h>
 exit <stdlib.h> <rstsys.h>
 exit <stdlib.h> <rsxsys.h>
 abort <stdlib.h> <rsxsys.h>

 Programs that use EXIT or ABORT on RSX or EXIT
 on RSTS/E must include RSXSYS.H (RSX) or RSTSYS.H
 (RSTS/E), otherwise, the symbol will be resolved to the C
 standard library function. Programs that use the RT-11
 TIME system function must explicitly reference SYSLIB in
 the LINK command as described below, otherwise the symbol
 will be resolved to the C standard library function.

 It is strongly recommended that the RTSYS.H header file be
 included. If both time and TIME are used, either TIME.H or
 RTSYS.H must be included, preferably both should be included
 in any order.

 To access these functions, specify the SYSLIB symbol in
 upper case (TIME, EXIT, or ABORT). Specify the PDP-11 C
 standard RTL symbol in lower case (time, exit, or abort).

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p161.decw$book (1 of 2)1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

 The following example shows how to access the both the
 PDP-11 C Run-Time Library (time) and the SYSLIB
 (TIME) versions of the function time .
 /* MYFILE.C */
 #include <rtsys.h>
 #include <time.h>
 int main (void)
 {
 char time_string[8];
 time_t since_1970;
 TIME (time_string): /* Call the RT--11 SYSLIB TIME() function */
 time (&since_1970); /* Call the PDP--11 C time() function */
 }

 To use the TIME symbol in the RT-11 SYSLIB, you must
 explicitly include SYSLIB in the link command line, before
 the C RTL, as shown in the following example:
 R LINK
 FOO=FOO,SY:SYSLIB,CC:CEISRT/B:3000/M:3000

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p161.decw$book (2 of 2)1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 10. Linkages Supported by PDP-11 C
 This chapter describes the linkages supported by PDP-11 C,
 as well as the register and stack usage during procedure
 calls.

 The term linkage defines the exact internal calling
 mechanism used for function calls. A function may be
 assigned a linkage using the #pragma linkage directive.
 PDP-11 C supports the following linkages:

 .
 PDP-11 C
 .
 PDP-11 FORTRAN-77
 .
 PDP-11 Pascal
 .
 RSX AST
 .
 RSX SST
 .
 RSX CSM

 For more information on the #pragma linkage directive,
 refer to the Guide to PDP-11 C .

 The following sections show the details of the internal calling
 mechanisms including stack and register usage of the six
 linkages. Table 10-1 summarizes the register usage for the
 linkages supported by PDP-11 C.

 The following sections describe the actions both the calling
 and the called function must take to use each linkage.
 This information is important if either the calling or called
 function is written in a language other than PDP-11 C. The
 PDP-11 C compiler will always take the correct action for
 each linkage.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p162.decw$book1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 10.1 PDP-11 C Linkage
 When a function is called by the C linkage, it receives the
 argument block shown in Figure 10-1. The values of all
 registers used by the function, with the exception of R1 and
 F1, as well as the mode of the FPU, must be saved before
 their use and restored before the function returns.

 The calling function must create the argument block shown
 in Figure 10-1 and save the values of R1 and F1, but need
 not save the values of any other registers.

 The return value is on the top of the stack when the call
 returns. For example, if a short int is being returned, the
 word at the top of the stack contains the return value.
 If a struct is being returned, the top of the stack will
 contain enough space to hold the structure being returned.
 The calling function should move the return value to an
 appropriate location and then remove the parameters from
 the stack.

 Parameters are referenced by way of the Stack Pointer (SP);
 registers R0 through R5 can be used by the called function
 for other purposes. Functions that are declared with the C
 linkage can receive a variable number of parameters because
 the function's first parameter is the one closest to the top of
 the stack.

 Functions that use the PDP-11 C Standard Library variable
 arguments (<stdarg.h>), and functions whose address is used,
 must be declared with C linkage.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p164.decw$book1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 10.2 FORTRAN Linkage
 The FORTRAN linkage uses general register R5 to identify
 the parameters passed to a function. See Figure 10-2 for the
 detail of this mechanism.

 It is unnecessary for a function that is called by FORTRAN
 linkage to save any registers that it uses. Return values are
 located as follows:

 .
 R0, 1-word value
 .
 R0, R1, 2-word values
 .
 R0, R1, R2, R3, 4-word values

 It is impossible to return larger values by using the
 FORTRAN linkage.

 When a function is called by the FORTRAN linkage, the
 calling function must set the R5 parameter list as shown
 in Figure 10-2 and save any registers it needs to preserve
 across the call. R5 cannot be used for other purposes because
 it is reserved as an argument pointer.

 PDP-11 C uses a jacket routine to call the FORTRAN
 function rather than calling a FORTRAN linkage function
 directly. The overhead of the jacket routine makes calling a
 FORTRAN linkage function from C less efficient than calling
 a C or Pascal linkage function.

 The advantage of using the FORTRAN linkage is that a
 function declared with the FORTRAN linkage may not have
 the restrictions that a function declared with the C or Pascal
 linkage has because its parameters are referenced by way
 of R5 and not the top of the stack. For example, a function
 placed in a nondefault cluster library cannot reference its
 parameters by way of the top of the stack; therefore, a routine
 that is to be placed in a nondefault cluster library must be

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p166.decw$book (1 of 2)1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

 declared with the FORTRAN linkage. For more information
 on nondefault cluster libraries, see the appropriate task
 builder reference manual.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p166.decw$book (2 of 2)1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 10.3 Pascal Linkage
 When using the Pascal linkage to call a function, the
 calling function must create the argument block shown
 in Figure 10-1. It is not necessary for the calling function to
 save any of the registers. The return value is on the top of
 the stack when the call is returned. The calling function does
 not have to clear the stack because it is done by the called
 function.

 A function called using the Pascal linkage receives the
 argument block shown in Figure 10-3. The values of any
 registers used, including R1 and F1, must be saved prior
 to their use and restored with the values at the end of the
 call. Before returning, a function declared using the Pascal
 linkage removes the parameters from the top of the stack.

 Pascal linkage cannot pass a variable number of arguments
 to a function; however, it can efficiently remove parameters
 from the stack rather than force the calling function to
 remove them. If the same function is called from several
 different locations, the code to remove the parameters
 appears only once in the called function. However, using
 C linkage, the code to remove the parameters appears after
 every call site.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p168.decw$book1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 10.4 RSX AST And SST Linkages
 The RSX AST and RSX SST linkage allow the programmer
 to write an AST or SST trap handler in PDP-11 C. This
 functionality should only be used by those programmers with
 a solid knowledge of trap handlers. Before writing any trap
 handlers in PDP-11 C, please read the appropriate operating
 system manuals carefully.

 Functions with these linkages may be declared or have
 their addresses taken. Any other use of these functions will
 be flagged as an error by the compiler. Furthermore, all
 functions declared to have linkage RSX AST or RSX SST
 must be of type void and their parameters must be of size
 int .

 The PDP-11 C functions which are declared with the AST
 and SST linkages have an additional restriction placed on
 them. PDP-11 C does not support calling PDP-11 C library
 functions from a trap handling function. While it may be
 possible to call certain library functions, others can not be
 called. Since it is very difficult to determine which functions
 are safe, PDP-11 C does not support any of these calls.

 RSX AST Linkage
 The RSX AST linkage is used to declare a function to be an
 RSX AST trap handler. A function is declared as an RSX
 AST linkage function in the following manner:
 #pragma linkage rsx_ast <name>
 void <name> (int <efmw>, int <ps>, int <pc>, int <dsw> [,<hellipsis>]);

 A RSX AST linkage function has a minimum of four
 parameters. The first parameter is the event-flag mask
 word. The second parameter is the Processor Status Word.
 The third parameter is the PC. The fourth parameter is the
 Directive Status Word. Any other parameters are specific to
 the type of AST the function is expected to handle. For more
 information see the RSX-11M/M-PLUS and Micro /RSX
 Executive Reference Manual .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p170.decw$book (1 of 2)1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

 When an RSX AST linkage function executes a return,
 any parameters following the <dsw> will be automatically
 removed from the stack, and an ASTX$S directive will be
 executed.

 RSX SST Linkage
 The RSX SST linkage is used to declare a function to be an
 RSX SST trap handler. A function is declared as an RSX SST
 linkage function in the following manner:
 #pragma linkage rsx_sst <name>
 void <name> (int <ps>, int <pc> [,<hellipsis>]);

 A RSX SST linkage function has a minimum of two
 parameters. The first parameter is the Processor Status
 Word. The second parameter is the PC. Any other
 parameters are specific to the type of SST the function is
 expected to handle. For more information see the RSX-11M
 /M-PLUS and Micro /RSX Executive Reference Manual .

 When an RSX SST linkage function executes a return, any
 parameters following the <pc> will be automatically removed
 from the stack, and an RTI will be executed.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p170.decw$book (2 of 2)1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 10.5 The RSX CSM Linkage
 The RSX CSM linkage allows the programmer to place a
 C function in a supervisor-mode resident library. Because
 the default C linkage places its parameters on the top of the
 stack, functions which use the C linkage can not be placed
 in a supervisor-mode resident library. By using the CSM
 linkage, the compiler adjusts its parameter references to
 account for the four words of overhead created when the
 function is placed in a supervisor-mode library.

 Placing a PDP-11 C function in a supervisor-mode library
 is an advanced programming practice. This should only
 be attempted by those programmers who have created
 supervisor-mode libraries in the past. Of special note, only
 those functions declared with an RSX CSM linkage should be
 included in the symbol table of the resident library. All other
 global symbols, especially PDP-11 C OTS routines included in
 the library, must be globally excluded from the symbol table
 when the library is built.

 The syntax of an RSX CSM function is identical to those
 with the default C linkage. It is simply necessary to use the
 #pragma linkage rsx_csm directive before the function is
 declared.

 It is not possible to invoke a function which is declared to take
 this linkage. Functions with this linkage may be declared or
 have their addresses taken. Any other use of these functions
 will be flagged as an error by the compiler.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p171.decw$book1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 10.6 Linkages and Other Languages
 Any C function may be assigned the C, FORTRAN, or
 PASCAL linkages following the guidelines discussed in the
 previous sections. A linkage may be assigned to a function
 declared within a module or to an external function called by
 the function in the module. When a linkage is assigned to a
 function, all calls to that function must declare the function
 using the same linkage.

 Not all PDP-11 programming languages are able to
 assign specific linkages to functions written or called in the
 language being used. For example, an application written in
 FORTRAN-77 can only be called using the FORTRAN
 linkage and can only call other functions that use the
 FORTRAN linkage. The FORTRAN linkage is used by
 the following PDP-11 languages: FORTRAN-77, BASIC-
 PLUS-2, and COBOL-81. The Pascal linkage is used by
 PDP-11 Pascal. See Section 10.8 for other restrictions.

 PDP-11 C can call or be called from other languages because
 it allows the use of different linkages. When C functions are
 called from another language, the C program must define
 those functions to use the linkage required by that language.
 A PDP-11 C program calling a function written in another
 language must assign the proper linkage to the external
 definition of that function. Consider the following examples:
 /*A fortran application calls CFUNCT, a function written in C.*/
 #pragma linkage fortran CFUNCT
 <ctype> CFUNCT([<params>])
 {
 <body of function>
 }
 /*A program written in C calls FORFUN, a function written in FORTRAN.*/
 #pragma linkage fortran FORFUN
 extern <type> FORFUN(<params>);

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p172.decw$book1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 10.7 Data Sharing with Fortran and BP2
 In addition to sharing data through passed parameter values,
 you can allow a subprogram written in PDP-11 C to access
 data declared in either a Fortran common area or a BP2
 mapped region.

 The two examples in this section show the declaration of
 Fortran and BP2 external data. Both examples contains a
 16-bit integer, a 32-bit integer, and a single precision floating
 point variable.

 If the PDP-11 C subprogram wishes to access the declared
 FORTRAN or BP2 external variables, it must use the
 #pragma psect directive. The #pragma psect directive
 provides the mapping into the FORTRAN or BP2 common
 data area and should be declared with the same psect
 attributes as the FORTRAN or BP2 data area. You can
 determine the psect attributes of the data area from a map
 file produced by the linker.

 The C declarations shown in each example give PDP-
 11 C a mapping into the data area. Any modifications
 to these variables within the PDP-11 C subprogram or
 the FORTRAN or BP2 subprogram can be seen by both
 subprograms.

 The following example shows the declaration of a Fortran
 data area.

 F77 data area
 INTEGER*2 ICOUNT
 INTEGER*4 LCOUNT
 REAL*4 RTYPE
 COMMON /BLOCK1/ICOUNT,LCOUNT,RTYPE

 C data area
 #pragma psect static_rw BLOCK1, rel,d,gbl,rw,ovr
 static short icount;
 static long lcount;

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p173.decw$book (1 of 2)1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

 static float rtype;
 #pragma psect static_rw

 The following example shows the declaration of a BP2
 mapped region.

 BP2 data area
 COMMON (BLOCK1) word ICOUNT, long LCOUNT, single RTYPE

 C data area
 #pragma psect static_rw BLOCK1, rel,d,gbl,rw,ovr
 static short icount;
 static long lcount;
 static float rtype;
 #pragma psect static_rw

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p173.decw$book (2 of 2)1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 10.8 Restrictions and Notes
 The following list notes and explains the existing exceptions to
 using PDP-11 C with other languages:

 .
 Only the parameter-passing mechanisms are supported.

 Certain language features may not work when called
 either directly or indirectly from PDP-11 C. The reason
 is twofold: initializations required for those features are
 not done by PDP-11 C, or the language feature may
 attempt to use memory already allocated by PDP-11 C.
 .
 Users should not change the contents of the C OTS work
 area (PSECT $$C).
 .
 When PDP-11 C is called from other languages, whether
 directly or indirectly, many of the Standard Library
 functions will not work for the previously mentioned
 reasons.
 .
 If a call to the routine C$INIT is made before the first
 invocation of a C function and the routine C$FINI is
 called after the last invocation to a C function, some
 Standard Library functions may work. The routines
 C$INIT and C$FINI perform a number of initializations
 and clean-up routines for the Standard Library functions.
 .
 In general, when mixing C with another high-level
 language such as FORTRAN-77 or BASIC-PLUS-2, the
 main program must be in the other high-level language.
 .
 PDP-11 C parameters are always passed and received by
 value.

 To pass a variable to a routine which expects to receive a
 parameter by reference, pass the variable's address using
 the C & operator. For example, FORTRAN passes and
 receives parameters by reference. To pass an integer
 variable foo to a FORTRAN routine from a C routine,

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p174.decw$book (1 of 2)1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

 the C routine must use &foo which is the address of the
 variable, not foo, the variable itself.

 To pass an integer parameter from a FORTRAN routine
 to a C routine, the C routine receives the address of the
 parameter, not the parameter itself. The parameter
 should be declared by the C function as a pointer to an int
 (int
 *

 foo). The ``
 *

 '' operator is used to access the actual
 value (
 *

 foo).
 .
 Complex parameters

 When calling between languages, use only integer and
 floating-point parameters. Use other data types only
 after careful investigation, because not all languages
 support all C types.
 .
 Other high level languages may have their own
 restrictions that prevent them from calling or being
 called by PDP-11 C.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p174.decw$book (2 of 2)1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Reference Section
 This reference section describes the functions and macros
 contained in the PDP-11 C Run-Time Library. For each
 function and macro, you will find the following:
 .
 An overview
 .
 The function or macro format
 .
 The descriptions of the arguments
 .
 A detailed description of the function or macro if more
 information is needed beyond what is given in the
 overview section
 .
 The return values

 The Reference Section is divided into the following three
 parts. Within each of these parts, the functions and macros
 appear in alphabetical order.

 1. PDP-11 C Standard Library Macros and Functions
 2. FCS Extension Library Macros
 3. RMS Extension Library Macros

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p175.decw$book1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 1 PDP-11 C Standard Library Macros and Functions

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p176.decw$book1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 abort

 The abort function causes the program to terminate
 immediately.

 Format
 #include <stdlib.h>
 void abort (void);

 Arguments
 None.

 Description
 The abort function raises the SIGABRT signal and returns
 the EXIT_FAILURE completion code to the operating
 system. PDP-11 C attempts to flush or close any open
 output streams.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p177.decw$book1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 abs

 The abs function returns the absolute value of an integer.

 Format
 #include <stdlib.h>
 int abs (int x);

 Arguments
 x
 Is an integer expression.

 Return Values
 Returns the absolute value of x.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p178.decw$book1/25/06 4:01 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 acos

 The acos function returns a value in the range 0 to ¹ , which
 is the arc cosine of its argument.

 Format
 #include <math.h>
 double acos (double x);

 Arguments
 x
 Is the cosine of the angle.

 Description
 When | x | > 1, the value of acos(x) is 0, and the acos
 function sets errno to EDOM.

 Return Values
 Returns the arc cosine of x in radians.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p179.decw$book1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 _ _alr50

 The _ _alr50 function converts the first six characters of the
 input string to an unsigned 32-bit integer corresponding to
 the radix-50 translation.

 Format
 #include <stdlib.h>
 short int _ _alr50 (char
 *

 _ _ascii_string, unsigned long int
 *

 _ _rad50_string);

 Arguments
 _ _ascii_string
 Is a pointer to a six-character ASCII string to convert. The
 string does not have to be a NUL terminated string.

 _ _rad50_string
 Is a pointer to an unsigned long integer to receive the
 converted radix-50 string.

 Return Values

 Non-zero value Indicates success.
 Zero value Indicates an error has occurred.

 Note

 This is a PDP-11 C extension not defined by the ANSI
 standard.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p180.decw$book1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 asctime

 The asctime function converts a broken-down time (see
 the localtime function for more information) into a 26-
 character string in the following form:
 Sun Sep 16 01:03:52 1984\n\0
 Each field has a constant width.

 Format
 #include <time.h>
 char
 *

 asctime (const struct tm
 *

 timeptr);

 Arguments
 timeptr
 Is a pointer to a structure of type tm , which contains the
 broken-down time.

 Description
 The tm structure is defined in the <time.h> header file as
 follows:
 struct tm
 {
 int tm_sec, /* seconds after the minute -- [0, 60] */
 tm_min, /* minutes after the hour -- [0, 59] */
 tm_hour, /* hours since midnight -- [0, 23] */
 tm_mday, /* day of the month -- [1, 31] */
 tm_mon, /* months since January -- [0, 11] */
 tm_year, /* years since 1900 -- [0, ..] */
 tm_wday, /* days since Sunday -- [0, 6] */
 tm_yday, /* days since January 1 -- [0,365] */
 tm_isdst; /* Daylight Saving Time Flag -- [-1, 1] */
 /* -1 info. not available */
 /* 0 D.S.T. IS-NOT in effect */

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p181.decw$book (1 of 2)1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

 /* 1 D.S.T. IS in effect */
 }

 The asctime function converts the contents pointed to by
 timeptr into a 26-character string, as shown in the previous
 example, and returns a pointer to the string. Subsequent calls
 to asctime or ctime point to the same static string, which is
 overwritten by each call.

 Return Values

 x Indicates a pointer to the string.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p181.decw$book (2 of 2)1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 asin

 The asin function returns a value in the range - ¹ /2 to ¹ /2,
 which is the arc sine of its argument.

 Format
 #include <math.h>
 double asin (double x);

 Description
 When | x | > 1, the value of asin(x) is 0, and the asin
 function sets errno to EDOM.

 Return Values
 Returns the arc sine of x in radians.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p182.decw$book1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 _ _asr50

 The _ _asr50 function converts the first three characters of
 the input string to an unsigned 16-bit integer corresponding
 to the radix-50 translation.

 Format
 #include <stdlib.h>
 short int _ _asr50 (char
 *

 _ _ascii_string, unsigned short int
 *

 _ _rad50_string);

 Arguments
 _ _ascii_string
 Is a pointer to a three-character ASCII string to convert.
 The string does not have to be NUL terminated.

 _ _rad50_string
 Is a pointer to an unsigned short integer to receive the
 converted radix-50 string.

 Return Values

 Non-zero value Indicates success.
 Zero value Indicates an error has occurred.

 Note

 This is a PDP-11 C extension not defined by the ANSI
 standard.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p183.decw$book1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 assert

 The assert macro puts diagnostics into programs.

 Format
 #include <assert.h>
 void assert (int expression);

 Arguments
 expression
 Is an expression that has type int .

 Description
 When the assert macro is executed, if expression is
 false (that is, it evaluates to 0), the assert macro writes
 information about the particular call that failed. This
 information is written on the standard error file in an
 implementation-defined format and includes the following:
 the text of the argument, the name of the source file, and the
 source line number. The latter are respectively the values
 of the preprocessing functions _ _FILE_ _ and _ _LINE_ _.
 Then, the assert macro calls the abort function.
 The assert macro writes a message in the following form:
 assert error: expression in file filename , at line nnn .

 where expression is the string equivalent of the expression in
 the user's code.

 If expression is true (that is, evaluates to nonzero), the assert
 function has no effect.

 Compiling with the command qualifier /DEFINE=NDEBUG
 or with the preprocessor directive # define NDEBUG ahead
 of the # include <assert.h> statement causes the assert
 function to have no effect.

 The assert function is implemented as a macro, not as a
 function. If you use # undef to remove the macro definition,
 the behavior is undefined.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p184.decw$book (1 of 2)1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p184.decw$book (2 of 2)1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 atan

 The atan function returns a value in the range - ¹ /2 to ¹ /2,
 which is the arc tangent of its argument.

 Format
 #include <math.h>
 double atan (double x);

 Arguments
 x
 Is the tangent of the angle.

 Return Values
 Returns the arc tangent of x in radians.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p185.decw$book1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 atan2

 The atan2 function returns a value in the range - ¹ to ¹ . The
 returned value is the arc tangent of y/x, where y and x are
 the two arguments.

 Format
 #include <math.h>
 double atan2 (double y, double x);

 Arguments
 y
 Is an expression of type double .

 x
 Is an expression of type double .

 Return Values
 Returns the arc tangent of y/x in radians.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p186.decw$book1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 atexit

 The atexit function registers a function that will be called at
 normal program termination.

 Format
 #include <stdlib.h>
 int atexit (void (
 *

 func) (void));

 Arguments
 func
 Is a pointer to the function to be registered.

 Description
 Up to 32 functions can be registered. When a registered
 function is called, it is called without arguments. When
 the program exits, the registered functions are called in the
 reverse order from which they were registered.

 Return Values

 0 Indicates that the registration has
 succeeded.
 Nonzero Indicates registration failed.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p187.decw$book1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 atof

 The atof function converts a given string to a double
 number.
 This function recognizes a series of characters in the
 following sequence. The first unrecognized character ends
 the conversion.

 1. Optional white-space characters (as defined by isspace
 in <ctype.h>)
 2. An optional plus or minus sign
 3. Digits optionally containing a single decimal point
 4. An optional letter (e or E)
 5. An optionally signed integer

 The string is interpreted by the same rules that are used to
 interpret floating constants. See also strtod .

 Format
 #include <stdlib.h>
 double atof (const char
 *

 nptr);

 Arguments
 nptr
 Is a pointer to the character string to be converted to a
 double-precision number.

 Description
 The function call atof(str) is equal to strtod(str,(char
 **

)0) ,
 arithmetic exceptions notwithstanding.

 .
 If the correct value causes an overflow, HUGE_VAL is

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p188.decw$book (1 of 2)1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

 returned and errno is set to ERANGE.
 .
 If the correct value causes an underflow, 0 is returned
 and errno set to ERANGE.

 See also strtod .

 Return Values

 n Indicates the converted value.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p188.decw$book (2 of 2)1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 atoi, atol

 The atoi and atol functions convert strings of ASCII
 characters to the appropriate numeric values.

 Format
 #include <stdlib.h>
 int atoi (const char
 *

 nptr);
 long int atol (const char
 *

 nptr);

 Arguments
 nptr
 Is a pointer to the character string to be converted to int
 (atoi) or long (atol) .

 Description
 The function call atol (str) is equal to strtol (str, (char
 **

)0,
 10) . Similarly, the function call atoi (str) is equivalent to (int)
 strtol (str, (char
 **

)0, 10) .
 See also strtol .

 Return Values

 n Indicates the converted value.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p189.decw$book1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 bsearch

 The bsearch function performs a binary search. It searches
 an array of sorted objects for a specified object.

 Format
 #include <stdlib.h>
 void
 *

 bsearch (const void
 *

 key, const void
 *

 base, size_t nmemb, size_t size, (
 *

 compar)
 (const void
 *

 , const void
 *

));

 Arguments
 key
 Is a pointer to the object to be sought in the array. This
 pointer should be of type pointer-to-object and cast to type
 pointer-to-void.

 base
 Is a pointer to the initial member of the array. This pointer
 should be of type pointer-to-object and cast to type pointer-
 to-void.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p190.decw$book (1 of 2)1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

 nmemb
 Is the number of objects in the array.

 size
 Is the size of an object in bytes.

 compar
 Is a pointer to the comparison function.

 Description
 The array must first be sorted in increasing order according
 to the specified comparison function pointed to by compar .
 Two arguments are passed to the comparison function
 pointed to by compar . The two arguments point to the objects
 being compared. Depending on whether the first argument is
 less than, equal to, or greater than the second argument, the
 comparison function returns an integer less than, equal to, or
 greater than 0.

 It is not necessary for the comparison function (compar) to
 compare every byte in the array. Therefore, the objects in the
 array can contain arbitrary data in addition to the data being
 compared.

 Because the bsearch function is declared as type pointer-
 to-void, the returned value must be cast or assigned into a
 specified pointer-to-object type.

 Return Values

 x Indicates a pointer to the match-
 ing member of the array.
 NULL Indicates that the key cannot be
 found in the array.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p190.decw$book (2 of 2)1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 cabs

 The cabs function computes the Euclidean distance between
 two points as the square root of their respective squares. The
 cabs function returns the following:
 sqrt(x
 *

 x + y
 *

 y)
 This function is provided for compatibility with VAX C and is
 only available if compiled with the /NOSTANDARD switch.

 Format
 #include <math.h>
 double cabs (cabs_t z);

 Arguments
 z
 Is a structure of type cabs_t .

 Description
 The type cabs_t is defined in the standard include module
 math.h as follows:
 typedef struct {double x,y;} cabs_t;

 Return Values
 Returns the square root of the sum of the squared arguments
 x and y .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p191.decw$book1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 calloc

 The calloc function allocates and clears an area of memory.

 Format
 #include <stdlib.h>
 void
 *

 calloc (size_t number, size_t size);

 Arguments
 number
 Specifies the number of items to be allocated.

 size
 Is the size of each item.

 Description
 The calloc function initializes the items to 0s.
 See also malloc and realloc .

 Return Values

 NULL Indicates an inability to allocate
 the space.
 x Indicates the address of the first
 byte.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p192.decw$book1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 ceil

 The ceil function returns (as a double) the smallest integer
 that is greater than or equal to its argument.

 Format
 #include <math.h>
 double ceil (double x);

 Description
 The ceil function computes the smallest integer value that is
 not less than x .

 Return Values
 Returns the smallest integer value, not less than x , expressed
 as a double .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p193.decw$book1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 clearerr

 The clearerr function resets the error and end-of-file
 indications for a file, so that ferror and feof no longer return
 a nonzero value.

 Format
 #include <stdio.h>
 void clearerr (FILE
 *

 file_ptr);

 Arguments
 file_ptr
 Points to a file.

 Description
 The clearerr function clears the end-of-file and error
 indicators for the file pointed to by the file pointer.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p194.decw$book1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 clock

 The clock function determines the elapsed processor time
 used since the beginning of the program execution.

 Format
 #include <time.h>
 clock_t clock (void);

 Description
 The value returned by the clock function must be divided by
 the value of the macro CLOCKS_PER_SEC , as defined in
 the <time.h> header file, to obtain the time in seconds.

 Return Values

 n Indicates the processor time used.
 -1 Indicates that the processor time
 used is not available.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p195.decw$book1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 cos

 The cos function returns the cosine of its radian argument.

 Format
 #include <math.h>
 double cos (double x);

 Arguments
 x
 x is an object of type double .

 Return Values
 Returns the cosine value of x .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p196.decw$book1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 cosh

 The cosh function returns the hyperbolic cosine of its
 argument.

 Format
 #include <math.h>
 double cosh (double x);

 Arguments
 x
 x is an object of type double .

 Return Values
 Returns the hyperbolic cosine value of x .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p197.decw$book1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 ctime

 The ctime function converts a time in seconds, since 00:00:00
 January 1, 1970, to an ASCII string in the form generated by
 the asctime function.

 Format
 #include <time.h>
 char
 *

 ctime (const time_t
 *

 bintim);

 Arguments
 bintim
 Is a pointer to the time value to be converted.

 Description
 Successive calls to ctime overwrite any previous time values.
 The type time_t is defined in the <time.h> header file as
 follows:
 typedef long int time_t

 Return Values

 Pointer Points to the 26-character ASCII
 string.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p198.decw$book1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 difftime

 The difftime function computes the difference in seconds
 between the two times specified by the time0 and time1
 arguments.

 Format
 #include <time.h>
 double difftime (time_t time1, time_t time0);

 Arguments
 time1
 Is of type time_t, which is defined in the <time.h> header file.

 time0
 Is of type time_t, which is defined in the <time.h> header file.

 Description
 The difftime function subtracts time1 from time0 to
 compute the difference between two calendar times.

 Return Values

 n Indicates the difference in sec-
 onds expressed as a double.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p199.decw$book1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 div

 The div function returns the quotient and the remainder
 after the division of its arguments.

 Format
 #include <stdlib.h>
 div_t div (int numer, int denom) ;

 Arguments
 numer
 Is a numerator of type int .

 denom
 Is a denominator of type int .

 Description
 The type div_t is defined in the standard include module
 <stdlib.h> header file as follows:
 typedef struct
 {
 int quot
 int rem;
 }
 div_t;

 Return Values
 Returns a structure of type div_t which contains the quotient
 and remainder of numer/denom.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p200.decw$book1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 exit

 The exit function terminates the program.

 Format
 #include <stdlib.h>
 void exit (int status);

 Arguments
 status
 The argument is passed to the operating system when the
 program exits. EXIT_SUCCESS and EXIT_FAILURE are
 defined in the <stdlib.h> header file as values for success and
 failure.

 Description
 The exit function terminates the program and returns the
 value in status to the operating system. It also calls functions
 registered with atexit , flushes and closes streams, and deletes
 tmpfile files.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p201.decw$book1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 exp

 The exp function returns the base e raised to the power of
 the argument.

 Format
 #include <math.h>
 double exp (double x);

 Description
 If an overflow occurs, the exp function returns the largest
 possible floating-point value and sets errno to ERANGE. The
 constant HUGE_VAL in the <math.h> header file is defined
 to be the largest possible floating-point value.

 Return Values
 Returns the exponential value of the argument. If an
 overflow occurs, exp returns the largest possible floating-
 point value.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p202.decw$book1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 fabs

 The fabs function returns the absolute value of a floating-
 point value.

 Format
 #include <math.h>
 double fabs (double x);

 Description
 The fabs function computes the absolute value of a floating-
 point value.

 Return Values
 Returns the absolute value of the argument.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p203.decw$book1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 _ _fbuf

 The _ _fbuf function returns the current buffer length
 associated with a file pointer.

 Format
 #include <stdio.h>
 long int _ _fbuf (FILE
 *

 file_ptr);

 Arguments
 file_ptr
 Is a file pointer.

 Description
 The _ _fbuf function retrieves the current buffer length that
 has been associated with a previously allocated file pointer.

 Return Values

 Nonzero value Indicates success.
 Zero value Indicates an error has occurred

 Note

 This is a PDP-11 C extension not defined by the ANSI
 standard.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p204.decw$book1/25/06 4:02 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 fclose

 The fclose function closes a file by flushing any buffers
 associated with the file control block and freeing the file
 control block and buffers previously associated with the file
 pointer.

 Format
 #include <stdio.h>
 int fclose (FILE
 *

 file_ptr);

 Arguments
 file_ptr
 Is a pointer to the file to be closed.

 Description
 When a program terminates normally, the fclose function is
 called automatically for all open files.

 Return Values

 0 Indicates success.
 EOF Indicates that the buffered data
 cannot be written to the file,
 or the file control block is not
 associated with an open file. EOF
 is a preprocessor constant defined
 in the <stdio.h> header file.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p205.decw$book1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 feof

 The feof function tests a file to see if the end-of-file has been
 reached.

 Format
 #include <stdio.h>
 int feof (FILE
 *

 file_ptr);

 Arguments
 file_ptr
 Is a file pointer.

 Return Values

 Nonzero integer Indicates that end-of-file has
 been reached.
 0 Indicates that end-of-file has not
 been reached.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p206.decw$book1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 ferror

 The ferror function returns a nonzero integer if an error
 occurs during a read or write operation.

 Format
 #include <stdio.h>
 int ferror (FILE
 *

 file_ptr);

 Arguments
 file_ptr
 Is a file pointer.

 Description
 A call to the ferror function continues to return this
 indication until the file is closed or until the clearerr function
 is called.

 Return Values

 Nonzero integer Indicates that an error has
 occurred.
 0 Indicates success.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p207.decw$book1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 _ _fger

 The _ _fger function returns the low-level error code that is
 associated with a previously called file operation.

 Format
 #include <stdio.h>
 int _ _fger (FILE
 *

 file_ptr);

 Arguments
 file_ptr
 Is a file pointer.

 Description
 The _ _fger function returns the underlying file system's
 error code that was associated with a previously called file
 operation.

 Return Values
 Returns the underlying file system's error code.

 Note

 This is a PDP-11 C extension not defined by the ANSI
 standard.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p209.decw$book1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 fgetc

 The fgetc function returns a character from a specified file.

 Format
 #include <stdio.h>
 int fgetc (FILE
 *

 file_ptr);

 Arguments
 file_ptr
 Is a pointer to the file to be accessed.

 Description
 The fgetc function gets the next character pointed to by
 the file pointer from the input stream and advances the file
 indicator for that file.

 Return Values

 EOF Indicates end-of-file or error.
 (EOF is a preprocessor constant
 defined in the <stdio.h> header
 file.)
 x Indicates the character returned.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p210.decw$book1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 fgetpos

 The fgetpos function stores the file position indicator.

 Format
 #include <stdio.h>
 int fgetpos (FILE
 *

 str, fpos_t
 *

 pos);

 Arguments
 str
 Is the stream whose file position indicator value is desired.

 pos
 Is the location where the file position indicator for str is
 stored.

 Description
 The fgetpos function finds the current value of the file
 position indicator for a stream and stores it in a variable of
 type fpos_t pointed to by pos .

 Return Values

 0 Indicates success.
 Nonzero Indicates failure. A positive value
 is stored in errno .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p211.decw$book1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 fgets

 The fgets function reads a line from a specified file, up to
 a specified maximum number of characters or up to and
 including the newline character or end of file, whichever
 comes first. The function stores the string in the str
 argument. The fgets function terminates the line with a
 NUL (\0) character.

 Format
 #include <stdio.h>
 char
 *

 fgets (char
 *

 str, int maxchar, FILE
 *

 file_ptr);

 Arguments
 str
 Is the address where the fetched string will be stored.

 maxchar
 Specifies one character greater than the maximum number
 of characters to fetch.

 file_ptr
 Is a file pointer.

 Return Values

 x Indicates the address of the first
 character in the line.
 NULL Indicates the end-of-file or an
 error. NULL is defined in the

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p212.decw$book (1 of 2)1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

 <stdio.h> header file to be the
 NULL pointer value.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p212.decw$book (2 of 2)1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 _ _fgnm, fgetname

 The _ _fgnm or fgetname function returns a pointer to a
 file specification associated with a file variable.

 Format
 #include <stdio.h>
 char
 *

 fgetname (FILE
 *

 pfile, char
 *

 buffer, ...);
 or
 char
 *

 _ _fgnm (FILE
 *

 pfile, char
 *

 buffer, ...);

 Arguments
 pfile_ptr
 Is a pointer to a file which has been previously opened.

 buffer
 Is a pointer to a character string that is large enough to hold
 the file specification.

 . . .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p213.decw$book (1 of 2)1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

 Represents an optional additional argument for VAX C
 compatibility. PDP-11 C ignores this argument.

 Description
 The _ _fgnm or fgetname function places the file
 specification at the address given in buffer and returns
 the address of the buffer. The buffer should be an array large
 enough to contain a fully qualified file specification. When an
 error occurs, fgetname or _ _fgnm returns 0.
 The function name, fgetname , is provided for compatibility
 with VAX C, but the name is not compatible with the ANSI
 Standard. Therefore, the function is not provided when
 compiling /STANDARD=ANSI.

 The function _ _fgnm is ANSI compatible and is defined
 when the compile time switch /STANDARD=ANSI is used.

 Return Values

 x Indicates the character string
 returned for the file specified.
 NULL Indicates that an error has
 occurred.

 Note

 This is a PDP-11 C extension not defined by the ANSI
 standard.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p213.decw$book (2 of 2)1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 floor

 The floor function returns the largest integer that is less
 than or equal to its argument.

 Format
 #include <math.h>
 double floor (double x);

 Arguments
 x
 Is a real value.

 Description
 The floor function returns a double which represents the
 largest integer that is less than or equal to the number given
 as the argument to the function.

 Return Values
 Returns the largest integer that is less than or equal to its
 argument.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p214.decw$book1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 _ _flun

 The _ _flun function returns the logical unit number
 associated with a file pointer.

 Format
 #include <stdio.h>
 int _ _flun (FILE
 *

 file_ptr);

 Arguments
 file_ptr
 Is a file pointer.

 Description
 The _ _flun function retrieves the logical unit number
 (LUN) from a previous allocated file pointer and returns this
 value to the requesting routine.

 Return Values

 Zero value Indicates that an error has
 occurred.
 1-255 Indicates success.

 Note

 This is a PDP-11 C extension not defined by the ANSI
 standard.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p215.decw$book1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 fmod

 The fmod function computes a floating-point remainder.

 Format
 #include <math.h>
 double fmod (double x, double y);

 Arguments
 x
 Is a real value.

 y
 Is a real value.

 Description
 The fmod function computes the floating-point remainder of
 the first argument to fmod divided by the second. If y is 0,
 the fmod function returns 0 and sets errno to EDOM.

 Return Values

 x Indicates value f, which has the
 same sign as x , such that x == i
 £ y + f for some integer i, where
 the magnitude of f is less than
 the magnitude of y .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p216.decw$book1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 fopen

 The fopen function opens a file.

 Format
 #include <stdio.h>
 FILE
 *

 fopen (const char
 *

 file_spec, const char
 *

 a_mode);

 Arguments
 file_spec
 Is a character string containing a valid file specification.

 a_mode
 Is one of the following character strings:
 .
 "r" opens text file for read
 .
 "w" opens text file for write
 .
 "a" appends to a text file
 .
 "rb" opens binary file for read
 .
 "wb" opens a binary file for write
 .
 "ab" appends to a binary file
 .
 "r+" opens a text file for update
 .
 "w+" writes a text file for update

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p217.decw$book (1 of 4)1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

 .
 "a+" appends to a text file
 .
 "r+b" or "rb+" opens a binary file for update
 .
 "w+b" or "wb+" writes binary file for update
 .
 "a+b" or "ab+" appends to binary file

 The access modes have the following effects:

 .
 "r" opens an existing file for reading.
 .
 "w" creates a new file and opens it for writing. On RSX
 systems, if the file already exists, a new file is created
 with the same name and a higher version number.
 .
 "a" opens the file for append access. An existing file is
 positioned at end-of-file, and its data written to the
 end-of-file. If the file does not exist, it will be created.

 Note

 The setvbuf function should be used to set the buffer
 size to a multiple of 512 when opening an existing file
 for append if any record that is to be written to the
 file has a size of 512 bytes or greater.

 The update access modes allow a file to be opened for both
 reading and writing. When used with existing files, "r+" and
 "a+" differ only in the initial positioning within the file. The
 modes are as follows:

 .
 "r+" opens an existing file for read update access. It is
 opened for reading, positioned first at beginning-of-file,
 but writing is also allowed.
 .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p217.decw$book (2 of 4)1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

 "w+" opens a new file for write update access.
 .
 "a+" opens a file for append update access. The file is first
 positioned at end-of-file (writing). If the file does not
 exist, the PDP-11 C Run-Time library creates it.
 .
 "b" is binary access mode. No conversion of carriage
 control information is attempted. NUL characters are
 used to fill unused space at the end of the last block in the
 file.

 Description
 When the mode string contains "+" or "b", the file opens in
 binary mode; otherwise, it opens in text mode. For example,
 "a+" mode opens a file for append/binary mode even if the file
 would otherwise be treated as a text file.

 Though update mode allows both reading and writing to the
 same stream, there are certain restrictions. Output may not
 be directly followed by input without an intervening call to
 the fflush function or to the file positioning functions fseek,
 fsetpos , or rewind . Input may not be directly followed
 by output without an intervening call to a file positioning
 function, unless the input operation encounters end-of-file.

 The file control block may be freed with the fclose function
 or by default on normal program termination.

 Up to FOPEN_MAX files may be opened simultaneously.
See also freopen .

 Return Values

 File pointer Points to an object of type FILE
 which identifies the open file to
 other Standard Library functions.
 NULL Indicates an error. The constant
 NULL is defined in the <stdio.h>
 header file to be the NULL
 pointer value. The function
 returns NULL to signal the
 following errors: file protection
 violations, attempts to open a

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p217.decw$book (3 of 4)1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

 nonexistent file for read access,
 and failure to open the specified
 file.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p217.decw$book (4 of 4)1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 fprintf

 The fprintf function performs formatted output to a specified
 file.

 Format
 #include <stdio.h>
 int fprintf (FILE
 *

 file_ptr, const char
 *

 format_spec, ...);

 Arguments
 file_ptr
 Is a pointer to the file to which you direct output.

 format_spec
 Contains characters to be written literally to the output or
 converted as specified in the argument.

 . . .
 Are optional expressions whose resultant types correspond
 to conversion specifications given in the format specification.
 If no conversion specifications are given, the output sources
 may be omitted; otherwise, the function calls must have
 exactly as many optional expressions as there are conversion
 specifications, and the conversion specifications must match
 the types of the optional expressions. Conversion specifications
 are matched to optional expressions in simple left-to-right
 order. Refer to the Section 2.4.2 for more information.

 Description
 An example of a conversion specification follows:
 #include <stdio.h>
 int main()
 {

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p218.decw$book (1 of 2)1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

 int temp = 4, temp2 = 17;
 fprintf(stdout, "The answers are %d, and %d.", temp, temp2);
 }
 Sample output (to the file stdout) from the previous example
 is as follows:
 The answers are 4 and 17.

 For information on excluding the support code for some of
 the conversion specification formats to reduce program size,
 see the implementation notes in the Guide to PDP-11 C .

 Return Values

 Negative number Indicates an error has occurred.
 Number of characters
 transmitted

 Indicates success.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p218.decw$book (2 of 2)1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 fputc

 The fputc function writes a single character to a specified
 file.

 Format
 #include <stdio.h>
 int fputc (int character, FILE
 *

 file_ptr);

 Arguments
 character
 Is an expression of type int .

 file_ptr
 Is a pointer to the file where the character is written.

 Description
 The fputc function writes a single character to a file and
 returns the character. The file pointer is left positioned
 after the character. In PDP-11 C, putc and fputc are
 functionally equivalent.
 See also putc .

 Return Values

 EOF Indicates that an output error
 has occurred. EOF is defined in
 the <stdio.h> header file.
 Character Indicates success.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p219.decw$book1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 fputs

 The fputs function writes a character string to a file without
 writing the string's NUL terminator (\0).

 Format
 #include <stdio.h>
 int fputs (const char
 *

 str, FILE
 *

 file_ptr);

 Arguments
 str
 Is a pointer to a character string.

 file_ptr
 Is a file pointer.

 Return Values

 EOF Indicates an error has occurred.
 Number of characters
 written

 Indicates success.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p220.decw$book1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 fread

 The fread function reads a specified number of items from
 the file.

 Format
 #include <stdio.h>
 size_t fread (void
 *

 ptr, size_t size_of_item, size_t number_items, FILE
 *

 file_ptr);

 Arguments
 ptr
 Is a pointer to the location, within memory, where the
 information being read will be placed.

 size_of_item
 Is the size of the items being read, in bytes.

 number_items
 Is the number of items to be read.

 file_ptr
 Is a pointer to the file from which the items are to be read.

 Description
 The type size_t is defined in the <stdio.h> header file. The
 reading begins at the current location in the file. The items
 read are placed in storage beginning at the location given by
 the first argument. You must also specify the size of an item
 in bytes.

 Return Values

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p221.decw$book (1 of 2)1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

 n Indicates the number of items
 read.
 0 Indicates the end-of-file or an
 error.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p221.decw$book (2 of 2)1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 _ _frec

 The _ _frec function returns the current record length
 associated with a file pointer.

 Format
 #include <stdio.h>
 long int _ _frec (FILE
 *

 file_ptr);

 Arguments
 file_ptr
 Is a file pointer.

 Description
 The _ _frec function retrieves the current record length that
 has been associated with a previously allocated file pointer.

 Return Values

 Zero value Indicates that an error has
 occurred.
 Nonzero value Indicates success.

 Note

 This is a PDP-11 C extension not defined by the ANSI
 standard.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p222.decw$book1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 free

 The free function releases for reallocation the area allocated
 by a previous calloc , malloc , or realloc call.

 Format
 #include <stdlib.h>
 void free (void
 *

 ptr);

 Arguments
 ptr
 Is an address returned by a previous call to malloc , calloc ,
 or realloc .

 Description
 The contents of the deallocated area should not be used by the
 user program after it has been freed.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p223.decw$book1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 freopen

 The freopen function substitutes the file, named by a file
 specification, for the open file addressed by a file pointer. The
 latter file is closed.

 Format
 #include <stdio.h>
 FILE
 *

 freopen (const char
 *

 file_spec, const char
 *

 a_mode, FILE
 *

 file_ptr);

 Arguments
 file_spec
 Is a pointer to a string that contains a valid file specification.
 After the function call, the given file pointer is associated with
 this file.

 a_mode
 Is an access mode indicator. See fopen for additional
 information on the access mode indicator.

 file_ptr
 Is a file pointer which points to a previously opened file.

 Description
 The freopen function closes the file pointed to by file_ptr
 and opens the file named by file_spec . Use the freopen
 function to associate stdin , stdout , or stderr with a file.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p224.decw$book (1 of 2)1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

 Return Values

 File pointer Indicates success.
 NULL Indicates that an error has
 occurred. The constant NULL is
 defined in the <stdio.h> header
 file to be the NULL pointer value.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p224.decw$book (2 of 2)1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 frexp

 The frexp function converts a floating point number into a
 normalized fraction and an integral power of 2.

 Format
 #include <math.h>
 double frexp (double value, int
 *

 eptr);

 Arguments
 value
 Is an expression of type double .

 eptr
 Is a pointer to an int , to which frexp returns the exponent.

 Description
 The expression given for value is broken into a normalized
 function which is returned as the return value of the
 function, and an integral power of 2 which is placed in
 the int pointed to by eptr .

 Return Values
 The mantissa of value with a magnitude less than 1.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p225.decw$book1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 fscanf

 The fscanf function performs formatted input from a
 specified file.

 Format
 #include <stdio.h>
 int fscanf (FILE
 *

 file_ptr, const char
 *

 format_spec, ...);

 Arguments
 file_ptr
 Is a pointer to the file that provides input text.

 format_spec
 Contains characters to be taken literally from the input or
 converted and placed in memory at the specified . . . argu-
 ment. For more information on conversion characters, refer
 to Chapter 2.

 . . .
 Are optional expressions whose resultant types correspond to
 conversion specifications given in the format specification. If
 no conversion specifications are given, you can omit the input
 pointers; otherwise, the function calls must have exactly as
 many input pointers as there are conversion specifications,
 and the conversion specifications must match the types of
 the input pointers. Conversion specifications are matched to
 input sources in simple left-to-right order.

 Description
 An example of a conversion specification follows:
 #include <stdio.h>
 main ()

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p226.decw$book (1 of 2)1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

 {
 int temp, temp2;
 fscanf(stdin, "%d %d", &temp, &temp2);
 printf("The answers are %d, and %d.", temp, temp2);
 }

 Note

 A common programming error is to omit the
 ampersand (&) of &temp in the fscanf call of the
 program. If the ampersand is omitted, the required
 address is not passed.

 Consider a file, designated by stdin , with the following
 contents:
 4 17

 Sample input from the previous example is as follows:
 $ run example
 The answers are 4, and 17.

 Return Values

 x Indicates the number of success-
 fully matched and assigned input
 items.
 EOF Indicates that the end-of-file has
 been encountered before any con-
 versions. EOF is a preprocessor
 constant defined in the <stdio.h>
 header file.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p226.decw$book (2 of 2)1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 fseek

 The fseek function positions the file to the specified byte
 offset in the file.

 Format
 #include <stdio.h>
 int fseek (FILE
 *

 file_ptr, long int offset, int direction);

 Arguments
 file_ptr
 Is a file pointer.

 offset
 Is the offset specified in bytes.

 direction
 Is an integer indicating whether the offset is measured
 forward from the current read or write address (SEEK_
 CUR), forward from the beginning of the file (SEEK_SET),
 or backwards from the end-of-file (SEEK_END).

 Description
 The fseek function sets the file position of the stream
 specified by file_ptr.
 For binary streams, if the direction is SEEK_SET, the position
 is measured in bytes from the beginning of the file. If the
 direction is SEEK_CUR, the position is measured from the
 current position in the file.

 For text streams, the offset should either be zero or a value
 returned by an earlier call to ftell . In all cases, direction shall
 be SEEK_SET.

 PDP-11 C does not support the direction value of SEEK_
 END.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p227.decw$book (1 of 2)1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

 A successful call to fseek clears the end-of-file and undoes
 any effects of the ungetc function.

 Return Values

 0 Indicates successful seeks.
 EOF Indicates improper seeks. EOF is
 a preprocessor constant defined
 in the <stdio.h> header file.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p227.decw$book (2 of 2)1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 fsetpos

 The fsetpos function sets the current file position indicator.
 The position must be specified by using a value returned by
 the fgetpos function.

 Format
 #include <stdio.h>
 int fsetpos (FILE
 *

 file_ptr, const fpos_t
 *

 pos);

 Arguments
 file_ptr
 Is a pointer to a file.

 pos
 Is a pointer to the file position indicator value obtained from a
 previous call to the fgetpos function.

 Return Values

 Zero value Indicates success. A successful
 call clears the end-of-file and
 undoes any effects of the ungetc
 function.
 Nonzero value Indicates an error has occurred.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p228.decw$book1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 ftell

 The ftell function returns the current byte offset to the
 specified stream.

 Format
 #include <stdio.h>
 long int ftell (FILE
 *

 file_ptr);

 Arguments
 file_ptr
 Is a file pointer.

 Description
 The ftell function returns the current position in the stream
 pointed to by file_ptr.
 For a binary stream, the value returned is the number of
 bytes from the beginning of the file.

 For a text stream, the value returned is information which is
 only usable by the fseek function for returning the file to the
 current position.

 Return Values

 EOF Indicates an error has occurred.
 x Current value of the position
 indicator.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p229.decw$book1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 fwrite

 The fwrite function writes a specified number of items to a
 file.

 Format
 #include <stdio.h>
 size_t fwrite (const void
 *

 ptr, size_t size, size_t nmemb,tpu FILE
 *

 file_ptr);

 Arguments
 ptr
 Is a pointer to the memory location from which information
 is being written.

 size
 Is the size of the items being written, in bytes.

 nmemb
 Is the number of items being written.

 file_ptr
 Is a file pointer that indicates the file to which the items are
 being written.

 Description
 If the file is a record-mode file, fwrite outputs at least
 nmemb records, each of length size.
 The type size_t is defined in the <stdio.h> header file.

 Return Values

 x Indicates the number of items

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p230.decw$book (1 of 2)1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

 written. The number of records
 written depends upon the maxi-
 mum record size of the file.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p230.decw$book (2 of 2)1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 getc

 The getc function returns a character from a specified file.

 Format
 #include <stdio.h>
 int getc (FILE
 *

 file_ptr);

 Arguments
 file_ptr
 Is a pointer to the file to be accessed.

 Description
 The getc function gets the next character pointed to by the
 file pointer from the input stream and advances the file
 indicator for that file.

 Return Values

 x Indicates the next character as
 an int from the specified file.
 EOF Indicates the end-of-file or an
 error. (EOF is a preprocessor
 constant defined in the <stdio.h>
 header file.)

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p231.decw$book1/25/06 4:03 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 getchar

 The getchar function reads a single character from the
 standard input (stdin).

 Format
 #include <stdio.h>
 int getchar (void);

 Description
 The getchar function works the same as the fgetc function.
 It is equivalent to an fgetc (stdin).

 Return Values

 EOF Indicates the end-of-file or an
 error. (EOF is a preprocessor
 constant defined in the <stdio.h>
 header file.)
 x Indicates the next character as
 an int from stdin .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p232.decw$book1/25/06 4:04 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 getenv

 The getenv function searches the environment array for
 the current process and returns the value associated with a
 specified environment name.

 Format
 #include <stdlib.h>
 char
 *

 getenv (const char
 *

 name);

 Arguments
 name
 Can be one of the following values:
 .
 HOME -The login default directory.

 System Value Returned for HOME

 RSX-11M The physical device and unit num-
 ber of SY: and the UIC at that given
 time
 RSX-11M-PLUS The physical device and unit num-
 ber of SYS$LOGIN, as well as the
 UFD
 RSTS The logical device and unit number
 of the form SY:[PPN]
 RT-11 DK:
 VAX-11 RSX The login directory that
 SYS$LOGIN points to

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p233.decw$book (1 of 3)1/25/06 4:04 PM

PDP-11 C Run-Time Library Reference Manual

 .
 PATH-The default device and directory.

 System Value Returned for PATH

 RSX-11M The physical device and unit num-
 ber of SY: and the UIC at that given
 time
 RSX-11M-PLUS The physical device and unit num-
 ber of SY:, as well as the UFD
 RSTS The logical device and unit number
 of the form SY:[PPN]
 RT-11 DK:
 VAX-11 RSX The current default directory

 .
 USER-The UIC of the current task.

 System Value Returned for USER

 RSX-11M The UIC
 RSX-11M-PLUS The UIC
 RSTS The PPN
 RT-11 The Job Number for the process
 VAX-11 RSX The user name of the current
 process

 .
 TERM-The type of terminal being used. For the RT-11
 system, TERM will return NULL. On all other operating
 systems, TERM will return a terminal type, for example,
 VT340.
 .
 OPSYS-The name of the operating system.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p233.decw$book (2 of 3)1/25/06 4:04 PM

PDP-11 C Run-Time Library Reference Manual

 Description
 The getenv function will be used to gain information about
 the current running task. The parameters USER, TERM,
 PATH, HOME, and OPSYS will return information about the
 operating environment. If the argument to getenv does not
 match any of the environment strings, the return value is
 NULL.

 Return Values

 x Indicates a translated symbol.
 NULL Indicates that the translation
 failed.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p233.decw$book (3 of 3)1/25/06 4:04 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 gets

 The gets function reads a line from the standard input
 stream (stdin).

 Format
 #include <stdio.h>
 char
 *

 gets (char
 *

 s);

 Arguments
 s
 Pointer to the array to which the characters are read.

 Description
 The gets function reads characters from the standard input
 stream into the array pointed to by s until end-of-file or
 a new character is encountered. The newline character is
 discarded and a NUL character is written immediately after
 the last character read into the array.

 Return Values

 NULL Indicates that end-of-file was
 encountered and no characters
 were read, or that an error has
 occurred.
 x A pointer to s .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p234.decw$book1/25/06 4:04 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 gmtime

 The gmtime function converts a given calendar time into a
 broken-down time, expressed as Coordinated Universal Time
 (UTC).

 Format
 #include <time.h>
 struct tm
 *

 gmtime (const time_t
 *

 timer);

 Arguments
 timer
 Is a pointer to an object of type time_t , which contains the
 calendar time.

 Description
 The gmtime function returns a pointer to a structure of
 type tm which contains the time expressed as UTC. The
 current time zone must be set by using the _ _tzset function;
 otherwise, gmtime returns a NULL pointer.
 See also _ _tzset .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p235.decw$book1/25/06 4:04 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 hypot

 The hypot function returns the square root of the sum of the
 squared arguments.

 Format
 #include <math.h>
 double hypot (double x, double y);

 Arguments
 x
 Is a real value.

 y
 Is a real value.

 Description
 The hypot function returns the following:
 sqrt(x
 *

 x + y
 *

 y)
 This function is provided for compatibility with VAX C and is
 only available if compiled with the /NOSTANDARD switch.

 Return Values
 Returns the square root of the sum of the squared arguments
 of x and y .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p236.decw$book1/25/06 4:04 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 isalnum

 The isalnum function is used to determine if a character is
 an alphanumeric in the current locale.

 Warning

 This function is affected by the current locale setting.

 Format
 #include <ctype.h>
 int isalnum (int c);

 Arguments
 c
 Is an expression of type int .

 Description
 The isalnum function returns a nonzero integer if its
 argument is an alphanumeric character; otherwise, it returns
 0. Refer to Chapter 3 for more information.

 Return Values
 Returns a nonzero integer if its argument is an alphanumeric
 character; otherwise, returns a zero.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p237.decw$book1/25/06 4:04 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 isalpha

 The isalpha function is used to determine if a character is
 an alphabetic character in the current locale.

 Warning

 This function is affected by the current locale setting.

 Format
 #include <ctype.h>
 int isalpha (int c);

 Arguments
 c
 Is an expression of type int .

 Description
 The isalpha function returns a nonzero integer if its
 argument is an alphabetic character; otherwise, it returns
 0. In PDP-11 C, isalpha is true only for characters having
 isupper or islower true. Refer to Chapter 3 for more
 information.

 Return Values
 Returns a nonzero integer if its argument is an alphabetic
 character; otherwise, returns a zero.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p238.decw$book1/25/06 4:04 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 isascii

 The isascii macro is used to determine if a character is
 ASCII.

 Format
 #include <ctype.h>
 int isascii (int c);

 Arguments
 c
 Is an expression of type int .

 Description
 The isascii macro returns a nonzero integer if its argument
 is any ASCII character; otherwise, it returns 0. This macro is
 provided for compatibility with VAX C and is only available
 when compiled with the /NOSTANDARD switch. Refer to
 Chapter 3 for more information.

 Return Values
 Returns a nonzero integer if its argument is any ASCII
 character; otherwise, returns a zero.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p239.decw$book1/25/06 4:04 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 _ _ischar

 The _ _ischar function returns a nonzero integer if its
 argument is contained in the current character set. Refer to
 Chapter 3 for more information.

 Format
 #include <ctype.h>
 int _ _ischar (int c);

 Arguments
 c
 Is an expression of type int .

 Return Values
 Returns a nonzero integer if its argument is contained in the
 current character set; otherwise, returns a zero.

 Note

 This is a PDP-11 C extension not defined by the ANSI
 standard.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p240.decw$book1/25/06 4:04 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 iscntrl

 The iscntrl function returns a nonzero integer if its
 argument is a delete character or any nonprinting character
 for each of the character sets supported by PDP-11 C;
 otherwise, it returns 0. Refer to Chapter 3 for more
 information.

 Warning

 This function is affected by the current locale setting.

 Format
 #include <ctype.h>
 int iscntrl (int c);

 Arguments
 c
 Is an expression of type int .

 Return Values
 Returns a nonzero integer if its argument is a delete
 character or any nonprinting character; otherwise, returns a
 zero.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p241.decw$book1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 isdigit

 The isdigit function returns a nonzero integer if its
 argument is a decimal digit character (0-9); otherwise, it
 returns 0. Refer to Chapter 3 for more information.

 Format
 #include <ctype.h>
 int isdigit (int c);

 Arguments
 c
 Is an expression of type int .

 Return Values
 Returns a nonzero integer if its argument is a decimal digit
 character; otherwise, returns a zero.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p242.decw$book1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 isgraph

 The isgraph function returns a nonzero integer if its
 argument is any printing character except 040 (SP);
 otherwise, it returns 0. Refer to Chapter 3 for more
 information.

 Warning

 This function is affected by the current locale setting.

 Format
 #include <ctype.h>
 int isgraph (int c);

 Arguments
 c
 Is an expression of type int .

 Description
 Graphic ASCII characters are those with octal codes greater
 than or equal to 041 (!) and less than or equal to 0176 (?).
 They make up the set of characters you can print, except the
 space.

 Return Values
 Returns a nonzero integer if its character is any printing
 character except space; otherwise, it returns a zero.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p243.decw$book1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 islower

 The islower function returns a nonzero integer if its
 argument is a lowercase alphabetic character; otherwise,
 it returns 0. Refer to Chapter 3 for more information.

 Warning

 This function is affected by the current locale setting.

 Format
 #include <ctype.h>
 int islower (int c);

 Arguments
 c
 Is an expression of type int .

 Return Values
 Returns a nonzero integer if its argument is a lowercase
 alphabetic character; otherwise returns a zero.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p244.decw$book1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 isprint

 The isprint function returns a nonzero integer if its
 argument is a printing character including space, 040
 (SP); otherwise, it returns 0. Refer to Chapter 3 for more
 information.

 Warning

 This function is affected by the current locale setting.

 Format
 #include <ctype.h>
 int isprint (int c);

 Arguments
 c
 Is an expression of type int .

 Return Values
 Returns a nonzero integer if its argument is a printing
 character; otherwise, returns a zero.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p245.decw$book1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 ispunct

 The ispunct function returns a nonzero integer if its
 argument is a punctuation character, that is, if it is a
 printing character that is nonalphanumeric and not the
 space character; otherwise, it returns 0. Refer to Chapter 3
 for more information.

 Warning

 This function is affected by the current locale setting.

 Format
 #include <ctype.h>
 int ispunct (int c);

 Arguments
 c
 Is an expression of type int .

 Return Values
 Returns a nonzero integer if its argument is a punctuation
 character; otherwise, returns a zero.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p246.decw$book1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 isspace

 The isspace function returns a nonzero integer if its
 argument is white space; that is, if it is a space, tab
 (horizontal or vertical), carriage-return, form-feed, or
 newline character; otherwise, it returns 0. Refer to Chapter 3
 for a list of additional characters that are in the Digital
 Multinational and ISO Latin-1 sets.

 Warning

 This function is affected by the current locale setting.

 Format
 #include <ctype.h>
 int isspace (int c);

 Arguments
 c
 Is an expression of type int .

 Return Values
 Returns a nonzero integer if its argument is white space;
 otherwise, returns a zero.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p247.decw$book1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 isupper

 The isupper function returns a nonzero integer if its
 argument is an uppercase alphabetic character; otherwise, it
 returns 0. Refer to Chapter 3 for more information.

 Warning

 This function is affected by the current locale setting.

 Format
 #include <ctype.h>
 int isupper (int c);

 Arguments
 c
 Is an expression of type int .

 Return Values
 Returns a nonzero integer if its argument is an uppercase
 alphabetic character; otherwise, returns a zero.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p248.decw$book1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 isxdigit

 The isxdigit function returns a nonzero integer if its
 argument is a hexadecimal digit (0 to 9, A to F, or a to f).
 Refer to Chapter 3 for more information.

 Format
 #include <ctype.h>
 int isxdigit (int c);

 Arguments
 c
 Is an expression of type int .

 Return Values
 Returns a nonzero integer if its argument is a hexadecimal
 digit; otherwise, returns a zero.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p249.decw$book1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 labs

 The labs function returns the absolute value of a long int .

 Format
 #include <stdlib.h>
 long int labs (long int x);

 Arguments
 x
 Is a long int .

 Return Values
 Returns the absolute value of an integer as a long int.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p250.decw$book1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 ldexp

 The ldexp function returns its first argument multiplied by
 2 raised to the power of its second argument; that is, x (2

 exp
) .

 Format
 #include <math.h>
 double ldexp (double x, int exp);

 Arguments
 x
 Is a base value of type double that is to be multiplied by 2

 exp
 .

 exp
 Is the integer exponent value to which 2 is raised.

 Description
 If there is a range error,the function sets errno to ERANGE
 and returns the constant HUGE_VAL. (HUGE_VAL is
 defined in the <math.h> header file to be the largest possible
 value of the appropriate sign.)

 Return Values

 0 Indicates that underflow has
 occurred.
 x x (2

 exp
)

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p251.decw$book1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 ldiv

 The ldiv function returns the quotient and the remainder
 after the division of its arguments.

 Format
 #include <stdlib.h>
 ldiv_t ldiv (long int numer, long int denom);

 Arguments
 numer
 Is a numerator of type long int .

 denom
 Is a denominator of type long int .

 Description
 The type div_t is defined in the standard include module
 <stdlib.h> header file as follows:
 typedef struct LDIV_T
 {
 long int quot
 long int rem;
 }
 ldiv_t;

 Return Values
 Returns the quotient and remainder.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p252.decw$book1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 localeconv

 The localeconv function obtains the appropriate values for
 formatting numeric quantities as controlled by the current
 locale.

 Format
 #include <locale.h>
 struct lconv
 *

 localeconv (void);

 Description
 The localconv function returns a pointer to an object of type
 struct lconv which contains the values for the currently set
 locale. The lconv structure has the following members:

 char
 *

 decimal_point Character used for formatting
 nonmonetary quantities.
 char
 *

 thousands_sep Separates groups of digits before
 the decimal point in formatted
 nonmonetary quantities.
 char
 *

 grouping A string indicating the size of
 each group of digits in formatted
 nonmonetary quantities.
 char
 *

 int_curr_symbol International currency symbol

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p253.decw$book (1 of 3)1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

 for the current locale.
 char
 *

 currency_symbol Local currency symbol for the
 current locale.
 char
 *

 mon_decimal_
 point

 Character used for formatting
 monetary quantities.
 char
 *

 mon_thousands_
 sep

 Separates groups of digits before
 the decimal point in formatted
 monetary amounts.
 char
 *

 mon_grouping A string indicating the size of
 each group of digits in formatted
 monetary amounts.
 char
 *

 positive_sign A string indicating a positive
 formatted monetary amount.
 char
 *

 negative_sign A string indicating a negative
 formatted monetary amount.
 char int_frac_digits The number of fractional digits
 displayed in an internationally
 formatted monetary amount.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p253.decw$book (2 of 3)1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

 char frac_digits The number of fractional dig-
 its displayed in a formatted
 monetary amount.
 char p_cs_precedes Is set to 1 if currency_symbol
 comes before the value for a
 positive formatted monetary
 quantity or to 0 if it comes after
 it.
 char p_sep_by_space Is set to 1 if currency_symbol
 is separated from the value of
 a positive formatted monetary
 quantity by a space or to 0 if it is
 not.
 char n_cs_precedes Is set to 1 if currency_symbol
 comes before the value of a
 negative formatted monetary
 amount or to 0 if it comes after it.
 char n_sep_by_space Is set to 1 if currency_symbol is
 separated by a space from the
 value of a negative formatted
 monetary amount or to 0 if it is
 not.
 char p_sign_posn Indicates the position of positive_
 sign for a positive formatted
 monetary amount.
 char n_sign_posn Indicates the position of negative_
 sign for a negative formatted
 monetary amount.

 Return Values
 Returns the pointer to the lconv object, filled in for the
 currently set locale.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p253.decw$book (3 of 3)1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 localtime

 The localtime function converts a time (expressed as the
 number of seconds elapsed since 00:00:00 January 1, 1970)
 into hours, minutes, seconds, and so on, expressed as local
 time.

 Format
 #include <time.h>
 struct tm
 *

 localtime (const time_t
 *

 bintim);

 Arguments
 bintim
 Is a pointer to the time in seconds relative to 00:00:00 January
 1, 1970. This time can be generated by the time function, or
 you can supply a time.

 Description
 The type tm is defined in the <time.h> header file as follows:
 struct tm
 {
 int tm_sec, /* seconds after the minute -- [0, 60] */
 tm_min, /* minutes after the hour -- [0, 59] */
 tm_hour, /* hours since midnight -- [0, 23] */
 tm_mday, /* day of the month -- [1, 31] */
 tm_mon, /* months since January -- [0, 11] */
 tm_year, /* years since 1900 -- [0, ..] */
 tm_wday, /* days since Sunday -- [0, 6] */
 tm_yday, /* days since January 1 -- [0,365] */
 tm_isdst; /* Daylight Saving Time Flag -- [-1, 1] */
 /* -1 info. not available */
 /* 0 D.S.T. IS-NOT in effect */
 /* 1 D.S.T. IS in effect */

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p254.decw$book (1 of 2)1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

 };
 Successive calls to the localtime function overwrite the
 structure.

 Return Values

 Pointer Indicates a pointer to the time
 structure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p254.decw$book (2 of 2)1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 log, log10

 The log and log10 functions return the logarithm of their
 arguments.

 Format
 #include <math.h>
 double log (double x);
 double log10 (double x);

 Description
 The log and log10 functions return the logarithm of their
 arguments. During error conditions, errno is set to EDOM if
 x is negative; errno is set to ERANGE if x is zero.

 Return Values

 log Natural (base-e) logarithm of x
 log10 Base-10 logarithm of x .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p255.decw$book1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 longjmp

 The longjmp function provides a way to transfer control
 from a nested series of function invocations back to a
 predefined point without returning normally; that is, not
 by a series of return statements. The longjmp function
 restores the context of the environment buffer.
 Please note that using longjmp calls across non-C functions
 may cause unpredictable results.

 Format
 #include <setjmp.h>
 void longjmp (jmp_buf env, int val);

 Arguments
 env
 Represents the environment buffer and must be an array of
 integers long enough to hold the register context of the calling
 function. The type jmp_buf is defined by a typedef found
 in the <setjmp.h> header file. The contents of the general-
 purpose registers, including the program counter (PC), are
 stored in the buffer.

 val
 Is passed from longjmp to setjmp , and then becomes the
 subsequent return value of the setjmp call. If value is passed
 as 0, it is converted to 1.

 Description
 When the setjmp function is called to save a context, it
 returns the value 0. If the longjmp function is then called
 naming the same environment as a previous call to setjmp ,
 control returns to the setjmp call as if it had returned
 normally a second time. The return value of setjmp in this
 second return is the value you supply in the longjmp call.

 WARNING

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p256.decw$book (1 of 2)1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

 You may invoke the longjmp function from a signal
 handler that has been established for any signal
 supported by the PDP-11 C Run-Time Library,
 subject to the following nesting restrictions:

 .
 The longjmp function will not work if invoked
 from nested signal handlers. When invoked
 from a signal handler that has been entered as a
 result of an exception generated in another signal
 handler, the result of the longjmp function is
 undefined.
 .
 Do not invoke the setjmp function from a signal
 handler unless the associated longjmp is to
 be issued before the handling of that signal is
 completed.

 See also setjmp .

 Return Values

 0 First call, first return.
 Nonzero value Indicates a later call to the
 longjmp function using the
 same values.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p256.decw$book (2 of 2)1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 _ _lr50a

 The _ _lr50a function converts an unsigned 32-bit radix-50
 string to the corresponding 6-character ASCII character
 string.

 Format
 #include <stdlib.h>
 short int _ _lr50a (unsigned long int
 *

 _ _rad50, char
 *

 _ _ascii_string);

 Arguments
 _ _rad50
 Is a pointer to an unsigned 32-bit radix-50 string to be
 converted to ASCII.

 _ _ascii_string
 Is a pointer to a string to hold the converted six-character
 ASCII string.

 Description
 When _ _lr50a converts the radix-50 string to the ASCII
 character string, the string will not be NUL terminated.

 Return Values

 n The number of characters trans-
 lated.

 Note

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p257.decw$book (1 of 2)1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

 This is a PDP-11 C extension not defined by the ANSI
 standard.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p257.decw$book (2 of 2)1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 malloc

 The malloc function allocates an area of memory.

 Format
 #include <stdlib.h>
 void
 *

 malloc (size_t size);

 Arguments
 size
 Specifies the total number of bytes to be allocated.

 Description
 The malloc function allocates a contiguous area of memory
 whose size in bytes is supplied as an argument. The space is
 not initialized. The number of bytes is rounded to the next
 highest number evenly divisible by 4.
 See also calloc .

 Return Values

 NULL Indicates that it is unable to
 allocate enough memory.
 x The address of the first byte,
 which is aligned on a word
 boundary.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p258.decw$book1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 mblen

 The mblen function determines the number of bytes in
 the multibyte character pointed to by its character pointer
 argument.

 Format
 #include <stdlib.h>
 int mblen (const char
 *

 s, size_t n);

 Arguments
 s
 Is a character pointer.

 n
 Specifies the maximum number of bytes in the multibyte
 character that will be examined.

 Description
 The mblen function determines the number of bytes that
 make up the multibyte character pointed to by
 *

 s if s is not a
 NULL pointer.
 See also mbtowc .

 Return Values

 x The number of characters that
 make up the next multibyte
 character in the multibyte string
 pointed to by s . The argument s
 cannot be a NULL pointer.
 -1 Indicates the next character is
 not a valid multibyte character.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p259.decw$book (1 of 2)1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

 Nonzero Indicates s is a NULL pointer,
 and the multibyte characters
 have state-dependent encoding;
 otherwise, 0 is returned.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p259.decw$book (2 of 2)1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 mbstowcs

 The mbstowcs function copies a sequence of characters
 from the string pointed to by s and stores them in the array
 pointed to by pwcs .

 Format
 #include <stdlib.h>
 size_t mbstowcs (wchar_t
 *

 pwcs, const char
 *

 s, size_t n);

 Arguments
 pwcs
 Points to an array where the multibyte characters pointed to
 by s will be stored.

 s
 Points to an array of characters which are to be copied.

 n
 Specifies the maximum number of bytes in the multibyte
 character pointed to by s .

 Description
 The mbstowcs function returns the number of copied array
 elements. This does not include a terminating 0 code.
 The sequence of characters pointed to by the character
 pointer argument is stored in the array pointed to by pwcs .

 The size_t type is an unsigned int type defined in the
 <stddef.h> header file. The wchar_t type is an integral type
 representing distinct codes for all members of the largest
 extended character set specified by the supported locales.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p260.decw$book (1 of 2)1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

 See also wcstombs .

 Return Values
 Returns the number of copied array elements.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p260.decw$book (2 of 2)1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 mbtowc

 The mbtowc function copies the character pointed to by its
 character pointer argument into pwc .

 Format
 #include <stdlib.h>
 int mbtowc (wchar_t
 *

 pwc, const char
 *

 s, size_t n);

 Arguments
 pwc
 Is a pointer to an object.

 s
 Is a character pointer.

 n
 Specifies the maximum number of bytes expected in the
 multibyte character pointed to by s .

 Description
 The mbtowc function determines the number of characters
 in the multibyte string s that make up the next multibyte
 character. The argument s cannot be a NULL pointer. The
 next multibyte character is converted to a wide character
 value; the value is placed in
 *

 pwc if pwc is not a NULL
 pointer.
 The size_t type is an unsigned int type defined in the
 <stddef.h> header file. The wchar_t type is an integral type
 representing distinct codes for all members of the largest

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p261.decw$book (1 of 2)1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

 extended character set specified by the supported locales. It is
 defined in the <stddef.h> header file.

 See also mblen .

 Return Values

 x The number of characters
 pointed to by
 *

 s that make up
 the next multibyte character.
 -1 Indicates the next or remaining
 characters are invalid multibyte
 characters.
 Nonzero Indicates s is a NULL pointer,
 and the multibyte characters
 have state-dependent encoding;
 otherwise, 0 is returned.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p261.decw$book (2 of 2)1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 memchr

 The memchr function locates the first occurrence of the
 specified byte within the initial size bytes of a given object
 pointed to by s1 .

 Format
 #include <string.h>
 void
 *

 memchr (const void
 *

 s1, int c, size_t size);

 Arguments
 s1
 Is a pointer to the object to be searched.

 c
 Is the byte value to be located.

 size
 Is the length of the object to be searched.

 Description
 Unlike the strchr function, the memchr function does not
 stop when it encounters a NUL character.

 Return Values

 Pointer Is a pointer to the first occur-
 rence of the character.
 NULL The character does not occur in
 the identified object string,

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p262.decw$book1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 memcmp

 The memcmp function compares two objects byte by byte.
 The compare operation starts with the first byte in each
 object. It returns an integer less than, equal to, or greater
 than 0, depending on whether the lexical value of the first
 object is less than, equal to, or greater than that of the second
 object.

 Format
 #include <string.h>
 int memcmp (const void
 *

 s1, const void
 *

 s2, size_t n);

 Arguments
 s1
 Is a pointer to the first object.

 s2
 Is a pointer to the second object.

 n
 Is the maximum number of characters to compare.

 Description
 The memcmp function uses native character comparison.
 The sign of the value returned is determined by the sign of
 the difference between the values of the first pair of unlike
 bytes in the objects being compared. Unlike the strcmp
 function, the memcmp function does not stop when a NUL
 character is encountered.
 See also strcmp .

 Return Values

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p263.decw$book (1 of 2)1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

 <0 Indicates the object pointed to by
 s1 is less than the object pointed
 to by s2 .
 0 Indicates the object pointed to by
 s1 is equal to the object pointed to
 by s2 .
 >0 Indicates the object pointed to
 by s1 is greater than the object
 pointed to by s2 .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p263.decw$book (2 of 2)1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 memcpy

 The memcpy function copies a specified number of bytes
 from one object to another.

 Format
 #include <string.h>
 void
 *

 memcpy (void
 *

 s1, const void
 *

 s2, size_t n);

 Arguments
 s1
 Is a pointer to the first object.

 s2
 Is a pointer to the second object.

 n
 Is the number of characters pointed to by s2 .

 Description
 The memcpy function copies n bytes from s2 to s1 . It does
 not check for the overflow of the receiving memory area
 (s1). Unlike the strcpy function, the memcpy function does
 not stop when a NUL character is encountered. The objects
 should not overlap.
 See also memmove and strcpy .

 Return Values

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p264.decw$book (1 of 2)1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

 x Indicates the value of s1 .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p264.decw$book (2 of 2)1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 memmove

 The memmove function copies a specified number of bytes
 from one object to another, as if it first copied them into a
 temporary array of characters that does not overlap the
 objects pointed to by s1 and s2 , and then copied from the
 temporary array into the object pointed to by s1 .

 Format
 #include <string.h>
 void
 *

 memmove (void
 *

 s1, const void
 *

 s2, size_t n);

 Arguments
 s1
 Is a pointer to the first object.

 s2
 Is a pointer to the second object.

 n
 Is the number of characters to copy.

 Description
 The memmove function copies the specified number of bytes
 from one object to another.
 The objects pointed to by s1 and the object pointed to by s2
 may overlap.

 Return Values

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p265.decw$book (1 of 2)1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

 Returns the value of s1 .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p265.decw$book (2 of 2)1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 memset

 The memset function sets a specified number of bytes in a
 given object to a given value.

 Format
 #include <string.h>
 void
 *

 memset (void
 *

 s, int c, size_t n);

 Arguments
 s
 Is a pointer to the object.

 c
 Is the value to be placed in each byte of s . It is converted to
 an unsigned char before it is copied.

 n
 Is the number of characters in s to be set to c .

 Description
 The memset function returns the value of s .

 Return Values

 Returns the value of s .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p266.decw$book1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 mktime

 The mktime function converts the broken-down time in the
 structure pointed to by timeptr into a calendar time value.

 Format
 #include <time.h>
 time_t mktime (struct tm
 *

 timeptr);

 Arguments
 timeptr
 Pointer to a structure of type tm , which contains the broken-
 down time. The tm structure is defined in the <time.h>
 header file. See the localtime function for more information.

 Return Values

 -1 Indicates the calendar time
 cannot be represented.
 Values other than -1 Returns the specified calendar
 time.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p267.decw$book1/25/06 4:05 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 modf

 The modf function returns the fractional part of the
 argument value with the same sign as the argument value
 and assigns the integral part, expressed as an object of type
 double , to the object whose address is specified by the second
 argument.

 Format
 #include <math.h>
 double modf (double value, double
 *

 iptr);

 Arguments
 value
 Must be an expression of type double .

 iptr
 Is a pointer to an expression of type double where the
 integral part of the result is stored.

 Return Values
 Returns the positive fractional part of the argument value .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p268.decw$book1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 perror

 The perror function writes a short error message to stderr
 describing the last error encountered during a call to the
 PDP-11 C Run-Time Library from a C program.

 Format
 #include <stdio.h>
 void perror (const char
 *

 str);

 Arguments
 str
 Typically contains the name of the program that incurred
 the error.

 Description
 The perror function writes out its argument (a user-
 supplied prefix to the error message), followed by a colon,
 followed by the message itself, followed by a new line. The
 format of the message is:
 str: error message
 If a NULL is passed as the value, only the text of the error
 message is printed; the string is not printed.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p269.decw$book1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 pow

 The pow function returns the first argument raised to the
 power of the second argument.

 Format
 #include <math.h>
 double pow (double base, double exp);

 Arguments
 base
 Is an expression of type double that is to be raised to a
 power.

 exp
 Is the exponent to which the power base is to be raised.

 Description
 Under the following conditions, errno is set to EDOM and
 zero is returned:
 .
 If both arguments are 0.
 .
 If base is 0 and exp is less than or equal to 0.
 .
 If base is negative and exp is not an integer.

 If a range error occurs, errno is set to ERANGE, and the
 result is set to HUGE_VAL or zero.

 The constant HUGE_VAL is defined in the <math.h> header
 file to be the largest representable double value.

 Return Values

 x The first argument raised to the
 power of the second argument.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p270.decw$book1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 printf

 The printf function performs formatted output to the
 standard output stream (stdout).

 Format
 #include <stdio.h>
 int printf (const char
 *

 format, . . .);

 Arguments
 format
 Contains characters to be written literally to the output or
 converted as specified in the ellipsis arguments.

 . . .
 Represents optional expressions whose resultant types
 correspond to conversion specifications given in the format
 specification. If no conversion specifications are given, the
 optional expression may be omitted; otherwise, the function
 call must have exactly as many optional expression as there
 are conversion specifications, and the conversion specifications
 must match the types of the optional expression. Conversion
 specifications are matched to output sources in left-to-
 right order. Refer to Chapter 2 for detailed information on
 conversion specifications.

 Description
 The following is an example of a conversion specification:
 #include <stdio.h>
 int main()
 {
 int temp = 4, temp2 = 17;
 printf("The answers are %d, and %d.", temp, temp2);
 }
 Sample output from the previous example is as follows:
 $ run example

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p271.decw$book (1 of 2)1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

 The answers are 4, and 17.

 For information on excluding the support code for some of
 the conversion specification formats to reduce program size,
 see the implementation notes in the Guide to PDP-11 C .

 Return Values

 x Indicates the number of charac-
 ters written.
 -1 Indicates an error has occurred.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p271.decw$book (2 of 2)1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 putc

 The putc function writes a single character to a specified file.

 Format
 #include <stdio.h>
 int putc (int character, FILE
 *

 file_ptr);

 Arguments
 character
 Is an expression of type int .

 file_ptr
 Is a file pointer to the file in which the character is written.

 Description
 The putc function writes a single character to a file and
 returns the character. The file pointer is positioned after
 the character. In PDP-11 C, the fputc function and putc
 function are functionally equivalent. See also fputc .

 Return Values

 EOF Indicates that an output error
 has occurred. EOF is defined in
 the <stdio.h> header file.
 Character Indicates success.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p272.decw$book1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 putchar

 The putchar function writes a single character to the
 standard output (stdout) stream and returns the character.

 Format
 #include <stdio.h>
 int putchar (int character);

 Arguments
 character
 Is an expression of type int .

 Description
 The putchar function is identical to the fputc function (c,
 stdout). See also fputc .

 Return Values

 EOF Indicates that an output error
 has occurred. EOF is defined in
 the <stdio.h> header file.
 Character Indicates success.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p273.decw$book1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 puts

 The puts function writes a character string to the standard
 output stream (stdout) , followed by a newline appended to
 the output.

 Format
 #include <stdio.h>
 int puts (const char
 *

 str);

 Arguments
 str
 Is a pointer to a character string to be written to stdout .

 Description
 The puts function does not copy the terminating NUL
 character to the output stream.

 Return Values

 EOF Indicates an error has occurred.
 Number of characters
 written

 Indicates success.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p274.decw$book1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 qsort

 The qsort function sorts an array of objects in place.

 Format
 #include <stdlib.h>
 void qsort (void
 *

 base, size_t nmemb, size_t size, int (
 *

 compar) (const void
 *

 x,const void
 *

 y));

 Arguments
 base
 Is a pointer to the initial member of the array. The pointer
 should be of type pointer-to-element and cast to type
 pointer-to-void.

 nmemb
 Is the number of objects in the array.

 size
 Is the size of an object in bytes.

 compar
 Is a pointer to the compare function.

 x
 Is an argument to the compare function.

 y

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p275.decw$book (1 of 2)1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

 Is an argument to the compare function.

 Description
 Two arguments are passed to the comparison function
 pointed to by compar . The two arguments point to the objects
 being compared. Depending on whether the first argument is
 less than, equal to, or greater than the second argument, the
 comparison function returns an integer less than, equal to, or
 greater than 0.
 The comparison function compar need not compare every
 byte, so arbitrary data may be contained in the objects in
 addition to the values being compared.

 The output order of two objects that compare as equal is
 unpredictable.

 The qsort function must allocate one temporary having the
 size of a single element. If the qsort function is unable to
 allocate this temporary, it will place the value ENOMEM in
 errno and leave the array unsorted.

 Return Values
 Returns no values.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p275.decw$book (2 of 2)1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 raise

 The raise function generates a specified software signal.
 Generating a signal causes the action established by the
 signal function to be taken.

 Format
 #include <signal.h>
 int raise (int sig);

 Arguments
 sig
 Identifies the signal to be generated.

 Description
 You may not raise the SIGSEGV or SIGILL condition if the
 signal handling action established for that signal is SIG_IGN.
 Signals are described in Section 1.8.

 Return Values

 0 Indicates success.
 Nonzero Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p276.decw$book1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 rand

 The rand function returns pseudorandom numbers in the
 range 0 to RAND_MAX (2

 15
 -1). The RAND_MAX macro is
 defined by the standard library header, <stdlib.h>.

 Format
 #include <stdlib.h>
 int rand (void);

 Return Values
 Returns a pseudorandom integer.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p277.decw$book1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 realloc

 The realloc function changes the size of the area pointed
 to by the first argument to the number of bytes given by the
 second argument.

 Format
 #include <stdlib.h>
 void
 *

 realloc (void
 *

 ptr, size_t size);

 Arguments
 ptr
 Points to an area allocated by malloc , calloc , or realloc , or
 is NULL.

 size
 Specifies the new size of the allocated area.

 Description
 If ptr is the NULL pointer constant, the behavior of the
 realloc function is equivalent to that of the malloc function.
 The contents of the area are unchanged up to the lesser of
 the old and new sizes. If the size is zero, realloc behaves
 similarly to the function free .

 After a call to realloc , the storage area pointed to by ptr may
 be undefined unless realloc returns NULL.

 Return Values

 x Indicates the address of the area
 because the area may have to be
 moved to a new address in order

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p278.decw$book (1 of 2)1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

 to reallocate enough space. If
 the area was moved, the space
 previously occupied is freed.
 NULL Indicates an inability to reallocate
 the space (for example, if there is
 not enough room).

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p278.decw$book (2 of 2)1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 remove

 The remove function deletes a file.

 Format
 #include <stdio.h>
 int remove (const char
 *

 file_spec);

 Arguments
 file_spec
 Is a pointer to the string that contains a file specification.

 Description
 The remove function deletes the file pointed to by file_spec .

 Return Values

 0 Indicates success.
 Nonzero value Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p279.decw$book1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 rename

 The rename function gives a new name to an existing file.

 Format
 #include <stdio.h>
 int rename (const char
 *

 old_file_spec, const char
 *

 new_file_spec);

 Arguments
 old_file_spec
 Is a pointer to a string that is the existing name of the file to
 be renamed.

 new_file_spec
 Is a pointer to a string that is the new name to be given to
 the file.

 Description
 If you try to rename a file that is currently open, the rename
 will fail. You cannot rename a file from one physical device
 to another. Both the old and new file specifications must
 reside on the same device.

 Return Values

 0 Indicates success.
 Nonzero value Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p280.decw$book1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 rewind

 The rewind function sets the file to its beginning.

 Format
 #include <stdio.h>
 void rewind (FILE
 *

 file_ptr);

 Arguments
 file_ptr
 Is a file pointer.

 Description
 The rewind function is equivalent to fseek (file_ptr, 0L,
 SEEK_SET). You can use the rewind function with either
 record or stream files.

 Return Values
 Returns no values.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p281.decw$book1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RSXDIR

 The RSXDIR provides access to all RSX executive directives.

 Format
 #include <stdio.h>
 int RSXDIR(void (
 *

 _ _dpberr) (void), int _ _diccode, . . .);

 Arguments
 _ _dpberr
 The address of an optional error routine where control will be
 transferred if the directive is rejected. If _ _dpberr is not used
 a value of zero should be passed to the function.

 _ _diccode
 The predefined Directive Identification Codes (DIC) supplied
 in <rsxsys.h>.

 Return Values
 Returns no values.

 Note

 RSXDIR is a PDP-11 C extension not defined by the
 ANSI standard.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p282.decw$book1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 scanf

 The scanf function performs formatted input from the
 standard input stream (stdin).

 Format
 #include <stdio.h>
 int scanf (const char
 *

 format_spec, . . .);

 Arguments
 format_spec
 Uses conversion characters to specify how input is to be
 converted and placed in memory using subsequent arguments
 as pointers to the objects receiving the input. For a list of
 conversion characters, refer to Chapter 2.

 . . .
 Represents optional arguments that are pointers to the
 objects receiving the converted input according to the
 conversion specifications given in the format specification.
 If no conversion specifications are given, you may omit these
 input pointers; otherwise, the function call must have exactly
 as many input pointers as there are conversion specifications,
 and the conversion specifications must match the types of
 the input pointers. Conversion specifications are matched to
 input pointers in simple left-to-right order.

 Description
 An example of a conversion specification is as follows:
 #include <stdio.h>
 int main()
 {
 int temp, temp2;
 scanf("%d %d", &temp, &temp2);
 printf("The answers are %d, and %d.", temp, temp2);
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p283.decw$book (1 of 2)1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

 Note

 A common programming error is to omit the
 ampersand (&) of &temp in the scanf call of the
 program. If the ampersand is omitted, the required
 address is not passed.

 Sample input and output from the previous example is as
 follows:
 $ run example
 4 17
 The answers are 4, and 17.

 Return Values

 x Indicates the number of success-
 fully matched and assigned input
 items.
 EOF Indicates end-of-file is encoun-
 tered. EOF is a preprocessor
 constant defined in the <stdio.h>
 header file.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p283.decw$book (2 of 2)1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 setbuf

 The setbuf function associates a buffer with an input or
 output file.

 Format
 #include <stdio.h>
 void setbuf (FILE
 *

 file_ptr, char
 *

 buf);

 Arguments
 file_ptr
 Is a pointer to a file.

 buf
 Is a pointer to an array. The buffer must be large enough to
 hold an entire input or output record. This is equivalent to
 the setvbuf call setvbuf(file_ptr, buf, _IOFBF, BUFSIZ).
 If buf is NULL, I/O operations to that file will be unbuffered.
 This is equivalent to the setvbuf call setvbuf(file_ptr, NULL,
 _IONBF, 0). _IONBF is defined in the <stdio.h> header file.

 Description
 You can use the setbuf function after a file is opened, but
 you must use it before any input or output operations are
 performed.

 A common error is to allocate buffer space as an ``automatic''
 variable in a code block and then fail to close the file in the
 same block.

 A buffer is normally obtained by calling malloc . For more
 information, see the malloc function.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p284.decw$book (1 of 2)1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

 See also setvbuf .

 Return Values
 Returns no values.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p284.decw$book (2 of 2)1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 setjmp

 The setjmp macro is used in transferring control from a
 nested series of function invocations back to a predefined
 point without returning normally. It does not use a series of
 return statements. The setjmp macro saves the context of
 the calling function in an environment buffer.
 Please note that using longjmp calls across non-C functions
 may cause unpredictable results.

 Format
 #include <setjmp.h>
 int setjmp (jmp_buf env);

 Arguments
 env
 Represents the environment buffer and must be an array of
 integers long enough to hold the register context of the calling
 function. The type jmp_buf is defined by a typedef found
 in the <setjmp.h> header file. The contents of the general-
 purpose registers, including the program counter (PC), are
 stored in the buffer.

 Description
 When the setjmp macro is called to save a context, it returns
 the value 0. If the longjmp function is then called naming
 the same environment as the call to the setjmp macro,
 control returns to the setjmp call as if it had returned
 normally a second time. The return value of setjmp in this
 second return is the value supplied by you in the longjmp
 call and is nonzero.

 Return Values

 0 First call, first return.
 Value supplied by user in
 the longjmp call.

 Second call, second return.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p285.decw$book1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 setlocale

 The setlocale function sets the indicated character
 set, collating sequence, monetary format, decimal-point
 character, and time and date format in the Run-Time
 environment.

 Format
 #include <locale.h>
 char
 *

 setlocale (int category, const char
 *

 locale);

 Arguments
 category
 The following macros, which are defined in <locale.h>, may
 be specified by the category argument:
 .
 LC_ALL specifies the program's entire locale.
 .
 LC_COLLATE affects the behavior of the strcoll and
 strxfrm functions.
 .
 LC_CTYPE affects the behavior of the character and
 multibyte handling functions.
 .
 LC_MONETARY selects the monetary formatting as
 returned by the localeconv function.
 .
 LC_NUMERIC selects the decimal-point character
 for formatted I/O, string conversion functions, and
 nonmonetary formatting information.
 .
 LC_TIME sets the format of the time given by the
 strftime function.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p286.decw$book (1 of 2)1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

 locale
 A value of ``C'' for locale sets the minimal C translation
 environment. To specify the implementation-defined native
 environment, which is identical to the ``C'' local, locale is
 given the value "" or one or more of the supported character
 sets.

 Description
 The setlocale function returns a pointer to the string
 associated with the category argument for the new locale if
 the call is successful; otherwise, a NULL pointer is returned
 and the program's locale is not changed.

 A subsequent call with the string value and its associated
 category restores part of the program's locale. The string
 returned by setlocale should not be modified; it may be
 overwritten by subsequent calls to the setlocale function.
 For more information, refer to Chapter 4.

 Return Values

 Pointer to a string Indicates success.
 NULL pointer Indicates an unsuccessful call.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p286.decw$book (2 of 2)1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 setvbuf

 The setvbuf function associates a buffer with an input or
 output file.

 Format
 #include <stdio.h>
 int setvbuf (FILE
 *

 file_ptr, char
 *

 buf, int mode, size_t size);

 Arguments
 file_ptr
 Is a pointer to a file.

 buf
 Is a pointer to an array. If either _IOFBF or _IOLBF is
 specified as a value for mode, I/O operations use the array
 pointed to by buf . The buffer must be large enough to hold an
 entire input or output record.
 If buf is NULL, I/O operations use a buffer automatically
 allocated by the PDP-11 C Run-Time Library. If _IONBF is
 specified for mode, I/O operations are completely unbuffered
 and the pointer in buf is ignored.

 mode
 Is a value that determines how the file will be buffered.

 The following values for mode are defined in <stdio.h> header
 file:

 .
 _IOFBF causes I/O to be fully buffered, if possible. Can be
 used for I/O requests made to files.
 .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p287.decw$book (1 of 2)1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

 _IOLBF causes output to be line buffered, if possible. The
 buffer is flushed when a newline character is written,
 when the buffer is full, or when input is requested. Can
 be used for I/O requests made to files.
 .
 _IONBF causes I/O to be completely unbuffered, if
 possible, and buf and size to be ignored. Can only be
 used for I/O requests to and from your terminal.

 size
 Is the number of bytes in the array pointed to by buf .
 The constant BUFSIZ in <stdio.h> is recommended as an
 adequate buffer size.

 For binary files: when using _IOFBF for the buffering mode,
 the size argument must be in multiples of 512 bytes, and the
 size must be at least 512 bytes.

 Description
 You can use the setvbuf function after a file is opened but
 you must use it before any input or output operations are
 performed.

 A common source of error is to allocate buffer space as an
 automatic variable in a code block and then to fail to close the
 file in the same block.

 A buffer is normally obtained by calling malloc . For more
 information, see the malloc function.

 See also setbuf .

 Return Values

 Nonzero value Indicates an invalid value is given
 for type or size.
 0 Indicates success.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p287.decw$book (2 of 2)1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 signal

 The signal function allows the user to specify how a signal is
 to be handled.

 Format
 #include <signal.h>
 void (
 *

 signal (int sig, void (
 *

 func) (int)))(int);

 Arguments
 sig
 Is the number or macro associated with a signal. The
 sig argument is usually one of the macros defined in the
 <signal.h> header file.

 func
 Is either the action to be taken when the signal is raised
 (SIG_DFL or SIG_IGN) or the address of a function needed
 to handle the signal. SIG_DFL and SIG_IGN are defined in
 the <signal.h> header file.

 Description
 You must call the signal function each time you want to
 catch a signal. The default signal actions are as follows:

 Signal Default Action

 SIGFPE Ignore the exception
 SIGTERM Exit

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p288.decw$book (1 of 3)1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

 SIGINT Abort the task
 SIGABRT Abort the task
 SIGILL Abort with a system trap

 1
 SIGSEGV Abort with a system trap

 1

 1
 By default, abort with standard register dump

 The signal function is used to indicate one of the following:

 .
 The action for the signal is reset to the default action
 (SIG_DFL)
 .
 The signal will be ignored (SIG_IGN)
 .
 The address of a function to be called when the signal
 occurs.

 When the signal is raised, the addressed function is called
 with sig as its argument. When the addressed function
 returns, the interrupted process continues at the point of
 interruption. (This is called catching a signal. Signals are
 reset to SIG_DFL after they have been caught.)

 Signals can also be raised using a call to the raise function.
After a signal has occurred, either through the use of
 the raise function or otherwise, the default action is re-
 established for that signal.

 Note

 SIGABRT must be set to SIG_DFL.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p288.decw$book (2 of 3)1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

 SIGILL and SIGSEGV cannot be set to SIG_IGN.
 SIGILL and SIGSEGV can be raised using the raise
 function only if there is a signal handler previously
 established to catch the signal.

 Return Values

 SIG_ERR Indicates that either an invalid
 signal was specified, or an invalid
 action was specified for a valid
 signal. The variable errno is set
 to EINVAL. SIG_ERR is defined
 in the <signal.h> header file,
 and EINVAL is defined in the
 <errno.h> header file.
 SIG_IGN Indicates that the previous han-
 dling of the signal was to ignore
 the signal.
 SIG_DFL Indicates that the previous han-
 dling of the signal was the default
 action.
 x The address of the previously
 established signal handler.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p288.decw$book (3 of 3)1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 sin

 The sin function returns the sine of its radian argument.

 Format
 #include <math.h>
 double sin (double x);

 Return Values
 Returns the sine value of x .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p289.decw$book1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 sinh

 The sinh function returns the hyperbolic sine of its
 argument.

 Format
 #include <math.h>
 double sinh (double x);

 Arguments
 x
 x is the hyperbolic sine of the angle.

 Description
 The value of sinh(x), if it causes an overflow, is a double
 value with the largest possible magnitude and the appropriate
 sign. An overflow condition causes errno to be set to the value
 ERANGE.

 Return Values
 Returns the hyperbolic sine value.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p290.decw$book1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 _ _sleep, sleep

 The _ _sleep or sleep function suspends execution for a
 specified time interval.

 Format
 #include <signal.h>
 unsigned long int _ _sleep (unsigned long int itime);
 or
 unsigned long int sleep (unsigned long int itime);

 Arguments
 itime
 Is an unsigned long integer which is in units of seconds.

 Description
 The sleep function causes the calling process to be suspended
 for itime seconds. The actual time can be up to one second
 less than itime due to granularity in system timekeeping. The
 entry point name sleep is VAX C compatible and is defined
 only when the compile-time switch of /NOSTANDARD is
 used.
 The _ _sleep function is the same routine as the sleep
 function and can be used regardless of the value of the
 /NOSTANDARD switch.

 Return Values
 Value passed into the function.

 Note

 _ _sleep is a PDP-11 C extension not defined by the
 ANSI standard.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p291.decw$book1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 sprintf

 The sprintf function performs formatted output to a string
 in memory.

 Format
 #include <stdio.h>
 int sprintf (char
 *

 str, const char
 *

 format_spec, . . .);

 Arguments
 str
 Is the address of the string that receives the formatted output.

 format_spec
 Contains characters to be written literally to the output or
 converted as specified by the ellipsis arguments.

 . . .
 Are optional expressions whose resultant types correspond
 to conversion specifications given in the format specification.
 If no conversion specifications are given, you may omit
 the output sources; otherwise, the function calls must have
 exactly as many output sources as there are conversion
 specifications, and the conversion specifications must match
 the types of the output sources. Conversion specifications are
 matched to output sources in left-to-right order. For more
 information, refer to Chapter 2.

 Description
 An example of a conversion specification is as follows:
 #include <stdio.h>
 int main()
 {

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p292.decw$book (1 of 2)1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

 int temp = 4, temp2 = 17;
 char string[80];
 sprintf(string, "The answers are %d, and %d.", temp, temp2);
 }
 Sample output (to the string designated by string) from the
 previous example is as follows:
 The answers are 4, and 17.

 For more information on excluding the support code for some
 of the conversion specification formats to reduce the program
 size, see the implementation notes in the Guide to PDP-11 C .

 Return Values
 Returns the number of characters written to the array, not
 including the terminating NUL character.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p292.decw$book (2 of 2)1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 srand

 The srand function sets the seed for a new sequence of
 pseudorandom numbers returned by subsequent calls to the
 rand function.

 Format
 #include <stdlib.h>
 void srand (unsigned int seed);

 Arguments
 seed
 Starting point for new number from which a particular
 sequence of pseudorandom numbers is generated.

 Description
 The random number generator is reinitialized by calling the
 srand function with the value 1, or it can be set to a specific
 point by calling srand with any other number.
 See also rand .

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p294.decw$book1/25/06 4:06 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 _ _sr50a

 The _ _sr50a function converts an unsigned 16-bit radix-50
 string to the corresponding 3-character ASCII character
 string.

 Format
 #include <stdlib.h>
 void _ _sr50a (unsigned short int _ _rad50, char
 *

 _ _ascii_string);

 Arguments
 _ _rad50
 Is an unsigned 16-bit radix-50 string to be converted to
 ASCII.

 _ _ascii_string
 Is a pointer to a string to hold the converted three-character
 ASCII string.

 Description
 When _ _sr50a converts the radix-50 string to the ASCII
 character string, the string will not be NUL terminated.
 Three characters will always be returned. This function is
 undefined for inputs above 63999, as such inputs are invalid
 radix-50 strings.

 Return Values
 None.

 Note

 This is a PDP-11 C extension not defined by the ANSI
 standard.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p295.decw$book (1 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p295.decw$book (2 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 sscanf

 The sscanf function performs formatted input from a
 character string in memory.

 Format
 #include <stdio.h>
 int sscanf (const char
 *

 str, const char
 *

 format_spec, . . .);

 Arguments
 str
 Is the address of the character string that provides the input
 text to sscanf .

 format_spec
 Contains characters to be taken literally from the input or
 converted and placed in memory at the specified . . . argu-
 ment.

 . . .
 Are optional expressions whose resultant types correspond to
 conversion specifications given in the format specification. If
 no conversion specifications are given, you can omit the input
 pointers; otherwise, the function calls must have exactly as
 many input pointers as there are conversion specifications,
 and the conversion specifications must match the types of
 the input pointers. Conversion specifications are matched to
 input sources in left-to-right order. For more information,
 refer to Chapter 2.

 Description
 An example of a conversion specification is as follows:
 #include <stdio.h.>

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p296.decw$book (1 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

 int main ()
 {
 int temp, temp2;
 char *astring = "4 17";
 sscanf(astring, "%d %d", &temp, &temp2);
 printf("The answers are %d, and %d.\n", temp, temp2);
 }
 4 17
 Sample output from the previous example is as follows:
 $ run example
 The answers are 4, and 17.

 Return Values

 x Indicates the number of success-
 fully matched and assigned input
 items.
 EOF Indicates that the end of the
 string was encountered. EOF is a
 preprocessor constant defined in
 the <stdio.h> header file.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p296.decw$book (2 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 strcat

 The strcat function concatenates one string to the end of the
 other.

 Format
 #include <string.h>
 char
 *

 strcat (char
 *

 s1, const char
 *

 s2);

 Arguments
 s1
 Is a pointer to a string to which characters are appended.

 s2
 Is a pointer to a string from which the characters are
 appended to the string pointed to by s1 .

 s1, s2
 Must be NUL-terminated character strings.

 Description
 The address of the first argument, s1 , is assumed to point to
 a space large enough to hold the concatenated result. See also
 strncat .

 Return Values

 x Indicates the address of the first
 argument, s1 .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p297.decw$book1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 strchr

 The strchr function returns the address of the first
 occurrence of c , converted to char, in a NUL-terminated
 string.

 Format
 #include <string.h>
 char
 *

 strchr (const char
 *

 s, int c);

 Arguments
 s
 Is a pointer to a NUL-terminated character string.

 c
 Is an expression of type int converted to a character.

 Description
 See also strrchr .

 Return Values

 x Indicates the address of the
 first occurrence of the specified
 character.
 NULL pointer Indicates that the character does
 not occur in the string.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p298.decw$book1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 strcmp

 The strcmp function compares two character strings and
 returns a negative integer, 0, or a positive integer, indicating
 that the value of the first string is less than, equal to, or
 greater than the value of the second string.

 Format
 #include <string.h>
 int strcmp (const char
 *

 s1, const char
 *

 s2);

 Arguments
 s1, s2
 Are pointers to character strings.

 Description
 The comparison continues up to and including a NUL
 character in one of the strings; comparisons are terminated
 after the NUL is encountered.
 See also strncmp .

 Return Values

 > 0 Indicates s1 > s2 .
 = 0 Indicates s1 = s2 .
 < 0 Indicates s1 < s2 .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p299.decw$book1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 strcoll

 The strcoll function compares the string pointed to by s1 to
 the string pointed to by s2.

 Format
 #include <string.h>
 int strcoll (const char
 *

 s1, const char
 *

 s2);

 Arguments
 s1, s2
 Are pointers to character strings.

 Description
 The interpretation of the two strings by the strcoll function
 is dependent on the current locale.
 See also setlocale .

 Return Values

 > 0 Indicates s1 > s2 .
 = 0 Indicates s1 = s2 .
 < 0 Indicates s1 < s2 .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p300.decw$book1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 strcpy

 The strcpy function copies the NUL-terminated string
 pointed to by s2 into a string beginning at s1 .

 Format
 #include <string.h>
 char
 *

 strcpy (char
 *

 s1, const char
 *

 s2);

 Arguments
 s1, s2
 Are pointers to character strings.

 Description
 The strcpy function copies the string pointed to by s2 into
 the array pointed to by s1 , stopping after copying a NUL
 character from s2 . The strings pointed to by s1 and s2 may
 not overlap.
 See also strncmp .

 Return Values

 x Indicates the address of s1 .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p301.decw$book1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 strcspn

 The strcspn function computes the maximum initial
 segment of the string pointed to by s1 containing none of
 the characters in the string pointed to by s2 .

 Format
 #include <string.h>
 size_t strcspn (const char
 *

 s1, const char
 *

 s2);

 Arguments
 s1
 Is a pointer to a character string. If the argument string is a
 NULL string, 0 is returned.

 s2
 Is a pointer to a character string containing the characters
 for which the function searches.

 Description
 The strcspn function scans the characters in string s1 , stops
 when it encounters a character found in s2 , and returns the
 length of the string's segment formed up to but not including
 the character found in s2 .
 See also strspn and strpbrk .

 Return Values

 x Indicates the length of the initial
 segment of the string.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p302.decw$book1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 strerror

 The strerror function maps the error number in its
 argument to an error message string.

 Format
 #include <string.h>
 char
 *

 strerror (int errnum);

 Arguments
 errnum
 Is the error number to be mapped to an error message string.

 Description
 The following are the messages that the strerror function
 returns:

 Errnum String

 0 NOT an error
 2 no such file or directory
 5 I/O error
 8 exec format erro
 12 not enough core
 13 permission denied
 15 block device required
 22 invalid argument
 24 too many open files
 27 file too large
 29 illegal seek
 31 too many links
 33 math argument outside of domain

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p303.decw$book (1 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

 34 math result too large
 35 I/O operation would block channel
 36 illegal mode for setvbuf
 100 task did not include support for requested I/O
 operation
 all others invalid error value

 Return Values

 x Indicates a pointer to a buffer
 that contains the appropriate
 error message. Do not modify
 this buffer in your programs.
 Moreover, calls to the strerror
 function may overwrite this
 buffer with a new message.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p303.decw$book (2 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 strftime

 The strftime function gives the time to the LC_TIME
 category of the current locale. The appropriate characters
 are determined by the LC_TIME category of the current
 locale and by the values pointed to by timeptr .

 Format
 #include <time.h>
 size_t strftime (char
 *

 s, size_t maxsize, const char
 *

 format, const struct tm
 *

 timeptr);

 Arguments
 s
 Pointer to an array of characters where the result string is
 put.

 maxsize
 Maximum number of characters placed into the location
 pointed to by s .

 format
 String of 0 or more conversion characters (see table below).

 timeptr
 Structure containing broken down time.

 Description
 The following list describes the characters used in the format
 string to determine the behavior of the conversion specifier:

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p304.decw$book (1 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

 %a - Locale's abbreviated weekday name.
 %A - Locale's full weekday name.
 %b - Locale's abbreviated month name.
 %B - Locale's full month name.
 %c - Locale's appropriate date and time.
 %d - Day of month as a decimal number (01-31).
 %H - Hour (24-hour clock) as a decimal number
 (00-23).
 %I - Hour (12-hour clock) as a decimal number
 (01-12.)
 %j - Day of year as a decimal number (001-366).
 %m - Month as a decimal number (01-12).
 %M - Minute as a decimal number (00-59).
 %p - Locale's equivalent of AM/PM format of a
 12-hour clock.
 %S - Second as a decimal number (00-61).
 %U - Week number of the year (first Sunday as first
 day of week 1) as a decimal number (00-53).
 %w - Weekday as a decimal number (0-6) (Sunday
 is 0).
 %W - Week number of the year (first Monday as
 first day of week 1) as a decimal number
 (00-53).
 %x - Locale's appropriate date representation.
 %X - Locale's appropriate time representation.
 %y - Year without century as a 2-digit decimal
 number (00-99).
 %Y - Year with century as a 4-digit decimal num-
 ber.
 %Z - Time zone name or abbreviation. No charac-
 ters if the time zone is indeterminable.
 %% - Replaced by ``%''.
 If the conversion specifier is not listed in the table, the
 behavior is undefined.

 Return Values

 x The number of characters in the
 array pointed to by s .
 0 Indicates the contents of the
 array are indeterminate.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p304.decw$book (2 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 strlen

 The strlen function returns the length of a string of
 characters. The returned length does not include the
 terminating NUL character (\0). The type size_t is defined
 in the <stddef.h> and <string.h> header files.

 Format
 #include <string.h>
 size_t strlen (const char
 *

 str);

 Arguments
 str
 Is a pointer to the character string.

 Return Values

 x Indicates the length of the string.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p305.decw$book1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 strncat

 The strncat function concatenates one string to the end of
 another.

 Format
 #include <string.h>
 char
 *

 strncat (char
 *

 s1, const char
 *

 s2, size_t maxchar);

 Arguments
 s1, s2
 Must be NUL-terminated character strings that may not
 overlap.

 maxchar
 Specifies the number of characters to concatenate from s2 ,
 unless the strncat first encounters a NUL terminator in s2 .
 If maxchar is 0 or negative, no characters are copied from
 s2 .

 Description
 If strncat reaches the specified maximum, it sets the next
 byte in s1 to the character (0), NUL. The address of the first
 argument, s1 , is assumed to point to an array large enough
 to hold the concatenated result.
 See also strcat .

 Return Values

 x Indicates the address of the first

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p306.decw$book (1 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

 argument, s1 .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p306.decw$book (2 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 strncmp

 The strncmp function compares not more than n elements
 of the two character strings and returns a negative integer,
 0, or a positive integer, indicating that the value of the first
 string is less than, equal to, or greater than the value of the
 second string.

 Format
 #include <string.h>
 int strncmp (const char
 *

 s1, const char
 *

 s2, size_t n);

 Arguments
 s1, s2
 Are pointers to character strings.

 n
 Specifies a maximum number of characters (beginning
 with the first) to compare in both s1 and s2 . If n is 0, no
 comparison is performed and 0 is returned (the strings are
 considered equal).

 Description
 The comparison is terminated when a NUL is encountered
 in one of the strings or when the first n characters of the
 strings have been compared.
 See also strcmp .

 Return Values

 <0 Indicates the prefix length of n in
 the string pointed to by s1 is less
 than the prefix length of n in the

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p307.decw$book (1 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

 string pointed to by s2 .
 =0 Indicates s1 = s2 .
 >0 Indicates s1 > s2 .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p307.decw$book (2 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 strncpy

 The strncpy function copies all or part of a string.

 Format
 #include <string.h>
 char
 *

 strncpy (char
 *

 s1, const char
 *

 s2, size_t n);

 Arguments
 s1, s2
 Are pointers to character strings.

 n
 Specifies the maximum number of characters to copy from
 s2 to s1 .

 Description
 The function strncpy copies no more than n characters
 from s2 to s1 , up to and including the NUL terminator of
 s2 . If s2 contains less than n characters, s1 is padded with
 NUL characters. If s2 contains greater than or equal to n
 characters, the first n characters of s2 are copied to s1 .

 Note

 The string pointed to be s1 is not necessarily
 terminated by a NUL character.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p308.decw$book (1 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

 See also strcpy .

 Return Values

 x Indicates the address of s1 .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p308.decw$book (2 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 strpbrk

 The strpbrk function searches a string for the occurrence of
 one of a specified set of characters.

 Format
 #include <string.h>
 char
 *

 strpbrk (const char
 *

 str, const char
 *

 charset);

 Arguments
 str
 Is a pointer to a character string. If the argument string is a
 NULL string, NULL is returned.

 charset
 Is a pointer to a character string containing the characters
 for which the function searches.

 Description
 The strpbrk function scans the characters in the string, stops
 when it encounters a character found in charset , and returns
 a pointer to the first character in str found in charset .

 Return Values

 x Indicates the address of the first
 character in the string that is in
 the set.
 NULL pointer Indicates that no character is in
 the set.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p309.decw$book (1 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p309.decw$book (2 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 strrchr

 The strrchr function returns the address of the last
 occurrence of c , converted to char, in a NUL-terminated
 string.

 Format
 #include <string.h>
 char
 *

 strrchr (const char
 *

 s, int c);

 Arguments
 s
 Is a pointer to a NUL-terminated character string.

 c
 Is the character for which strrchr searches.

 Description
 See also strchr .

 Return Values

 x Indicates the address of the
 last occurrence of the specified
 character.
 NULL Indicates that the character does
 not occur in the string.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p310.decw$book1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 strspn

 The strspn function sequentially searches a string for the
 first occurrence of a character that is not in a specified set of
 characters.

 Format
 #include <string.h>
 size_t strspn (const char
 *

 s1, const char
 *

 s2);

 Arguments
 s1
 Is a pointer to a character string. If the argument string is a
 NULL string, 0 is returned.

 s2
 Is a pointer to a character string containing the set of
 characters for which the function searches.

 Description
 The strspn function scans the characters in the string s1
 stopping when it encounters a character not found in s2 . It
 then returns the length of s1 's initial segment formed by
 characters found in s2 .
 If the characters in the character strings pointed to by s1
 and s2 match, strspn returns the length of s1 ; otherwise, it
 returns 0.

 See also strcspn and strpbrk .

 Return Values

 x Indicates the length of the

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p311.decw$book (1 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

 matching prefix of the segment.
 0 Indicates no characters match.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p311.decw$book (2 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 strstr

 The strstr function locates the first occurrence in the string
 pointed to by s1 of the sequence of characters in the string
 pointed to by s2 .

 Format
 #include <string.h>
 char
 *

 strstr (const char
 *

 s1, const char
 *

 s2);

 Arguments
 s1
 Is the address of the character string the strstr function
 searches.

 s2
 Is the address of the character string for which the strstr
 function searches.

 Return Values

 NULL Indicates that the string was not
 found.
 x A pointer to the located string
 within s1 .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p312.decw$book1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 strtod

 The strtod function converts a given string to an object of
 type double .

 Format
 #include <stdlib.h>
 double strtod (const char
 *

 nptr, char
 **

 endptr);

 Arguments
 nptr
 Is a pointer to the character string to be converted.

 endptr
 Is the address of an object that stores the address of the first
 unrecognized character that terminates the scan. If endptr
 is a NULL pointer, the address of the first unrecognized
 character is not retained.

 Description
 This function recognizes a series of characters in the
 following sequence. The first unrecognized character ends
 the conversion.
 1. Optional white-space characters (as defined by isspace
 in <ctype.h>)
 2. An optional plus or minus sign
 3. Digits optionally containing a single decimal point
 4. An optional letter (e or E)
 5. An optionally signed integer

 The string is interpreted by the same rules that are used to
 interpret floating constants.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p313.decw$book (1 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

 The strtod function returns the converted value. Overflows
 are accounted for as follows:

 .
 If the correct value causes an overflow, HUGE_VAL
 (with a plus or minus sign according to the sign of the
 value) is returned and errno is set to ERANGE. HUGE_
 VAL is defined in the <math.h> header file, and ERANGE
 is defined in the <errno.h> header file.
 .
 If the correct value causes an underflow, 0 is returned
 and errno is set to ERANGE.

 If the string starts with an unrecognized character, no
 conversion is performed,
 **

 endptr is set to nptr (unless nptr is
 NULL), and 0 is returned.

 See also atof .

 Return Values

 x Is the converted value, if any.
 0 Indicates that no conversion was
 made.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p313.decw$book (2 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 strtok

 The strtok function locates text tokens in a given string. The
 text tokens are delimited by one or more characters from a
 separator string that you specify. The function keeps track of
 its position in the string between calls and, as successive calls
 are made, the function works through the string, identifying
 the text token following the one identified by the previous call.

 Format
 #include <string.h>
 char
 *

 strtok (char
 *

 s1, const char
 *

 s2);

 Arguments
 s1
 Is a pointer to a string containing 0 or more text tokens.

 s2
 Is a pointer to a separator string consisting of one or more
 characters. The separator string may differ from call to call.

 Description
 The first call to the strtok function returns a pointer to
 the initial character in the first token and writes a NUL
 character into s1 immediately following the returned token.
 Each subsequent call (with the value of the first argument
 NULL) returns a pointer to a subsequent token in the string
 originally pointed to by s1 . When no tokens remain in the
 string, the strtok function returns a NULL pointer.
 Tokens in s1 are delimited by NUL characters inserted into

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p314.decw$book (1 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

 s1 by the strtok function; therefore, s1 cannot be a const
 object. The strtok function is nonreentrant because it must
 use a static global variable to maintain the starting address
 within s1 of subsequent calls to strtok with a NULL first
 argument.

 Return Values

 x Specifies a pointer to the first
 character of a token.
 NULL pointer Indicates that no token was
 found.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p314.decw$book (2 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 strtol

 The strtol function converts a string to an object of type
 long .

 Format
 #include <stdlib.h>
 long int strtol (const char
 *

 nptr, char
 **

 endptr, int base);

 Arguments
 nptr
 Is a pointer to the character string to be converted to a long.

 endptr
 Is the address of an object that stores a pointer to a pointer
 to the first unrecognized character encountered in the
 conversion process (that is, the character that follows the last
 character in the string being converted). If endptr is a NULL
 pointer, the address of the first unrecognized character is not
 retained.

 base
 Is the value, 2 through 36, to use as the base for the
 conversion. In the conversions, leading 0s after the optional
 sign are ignored, and 0x or 0X is ignored if the base is 16.
 If the base is 0, the sequence of characters is interpreted by
 the same rules used to interpret an integer constant: after
 the optional sign, a leading 0 indicates octal conversion, a
 leading 0x or 0X indicates hexadecimal conversion, and any
 other combination of leading characters indicates decimal
 conversion.

 Description

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p315.decw$book (1 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

 The strtol function recognizes strings in various formats,
 depending on the value of the base. This function ignores
 any leading white-space characters (as defined by isspace in
 <ctype.h>) in the given string. It recognizes an optional plus
 or minus sign, then a sequence of digits or letters that may
 represent an integer constant according to the value of the
 base. The first unrecognized character ends the conversion.

 Return Values

 x Indicates the converted value.
 LONG_MAX or LONG_
 MIN

 Indicates the correct value will
 cause an overflow (according to
 the sign of the value). errno is set
 to ERANGE. LONG_MAX and
 LONG_MIN are defined in the
 <limits.h> header file.
 0 Indicates that the string starts
 with an unrecognized character.
 The argument
 **

 endptr is set to
 nptr.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p315.decw$book (2 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 strtoul

 The strtoul function converts a string to an unsigned long
 integer.

 Format
 #include <stdlib.h>
 unsigned long int strtoul (const char
 *

 nptr, char
 **

 endptr, int base);
)

 Arguments
 nptr
 Is a pointer to the character string to be converted to an
 unsigned long .

 endptr
 Is the address of an object that stores a pointer to a pointer
 to the first unrecognized character encountered in the
 conversion process (that is, the character that follows the last
 character in the string being converted). If endptr is a NULL
 pointer, the address of the first unrecognized character is not
 retained.

 base
 Is the value, 2 through 36, to use as the base for the
 conversion. In the conversions, leading 0s after the optional
 sign are ignored, and 0x or 0x is ignored if the base is 16.
 if the base is 0, the sequence of characters is interpreted by
 the same rules used to interpret an integer constant: after
 the optional sign, a leading 0 indicates octal conversion, a
 leading 0x or 0x indicates hexadecimal conversion, and any
 other combination of leading characters indicates decimal
 conversion.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p316.decw$book (1 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

 Description
 The strtoul function recognizes strings in various formats,
 depending on the value of the base. This function ignores
 any leading white-space characters (as defined by isspace in
 <ctype.h>) in the given string. It recognizes an optional plus
 or minus sign, then a sequence of digits or letters that may
 represent an integer constant according to the value of the
 base. The first unrecognized character ends the conversion.

 Return Values

 x Indicates the converted value.
 0 Indicates that no conversion was
 performed.
 ULONG_MAX Indicates that an overflow
 occurred, and the value of
 ERANGE is stored in errno .
 ULONG_MAX is defined in the
 <limits.h> header file.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p316.decw$book (2 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 strxfrm

 The strxfrm function transforms the string pointed to by
 s2 according to the collating sequence established by the
 setlocale function and places the transformed string into an
 array pointed to by s1 .

 Format
 #include <string.h>
 size_t strxfrm (char
 *

 s1, const char
 *

 s2, size_t n);

 Arguments
 s1
 Is the location for the placement of the transformed string.

 s2
 Is the location of the string to be transformed.

 n
 Is the maximum number of transformed characters to be
 placed in s1.

 Return Values

 Less than n Returns the length of the trans-
 formed string.
 n or more Indicates the contents of the
 array pointed to by s1 are inde-
 terminate.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p317.decw$book1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 system

 The system function passes a given string to the host
 environment to be executed by a command processor.

 Note

 Passing commands to the host environment and the
 command line processor is only available on the RSX
 Operating System.

 Format
 #include <stdlib.h>
 int system (const char
 *

 string);

 Arguments
 string
 Is a pointer to the string to be executed.

 Description
 The system function spawns the default command language
 interpreter and executes the command specified by string .
 The system function waits for the command to complete
 before returning the exit status as the return value of the
 function.
 On the RSX operating system, if the system function is called
 with a NULL pointer, a nonzero value is returned indicating
 that passing a command line to the command line interpreter
 is available.

 On the RT-11 and RSTS/E operating systems, if the system
 function is called with a NULL pointer, a zero is returned

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p318.decw$book (1 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

 indicating that passing a command line to the command line
 interpreter is not available.

 Return Values

 string is NULL:
 Nonzero value Indicates passing a command line
 to a command line interpreter is
 available (RSX operating system
 only).
 0 Indicates passing a command line
 to a command line interpreter
 is available (RT-11 and RSTS/E
 operating systems).
 string is not NULL:
 Nonzero Value passed by operating system
 (RSX operating system only).
 0 Value not passed by operating
 system (RT-11 and RSTS/E
 operating systems.)

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p318.decw$book (2 of 2)1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 tan

 The tan function returns a double value that is the tangent
 of its radian argument.

 Format
 #include <math.h>
 double tan (double x);

 Arguments
 x
 x is the tangent of the angle.

 Description
 The value of tan(x) at its singular points (. . . -3 ¹ /2,- ¹ /2, ¹ /2 . . .)
 is the largest possible double value, and errno is set to
 ERANGE. ERANGE is defined in <errno.h> header file.

 Return Values
 Returns the tangent value of x .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p319.decw$book1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 tanh

 The tanh function returns a double value that is the
 hyperbolic tangent of its double argument.

 Format
 #include <math.h>
 double tanh (double x);

 Arguments
 x
 x is the hyperbolic tangent of the angle.

 Return Values
 Returns the hyperbolic tangent value of x .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p320.decw$book1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 time

 The time function returns the time elapsed since 00:00:00,
 January 1, 1970, in seconds.

 Format
 #include <time.h>
 time_t time (time_t
 *

 timer);

 Arguments
 timer
 Is either NULL or a pointer to the place where the returned
 time is also stored.

 Return Values

 x Specifies the time elapsed since
 00:00:00, January 1, 1970, in
 seconds.
 -1 Indicates an error has occurred.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p321.decw$book1/25/06 4:07 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 tmpfile

 The tmpfile function creates a temporary binary file that is
 opened for update.

 Format
 #include <stdio.h>
 FILE
 *

 tmpfile (void);

 Description
 The file is created in mode wb+.
 When using the RSX operating system with FCS file I/O,
 the file is deleted if the task exits abnormally, or if the abort
 function is called. If the task exits abnormally and RMS is
 being used, the file may become a lost file.

 When using the RSTS/E operating system, a RSTS/E
 temporary file is created with the name temp nn .tmp where
 nn is the job number. This temporary file will be deleted at
 logout.

 When using the RT-11 operating system, a file named
 CTEMPC.TMP is created. The file is deleted when it is
 closed. If the program terminates abnormally, the file may
 not be deleted.

 Return Values

 x Indicates the address of a FILE
 object associated with the file
 (defined in the <stdio.h> header
 file).
 NULL Indicates that there is an error.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p322.decw$book1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 tmpnam

 The tmpnam function creates a character string that you
 can use in place of the filename argument in other function
 calls.

 Format
 #include <stdio.h>
 char
 *

 tmpnam (char
 *

 name);

 Description
 PDP-11 C generates names in the following form:
 CC<system dependent><1 letter>.TMP
 The names are always generated beginning with capital CC
 and ending with .TMP. The <1 letter> field contains the final
 letter before the file extension. This letter varies each time
 the tmpnam function is called starting with an A the first
 call, a B the second call, and so on to Z. The cycle repeats
 itself after the letter Z.

 The <system dependent> field generates a unique set of
 characters depending on the operating system. Each
 operating system uses a different method of identifying
 processes as follows:

 .
 RSX Operating System
The field is six characters long and is the name of the
 task running (with dots removed).
 .
 RSTS Operating System

 The field is two characters long and is the job number

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p323.decw$book (1 of 2)1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

 of the task running.
 .
 RT-11 Operating System

 The field is two characters long and is the job number
 of the task running.

 Arguments
 name
 Is a pointer to a character string to receive a name to use in
 place of filename arguments in other functions. If name is
 NULL, an internal storage area is used. Successive calls to
 tmpnam cause the function to overwrite the contents of the
 string.

 Return Values

 name A pointer to the filename.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p323.decw$book (2 of 2)1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 toascii

 The toascii macro converts its argument, an 8-bit ASCII
 character, to a 7-bit ASCII character.

 Format
 #include <ctype.h>
 int toascii (char character);

 Arguments
 character
 Is an expression of type char .

 Description
 This macro is provided for VAX C compatibility and is only
 available when compiled using the /NOSTANDARD switch.

 Return Values

 x Specifies a 7-bit ASCII character.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p324.decw$book1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 tolower

 The tolower function converts its argument, an uppercase
 character, to lowercase. If the argument is not an uppercase
 character, it is returned unchanged.

 Warning

 This function is affected by the current locale setting.

 Format
 #include <ctype.h>
 int tolower (int character);

 Arguments
 character
 Is an expression of type int .

 Return Values

 x The lowercase character.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p325.decw$book1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 _tolower

 The _tolower macro converts its argument, an uppercase
 character, to lowercase. If the argument is not an uppercase
 character, it is returned unchanged.

 Warning

 This macro is affected by the current locale setting.

 Format
 #include <ctype.h>
 int _tolower (int character);

 Arguments
 character
 Is an expression of type int .

 Description
 This macro is provided for VAX C compatibility and is only
 available when compiled using the /NOSTANDARD switch.

 Return Values

 x The lowercase character.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p326.decw$book1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 toupper

 The toupper function converts its argument, a lowercase
 character, to uppercase. If the argument is not a lowercase
 character, it is returned unchanged.

 Warning

 This function is affected by the current locale setting.

 Format
 #include <ctype.h>
 int toupper (int character);

 Arguments
 character
 Is an expression of type int .

 Return Values

 x The uppercase character.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p327.decw$book1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 _ _tzset

 The _ _tzset function sets the system time zone and daylight
 time variables. If the time zone is not set, gmtime does not
 work. See also gmtime and localtime .

 Format
 #include <time.h>
 void _ _tzset (int zone, int daylight);

 Arguments
 zone
 A positive integer represents the number of hours West of the
 UTC zone, and a negative integer represents the number of
 hours East of the UTC zone.

 daylight
 Represents daylight time. If daylight is false, the return value
 of tm_isdst of struct tm from the localtime function is set to
 0; otherwise, it is set to 1.
 The following two examples show how to set the time zone to
 Eastern Standard Time and to Eastern Daylight Time:
 __tzset (5,0); /* Current time zone set to Eastern Standard Time
 which is five hours west of GMT. */
 __tzset (5,1); /* Current time zone set to Eastern Daylight Time. */

 Return Values
 Returns no values.

 Note

 This is a PDP-11 C extension not defined by the ANSI
 standard.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p328.decw$book1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 ungetc

 The ungetc function pushes back a character into the input
 stream and leaves the stream positioned before the character.

 Format
 #include <stdio.h>
 int ungetc (int c, FILE
 *

 file_ptr);

 Arguments
 c
 Specifies the character to be pushed back onto the stream
 pointed to by stream.

 file_ptr
 Is a file pointer.

 Description
 When the ungetc function is used, the character is pushed
 back onto the file and is returned by the next getc call.
 One push-back is guaranteed, even if there has been no
 previous activity on the file. The fseek , fsetpos , and rewind
 functions erase all memory of pushed-back characters. The
 pushed-back character is not written to the underlying file.
 The EOF character cannot be pushed back.

 Return Values

 x Indicates the push-back charac-
 ter.
 EOF Indicates it cannot push the
 character back.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p329.decw$book1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 va_arg

 The va_arg macro returns the values of successive
 arguments in turn.

 Format
 #include <stdarg.h>
 type va_arg (va_lis ap, type);

 Arguments
 ap
 Is an object of type va_list used to traverse the argument
 list. The user must always declare and use the argument
 ap , which is the same as the parameter initialized by the
 va_start macro. For further information, refer to the va_
 start macro.

 type
 Is a type name specified so that ap will be assigned a pointer
 to an object having the type type . If there is no next argument
 or the type of the next argument is not compatible with type ,
 the behavior is undefined.

 Description
 The va_arg macro expands to a value having the type of the
 next called argument. Subsequent calls to va_arg modify ap
 so that the values of successive arguments are returned in
 succession.
 See also va_end and va_start .

 Return Values
 The next argument in a variable-length argument list.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p330.decw$book1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 va_end

 The va_end macro sets its argument to NULL.

 Format
 #include <stdarg.h>
 void va_end (va_list ap);

 Arguments
 ap
 Is the object used to traverse the variable-length argument
 list. You must always declare and use the argument ap .

 Description
 If the va_end macro is not called before the return or there
 is no corresponding call to the va_start macro, the behavior
 is undefined.
 See also va_arg and va_start .

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p331.decw$book1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 va_start

 The va_start macro is used to initialize a variable to the
 beginning of the variable argument list.

 Format
 #include <stdarg.h>
 void va_start (va_list ap, parmN) ;

 Arguments
 ap
 Is an object pointer. You must always declare and use the
 argument ap .

 parmN
 Is the identifier of the rightmost fixed argument in the
 variable argument list of the function definition.

 Description
 The pointer ap is initialized to point to the first optional
 argument that follows parmN in the argument list.
 See also va_arg and va_end .

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p332.decw$book1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 vfprintf

 The vfprintf function prints formatted output based on an
 argument list.

 Format
 #include <stdio.h>
 #include <stdarg.h>
 int vfprintf (FILE
 *

 file_ptr, const char
 *

 format, va_list arg);

 Arguments
 file_ptr
 Is a pointer to a file.

 format
 Contains characters to be written literally to the output or
 converted as specified.

 arg
 Is a list of expressions whose resultant types correspond to the
 conversion specifications given in the format specifications.

 Description
 The vfprintf function is the same as the fprintf function,
 except it is called with an argument list that has been
 initialized by the va_start macro (and possibly subsequent
 va_arg calls) instead of being called with a variable number
 of arguments. It does not invoke the va_end macro. Refer
 to the va_arg macro for further information.
 See also vprintf and vsprintf .

 For information on excluding the support code for some
 conversion specification formats to reduce program size, see

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p333.decw$book (1 of 2)1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

 the implementation notes in the Guide to PDP-11 C .

 Return Values

 x Indicates the number of trans-
 mitted characters.
 Negative value. Indicates an output error.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p333.decw$book (2 of 2)1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 vprintf

 The vprintf function prints formatted output based on an
 argument list.

 Format
 #include <stdio.h>
 #include <stdarg.h>
 int vprintf (const char
 *

 format, va_list arg);

 Arguments
 format
 Contains characters to be written literally to the output or
 converted as specified.

 arg
 Is a list of expressions whose resultant types correspond to the
 conversion specifications given in the format specifications.

 Description
 The vprintf function is the same as the printf function,
 except it is called with an argument list that has been
 initialized by the va_start macro (and possibly subsequent
 va_arg calls) instead of being called with a variable number
 of arguments. For further information, refer to the va_arg
 and va_start macros.
 See also vfprintf and vsprintf .

 For information on excluding the support code for some
 conversion specification formats to reduce program size, see
 the implementation notes in the Guide to PDP-11 C .

 Return Values

 x Indicates the number of trans-
 mitted characters.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p334.decw$book (1 of 2)1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

 Negative value. Indicates an output error.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p334.decw$book (2 of 2)1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 vsprintf

 The vsprintf function prints formatted output based on an
 argument list.

 Format
 #include <stdio.h>
 #include <stdarg.h>
 int vsprintf (char
 *

 str, const char
 *

 format, va_list arg);

 Arguments
 str
 Is a pointer to a string.

 format
 Contains characters to be written literally to the output or
 converted as specified.

 arg
 Is a list of expressions whose resultant types correspond to the
 conversion specifications given in the format specifications.

 Description
 The vsprintf function is the same as the sprintf function,
 except it is called with an argument list that has been
 initialized by the va_start macro (and possibly subsequent
 va_arg calls) instead of being called with a variable number
 of arguments. For further information, refer to the va_arg
 and va_start macros.
 For information on excluding the support code for some
 conversion specification formats to reduce program size, see
 the implementation notes in the Guide to PDP-11 C .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p335.decw$book (1 of 2)1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

 Return Values

 x Indicates the number of char-
 acters written to the array,
 excluding the terminating NUL
 character.
 Negative value. Indicates an output error.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p335.decw$book (2 of 2)1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 wcstombs

 The wcstombs function converts a sequence of codes
 corresponding to multibyte characters into a sequence of
 multibyte characters and stores them in the array pointed to
 by the character pointer argument.

 Format
 #include <stdlib.h>
 size_t wcstombs (char
 *

 s, const wchar_t
 *

 pwcs, size_t n);

 Arguments
 s
 Is a character pointer argument.

 pwcs
 Points to the array of multibyte characters corresponding to
 a sequence of codes converted by the wcstombs function.

 n
 Specifies the number of stored characters.

 Description
 The wcstombs function returns the number of modified
 bytes. This does not include a terminating NUL character.
 If the code does not match a valid multibyte character,
 wcstombs returns (size_t)-1.
 The multibyte characters produced by the conversion of
 codes pointed to by pwcs beginning in the initial shift state
 are stored in the array pointed to by the character pointer
 argument.

 Return Values

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p336.decw$book (1 of 2)1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

 (size_t)-1 Indicates the code does not match
 a valid multibyte character.
 x Indicates the number of modified
 bytes excluding the terminating
 NUL character.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p336.decw$book (2 of 2)1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 wctomb

 The wctomb function determines the number of bytes
 needed to represent the multibyte character whose code value
 equals wchar .

 Format
 #include <stdlib.h>
 int wctomb (char
 *

 s, wchar_t wchar);

 Arguments
 s
 Points to the array of multibyte character representation
 corresponding to the code whose value is wchar .

 wchar
 Is the value of the code needed to represent the multibyte
 character pointed to by s .

 Description
 The wctomb function returns a nonzero or 0 value if the
 character pointer argument is a NULL pointer.
 If the character pointer argument is not a NULL pointer, the
 return value is either the number of bytes in the multibyte
 character corresponding to the value of wchar , or a -1 if it
 does not correspond to wchar .

 Return Values

 0 or nonzero value Indicates the character pointer
 argument is a NULL pointer.
 Value of wchar Indicates the character pointer
 argument is not a NULL pointer.
 -1 Indicates the character pointer
 argument is not a NULL pointer
 and the value does not correspond

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p337.decw$book (1 of 2)1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

 to wchar .

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p337.decw$book (2 of 2)1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 2 FCS Extension Library Macros

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p338.decw$book1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$ASCPP

 The FCS$ASCPP function converts a directory string from
 ASCII to its equivalent binary UIC.

 Format
 #include <fcs.h>
 short FCS$ASCPP (char
 *

 dds, short
 *

 uic)

 Arguments
 dds
 Specifies a pointer to the directory string descriptor.

 uic
 Specifies a pointer to the word location to which the binary
 UIC is to be returned.

 Description
 The FCS$ASCPP function converts the directory string
 contained in dds to its equivalent binary UIC.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p339.decw$book1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$ASLUN

 The FCS$ASLUN function assigns a logical unit number
 (LUN) to a specified device and unit and returns the device
 information to a specified FDB and filename block.

 Format
 #include <fcs.h>
 short FCS$ASLUN (fcs$fdb
 *

 fdb, fcs$fnb
 *

 fnb)

 Arguments
 fdb
 Specifies a pointer to the the desired FDB.

 fnb
 Specifies a pointer to the filename block.

 Description
 The FCS$ASLUN function returns to the specified filename
 block and the specified FDB, information identical to that
 returned by the device and unit logic of the FCS$PARSE
 function.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p340.decw$book1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$CLOSE$

 The FCS$CLOSE$ function terminates file processing in an
 orderly manner.

 Format
 #include <fcs.h>
 short FCS$CLOSE$ (fcs$fdb
 *

 fdb, void (
 *

 err)())

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 err
 Specifies a pointer to the optional, user-coded, error-handling
 routine.

 Description
 The FCS$CLOSE$ function terminates file processing in an
 orderly manner. If an error condition is detected during the
 FCS$CLOSE$ operation, the user-specified, error-handling
 routine is called.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p341.decw$book1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$CTRL

 The FCS$CTRL function performs device-specific control
 functions.

 Format
 #include <fcs.h>
 short FCS$CTRL (fcs$fdb
 *

 fdb, short function, short blocks, short 0)

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 function
 Specifies the function code.

 blocks
 If the function is FCSFFSPC, this specifies the number of
 blocks to be spaced forward or backward; otherwise, it must
 be zero.

 0
 Last argument is always 0.

 Description
 The FCS$CTRL function performs device-specific control
 functions, such as:
 .
 Rewind a magnetic tape volume set.
 .
 Position to the logical end of a magnetic tape volume set.
 .
 Space forward or backward n blocks on a magnetic tape.
 .
 Rewind a file on a magnetic tape or terminal (record-
 oriented device).

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p342.decw$book (1 of 2)1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

 .
 Clear the terminal end-of-file.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p342.decw$book (2 of 2)1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$DELET$

 The FCS$DELET$ function removes a named file from
 the associated volume directory and deallocates the space
 occupied by the file.

 Format
 #include <fcs.h>
 short FCS$DELET$ (fcs$fdb
 *

 fdb, void (
 *

 err)())

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 err
 Specifies the address of the optional, user-coded, error-
 handling routine.

 Description
 The FCS$DELET$ function causes the directory information
 for the file associated with the specified FDB to be deleted
 from the appropriate User File Directory (UFD). The space
 occupied by the file is then deallocated and returned for
 reallocation to the pool of available storage on the volume.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p343.decw$book1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$DLFNB

 The FCS$DLFNB function deletes a file by filename block.

 Format
 #include <fcs.h>
 short FCS$DLFNB (fcs$fdb
 *

 fdb)

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 Description
 The FCS$DLFNB function assumes that the filename block
 is completely filled; when called, it closes the file if necessary,
 and then deletes the file.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p344.decw$book1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$ENTER

 The FCS$ENTER function inserts an entry by file name into
 a directory.

 Format
 #include <fcs.h>
 short FCS$ENTER (fcs$fdb
 *

 fdb, fcs$fnb
 *

 fnb)

 Arguments
 fdb
 Specifies a pointer to the desired FDB.

 fnb
 Specifies a pointer to the filename block.

 Description
 The FCS$ENTER function inserts an entry by file name into
 a directory.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p345.decw$book1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$EXPLG

 The FCS$EXPLG function expands a logical name and
 returns a pointer to the task that points to the expanded
 string.

 Format
 #include <fcs.h>
 short FCS$EXPLG (int
 **

 dsd)

 Arguments
 dsd
 Specifies a pointer to the data set descriptor of the string to be
 expanded.

 Description
 The FCS$EXPLG function expands the string into the
 same buffer that the FCS$PARSE function uses for input
 files; therefore, caution is advised in using this function. In
 addition, the call accepts only logical names that expand into
 a correct FCS file specification.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p346.decw$book1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$EXTND

 The FCS$EXTND function extends either contiguous or
 noncontiguous files. The file to be extended can be either open
 or closed.

 Format
 #include <fcs.h>
 short FCS$EXTND (fcs$fdb
 *

 fdb, short extnd_size, short ecb)

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 extnd_size
 Specifies a numeric value specifying the number of blocks to
 be added to the file.

 ecb
 Specifies the extension control bits, as appropriate.

 Description
 The FCS$EXTND function disables file truncation. Explicitly
 calls the FCS$TRNCL function to truncate a file after calling
 the FCS$EXTND function.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p347.decw$book1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$FDBDF$

 The FCS$FDBDF$ macro allocates space in the program for
 an FDB.

 Format
 #include <fcs.h>
 FCS$FDBDF$ (class, name)

 Arguments
 class
 Specifies the storage class used in allocating the storage for
 the FDB that is being declared.

 name
 Specifies the name of the FDB that is being declared.

 Description
 The FCS$FDBDF$ macro must be specified in the program
 once for each input or output file that the program
 simultaneously opens during execution.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p348.decw$book1/25/06 4:08 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$FIND

 The FCS$FIND function locates a directory entry by file
 name and lists it in the file identification field in both the
 Master File Directory (MFD) and User File Directory
 (UFD).

 Format
 #include <fcs.h>
 FCS$FIND (fcs$fdb
 *

 fdb, fcs$fnb
 *

 fnb)

 Arguments
 fdb
 Specifies a pointer to the desired FDB.

 fnb
 Specifies a pointer to the filename block.

 Description
 The FCS$FIND function searches the directory file specified
 in the filename block. The file is searched for an entry that
 matches the specified file name, file type, and file version
 number.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p349.decw$book1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$FINIT$

 The FCS$FINIT$ function initializes coding to set up the
 FSR.

 Format
 #include <fcs.h>
 FCS$FINIT$

 Arguments
 None.

 Description
 In the case of a program that is written so that it can be
 restarted, it is necessary to issue the FCS$FINIT$ function
 call in the program's initialization code because such a
 program performs all its initialization at run time, rather
 than at assembly time.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p350.decw$book1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$FLUSH

 The FCS$FLUSH function writes the block buffer to the file
 being written in record mode.

 Format
 #include <fcs.h>
 short FCS$FLUSH (fcs$fdb
 *

 fdb)

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 Description
 The FCS$FLUSH function writes file attributes each time
 it is called. It should be used whenever data needs to be
 immediately written to a file.
 Closing the file also guarantees that the block buffer is flushed
 and that the file attributes are written back to the file header.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p351.decw$book1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$FSRSZ$

 The FCS$FSRSZ$ function establishes the size of the FSR.

 Format
 #include <fcs.h>
 FCS$FSRSZ$ (int fbufs, int bufsiz)

 Arguments
 fbufs
 Specifies the number of files to be opened.

 bufsiz
 Specifies the total block buffer pool space (in bytes) needed
 to support the maximum number of files that can be opened
 simultaneously.

 Description
 The FCS$FSRSZ$ function does not generate executable
 code; it merely allocates space for a block-buffer pool.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p352.decw$book1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCSGET

 The FCSGET function reads logical data records from a
 file.

 Format
 #include <fcs.h>
 short FCSGET (fcs$fdb
 *

 fdb, char
 *

 urba, short urbs, void (
 *

 err)())

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 urba
 Specifies a pointer to the record buffer.

 urbs
 Specifies the numeric value that defines the size (in bytes) of
 the record buffer.

 err
 Specifies the address of the optional, user-coded, error-
 handling routine.

 Description
 The FCSGET function reads logical records from a file.

 Return Values

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p353.decw$book (1 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p353.decw$book (2 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCSGETR

 The FCSGETR function reads fixed-length records from
 a file in random mode.

 Format
 #include <fcs.h>
 short FCSGETR (fcs$fdb
 *

 fdb, char
 *

 urba, short urbs, short lrcnm, short hrcnm, void (
 *

 err)())

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 urba
 Specifies a pointer to the record buffer.

 urbs
 Specifies the numeric value that defines the size (in bytes) of
 the record buffer.

 lrcnm
 Specifies the low-order 16 bits of the number of the record to
 be read.

 hrcnm
 Specifies the high-order 15 bits of the number of the record
 to be read.

 err

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p354.decw$book (1 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

 Specifies the address of the optional, user-coded, error-
 handling routine.

 Description
 By definition, issuing the FCSGETR function requires
 familiarity with the structure of the file to be read and that
 the number of the record to be read is precisely specified.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p354.decw$book (2 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCSGETS

 The FCSGETS function reads records from a file in
 sequential mode.

 Format
 #include <fcs.h>
 short FCSGETS (fcs$fdb
 *

 fdb, char
 *

 urba, short urbs, void (
 *

 err)())

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 urba
 Specifies a pointer to the record buffer.

 urbs
 Specifies the numeric value that defines the size (in bytes) of
 the record buffer.

 err
 Specifies the address of the optional, user-coded, error-
 handling routine.

 Description
 The FCSGETS function is specifically for use in an
 overlaid environment in which the amount of memory
 available to the program is limited and files are to be read in
 strictly sequential mode.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p355.decw$book (1 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p355.decw$book (2 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$GTDID

 The FCS$GTDID function inserts directory information into
 a specified filename block.

 Format
 #include <fcs.h>
 short FCS$GTDID (fcs$fdb
 *

 fdb, fcs$fnb
 *

 fnb)

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 fnb
 Specifies a pointer to the filename block into which the
 directory information is to be placed.

 Description
 The FCS$GTDID function uses the binary value found
 in the default UIC word as the desired UFD, unlike the
 FCS$GTDIR function, which allows the specification of the
 directory string.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p356.decw$book1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$GTDIR

 The FCS$GTDIR function inserts directory information
 from a directory string descriptor into a specified filename
 block.

 Format
 #include <fcs.h>
 short FCS$GTDIR (fcs$fdb
 *

 fdb, fcs$fnb
 *

 fnb, int
 *

 dsd)

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 fnb
 Specifies a pointer to the filename block into which the
 directory information is to be placed.

 dsd
 Specifies a pointer to the 2-word directory string descriptor.

 Description
 The FCS$GTDIR function returns the directory ID to the 3
 words of the specified filename block, preserving information
 in offset locations N.FNAM, N.FYTP, N.FVER, N.DVNM,
 and N.UNIT of the filename block, but clearing the rest of
 the filename block.

 Return Values

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p357.decw$book (1 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p357.decw$book (2 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$MARK

 The FCS$MARK function points to a byte or record within a
 specified file.

 Format
 #include <fcs.h>
 void FCS$MARK (fcs$fdb
 *

 fdb, short
 *

 highbits, short
 *

 lowbits, short
 *

 bytenum)

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 highbits
 Specifies a pointer to the location to store the high-order bits
 of the virtual block number.

 lowbits
 Specifies a pointer to the location to store the low-order bits of
 the virtual block number.

 bytenum
 Specifies a pointer to the location to store the number of the
 next byte within the virtual block.

 Description

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p358.decw$book (1 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

 The FCS$MARK function saves current position information
 of a file for later use. By saving the current position
 information of a file, the file can be closed and later reopened
 to the same position. The FCS$MARK function also allows
 records to be altered within a file.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p358.decw$book (2 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$MRKDL

 The FCS$MRKDL function marks a temporary file for
 deletion.

 Format
 #include <fcs.h>
 short FCS$MRKDL (fcs$fdb
 *

 fdb)

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 Description
 The FCS$MRKDL function is called prior to closing a
 temporary file; the file is deleted when it is closed.

 Note

 If the file contains sensitive information, it should
 be cleared before closing, or the disk should be
 reformatted to destroy the information.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p359.decw$book1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$OFID$x

 The FCS$OFID$x functions open an existing file by using
 file identification information in the filename block.

 Format
 #include <fcs.h>
 short FCS$OFID$x (fcs$fdb
 *

 fdb, short lun, short
 *

 dspt, short racc, char
 *

 urba, short urbs, void (
 *

 err)())

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 lun
 Specifies the LUN associated with the desired file.

 dspt
 Specifies a pointer to the data-set descriptor.

 racc
 Specifies record access byte.

 urba
 Specifies a pointer to the record buffer.

 urbs

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p360.decw$book (1 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

 Specifies the numeric value that defines the size (in bytes) of
 the record buffer.

 err
 Specifies the address of the optional, user-coded, error-
 handling routine.

 Description
 The FCS$OFID$x functions open a file by using information
 stored in the file identification field of the filename block in
 the FDB (not in the default filename block). The suffixes (x)
 have the following meanings:

 Suffix Meaning

 A Append (add) data to the end of an existing
 file.
 M Modify an existing file without changing its
 length.
 R Read an existing file.
 U Update an existing file and extend its length, if
 necessary.
 W Write (create) a new file.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p360.decw$book (2 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$OFNB$x

 The FCS$OFNB$x functions open a file by using file name
 information in the filename block.

 Format
 #include <fcs.h>
 short FCS$OFNB$x (fcs$fdb
 *

 fdb, short lun, short
 *

 dspt, short racc, char
 *

 urba, short urbs, void (
 *

 err)())

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 lun
 Specifies the LUN associated with the desired file.

 dspt
 Specifies a pointer to the data-set descriptor.

 racc
 Specifies record access byte.

 urba
 Specifies a pointer to the record buffer.

 urbs

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p361.decw$book (1 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

 Specifies the numeric value that defines the size (in bytes) of
 the record buffer.

 err
 Specifies the address of the optional, user-coded, error-
 handling routine.

 Description
 The FCS$OFNB$x functions differ from the FCS$OFID$x
 functions in two respects: they can be issued to create a new
 file, and they can be issued to open a file by filename block.
 The suffixes (x) have the following meanings:

 Suffix Meaning

 A Append (add) data to the end of an existing
 file.
 M Modify an existing file without changing its
 length.
 R Read an existing file.
 U Update an existing file and extend its length, if
 necessary.
 W Write (create) a new file.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p361.decw$book (2 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$OPEN$x

 The FCS$OPEN$x functions are generalized open routines
 for specifying file access.

 Format
 #include <fcs.h>
 short FCS$OPEN$x (fcs$fdb
 *

 fdb, short lun, short
 *

 dspt, short racc, char
 *

 urba, short urbs, void (
 *

 err)())

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 lun
 Specifies the LUN associated with the desired file.

 dspt
 Specifies a pointer to the data-set descriptor.

 racc
 Specifies record access byte.

 urba
 Specifies a pointer to the record buffer.

 urbs

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p362.decw$book (1 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

 Specifies the numeric value that defines the size (in bytes) of
 the record buffer.

 err
 Specifies the address of the optional, user-coded, error-
 handling routine.

 Description
 The FCS$OPEN$x functions are used to open a file. The
 suffixes (x) have the following meanings:

 Suffix Meaning

 A Append (add) data to the end of an existing
 file.
 M Modify an existing file without changing its
 length.
 R Read an existing file.
 U Update an existing file and extend its length, if
 necessary.
 W Write (create) a new file.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p362.decw$book (2 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$OPNS$x

 The FCS$OPNS$x functions open and prepare a file for
 processing and allow shared access to that file.

 Format
 #include <fcs.h>
 short FCS$OPNS$x (fcs$fdb
 *

 fdb, short lun, short
 *

 dspt, short racc, char
 *

 urba, short urbs, void (
 *

 err)())

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 lun
 Specifies the LUN associated with the desired file.

 dspt
 Specifies a pointer to the data-set descriptor.

 racc
 Specifies record access byte.

 urba
 Specifies a pointer to the record buffer.

 urbs

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p363.decw$book (1 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

 Specifies the numeric value that defines the size (in bytes) of
 the record buffer.

 err
 Specifies the address of the optional, user-coded, error-
 handling routine.

 Description
 The suffixes (x) have the following meanings:

 Suffix Meaning

 A Append (add) data to the end of an existing
 file.
 M Modify an existing file without changing its
 length.
 R Read an existing file.
 U Update an existing file and extend its length, if
 necessary.
 W Write (create) a new file.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p363.decw$book (2 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$OPNT$D

 The FCS$OPNT$D function creates and opens a temporary
 file. The presumption in issuing the FCS$OPNT$D function
 is that the created file is to be used only once.

 Format
 #include <fcs.h>
 short FCS$OPNT$D (fcs$fdb
 *

 fdb, short lun, short
 *

 dspt, short racc, char
 *

 urba, short urbs, void (
 *

 err)())

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 lun
 Specifies the LUN associated with the desired file.

 dspt
 Specifies a pointer to the data-set descriptor.

 racc
 Specifies record access byte.

 urba
 Specifies a pointer to the record buffer.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p364.decw$book (1 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

 urbs
 Specifies the numeric value that defines the size (in bytes) of
 the record buffer.

 err
 Specifies the address of the optional, user-coded, error-
 handling routine.

 Description
 The FCS$OPNT$D function creates and opens a temporary
 file. This file cannot be opened by another program. When
 the file is closed, it is deleted; its space is returned to the pool
 of available storage for reallocation.

 Note

 If the FCS$OPNT$D function is used for a
 temporary file containing sensitive information, it is
 recommended that you zero the file before closing
 it, or reformat the disk to destroy the sensitive
 information. (Although a temporary file is deleted
 after use, the information physically remains on the
 volume until written over with another file, and it
 could be analyzed by unauthorized users.)

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p364.decw$book (2 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$OPNT$W

 The FCS$OPNT$W function creates and opens a temporary
 file for processing data.

 Format
 #include <fcs.h>
 short FCS$OPNT$W (fcs$fdb
 *

 fdb, short lun, short
 *

 dspt, short racc, char
 *

 urba, short urbs, void (
 *

 err)())

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 lun
 Specifies the LUN associated with the desired file.

 dspt
 Specifies a pointer to the data-set descriptor.

 racc
 Specifies record access byte.

 urba
 Specifies a pointer to the record buffer.

 urbs

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p365.decw$book (1 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

 Specifies the numeric value that defines the size (in bytes) of
 the record buffer.

 err
 Specifies the address of the optional, user-coded, error-
 handling routine.

 Description
 The FCS$OPNT$W function creates and opens a temporary
 file for some special purpose of limited duration. If a
 temporary file is to be used only once, it is best created
 through the FCS$OPNT$D function described above.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p365.decw$book (2 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$PARSE

 The FCS$PARSE function performs any necessary logical
 expansion and parses the resultant string.

 Format
 #include <fcs.h>
 short FCS$PARSE (fcs$fdb
 *

 fdb, fcs$fnb
 *

 fnb, short
 *

 dsd, fcs$fnb
 *

 dfnb)

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 fnb
 Specifies a pointer to the filename block to be filled in.

 dsd
 Specifies a pointer to the desired data-set descriptor.

 dfnb
 Specifies a pointer to the default filename block.

 Description
 The FCS$PARSE function first zeros the filename block and
 then stores the filename information into the filename block.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p366.decw$book (1 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p366.decw$book (2 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$POINT

 The FCS$POINT function points to a byte or record within a
 specified file.

 Format
 #include <fcs.h>
 short FCS$POINT (fcs$fdb
 *

 fdb, short highbits, short lowbits, short bytenum)

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 highbits
 Specifies the high-order bits of the virtual block number.

 lowbits
 Specifies the low-order bits of the virtual block number.

 bytenum
 Specifies the number of the next byte within the virtual block.

 Description
 The FCS$POINT function positions a file pointer to a
 specified byte in a specified virtual block. Use of this function
 is restricted to files accessed with the FCSGET and
 FCSPUT functions.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p367.decw$book1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$POSIT

 The FCS$POSIT function returns specified record position
 information.

 Format
 #include <fcs.h>
 short FCS$POSIT (fcs$fdb
 *

 fdb, short
 *

 highbits, short
 *

 lowbits, short
 *

 bytenum)

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 highbits
 Specifies a pointer to the location to store the high-order bits
 of the virtual block number.

 lowbits
 Specifies a pointer to the location to store the low-order bits of
 the virtual block number.

 bytenum
 Specifies a pointer to the location to store the number of the
 next byte within the virtual block.

 Description

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p368.decw$book (1 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

 The FCS$POSIT function calculates the virtual block
 number and the byte number locating the beginning of a
 specified record. Unlike the FCS$POSRC function, which
 sets up the position information of the file to the specified
 record, FCS$POSIT calculates the positional information of
 a specified record, so that a FCS$POINT operation can be
 performed.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p368.decw$book (2 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$POSRC

 The FCS$POSRC function sets up the position information
 for a file to a specified fixed-length record within a file.

 Format
 #include <fcs.h>
 short FCS$POSRC (fcs$fdb
 *

 fdb)

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 Description
 The FCS$POSRC function sets up the position information
 for a file to a specified fixed-length record within a file.
 This function is used to perform random access FCSPUT
 operations in locate mode.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p369.decw$book1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$PPASC

 The FCS$PPASC function converts a binary UIC directory
 string to ASCII.

 Format
 #include <fcs.h>
 void FCS$PPASC (char
 **

 name, short uic, short control)

 Arguments
 **

 name
 Specifies the address of a storage area holding the ASCII
 string.

 uic
 Contains the UIC.

 control
 Contains the control code.

 Description
 The FCS$PPASC function converts a binary UIC to its
 corresponding ASCII directory string.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p370.decw$book1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$PRINT$

 The FCS$PRINT$ function queues a file for printing on a
 specified device.

 Format
 #include <fcs.h>
 short FCS$PRINT$ (fcs$fdb
 *

 fdb, void (
 *

 err)())

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 err
 Specifies the address of the optional, user-coded, error-
 handling routine.

 Description
 The FCS$PRINT$ function queues a file for printing on a
 specified device. The device must be a unit record, carriage-
 controlled device, such as a line printer or terminal. The
 default device is a line printer (LP).

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p371.decw$book1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$PRSDI

 The FCS$PRSDI function is similar to FCS$PARSE but
 performs only those operations associated with requisite
 directory identification information.

 Format
 #include <fcs.h>
 short FCS$PRSDI (fcs$fdb
 *

 fdb, fcs$fnb
 *

 fnb, short
 *

 dsd, fcs$fnb
 *

 dfnb)

 Arguments
 fdb
 Specifies a pointer to the desired FDB.

 fnb
 Specifies a pointer to the desired filename block.

 dsd
 Specifies a pointer to the desired data-set descriptor.

 dfnb
 Specifies a pointer to the desired default filename block.

 Description
 The FCS$PRSDI function performs a FCS$PARSE
 operation on the directory identification information field

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p372.decw$book (1 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

 in the specified data-set descriptor or default filename block.
 The FCS$PRSDI function does not perform any logical
 name expansion.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p372.decw$book (2 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$PRSDV

 The FCS$PRSDV function works the same as FCS$PARSE
 but performs only those operations associated with requisite
 device and unit information.

 Format
 #include <fcs.h>
 short FCS$PRSDV (fcs$fdb
 *

 fdb, fcs$fnb
 *

 fnb, short
 *

 dsd, fcs$fnb
 *

 fnb)

 Arguments
 fdb
 Specifies a pointer to the desired FDB.

 fnb
 Specifies a pointer to the desired filename block.

 dsd
 Specifies a pointer to the desired data-set descriptor.

 fnb
 Specifies a pointer to the desired default filename block.

 Description
 The FCS$PRSDV function zeros the filename block, calls the
 FCS$PARSE routine to operate on the device and unit fields

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p373.decw$book (1 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

 in the specified data-set descriptor or default filename block,
 and assigns the LUN contained in the offset location of the
 specified FDB.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p373.decw$book (2 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$PRSFN

 The FCS$PRSFN function works the same as FCS$PARSE
 but performs only operations associated with requisite file
 name, file type, and file version information.

 Format
 #include <fcs.h>
 short FCS$PRSFN (fcs$fdb
 *

 fdb, fcs$fnb
 *

 fnb, short
 *

 dsd, fcs$fnb
 *

 fnb)

 Arguments
 fdb
 Specifies a pointer to the desired FDB.

 fnb
 Specifies a pointer to the desired filename block.

 dsd
 Specifies a pointer to the desired data-set descriptor.

 fnb
 Specifies a pointer to the desired default filename block.

 Description
 The FCS$PRSFN function performs a FCS$PARSE
 operation on the file name, file type, and file version

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p374.decw$book (1 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

 information fields in the specified data-set descriptor or
 default filename block. It does not perform any logical name
 expansion.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p374.decw$book (2 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCSPUT

 The FCSPUT function writes logical data records to a file.

 Format
 #include <fcs.h>
 short FCSPUT (fcs$fdb
 *

 fdb, char
 *

 urba, short urbs, void (
 *

 err)())

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 urba
 Specifies a pointer to the record buffer.

 urbs
 Specifies the numeric value that defines the size (in bytes) of
 the record buffer.

 err
 Specifies the address of the optional, user-coded, error-
 handling routine.

 Description
 If the FCSPUT function is operating in random access
 mode, the number of the record to be written is maintained
 by FCS in the offset location of the associated FDB. This value
 increases by one after each FCSPUT or FCSPUTR
 operation to point to the next sequential record position.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p375.decw$book (1 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p375.decw$book (2 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCSPUTR

 The FCSPUTR function writes fixed-length records to a
 file in random mode.

 Format
 #include <fcs.h>
 short FCSPUTR (fcs$fdb
 *

 fdb, char
 *

 urba, short urbs, short lrcnm, short hrcnm, void (
 *

 err)())

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 urba
 Specifies a pointer to the record buffer.

 urbs
 Specifies the numeric value that defines the size (in bytes) of
 the record buffer.

 lrcnm
 Specifies the low-order 16 bits of the number of the record to
 be read.

 hrcnm
 Specifies the high-order 15 bits of the number of the record
 to be read.

 err

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p376.decw$book (1 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

 Specifies the address of the optional, user-coded, error-
 handling routine.

 Description
 The FCSPUTR function differs from the FCSPUT
 function in that it allows the specification of the desired
 record number.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p376.decw$book (2 of 2)1/25/06 4:09 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$RDFDR

 The FCS$RDFDR function reads a directory string
 descriptor.

 Format
 #include <fcs.h>
 void FCS$RDFDR (short
 *

 size, char
 **

 pdds)

 Arguments
 size
 Specifies a location to store the size (in bytes) of the default
 directory string.

 pdds
 Specifies a location to store the default directory string.

 Description
 The FCS$RDFDR function reads the default directory string
 descriptor words previously written by the FCS$WDFDR
 function.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p378.decw$book1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$RDFFP

 The FCS$RDFFP function reads the default file protection
 word in a location in the program section of the FSR.

 Format
 #include <fcs.h>
 void FCS$RDFFP (short
 *

 uic)

 Arguments
 uic
 Is a pointer to a location to store the default protection word.

 Description
 FCS uses the default file protection to establish the default file
 protection values for the new file. The FCS$RDFFP function
 allows the user to read the current default file protection
 word.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p379.decw$book1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$RDFUI

 The FCS$RDFUI function reads the default UIC.

 Format
 #include <fcs.h>
 void FCS$RDFUI (short
 *

 uic)

 Arguments
 uic
 Specifies a pointer to a location to store the binary-encoded
 default UIC.

 Description
 The FCS$RDFUI function reads the default UIC. Unlike
 the default directory string descriptor that describes an ASCII
 string, the default UIC is maintained as a binary value.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p380.decw$book1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$READ$

 The FCS$READ$ function reads virtual data blocks from a
 file.

 Format
 #include <fcs.h>
 short FCS$READ$ (fcs$fdb
 *

 fdb, char
 *

 bkda, short bkds, long
 *

 bkvd, short bkef, short
 *

 bkst, void
 (
 *

 bkdn)(), void (
 *

 err)())

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 bkda
 Specifies a pointer to the I/O block buffer.

 bkds
 Specifies the size (in bytes) of the virtual block to be written.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p381.decw$book (1 of 2)1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

 bkvb
 Specifies a pointer to a 2-word block containing the number
 of the virtual block to be written.

 bkef
 Specifies the event flag number used in synchronizing block
 I/O operations.

 bkst
 Specifies a pointer to the IOSB.

 bkdn
 Specifies the entry point address of an AST service routine.

 err
 Specifies the address of the optional, user-coded, error-
 handling routine.

 Description
 The FCS$READ$ function is issued to read a virtual block of
 data to a block-oriented device, for example, magnetic tape
 or disk.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p381.decw$book (2 of 2)1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$REMOV

 The FCS$REMOV function deletes an entry from a directory
 by file name.

 Format
 #include <fcs.h>
 short FCS$REMOV (fcs$fdb
 *

 fdb, fcs$fnb
 *

 fnb)

 Arguments
 fdb
 Specifies a pointer to the desired FDB.

 fnb
 Specifies a pointer to the filename block.

 Description
 The FCS$REMOV function deletes only a specified directory
 entry; it does not delete the associated file.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p382.decw$book1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$RENAM

 The FCS$RENAM function changes the name of a file in its
 associated directory.

 Format
 #include <fcs.h>
 short FCS$RENAM (fcs$fdb
 *

 oldfdb, fcs$fdb
 *

 newfdb)

 Arguments
 oldfdb
 Specifies a pointer to the FDB associated with the file with the
 original name.

 newfdb
 Specifies a pointer to the FDB containing the desired file
 name information, LUN assignment, and the event flag.

 Description
 If the renamed file is open when the FCS$RENAM is called,
 that file is closed before the renaming operation is attempted.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p383.decw$book1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$RFOWN

 The FCS$RFOWN function reads the contents of the file
 owner word in the program section.

 Format
 #include <fcs.h>
 void FCS$RFOWN (short
 *

 fow)

 Arguments
 fow
 Specifies a pointer to a location to store the file owner word.

 Description
 The FCS$RFOWN function reads the contents of the file
 owner word.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p384.decw$book1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$TRNCL

 The FCS$TRNCL function truncates a file to the logical end
 of the file, deallocates any space beyond that point, and closes
 the file.

 Format
 #include <fcs.h>
 short FCS$TRNCL (fcs$fdb
 *

 fdb)

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 Description
 The FCS$TRNCL function truncates a file to the logical end
 of the file. The file must have been opened with both write
 and extend privileges; otherwise, the truncation will fail.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p385.decw$book1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$WAIT$

 The FCS$WAIT$ function suspends program execution until
 a requested block input/output transfer is completed.

 Format
 #include <fcs.h>
 short FCS$WAIT$ (fcs$fdb
 *

 fdb, short bkef, short
 *

 bkst, void (
 *

 err)())

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 bkef
 Specifies the event flag number to be used for synchronizing
 block I/O operations.

 bkst
 Specifies a pointer to the IOSB.

 err
 Specifies the address of the optional, user-coded, error-
 handling routine.

 Description
 The FCS$WAIT$ function, which is issued only with
 FCS$READ$ and FCS$WRITE$ operations, suspends
 program execution until the requested block I/O transfer
 is completed. This function may be used to synchronize a
 block I/O operation that depends on the successful completion

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p386.decw$book (1 of 2)1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

 of a previous block I/O transfer.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p386.decw$book (2 of 2)1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$WDFDR

 The FCS$WDFDR function writes directory string
 descriptors in program section $$FSR2.

 Format
 #include <fcs.h>
 void FCS$WDFDR (short size, char
 *

 pdds)

 Arguments
 size
 Specifies the size (in bytes) of the default directory string.

 pdds
 Specifies a pointer to the default directory string.

 Description
 The FCS$WDFDR function creates the default directory
 string descriptor words read by the FCS$RDFDR function.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p387.decw$book1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$WDFFP

 The FCS$WDFFP function writes a new default file
 protection word into the program section $$FSR2.

 Format
 #include <fcs.h>
 void FCS$WDFFP (short uic)

 Arguments
 uic
 Specifies the new default protection word to be written.

 Description
 FCS uses the default file protection word only when a file is
 created to establish the default file protection values for the
 new file.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p388.decw$book1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$WDFUI

 The FCS$WDFUI function writes the default UIC to a
 program section in the FSR.

 Format
 #include <fcs.h>
 void FCS$WDFUI (short uic)

 Arguments
 uic
 Specifies the binary-encoded default UIC.

 Description
 The FCS$WDFUI function writes a new default UIC. Unlike
 the default directory string descriptor that describes an ASCII
 string, the default UIC is maintained as a binary value.
 Unless the default UIC is changed through the FCS$WDFUI
 function, the default UIC always corresponds to the UIC
 under which the task is running.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p389.decw$book1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$WFOWN

 The FCS$WFOWN function initializes the file owner word in
 the program section $$FSR2.

 Format
 #include <fcs.h>
 void FCS$WFOWN (short fow)

 Arguments
 fow
 Contains the file owner word to be written.

 Description
 The FCS$WFOWN function initializes the file owner word
 (UIC).

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p390.decw$book1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$WRITE$

 The FCS$WRITE$ function writes virtual data blocks to a
 file.

 Format
 #include <fcs.h>
 short FCS$WRITE$ (fcs$fdb
 *

 fdb, char
 *

 bkda, short bkds, long
 *

 bkvd, short bkef, short
 *

 bkst,
 void (
 *

 bkdn)(), void (
 *

 err)())

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 bkda
 Specifies a pointer to the I/O block buffer.

 bkds
 Specifies the size (in bytes) of the virtual block to be written.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p391.decw$book (1 of 2)1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

 bkvb
 Specifies a pointer to a 2-word block containing the number
 of the virtual block to be written.

 bkef
 Specifies the event flag number used in synchronizing block
 I/O operations.

 bkst
 Specifies a pointer to the IOSB.

 bkdn
 Specifies the entry point address of an AST service routine.

 err
 Specifies a pointer to the optional, user-coded, error-handling
 routine.

 Description
 The FCS$WRITE$ function is issued to write a virtual block
 of data to a block-oriented device, for example, magnetic tape
 or disk.

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p391.decw$book (2 of 2)1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCS$XQIO

 The FCS$XQIO function executes a specified QIO$ function
 and waits for its completion.

 Format
 #include <fcs.h>
 short FCS$XQIO (fcs$fdb
 *

 pfdb, short function, short nparams, short
 *

 paramlist)

 Arguments
 pfdb
 Specifies a pointer to the desired FDB.

 function
 Specifies the desired function code.

 nparams
 Specifies the number of optional parameters, if any.

 paramlist
 Specifies a pointer to the beginning address of the list of
 optional directive parameters.

 Description
 The FCS$XQIO function executes a specified QIO$ function
 and waits for its completion.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p392.decw$book1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 3 RMS Extension Library Macros

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p393.decw$book1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$CLOSE

 The RMS$CLOSE function closes an open file.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$CLOSE
 void RMS$CLOSE (struct FAB
 *

 pfab, . . .);

 Arguments
 pfab
 Specifies a pointer to the associated FAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$CLOSE macro closes an open file.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p394.decw$book1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$CONNECT

 The RMS$CONNECT function connects a record stream to
 an open file and initializes the stream context.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$CONNECT
 void RMS$CONNECT (struct S_RAB
 *

 prab, ...);

 Arguments
 prab
 Specifies a pointer to the associated RAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$CONNECT macro connects a record stream to an
 open file and initializes the stream context.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p395.decw$book1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$CREATE

 The RMS$CREATE function creates a new file and opens it
 for processing.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$CREATE
 void RMS$CREATE (struct FAB
 *

 pfab, . . .);

 Arguments
 pfab
 Specifies a pointer to the associated FAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$CREATE function creates a new file and opens it
 for processing.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p396.decw$book1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$DELETE

 The RMS$DELETE function removes a record from a
 relative or indexed file.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$DELETE
 void RMS$DELETE (struct S_RAB
 *

 prab, . . .);

 Arguments
 prab
 Specifies a pointer to the associated RAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$DELETE function removes a record from a
 relative or indexed file. The target of the DELETE operation
 is the current record. The current record must be locked. It
 was automatically locked when the current-record context
 was set, but you must not have unlocked it with a FREE
 operation.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p397.decw$book1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$DISCONNECT

 The RMS$DISCONNECT function terminates a stream and
 disconnects the internal resources it was using.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$DISCONNECT
 void RMS$DISCONNECT (struct S_RAB
 *

 prab, . . .);

 Arguments
 prab
 Specifies a pointer to the associated RAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$DISCONNECT macro terminates a stream and
 disconnects the internal resources it was using. You cannot
 re-establish the same stream context by reconnecting the
 stream with the CONNECT operation.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p398.decw$book1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$DISPLAY

 The RMS$DISPLAY function Writes values into control
 block fields.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$DISPLAY
 void RMS$DISPLAY (struct FAB
 *

 pfab, . . .);

 Arguments
 pfab
 Specifies a pointer to the associated FAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$DISPLAY writes values into control block fields.
 The DISPLAY operation does not alter the file in any way.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p399.decw$book1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$ENTER

 The RMS$ENTER function inserts a file name into a
 directory file. This macro is not supported on RSTS/E.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$ENTER
 void RMS$ENTER (struct FAB
 *

 pfab, . . .);

 Arguments
 pfab
 Specifies a pointer to the associated FAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$ENTER function inserts a file into a directory file.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p400.decw$book1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$ERASE

 The RMS$ERASE function erases a file and deletes its
 directory entry.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$ERASE
 void RMS$ERASE (struct FAB
 *

 pfab, . . .);

 Arguments
 pfab
 Specifies a pointer to the associated FAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$ERASE function erases a file and deletes its
 directory entry. Erasing a file, marks the file for deletion,
 but does not necessarily erase the file immediately. The file is
 erased when it has no accessing programs. The allocation for
 the file is released for use in other files.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p401.decw$book1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$EXTEND

 The RMS$EXTEND function extends the allocation for an
 open file.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$EXTEND
 void RMS$EXTEND (struct FAB
 *

 pfab, . . .);

 Arguments
 pfab
 Specifies a pointer to the associated FAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$EXTEND function extends the allocation for an
 open file.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p402.decw$book1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$FIND

 The RMS$FIND function with sequential or record file
 access transfers a record or part of a record from a file to
 an I/O buffer. The RMS$FIND function with key access
 transfers a record or part of a record from a sequential disk
 file, a relative file, or an indexed file to an I/O buffer.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$FIND
 void RMS$FIND (struct S_RAB
 *

 prab, . . .);

 Arguments
 prab
 Specifies a pointer to the associated RAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$FIND function with sequential or record file
 access transfers a record or part of a record from a file to
 an I/O buffer. The RMS$FIND function with key access
 transfers a record or part of a record from a sequential disk
 file, a relative file, or an indexed file to an I/O buffer.

 Return Values

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p403.decw$book (1 of 2)1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p403.decw$book (2 of 2)1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$FLUSH

 The RMS$FLUSH function writes any unwritten buffers for
 a stream.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$FLUSH
 void RMS$FLUSH (struct S_RAB
 *

 prab, . . .);

 Arguments
 prab
 Specifies a pointer to the associated RAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded success-
 handling routine.

 Description
 The RMS$FLUSH function writes any unwritten buffers
 for a stream. The FLUSH operation does not affect stream
 context, except that the current-record context is undefined
 for a following TRUNCATE or UPDATE operation.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p404.decw$book1/25/06 4:10 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$FREE

 The RMS$FREE function frees a locked bucket for a stream.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$FREE
 void RMS$FREE (struct S_RAB
 *

 prab, . . .);

 Arguments
 prab
 Specifies a pointer to the associated RAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$FREE function frees a locked bucket for a stream.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p405.decw$book1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$GET

 The RMS$GET function with sequential or record file access
 transfers a record from a file to an I/O buffer and a user
 buffer. The RMS$GET function with key access transfers a
 record from a sequential disk file, a relative file, or an indexed
 file to an I/O buffer and a user buffer.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$GET
 void RMS$GET (struct S_RAB
 *

 prab, . . .);

 Arguments
 prab
 Specifies a pointer to the associated RAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$GET function with sequential or record file access
 transfers a record from a file to an I/O buffer and to a user
 buffer. The RMS$GET function with key access transfers a
 record from a sequential disk file, a relative file, or an indexed
 file to an I/O buffer and to a user buffer.

 Return Values

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p406.decw$book (1 of 2)1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p406.decw$book (2 of 2)1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$NXTVOL

 The RMS$NXTVOL function advances the context for a
 stream to the beginning of the next magnetic tape volume.
 This macro is not supported on RSTE/E.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$NXTVOL
 void RMS$NXTVOL (struct S_RAB
 *

 prab, . . .);

 Arguments
 prab
 Specifies a pointer to the associated RAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$NXTVOL function advances the context for a
 stream to the beginning of the next magnetic tape volume.
 This macro is not supported on RSTS/E.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p407.decw$book1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$OPEN

 The RMS$OPEN function opens a file for processing by the
 calling task.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$OPEN
 void RMS$OPEN (struct FAB
 *

 pfab, . . .);

 Arguments
 pfab
 Specifies a pointer to the associated FAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$OPEN function opens a file for processing by the
 calling task.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p408.decw$book1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$PARSE

 The RMS$PARSE function analyzes a file specification.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$PARSE
 void RMS$PARSE (struct FAB
 *

 pfab, . . .);

 Arguments
 pfab
 Specifies a pointer to the associated FAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$PARSE function analyzes a file specification.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p409.decw$book1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$PUT

 The RMS$PUT function with sequential access transfers a
 record from a user buffer to an I/O buffer and to a file. The
 RMS$PUT function with key access transfers a record from
 a user buffer to an I/O buffer and to a sequential disk file, a
 relative file, or an indexed file.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$PUT
 void RMS$PUT (struct S_RAB
 *

 prab, . . .);

 Arguments
 prab
 Specifies a pointer to the associated RAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$PUT function with sequential access transfers a
 record from a user buffer to an I/O buffer and to a file. The
 RMS$PUT function with key access transfers a record from
 a user buffer to an I/O buffer and to a sequential disk file, a
 relative file, or an indexed file.

 Return Values

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p410.decw$book (1 of 2)1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p410.decw$book (2 of 2)1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$READ

 The RMS$READ function transfers blocks to an I/O buffer.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$READ
 void RMS$READ (struct S_RAB
 *

 prab, . . .);

 Arguments
 prab
 Specifies a pointer to the associated RAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$READ function transfers blocks to an I/O buffer.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p411.decw$book1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$RELEASE

 The RMS$RELEASE function is supplied for VMS
 compatibility only; it has no effect.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$RELEASE
 void RMS$RELEASE (struct FAB
 *

 pfab, . . .);

 Arguments
 pfab
 Specifies a pointer to the associated FAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p412.decw$book1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$REMOVE

 The RMS$REMOVE function removes the directory entry
 for a file. This macro is not supported on RSTS/E.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$REMOVE
 void RMS$REMOVE (struct FAB
 *

 pfab, . . .);

 Arguments
 pfab
 Specifies a pointer to the associated FAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$REMOVE function removes the directory entry
 for a file. This macro is not supported on RSTS/E.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p413.decw$book1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$RENAME

 The RMS$RENAME function changes the directory entry
 for a file.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$RENAME
 void $RMREN (struct FAB
 *

 pfab1, void (
 *

 perr) (), void (
 *

 psucc) (), struct FAB
 *

 pfab2);

 Arguments
 pfab1
 Specifies a pointer to the FAB for the operation.

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 pfab2
 Specifies a pointer to the FAB that holds the new file
 specification.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p414.decw$book (1 of 2)1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

 Description
 The RMS$RENAME function changes the directory entry
 for a file.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p414.decw$book (2 of 2)1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$REWIND

 The RMS$REWIND function resets the context for a stream
 to the beginning-of-file. This macro is not supported on
 RSTS/E.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$REWIND
 void RMS$REWIND (struct S_RAB
 *

 prab, . . .);

 Arguments
 prab
 Specifies a pointer to the associated RAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$REWIND function resets the context for a stream
 to the beginning-of-file. This macro is not supported on
 RSTS/E.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p415.decw$book1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$SEARCH

 The RMS$SEARCH function scans a directory, returns a file
 specification, and identifies in NAM block fields.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$SEARCH
 void RMS$SEARCH (struct FAB
 *

 pfab, . . .);

 Arguments
 pfab
 Specifies a pointer to the associated FAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$SEARCH function scans a directory, returns a file
 specification, and identifies in NAM blocks.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p416.decw$book1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$SPACE

 The RMS$SPACE function moves a magnetic tape backward
 or forwards. This macro is not supported on RSTS/E.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$SPACE
 void RMS$SPACE (struct S_RAB
 *

 prab, . . .);

 Arguments
 prab
 Specifies a pointer to the associated RAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$SPACE function moves a magnetic tape
 backwards or forwards. This macro is not supported on
 RSTS/E.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p417.decw$book1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$TRUNCATE

 The RMS$TRUNCATE function removes records from the
 latter part of a sequential file.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$TRUNCATE
 void RMS$TRUNCATE (struct S_RAB
 *

 prab, . . .);

 Arguments
 prab
 Specifies a pointer to the associated RAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$TRUNCATE function removes records from the
 latter part of a sequential file.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p418.decw$book1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$UPDATE

 The RMS$UPDATE function transfers a record from a user
 buffer to a disk file, overwriting the existing record.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$UPDATE
 void RMS$UPDATE (struct S_RAB
 *

 prab, . . .);

 Arguments
 prab
 Specifies a pointer to the associated RAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$UPDATE function transfers a record from a user
 buffer to a disk file, overwriting the existing record.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p419.decw$book1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$WAIT

 The RMS$WAIT function suspends processing until an
 outstanding asynchronous operation on the stream is
 completed. This macro is not supported on RSTS/E.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$WAIT
 void RMS$WAIT (struct RAB
 *

 prab, . . .);

 Arguments
 prab
 Specifies a pointer to the associated RAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$WAIT function suspends processing until an
 outstanding asynchronous operation on the stream is
 completed. This macro is not supported on RSTS/E.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p420.decw$book1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 RMS$WRITE

 The RMS$WRITE function writes blocks to file.

 Format
 #include <rmsops.h>
 #pragma linkage fortran RMS$WRITE
 void RMS$WRITE (struct RAB
 *

 prab, . . .);

 Arguments
 prab
 Specifies a pointer to the associated RAB.

 . . .
 Specifies the following optional addresses:

 perr
 Specifies the address of the optional, user-coded, error-
 handling routine.

 psucc
 Specifies the address of the optional, user-coded, success-
 handling routine.

 Description
 The RMS$WRITE function writes blocks to a file.

 Return Values
 None.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p421.decw$book1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 A. PDP-11 C and VAX C Compatibility Issues
 Because of architectural differences between the PDP-11 and
 the VAX-11 systems and because PDP-11 C does not support
 all of the features of VAX C, some incompatibilities exist
 between the two implementations. This appendix describes
 the major differences between PDP-11 C and VAX C, as
 summarized in the following list:

 1. Errors in program structure are handled differently by
 PDP-11 C than by VAX C. The following is a list of these
 differences:

 .
 If the user attempts to reference a parameter that
 is a redeclaration of one of the function's formal
 parameters, PDP-11 C issues an error message;
 VAX C issues a warning message.
 .
 If a numeric constant contains an illegal character
 or is otherwise invalid, PDP-11 C issues an error
 message; VAX C issues a warning message and
 ignores the illegal characters.
 2. PDP-11 C does not support 8 and 9 as octal constant
 digits. An error is issued if an invalid octal constant is
 specified.
 3. If defined, the logical name C$INCLUDE specifies the
 directory where PDP-11 C is to search for header files
 which are included by using the #include preprocessing
 directive. In a VMS compilation environment, the logical
 name may specify a search list.
 4. If the specified header file cannot be found in the device
 /directory searched, PDP-11 C attempts to translate the
 user-defined logical name C$INCLUDE in the VMS
 and RSX-11M-PLUS compilation environments. In
 the VMS compilation environments, C$INCLUDE may
 specify a search list.
 5. The module name and identity of PDP-11 C's #module
 preprocessing directive are limited to no more than six
 alphanumeric characters, space, dollar sign ($), or dot
 (.). Additional characters are ignored.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p422.decw$book (1 of 4)1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

 6. In PDP-11 C, preprocessor directives may begin
 anywhere on a line; however, VAX C requires
 preprocessor directives to begin with the # character
 as the first character of the line.
 7. PDP-11 C defines CC$gfloat as 0, indicating that the
 G-float format is not being used for double objects; VAX C
 expands the CC$gfloat macro to 1 if the /G_FLOAT
 qualifier is asserted, 0 if not asserted.
 8. PDP-11 C does not use the RMS file type RMS
 STREAM_LF as its external representation for binary
 and text streams.
 9. PDP-11 C expands the macro L_tmpnam to the integer
 constant 13; VAX C expands it to a value of 255.
 10. PDP-11 C does not provide the optional file attribute
 arguments for the fopen function.
 11. PDP-11 C prints a pointer as an unsigned octal integer
 when the fprintf function is used with the conversion
 character p.
 12. PDP-11 C does not define all existing RMS masks and
 fields that are defined in VAX C.
 13. In the header files that define RMS structures, the
 l_ convention used by VAX C for naming structure
 members that are pointers was retained for compatibility
 with the VAX C definitions for those items; however, the
 item is a 16-bit quantity rather than a 32-bit quantity.
 14. The RAB data structure on the PDP-11 is two
 different sizes, one for synchronous RABs and one for
 asynchronous RABs. The structure tags, S_RAB and A_
 RAB respectively, are used to identify these two different
 data structures. The existing code for VAX C compiled
 by PDP-11 C will have undefined structures for each
 RAB structure; therefore, when porting source code from
 VAX C to PDP-11 C, you need to determine which type
 of RAB is desired and to change the RAB to A_RAB or
 S_RAB as needed.
 15. The RMS functions available through PDP-11 C do not
 return a value.
 16. PDP-11 C adds the keyword [NO]MACHINE to
 the /SHOW switch rather than having a separate
 /[NO]MACHINE switch.
 17. PDP-11 C supports the following command-line
 switches, which are not supported by VAX C:

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p422.decw$book (2 of 4)1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

 .
 CACHE
 .
 CODE
 .
 COMMAND
 .
 ENVIRONMENT
 .
 ERROR_LIMIT
 .
 INTEGER_SIZE
 .
 MACRO
 .
 MEMORY
 .
 MODULE
 .
 TERMINAL
 .
 WORK_FILE_SIZE
 18. PDP-11 C does not support the following VAX C
 command-line switches:

 .
 ANALYSIS_DATA
 .
 CROSS_REFERENCE
 .
 DEBUG
 .
 DIAGNOSTICS
 .
 G_FLOAT
 .
 LIBRARY
 .
 [NO]MACHINE
 .
 PARALLEL
 .
 PRECISION

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p422.decw$book (3 of 4)1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

 .
 PREPROCESS_ONLY
 .
 STANDARD=[NO]PORTABLE
 19. In PDP-11 C, objects may be declared to be of type long
 double but not of type long float . In VAX C, objects
 may be declared to be of type long float but not of type
 long double .
 20. For compatibility with VAX C, the following functions are
 defined in the supplied standard header files. They are
 defined only when compiling with the /NOSTANDARD
 switch.

 .
 These functions are defined for VAX C compatibility.
 Each function is described in the Reference Section.

 cabs
 fgetname
 hypot
 isascii
 sleep
 toascii
 _tolower
 _toupper
 .
 The type cabs_t and structure type CABS_T are
 defined as follows:
 typedef struct CABS_T {double __x, __y;} cabs_t;
 .
 These macros are defined for VAX C compatibility:

 NSIGNALS Number of signals
 OPEN_MAX Number of files that can be simulta-
 neously opened (ANSI equivalent is
 FOPEN_MAX)
 PATH_MAX Size of maximum path name (ANSI
 equivalent is FILENAME_MAX)
 SEEK_EOF Equivalent to ANSI SEEK_END
 STRINGS_MATCH Value returned by standard library
 functions when strings match
 CLK_TCK Equivalent to ANSI CLOCKS_PER_
 SEC

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p422.decw$book (4 of 4)1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 B. PDP-11 C Run-Time Modules and Entry
 Points
 This appendix summarizes the modules and entry points in
 the PDP-11 C Run-Time System. Table B-1 lists the entry
 points and the modules in the library and describes their
 function.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p423.decw$book1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Example 2-1: Output of the Conversion Specifications
 /* This program uses the printf function to print the *
 * various conversion specifications and their effect on the *
 * output. */
 #include <stdio.h>
 int main ()
 {
 double val = 123.3456e+3;
 char c = 'C';
 long int i = -1500000000;
 char *s = "thomasina";
 /* Print the specification code, a colon, two tabs, and the *
 * formatted output value delimited by the angle bracket *
 * characters (<>). */
 printf("%%9.4f: <%9.4f>\n", val);
 printf("%%9f: <%9f>\n", val);
 printf("%%9.0f: <%9.0f>\n", val);
 printf("%%-9.0f: <%-9.0f>\n\n", val);
 printf("%%11.6e: <%11.6e>\n", val);
 printf("%%11e: <%11e>\n", val);
 printf("%%11.0e: <%11.0e>\n", val);
 printf("%%-11.0e: <%-11.0e>\n\n", val);
 printf("%%11g: <%11g>\n", val);
 printf("%%9g: <%9g>\n\n", val);
 printf("%%d: <%d>\n", c);
 printf("%%c: <%c>\n", c);
 printf("%%o: <%o>\n", c);
 printf("%%x: <%x>\n\n", c);
 printf("%%ld: <%ld>\n", i);
 printf("%%lu: <%lu>\n", i);
 printf("%%lx: <%lx>\n\n", i);
 printf("%%s: <%s>\n", s);
 printf("%%-9.6s: <%-9.6s>\n", s);
 printf("%%-*.*s: <%-*.*s>\n", 9, 5, s);
 printf("%%6.0s: <%6.0s>\n\n", s);
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p66.decw$book1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Example 2-2: Using the Standard I/O Functions
 /* This program establishes a file pointer, writes lines from *
 * a buffer to the file, moves the file pointer to the second *
 * record, copies the record to the buffer, and then prints *
 * the buffer to the screen. */
 #include <stdio.h>
 #include <stdlib.h>
 int main ()
 {
 char buffer[32];
 int i, pos;
 FILE *fptr;
 /* Set file pointer */
 fptr = fopen("data.dat", "w+");
 if (fptr == NULL)
 {
 perror("fopen");
 exit (EXIT_FAILURE); /* Exit if fopen error */
 }
 for (i=1; i<5; i++)
 {
 if (i == 2) /* Get position of record 2 */
 pos = ftell(fptr);
 /* Print a line to the buffer */
 sprintf(buffer, "test data line %d\r\n", i);
 /* Print buffer to the record */
 fputs(buffer, fptr);
 }
 /* Go to record number 2 */
 if (fseek(fptr, pos, 0) < 0)
 {
 perror("fseek"); /* Exit on fseek error */
 exit (EXIT_FAILURE);
 }
 /* Put record 2 in the buffer */
 if (fgets(buffer, 32, fptr) == NULL)
 {
 perror("fgets"); /* Exit on fgets error */
 exit(EXIT_FAILURE);
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p67.decw$book (1 of 2)1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

 /* Print the buffer */
 printf("Data in record 2 is: %s", buffer);
 fclose(fptr); /* Close the file */
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p67.decw$book (2 of 2)1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Example 3-1: Character-testing Macros
 /* The following program uses the isalpha, isdigit, and *
 * isspace macros to count the number of occurrences of *
 * letters, digits, and white-space characters entered through *
 * the standard input (stdin). */
 #include <ctype.h>
 #include <stdio.h>
 #include <stdlib.h>
 int main ()
 {
 int c;
 short i = 0, j = 0, k = 0;
 while ((c = getchar()) != EOF)
 {
 if (isalpha(c))
 i++;
 if (isdigit(c))
 j++;
 if (isspace(c))
 k++;
 }
 printf("Number of letters: %d\n", i);
 printf("Number of digits: %d\n", j);
 printf("Number of spaces: %d\n", k);
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p72.decw$book1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Example 3-2: Changing Characters to and from Uppercase Letters
 /* This program uses the functions toupper and tolower to *
 * convert uppercase to lowercase and lowercase to uppercase *
 * using input from the standard input (stdin). */
 #include <ctype.h>
 #include <stdio.h> /* To use EOF identifier */
 int main()
 {
 char c, ch;
 while ((c = getchar()) != EOF)
 {
 if (isupper(c))
 ch = tolower(c);
 else
 ch = toupper(c);
 putchar(ch);
 }
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p74.decw$book1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Example 5-1: Allocating and Deallocating Memory for Structures
 /* This example takes lines of input from the terminal until *
 * it encounters a Ctrl/Z, it places the strings into an *
 * allocated buffer, copies the strings to memory allocated *
 * for structures, prints the lines back to the screen, and *
 * then deallocates all memory used for the structures. */
 #include <stdlib.h>
 #include <stdio.h>
 #define MAX_LINE_LENGTH 80
 struct line_rec /* Declare the structure */
 {
 struct line_rec *next; /* Pointer to next line */
 char *data; /* A line from terminal */
 };
 int main ()
 {
 char *buffer; /* Define pointers to */
 /* structure (input lines) */
 struct line_rec *first_line, *next_line, *last_line = NULL;
 buffer = malloc(MAX_LINE_LENGTH); /* buffer points to memory */
 if (buffer == 0) /* If error ... */
 {
 perror("malloc");
 exit(EXIT_FAILURE);
 }
 puts("Type text - terminate with Ctrl/Z");
 while (gets(buffer) != NULL) /* While not Ctrl/Z ... */
 {
 /* Allocate for input line */
 next_line = calloc(1, sizeof (struct line_rec));
 if (next_line == NULL)
 {
 perror("calloc");
 exit(EXIT_FAILURE);
 }
 next_line->data = buffer; /* Put line in data area */
 if (last_line == NULL) /* Reset pointers */
 first_line = next_line;
 else
 last_line->next = next_line;

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p93.decw$book (1 of 2)1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

 last_line = next_line;
 /* Allocate space for the */
 /* next input line */
 buffer = malloc(MAX_LINE_LENGTH);
 if (buffer == 0)
 {
 perror("malloc");
 exit(EXIT_FAILURE);
 }
 }
 free(buffer); /* Last buffer always unused */
 next_line = first_line; /* Pointer to beginning */
 do
 {
 puts(next_line->data); /* Write line to screen */
 free(next_line->data); /* Deallocate a line */
 last_line = next_line;
 next_line = next_line->next;
 free(last_line);
 }
 while (next_line != NULL);
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p93.decw$book (2 of 2)1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Example 5-2: Searching the Environment for a String
 #include <stdlib.h>
 #include <stdio.h>
 int main ()
 {
 char *buff;
 buff = getenv("HOME");
 printf ("getenv (\"HOME\") is %s\n",buff);
 buff = getenv("TERM");
 printf ("getenv (\"TERM\") is %s\n",buff);
 buff = getenv("PATH");
 printf ("getenv (\"PATH\") is %s\n",buff);
 buff = getenv("USER");
 printf ("getenv (\"USER\") is %s\n",buff);
 buff = getenv("OPSYS");
 printf ("getenv (\"OPSYS\") is %s\n",buff);
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p98.decw$book1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Example 6-1: Checking the Variable errno
 #include <errno.h>
 #include <math.h>
 #include <stdio.h>
 int main()
 {
 double input, square_root;
 printf("Enter a number: ");
 scanf("%le", &input);
 errno = 0;
 square_root = sqrt(input);
 if (errno == EDOM)
 perror("Input was negative");
 else
 printf("Square root of %e = %e\n",
 input, square_root);
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p105.decw$book1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Example 6-2: Calculating and Verifying a Tangent Value
 /* This example uses two functions --- mytan and main --- *
 * to calculate the tangent value of a number, and to check *
 * the calculation using the sin and cos functions. */
 #include <math.h> /* Include modules */
 #include <stdio.h>
 /* This function is used to calculate the tangent using the *
 * sin and cos functions. */
 double mytan(x)
 double x;
 {
 double y, y1, y2;
 y1 = sin (x);
 y2 = cos (x);
 if (y2 == 0)
 y = 0;
 else
 y = y1 / y2;
 return y;
 }
 int main()
 {
 double x;
 /* Print values: compare */
 for (x=0.0; x<1.5; x += 0.1)
 printf("tan of %4.1f = %6.2f\t%6.2f\n", x, mytan(x), tan(x));
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p106.decw$book1/25/06 4:11 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Example 7-1: Receiving Parameters
 extern short getspace (
 int *pool_space, /*Address of pool free space list*/
 int block_size, /*Size of requested block*/
 int released) /*Address of first word released*/
 {
 if (released) /*Releasing memory?*/
 {
 free((void *) released); /*Yes, call free*/
 return (short *) TRUE; /*Indicates success*/
 }
 return (short *) malloc (block_size);/*No, call malloc*/
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p126.decw$book1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Example 7-2: External Data Declarations and Definitions
 /* This segment of RMSEXP.C contains external data *
 * definitions. */
 #define RMS_FAB$PROTOTYPE 1
 #define RMS_RAB$PROTOTYPE
 #define RMS_KEY$PROTOTYPE
 /* Indicate use of Indexed file organization operations */
 #define RMSORGIDX$CRE
 #define RMSORGIDX$DEL
 #define RMSORGIDX$FIN
 #define RMSORGIDX$GET
 #define RMSORGIDX$PUT
 #define RMSORGIDX$UPD
 #include <rmsdef.h>
 #include <rmsorg.h> 2
 #include <rms.h>
 #include <string.h>
 #include <stdio.h>
 #include <stdlib.h>
 # define DEFAULT_FILE_NAME ".dat" 3
 # define RECORD_SIZE (sizeof record)
 # define SIZE_SSN 15
 # define SIZE_LNAME 25
 # define SIZE_FNAME 25
 # define SIZE_COMMENTS 15
 # define KEY_SIZE \
 (SIZE_SSN > SIZE_LNAME ? SIZE_SSN: SIZE_LNAME)
 static struct FAB fab; 4
 static struct S_RAB rab;
 static struct XEBEC primary_key,alternate_key;
 static struct 5
 {
 char ssn[SIZE_SSN], last_name[SIZE_LNAME];
 char first_name[SIZE_FNAME],
 comments[SIZE_COMMENTS];
 } record;
 static char response[BUFSIZ],*filename; 6
 static int rms_status; 7
 static void initialize 8 (char *);
 static void open_file (void);

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p130.decw$book (1 of 2)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

 static void add_employee (void);
 static void delete_employee (void);
 static void list_employees (void);
 static void type_employees (void);
 static void update_employee (void);
 static void type_options (void);
 static void error_exit (char *);

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p130.decw$book (2 of 2)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Example 7-3: Main Program Section
 /* This segment of RMSEXP.C contains the main function *
 * and controls the flow of the program. */
 main(int argc,char **argv) 1
 {
 if (argc < 1 || argc > 2)
 printf("\nRMSEXP - incorrect number of arguments\n");
 else
 {
 printf("\nRMSEXP - Personnel Database \\ Manipulation Example\n");
 2 filename = (argc == 2 ? *++argv : "personnel.dat");
 3 initialize(filename);
 4 open_file();
 for(;;)
 {
 5 printf("\\Enter option (A,D,E,L,T,U)or \\ ? for help :\n");
 gets(response);
 if (response[0] == 'E')
 break;
 printf("\n\n");
 6 switch(response[0])
 {
 case 'A': add_employee();
 break;
 case 'D': delete_employee();
 break;
 case 'L': list_employees();
 break;
 case 'T': type_employees();
 break;
 case 'U': update_employee();
 break;
 default: printf("RMSEXP - \
 Unknown Operation.\n");
 case '?':
 case '\0': type_options();
 }
 }
 7 sys$close(&fab);
 rms_status = fab.fab$w_sts;

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p131.decw$book (1 of 2)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

 8 if (rms_status != RMS$SU_SUC)
 error_exit("$CLOSE");
 }
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p131.decw$book (2 of 2)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Example 7-4: Function to Initialize RMS Data Structures
 /* This segment of RMSEXP.C contains the function that *
 * initializes the RMS data structures. */
 static void initialize(char *fn)
 {
 1 fab = cc$rms_fab; /* Initialize FAB */
 fab.fab$b_bks = 4;
 fab.fab$l_dna = DEFAULT_FILE_NAME;
 fab.fab$b_dns = sizeof DEFAULT_FILE_NAME -1;
 fab.fab$b_fac = FAB$M_DEL | FAB$M_GET | FAB$M_PUT | FAB$M_UPD;
 fab.fab$l_fna = fn;
 fab.fab$b_fns = strlen(fn);
 fab.fab$w_mrs = RECORD_SIZE;
 fab.fab$b_org = FAB$C_IDX;
 fab.fab$b_rfm = FAB$C_FIX;
 fab.fab$b_shr = FAB$M_NIL;
 fab.fab$l_xab = (char *) &primary_key;
 fab.fab$b_lch = 7; /* Use LUN 7 */
 2 rab = cc$rms_rab; /* Initialize RAB */
 rab.rab$l_fab = &fab;
 3 primary_key = cc$rms_xabkey; /* Initialize Primary *
 * key XAB */
 primary_key.xab$b_dtp = XAB$C_STG;
 primary_key.xab$b_flg = 0;
 4 primary_key.xab$w_pos0 = record.ssn - (char *) &record;
 primary_key.xab$b_ref = 0;
 primary_key.xab$b_siz0 = SIZE_SSN;
 primary_key.xab$l_nxt = (char *) &alternate_key;
 primary_key.xab$l_knm = "Employee Social Security Number ";
 5 alternate_key = cc$rms_xabkey; /* Initialize Alternate *
 * Key XAB */
 alternate_key.xab$b_dtp = XAB$C_STG;
 6 alternate_key.xab$b_flg = XAB$M_DUP | XAB$M_CHG;
 alternate_key.xab$w_pos0 = record.last_name - (char *) &record;
 alternate_key.xab$b_ref = 1;
 alternate_key.xab$b_siz0 = SIZE_LNAME;
 7 alternate_key.xab$l_knm = "Employee Last Name ";
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p132.decw$book1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Example 7-5: Internal Functions
 /* This segment of RMSEXP.C contains the functions that *
 * control the data manipulation of the program. */
 static void open_file()
 {
 sys$open(&fab);
 1 rms_status = fab.fab$w_sts;
 if (rms_status != RMS$SU_SUC)
 {
 if (rms_status == RMS$_FNF)
 {
 sys$create(&fab);
 rms_status = fab.fab$w_sts;
 if (rms_status != RMS$SU_SUC)
 error_exit("$OPEN");
 printf("[Created new data file.]\n");
 }
 else
 error_exit("$OPEN");
 }
 2 sys$connect(&rab);
 rms_status = rab.rab$w_sts;
 if (rms_status != RMS$SU_SUC)
 error_exit("$CONNECT");
 }
 static void type_options(void) 3
 {
 printf("Enter one of the following:\n\n");
 printf("A Add an employee.\n");
 printf("D Delete an employee specified by SSN.\n");
 printf("E Exit this program.\n");
 printf("L List employee(s) by ascending SSN to a file.\n");
 printf("T Type employee(s) by ascending last name on terminal.\n");
 printf("U Update employee specified by SSN.\n\n");
 printf("? Type this text.\n");
 }
 static pad_record() 4
 {
 int i;
 for(i = strlen(record.ssn); i < SIZE_SSN; i++)

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p133.decw$book (1 of 2)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

 record.ssn[i] = ' ';
 for(i = strlen(record.last_name); i < SIZE_LNAME; i++)
 record.last_name[i] = ' ';
 for(i = strlen(record.first_name); i < SIZE_FNAME; i++)
 record.first_name[i] = ' ';
 for(i = strlen(record.comments);i < SIZE_COMMENTS; i++)
 record.comments[i] = ' ';
 }
 /* This subroutine is the fatal error handling routine. */
 static void error_exit (char *operation) 5
 {
 printf("RMSEXP - file %s failed (%s)\n",
 operation, filename);
 exit(rms_status);
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p133.decw$book (2 of 2)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Example 7-6: Utility Function: Adding Records
 /* This segment of RMSEXP.C contains the function that *
 * adds a record to the file. */
 static void add_employee(void)
 {
 1 do
 {
 printf("(ADD) Enter Social Security Number ");
 gets(response);
 }
 while(strlen(response) == 0);
 strncpy(record.ssn,response,SIZE_SSN);
 do
 {
 printf("\n(ADD) Enter Last Name ");
 gets(response);
 }
 while(strlen(response) == 0);
 strncpy(record.last_name,response,SIZE_LNAME);
 do
 {
 printf("\n(ADD) Enter First Name ");
 gets(response);
 }
 while(strlen(response) == 0);
 strncpy(record.first_name,response,SIZE_FNAME);
 do
 {
 printf("n\\(ADD) Enter Comments ");
 gets(response);
 }
 while(strlen(response) == 0);
 strncpy(record.comments,response,SIZE_COMMENTS);
 2 pad_record();
 3 rab.rab$b_rac = RAB$C_KEY;
 rab.rab$l_rbf = (char *) &record;
 rab.rab$w_rsz = RECORD_SIZE;
 4 sys$put(&rab);
 rms_status = rab.rab$w_sts;
 5 if (rms_status != RMS$SU_SUC && rms_status !=

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p134.decw$book (1 of 2)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

 RMS$_DUP)
 error_exit("$PUT");
 else
 if (rms_status == RMS$SU_SUC)
 printf("\n[Record added successfully.]\n");
 else
 printf("\nRMSEXP - Existing employee with same SSN, not added.\n");
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p134.decw$book (2 of 2)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Example 7-7: Utility Function: Deleting Records
 /* This segment of RMSEXP.C contains the function that *
 * deletes a record from the file. */
 static void delete_employee(void)
 {
 int i;
 1 do
 {
 printf("\n(DELETE) Enter Social Security Number ");
 gets(response);
 i = strlen(response);
 }
 while(i == 0);
 2 while(i < SIZE_SSN)
 response[i++] = ' ';
 3 rab.rab$b_krf = 0;
 rab.rab$l_kbf = response;
 rab.rab$b_ksz = SIZE_SSN;
 rab.rab$b_rac = RAB$C_KEY;
 4 sys$find(&rab);
 rms_status = rab.rab$w_sts;
 5 if (rms_status != RMS$SU_SUC && rms_status != RMS$_RNF)
 error_exit("$FIND");
 else
 if (rms_status == RMS$_RNF)
 printf("\nRMSEXP - specified employee does not exist.\n");
 else
 {
 6 sys$delete(&rab);
 rms_status = rab.rab$w_sts;
 if (rms_status != RMS$SU_SUC)
 error_exit("$DELETE");
 printf("\n");
 }
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p135.decw$book1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Example 7-8: Utility Function: Typing the File
 /* This segment of RMSEXP.C contains the function that *
 * displays a single record at the terminal. */
 void type_employees(void)
 {
 1 int number_employees;
 2 rab.rab$b_krf = 1;
 3 sys$rewind(&rab);
 rms_status = rab.rab$w_sts;
 if (rms_status != RMS$SU_SUC)
 error_exit("$REWIND");
 4 printf("\n\nEmployees (Sorted by Last Name)\n\n");
 printf("Last Name First Name SSN \
 Comments\n");
 printf("--------- ---------- ---------\
 --------\n\n");
 5 rab.rab$b_rac = RAB$C_SEQ;
 rab.rab$l_ubf = (char *) &record;
 rab.rab$w_usz = RECORD_SIZE;
 6 for(number_employees = 0; ; number_employees++)
 {
 sys$get(&rab);
 rms_status = rab.rab$w_sts;
 if (rms_status != RMS$SU_SUC && rms_status != RMS$_EOF)
 error_exit("$GET");
 else
 if (rms_status == RMS$_EOF)
 break;
 printf("%.*s%.*s%.*s%.*s\n",
 SIZE_LNAME, record.last_name,
 SIZE_FNAME, record.first_name,
 SIZE_SSN, record.ssn,
 SIZE_COMMENTS, record.comments);
 }
 7 if (number_employees)
 printf("\nTotal number of employees = %d.\n", number_employees);
 else
 printf("[Data file is empty.]\n");
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p136.decw$book1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Example 7-9: Utility Function: Printing the File
 /* This segment of RMSEXP.C contains the function that *
 * outputs the file to a list file. */
 static void list_employees(void)
 {
 int number_employees;
 FILE *fp;
 1 fp = fopen("personnel.lis", "w");
 if (fp == NULL)
 {
 perror("RMSEXP - failed opening listing file");
 exit(EXIT_FAILURE);
 }
 2 rab.rab$b_krf = 0;
 3 sys$rewind(&rab);
 rms_status = rab.rab$w_sts;
 if (rms_status != RMS$SU_SUC)
 error_exit("$REWIND");
 4 fprintf(fp,"\n\nEmployees (Sorted by SSN)\n\n");
 fprintf(fp,"Last Name First Name SSN \
 Comments\n");
 fprintf(fp,"--------- ---------- ---------\
 --------\n\n");
 5 rab.rab$b_rac = RAB$C_SEQ;
 rab.rab$l_ubf = (char *)&record;
 rab.rab$w_usz = RECORD_SIZE;
 6 for(number_employees = 0; ; number_employees++)
 {
 sys$get(&rab);
 rms_status = rab.rab$w_sts;
 if (rms_status != RMS$SU_SUC &&
 rms_status != RMS$_EOF)
 error_exit("$GET");
 else
 if (rms_status == RMS$_EOF)
 break;
 fprintf(fp, "%.*s%.*s%.*s%.*s",
 SIZE_LNAME,record.last_name,
 SIZE_FNAME,record.first_name,
 SIZE_SSN,record.ssn,

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p137.decw$book (1 of 2)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

 SIZE_COMMENTS,record.comments);
 }
 7 if (number_employees)
 fprintf(fp, "\nTotal number of employees = %d.\n", number_employees);
 else
 fprintf(fp,"\n[Data file is empty.]\n");
 fclose(fp);
 printf("[Listing file \"personnel.lis\" created.]\n");
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p137.decw$book (2 of 2)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Example 7-10: Utility Function: Updating the File
 /* This segment of RMSEXP.C contains the function that *
 * updates the file. */
 static void update_employee(void)
 {
 int i;
 1 do
 {
 printf("(UPDATE) Enter Social Security Number ");
 gets(response);
 i = strlen(response);
 }
 while(i == 0);
 2 while(i < SIZE_SSN)
 response[i++] = ' ';
 3 rab.rab$b_krf = 0;
 rab.rab$l_kbf = &response;
 rab.rab$b_ksz = SIZE_SSN;
 rab.rab$b_rac = RAB$C_KEY;
 rab.rab$l_ubf = (char *) &record;
 rab.rab$w_usz = RECORD_SIZE;
 4 sys$get(&rab);
 rms_status = rab.rab$w_sts;
 if (rms_status != RMS$SU_SUC && rms_status != RMS$_RNF)
 error_exit("$GET");
 else
 if (rms_status == RMS$_RNF)
 printf("\nRMSEXP - specified employee does not exist.\n");
 5 else
 {
 printf("\nEnter the new data or Return to leave \
 data unmodified.\n\n");
 printf("\nLast Name:");
 gets(response);
 if (strlen(response))
 strncpy(record.last_name, response,
 SIZE_LNAME);
 printf("First Name:");
 gets(response);
 if (strlen(response))

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p138.decw$book (1 of 2)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

 strncpy(record.first_name, response,
 SIZE_FNAME);
 printf("Comments:");
 gets(response);
 if (strlen(response))
 strncpy(record.comments, response, SIZE_COMMENTS);
 6 pad_record();
 7 sys$update(&rab);
 rms_status = rab.rab$w_sts;
 if (rms_status != RMS$SU_SUC)
 error_exit("$UPDATE");
 printf("\n[Record has been successfully updated.]\n");
 }
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p138.decw$book (2 of 2)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Example 7-11: Reserving a LUNfor Use by RMS
 const short $PRLUN[2] = {1,0200}; /* reserve LUN 7 */ 1

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p139.decw$book1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Example 8-1: External Data Declarations and Definitions
 /* This segment of CRCOPB.C contains external data definitions. */
 #pragma list title "CRCOPB" /* Card reader copy routine */
 #include <fcs.h> 1
 #include <stdio.h>
 #include <stdlib.h>
 const short $PRLUN[2] = {1,030}; 2 /* reserve LUNs 3 and 4 */
 #define INLUN 3
 #define OUTLUN 4
 FCS$FSRSZ$(2,1024) 3
 FCS$FDBDF$(static,fdbin) 4
 FCS$FDBDF$(static,fdbout)

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p151.decw$book1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Example 8-2: Main Program Section
 /* This segment of CRCOPB.C contains the main function and. *
 * controls the flow of the program */
 int main () 1
 {
 short r1;
 char *r2;
 char recbuf[80];
 struct desc { 2
 short length;
 char *pstring;
 };
 static struct desc ofdspt[3] = 3
 { 0, 0, /* Device descriptor */
 0, 0, /* Directory descriptor */
 0, 0}; /* Filename descriptor */
 static struct desc ifdspt[3] = 4
 { 0, 0, /* Device descriptor */
 0, 0, /* Directory descriptor */
 0, 0}; /* Filename descriptor */
 static char onam[] = "OUTPUT.DAT"; 5
 static char inam[] = "INPUT.DAT";
 FCS$FINIT$; 6 /* Init file storage region */
 ifdspt[2].pstring = inam; 7
 ifdspt[2].length = sizeof inam;
 FCS$OPEN$R (&fdbin, INLUN, (short *) ifdspt, (short) -1, recbuf,
 sizeof recbuf, (void (*)()) -1); 8
 if (fdbin.fcsferr == FCSISSUC)
 {
 9 fdbout.fcsfrtyp = FCSRVAR; /* Runtime initialization */
 fdbout.fcsfratt = FCSFDCR;
 ofdspt[2].pstring = onam;
 ofdspt[2].length = sizeof onam;
 10 FCS$OPEN$W (&fdbout, OUTLUN, (short *) ofdspt, (short) -1, recbuf,
 sizeof recbuf, (void (*)()) -1);
 if (fdbout.fcsferr == FCSISSUC)
 {
 for (;;)
 { /* Note - URBD is all set up */
 11 FCSGET(&fdbin, (char *) -1, -1, (void (*)()) -1);

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p152.decw$book (1 of 2)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

 if (fdbin.fcsferr != FCSISSUC)
 break;
 r1 = fdbin.fcsfnrbd; /* r1 = size of record read */
 12 r2 = recbuf + r1; /* r2 = address of last byte + 1 */
 while (*(--r2) == ' ') /* Strip trailing blanks */
 if (!(--r1))
 break;
 /* At this point, r1 contains the stripped size of the
 * record to be written. If the card is blank,
 * a zero length record is written.
 */
 13 FCSPUT(&fdbout, (char *) -1, r1, (void (*)()) -1);
 if (fdbout.fcsferr != FCSISSUC)
 break;
 }
 14 if (fdbout.fcsferr != FCSISSUC)
 printf ("FCS error %d occurred during write\n", fdbout.fcsferr);
 15 else if (fdbin.fcsferr != FCSIEEOF)
 printf ("FCS error %d occurred during read\n", fdbin.fcsferr);
 16 FCS$CLOSE$(&fdbout, (void (*)()) -1);
 if (fdbout.fcsferr != FCSISSUC)
 printf ("FCS error %d occurred during close of OUTPUT.DAT\n",
 fdbout.fcsferr);
 }
 else
 printf ("FCS error %d occurred during open of OUTPUT.DAT\n",
 fdbout.fcsferr);
 FCS$CLOSE$(&fdbin, (void (*)()) -1);
 if (fdbin.fcsferr != FCSISSUC)
 printf ("FCS error %d occurred during close of INPUT.DAT\n",
 fdbin.fcsferr);
 }
 else
 printf ("FCS error %d occurred during open of INPUT.DAT\n",
 fdbin.fcsferr);
 exit(EXIT_SUCCESS);
 }

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p152.decw$book (2 of 2)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Figure 8-1: PDP-11 C Integer Storage

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p143.decw$book1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Figure 10-1: Stack Usage Using C Linkage

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p165.decw$book1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Figure 10-2: Register 5 Usage Using FORTRAN Linkage

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p167.decw$book1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 1-1: Standard Library Header Files

 Header File Purpose

 assert.h Defines the assert macro that is used for diagnostics.
 ctype.h Defines the functions used for testing and mapping characters.
 errno.h Defines the error-reporting macros.
 float.h Defines the macros that expand to various limits and parameters.
 limits.h Defines the macros that expand to various limits and parameters.
 locale.h Defines the functions, macros, and one type used for setting locale-dependent formatting
 and collating items.
 math.h Declares the functions and macros used for mathematical computations.
 setjmp.h Defines the macro and declares the function for bypassing the normal function call
 mechanism.
 signal.h Declares a type and the functions and defines the macros that report conditions during
 program execution.
 stdarg.h Declares a type and defines the macros used by a called function while going through a
 list of arguments whose numbers and types are not known.
 stddef.h Declares the types and defines macros for common definitions.
 stdio.h Declares the types, macros, and functions for standard input and output.
 stdlib.h Declares the types and functions used by the general utility functions.
 string.h Declares the type and the functions and defines the macro used for manipulating arrays
 of characters.
 time.h Defines the macros and declares the functions used for time manipulation.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p14.decw$book1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 1-2: Sizes of Integral Types

 Macro Size Purpose

 CHAR_BIT 8 Number of bits for smallest object that is not a bit-field.
 CHAR_MAX +127 Maximum value of an object of type char.
 CHAR_MIN -128 Minimum value of an object of type char.
 INT_MAX +32767 Maximum value of an object of type int.
 INT_MIN -32768 Minimum value of an object of type int.
 LONG_MAX +2147483647 Maximum value of an object of type long int.
 LONG_MIN -2147483648 Minimum value of an object of type long int.
 MB_LEN_MAX 1 Maximum number of bytes in a multibyte character.
 SCHAR_MAX +127 Maximum value of an object of type signed char.
 SCHAR_MIN -128 Minimum value of an object of type signed char.
 SHRT_MAX +32767 Maximum value of an object of type short int.
 SHRT_MIN -32768 Minimum value of an object of type short int.
 UCHAR_MAX 255U Maximum value of an object of type unsigned char.
 UINT_MAX 65535U Maximum value of an object of type unsigned int.
 ULONG_MAX 4294967295U Maximum value of an object of type unsigned long int.
 USHRT_MAX 65535U Maximum value of an object of type unsigned short int.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p19.decw$book1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 1-3: Characteristics of Floating Types

 Macro Characteristic Purpose

 DBL_DIG
 FLT_DIG
 LDBL_DIG

 16
 6
 16

 Number of decimal digits.
 DBL_EPSILON
 FLT_EPSILON
 LDBL_EPSILON

 1.39E-17
 6E-8
 1.39E-17

 The difference between 1.0 and the least value greater than 1.0
 that is representable in the given floating-point type. y

 DBL_MANT_DIG
 FLT_MANT_DIG
 LDBL_MANT_DIG

 56
 24
 56

 Number of decimal digits.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p20.decw$book (1 of 4)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

 DBL_MAX
 FLT_MAX
 LDBL_MAX

 1.7E38
 1.7E38
 1.7E38

 The maximum representable finite floating-point number. y

 DBL_MAX_EXP
 FLT_MAX_EXP
 LDBL_MAX_EXP

 127
 127
 127

 The maximum integer such that FLT_RADIX raised to that
 power minus 1 is a representable finite floating-point number.

 DBL_MAX_10_EXP
 FLT_MAX_10_EXP
 LDBL_MAX_10_EXP

 38
 38
 38

 The maximum integer such that 10 raised to that power is in the
 range of representable finite floating-point numbers.
 DBL_MIN
 FLT_MIN
 LDBL_MIN

 2.94E-39
 2.94E-39

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p20.decw$book (2 of 4)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

 2.94E-39

 The minimum normalized positive floating-point number. y
 DBL_MIN_EXP
 FLT_MIN_EXP
 LDBL_MIN_EXP

 -127
 -127
 -127

 The minimum negative integer such that FLT_RADIX raised
 to that power minus 1 is a normalized floating-point number.

 y Rounded to three significant digits.

 Macro Characteristic Purpose

 DBL_MIN_10_EXP
 FLT_MIN_10_EXP
 LDBL_MIN_10_EXP

 -38
 -38
 -38

 The minimum negative integer such that 10 raised to that power
 is in the range of normalized floating-point numbers.

 FLT_RADIX
 FLT_ROUNDS

 2
 -1

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p20.decw$book (3 of 4)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

 Radix of exponent.
 The rounding mode of floating-point addition is indeterminable.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p20.decw$book (4 of 4)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 1-4: Signal-Handling Conditions

 Condition Description

 SIGABRT Abnormal termination, such as is initiated by the abort function.
 SIGFPE An erroneous arithmetic operation, such as zero divide or an operation resulting in
 overflow.
 SIGILL Detection of an invalid function image, such as an illegal instruction.
 SIGINT Receipt of an interactive attention signal.
 SIGSEGV An invalid access to storage.
 SIGTERM A termination request sent to the program.

 Action Description

 SIG_DFL Default action to be taken.
 SIG_IGN Ignore the signal.

 Return Value Description

 SIG_ERR Indicates signal value cannot be honored.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p25.decw$book1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 1-5: Variable Argument Macros

 Macro Description

 va_arg Returns the next item in the argument list.
 va_end Finishes a function call using a variable argument list.
 va_start Initializes a variable to the beginning of the argument list.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p27.decw$book1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 1-6: Implementation-Defined Types and Macros

 Type or Macro Definition

 NULL ((void
 *

)0)
 offsetof(type, member) ((size_t) (& (((type
 *

) NULL)->member)))
 ptrdiff_t Type int
 size_t Type unsigned int
 wchar_t Type unsigned char

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p29.decw$book1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 1-7: String Functions

 Copy Description

 memcpy , memmove Copies a specified number of bytes from one object to another.
 strcpy,strncpy Copies all or part of one string into another.

 Comparison Description

 memcmp Compares two objects, byte by byte.
 strcmp , strncmp Compares two character strings and returns a negative, zero, or positive
 integer indicating that the values of the individual characters in the first
 string are less than, equal to, or greater than the values in the second
 string.
 strcoll Compares two character strings using the collating sequence of the
 current setting of the LC_COLLATE portion of the locale.
 strxfrm Transforms one string into another string according to the collating
 sequence established by the setlocale function.

 Search Description

 memchr Locates the first occurrence of the specified byte within the initial length of
 the object to be searched.
 strchr , strrchr Returns, respectively, the address of the first or last occurrence of a given
 character in a null-terminated string.
 strcspn Searches a string for a character in a specified set of characters.
 strpbrk Searches a string for the occurrence of one of a specified set of characters.
 strspn Searches a string for the occurrence of a character that is not in a speci-
 fied set of characters.
 strstr Locates the first occurrence of a sequence of characters in one string that
 matches the sequence of characters in another string.
 strtok Locates text tokens in a given string.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p33.decw$book (1 of 2)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

 Concatenation Description

 strcat , strncat Concatenates one string to the end of another string.

 Miscellaneous Description

 memset Sets a specified number of bytes in a given object to a given value.
 strerror Maps an error number to an error message string.
 strlen Returns the length of a string. The returned length does not include the
 terminating NUL character (\0).

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p33.decw$book (2 of 2)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 1-8: Date and Time Functions

 Function Description

 asctime Converts a broken-down time into a 26-character string.
 clock Determines the CPU time used since program execution.
 ctime Converts a time in seconds to an ASCII string.
 difftime Computes the difference in seconds between two specified times.
 gmtime Converts a given calendar time into time expressed as Coordinated
 Universal Time (UTC).
 localtime Converts a time expressed as numbers of seconds into hours, minutes,
 and seconds.
 mktime Converts time into a calendar time value.
 strftime Gives the time for the current locale.
 time Returns the elapsed time since 00:00:00, January 1, 1970, in seconds.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p35.decw$book1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 2-1: I/O Macros and Functions

 Macro or Function Purpose

 Macros

 BUFSIZ Size of the buffer used by setbuf function.
 EOF A value indicating end-of-file.
 _IOFBF, _IOLBF, _IONBF Buffer mode used as third argument to setvbuf function.
 L_tmpnam Size of an array large enough to hold a temporary file-name string
 generated by the tmpnam function.
 FOPEN_MAX Maximum number of files that can be opened simultaneously.
 FILENAME_MAX Maximum length for a file name.
 SEEK_SET, SEEK_CUR,
 SEEK_END

 Third argument to the fseek function.
 TMP_MAX Minimum number of unique file names generated by the tmpnam
 function.

 Standard I/O-Opening and Closing Files

 fclose Closes a file by flushing any buffers associated with the file con-
 trol block, and freeing the file control block and buffers previously
 associated with the file pointer.
 fopen Opens a file and returns a pointer to the file structure.
 freopen Substitutes the file, named by a file specification, for the open file
 addressed by a file pointer.

 Standard I/O-Reading from Files

 fgetc Returns a character from a specified file.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p37.decw$book (1 of 4)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

 fgets Reads a line from a specified file and stores the characters in a string
 pointed to by an argument.
 fread Reads a specified number of items from a file.
 getc Returns characters from a specified file.
 sscanf Performs formatted input from a string.
 ungetc Pushes back a character into an input stream and leaves the stream
 positioned before the character.

 Macro or Function Purpose

 Standard I/O-Writing to Files

 fprintf Performs formatted output to a specified file.
 fputc Writes a character to a specified file.
 fputs Writes a character string to a file without copying the string's NUL
 terminator.
 fwrite Writes a specified number of items to a file.
 putc Writes a character to a specified file.
 sprintf Performs formatted output to a string.

 Standard I/O-Maneuvering in Files

 fflush Writes any buffered information to the specified file.
 fgetpos Finds the current file position indicator for a stream.
 fseek Positions the file to the specified offset in the file.
 fsetpos Sets the current file position indicator of a stream.
 ftell Returns the current offset to the specified stream file.
 rewind Sets the current file position to the beginning of the file.

 Standard I/O-Formatted Output

 vfprintf Prints formatted output to a file based on an argument list.
 vprintf Prints formatted output to stdout based on an argument list.
 vsprintf Prints formatted output to a string based on an argument list.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p37.decw$book (2 of 4)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

 Standard I/O-Additional Standard I/O Functions and Macros

 clearerr Resets the error and end-of-file indicators for a file.
 feof Tests a file to see if the end-of-file has been reached.
 ferror Returns a nonzero integer if an error has occurred while reading or
 writing a file.
 perror Prints a line to the standard error stream which consists of a user-
 passed string, colon, or space and the error message text that corre-
 sponds to the current value of the errno expression.
 remove Causes a file to be deleted.

 Macro or Function Purpose

 Standard I/O-Additional Standard I/O Functions and Macros

 rename Gives a new name to an existing file.
 setbuf Associates a buffer with an input or output file.
 setvbuf Associates a buffer with an input or output file.
 tmpfile Creates a temporary file that is opened for update.
 tmpnam Creates a unique character string that can be used in place of the file
 name argument in other function calls.

 Terminal I/O-Reading from Files

 getchar Reads a single character from the standard input (stdin).
 gets Reads a line from the standard input (stdin).
 scanf Performs formatted input from the standard input (stdin).

 Terminal I/O-Writing to Files

 printf Performs formatted output from the standard output (stdout) of a
 stream.
 putchar Writes a single character to the standard output (stdout) and returns
 the character.
 puts Writes a character string to the standard output (stdout) followed by a

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p37.decw$book (3 of 4)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

 newline.

 Accessing File Information

 _ _fbuf Returns current buffer length associated with a file pointer.
 _ _fger Returns low-level error code that is associated with a previously called
 file operation.
 _ _fgnm , fgetname Returns a pointer to a file specification associated with a file variable.
 _ _flun Returns the logical unit number associated with a file pointer.
 _ _frec Returns the current record length associated with a file pointer.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p37.decw$book (4 of 4)1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 2-2: File Sizes

 External
 Record Size

 1

 New File,
 Read Only

 Existing File,
 Write Only

 <511 bytes Actual record size 512 bytes
 >=511 bytes Actual record size Actual record size
 Unknown 512 bytes 512 bytes

 1
 Defined by maximum record size and largest record length.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p43.decw$book1/25/06 4:12 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 2-3: RSX Attributes and Behavior

 Attribute Behavior

 Explicit carriage control Input: Check for the C
 R

 L
 F

 sequence. If found, remove from input string
 and replace with newline character.
 Output: Replace newline character with C
 R

 L
 F

 before output is performed.
 FORTRAN input If the control character is NUL, the record is not modified further.
 If the control character is 0, two newline characters are placed at the
 beginning of the record and a C
 R

 is placed after it.
 If the control character is 1, a F
 F

 is placed before the record and a C
 R

 is
 placed after it.
 If the control character is +, a C
 R

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p45.decw$book (1 of 3)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

 is placed after the record.
 If the control character is $, a newline character is placed at the start of
 the record.
 For all other characters, a newline character is placed at the front of the
 record, and a C
 R

 is placed after the record.
 FORTRAN output Inverse to input mapping takes place.
 Variable record format with
 fixed control area

 Concatenate the fixed area to the front of the record. This is not supported
 by RMS or FCS.
 Stream Input: If the record does not end in L
 F

 , F
 F

 , or VT , a newline character is
 appended to the record.
 Output: Change the newline character to L
 F

 .
 Mapped to a device (must be
 record-oriented device)

 Input: Append the terminator to the input data. If the terminator was a
 C
 R

 or Ctrl/Z, a newline character is appended. Termination characters
 are device-dependent.
 Output: Change newline characters to a C
 R

 L
 F

 sequence.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p45.decw$book (2 of 3)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p45.decw$book (3 of 3)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 2-4: Conversion Specifiers for Formatted Input

 Character Meaning

 d Matches an optionally signed decimal integer. The corresponding argument is a pointer to
 an int .
 i Matches an optionally signed integer whose format is that of an integer constant. The
 corresponding argument is a pointer to an int .
 o Matches an optionally signed octal integer. The corresponding argument points to an
 unsigned int .
 u Matches an optionally signed decimal integer. The corresponding argument points to an
 unsigned int .
 x, X Matches an optionally signed hexadecimal integer. The corresponding argument points to
 an unsigned int .
 e, E, f, g, G Matches an optionally signed floating-point number. The corresponding argument points to
 a float .
 s Matches a sequence of non-white space characters. The corresponding argument points to
 an array of type char large enough to hold the input and a terminating NUL character.
 [] Matches a sequence of characters (scanlist) from a set of characters (scanset). The corre-
 sponding argument points to the initial char of an array large enough to hold the sequence
 of characters. The characters inside the brackets (scanlist) make up the scanset. However,
 if the left bracket is followed by a circumflex (^), then the scanset is all the characters that
 are not in the scanlist.
 c Matches a sequence of characters specified by the field width. If a field width is not given,
 then the width is 1. The corresponding argument points to an array of type char large
 enough to hold the input and a terminating NUL character.
 p Matches a sequence of characters representing a pointer. The corresponding argument
 points to a pointer to void .
 n No conversion. The corresponding argument is a pointer to an int into which is put the
 number of characters read from the input stream.
 % Matches a percent sign.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p56.decw$book1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 2-5: Optional Conversion Modifiers

 Modifier Meaning

 h Short int for d, i, n.
 Unsigned short int for o, u, x.
 l Long int for d, i, n.
 Unsigned long int for o, u, x.
 Double for e, f, g.
 L Long double for e, f, g.
 *

 Suppress assignment.
 number A number used as the maximum field width.
 [. . .] Expects a string that is not delimited by white-space characters. The brackets enclose a
 set of characters (not a string). Ordinarily, this set (or ``character class'') is made up of
 the characters that comprise the string field. Any character not in the set will terminate
 the field. However, if the first (leftmost) character is a circumflex (^), then the set shows
 the characters that terminate the field. The corresponding argument must point to an
 array of characters.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p57.decw$book1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 2-6: Conversion Specifiers for Formatted Output

 Character Meaning

 d, i Converts to signed decimal in the format [-]dddd . The precision indicates the minimum
 number of digits to appear, with the default being 1 digit. Converting a zero value with a
 precision zero yields no characters.
 o Converts to unsigned octal in the format dddd .
 u Converts to unsigned decimal in the format dddd (giving a number in the range 0 to 65,535).
 x, X Converts to unsigned hexadecimal in the format dddd (without a leading 0x). An uppercase
 X causes the hexadecimal digits A-F to be printed in uppercase. A lowercase x causes those
 digits to be printed in lowercase.
 f Converts float or double to the format [-]ddd.ddd . The number of digits is specified by the
 precision (the default is 6). The precision does not determine the number of significant digits
 printed. If the precision is 0 and the # flag is not given, no decimal point characters appear.
 e, E Converts float or double to the format [-]d.ddde ¦ dd . If no precision is given, the default
 is 6. If the precision is 0 and the # flag is not given, no decimal point characters appear. An
 E is printed if the conversion character is an uppercase E. An e is printed if the conversion
 character is a lowercase e.
 g, G Converts float or double to f or e format. The format depends on the value that is converted.
 If the exponent from the conversion is less than -4 or greater than or equal to the precision,
 then the e format is used. The fractional portion of the result has trailing zeros removed. A
 decimal-point does not appear if it is not followed by a digit.
 c Outputs an unsigned char .
 s Writes characters from an array of characters until a NUL character is encountered or
 until the number of characters indicated by the precision specification is exhausted. If the
 precision specification is 0 or omitted, all characters up to a NUL are output.
 p The argument is a pointer to void. The pointer is printed as an octal number of 7 digits,
 including a leading 0 character.
 n The argument points to an int where the number of output characters is placed. No conver-
 sion is performed.
 % Writes out the percent symbol. No conversion is performed.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p59.decw$book1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 2-7: Optional Conversion Modifiers for Formatted Output

 Modifier Meaning

 h Indicates that a following d, i, o, u, x, or X specification corresponds to a short int or
 unsigned short int as appropriate.
 l Indicates that a following d, i, o, x, or X specification corresponds to a long int or
 unsigned long int as appropriate. In PDP-11 C, all int values are short by default.
 L Indicates that a following e, E, g, or G specification corresponds to a long double .
 *

 (asterisk) Is used to indicate the field width specification, the precision specification, or both. The
 field width or precision is given by an int argument. The arguments must appear in the
 following order preceding the argument to be converted: field width, precision, or both.
 A negative field width argument is interpreted as a ``-'' flag preceded by a positive field
 width. A negative precision argument is interpreted as no argument given.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p60.decw$book1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 2-8: Optional Conversion Flag Characters

 Flag Meaning

 width Use this integer constant as the minimum field width. If the converted output source
 is wider than this minimum, write it out anyway. If the converted output source is
 narrower than the minimum width, pad it to make up the field width. Pad with spaces
 or with 0s if the field width is specified with a leading 0; this does not mean that the
 width is an octal number. Padding is normally on the left; on the right if a minus sign
 is used.
 . (period) Separates the field width from precision.
 precision Use this integer constant to designate the maximum number of characters to print with
 an s format, or the number of fractional digits with an e or f format.
 - (hyphen) Left-justify the converted output source in its field. If no hyphen is specified, the field is
 right-justified.
 + Indicates that the number prints with a sign.
 space A space is inserted following the first character of a signed conversion if there is no sign
 or if the conversion results in no characters. If there is a space and ``+'' sign, the space
 is ignored.
 # Alternate form of conversion of the result. For o conversion, it forces the first digit of the
 result to zero. For x and X conversion, it places 0x or 0X before a nonzero result. For
 e, E, f, g, and G conversions, the result contains a decimal point even when there are
 no digits following it. Normally, the only time a decimal point appears is when a digit
 follows it. For g and G conversions, any trailing zeros are not removed.
 0 Leading 0s are used to pad the field width for d, i, o, u, x, X, e, E, f, g, and G conversions.
 Space padding is not normally performed. The 0 flag is ignored if the 0 and hyphen (-)
 appear. When a precision is given for d, i, o, u, x, and X conversions, the 0 flag is
 ignored.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p61.decw$book1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 3-1: Character- and List-Handling Functions and Macros

 Function or Macro Purpose

 Character-Testing

 isalnum Returns a nonzero integer if its argument is an alphanumeric character.
 isalpha Returns a nonzero integer if its argument is an alphabetic character. In PDP-11
 C, isalpha is true only for characters having isupper or islower true.
 isascii

 1
 Returns a nonzero integer if its argument is any ASCII character in the ASCII
 character set. This function is a Digital extension added for VAX C compatibility.
 _ _ischar Returns a nonzero integer if its argument is contained in the current character
 set.
 iscntrl Returns a nonzero integer if its argument is a delete character or any nonprinting
 character for each of the character sets supported by PDP-11 C.
 isdigit Returns a nonzero integer if its argument is a decimal digit character (0-9).
 isgraph Returns a nonzero integer if its argument is any printing character with the
 exception of the space character.
 islower Returns a nonzero integer if its argument is a lowercase alphabetic character.
 isprint Returns a nonzero integer if its argument is a printing character.
 ispunct Returns a nonzero integer if its argument is a punctuation character.
 isspace Returns a nonzero integer if its argument is white space; that is, if it is a space,
 tab (horizontal or vertical), carriage-return, form-feed, or newline character.
 isupper Returns a nonzero integer if its argument is an uppercase alphabetic character.
 isxdigit Returns a nonzero integer if its argument is a hexadecimal digit.

 Character Case-Mapping

 toascii

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p69.decw$book (1 of 2)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

 1
 Converts an 8-bit ASCII character to a 7-bit ASCII character. This function is a
 Digital extension provided for VAX C compatibility.
 tolower Converts uppercase characters to lowercase characters.
 _tolower

 1
 Converts uppercase characters to lowercase characters for VAX C compatibility.
 toupper Converts lowercase characters to uppercase characters.
 _toupper

 1
 Converts lowercase characters to uppercase characters for VAX C compatibility.

 1
 Not defined when compiling /STANDARD=ANSI.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p69.decw$book (2 of 2)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 3-2: Character Values

 Function Locale Character Values

 isalnum C 48-57, 65-90, 97-122
 English 48-57, 65-90, 97-122
 Danish 48-57, 65-90, 97-122, 197-198, 201, 216, 220, 229-230, 233, 248,
 252
 Digital Multinational 48-57, 65-90, 97-122, 192-207, 209-221, 224-239, 241-253
 Finnish 48-57, 65-90, 97-122, 196-197, 214, 220, 228-229, 233, 246, 252
 French 48-57, 65-90, 97-122, 192, 194, 198-203, 206-207, 212, 215, 217,
 219-220, 224, 226, 230-235, 238-239, 244, 247, 249, 251-252
 German 48-57, 65-90, 97-122, 196, 214-215, 220, 228, 246-247, 252
 Italian 48-57, 65-90, 97-122 192, 199-201, 204, 210, 217, 224, 231-233,
 236, 242, 249
 Norwegian 48-57, 65-90, 97-122, 197-198, 216, 229-230, 248
 Portuguese 48-57, 65-74, 76-86, 88, 90, 97-106, 108-118, 120, 122, 192-195,
 199, 201-202, 205, 211, 213, 218, 224-227, 231, 233-234, 237,
 243-245, 250
 Spanish 48-57, 65-90, 97-122, 193, 201, 205, 209, 211, 218, 220, 225, 233,
 237, 241, 243, 250, 252
 Swedish 48-57, 65-90, 97-122, 196-197, 214, 228-229, 246
 isalpha C 65-90, 97-122
 English 65-90, 97-122
 Danish 65-90, 97-122, 197-198, 201, 216, 220, 229-230, 233, 248, 252
 Digital Multinational 65-90, 97-122, 192-207, 209-221, 224-239, 241-253
 Finnish 65-90, 97-122, 196-197, 214, 220, 228-229, 233, 246, 252
 French 65-90, 97-122, 192, 194, 198-203, 206-207, 212, 215, 217,
 219-220, 224, 226, 230-235, 238-239, 244, 247, 249, 251-252
 German 65-90, 97-122, 196, 214-215, 220, 228, 246-247, 252
 Italian 65-90, 97-122, 192, 199-201, 204, 210, 217, 224, 231-233, 236,
 242, 249
 Norwegian 65-90, 97-122, 197-198, 216, 229-230, 248

 Function Locale Character Values

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p71.decw$book (1 of 5)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

 Portuguese 65-74, 76-86, 88, 90, 97-106, 108-118, 120, 122, 192-195,
 199, 201-202, 205, 211, 213, 218, 224-227, 231, 233-234, 237,
 243-245, 250
 Spanish 65-90, 97-122, 193, 201, 205, 209, 211, 218, 220, 225, 233, 237,
 241, 243, 250, 252
 Swedish 65-90, 97-122, 196-197, 214, 228-229, 246
 isascii For all locales 0-127
 _ _ischar C 0-127
 English 0-127
 Danish 0-127
 Digital Multinational 0-127, 132-151, 155-159, 161-163, 165, 167-171, 176-179,
 181-183, 185-189, 191-207, 209-221, 223-239, 241-253
 Finnish 0-127
 French 0-127
 German 0-127
 Italian 0-127
 Norwegian 0-127
 Portuguese 0-127
 Spanish 0-127
 Swedish 0-127
 iscntrl C 0-31, 127
 English 0-31, 127
 Danish 0-31, 127, 132-151, 155-159
 Digital Multinational 0-31, 127, 132-151, 155-159
 Finnish 0-31, 127, 132-151, 155-159
 French 0-31, 127, 132-151, 155-159
 German 0-31, 127, 132-151, 155-159
 Italian 0-31, 127, 132-151, 155-159

 Function Locale Character Values

 Norwegian 0-31, 127, 132-151, 155-159
 Portuguese 0-31, 127, 132-151, 155-159
 Spanish 0-31, 127, 132-151, 155-159
 Swedish 0-31, 127, 132-151, 155-159
 isdigit C 48-57
 English 48-57
 Danish 48-57
 Digital Multinational 48-57

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p71.decw$book (2 of 5)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

 Finnish 48-57
 French 48-57
 German 48-57
 Italian 48-57
 Norwegian 48-57
 Portuguese 48-57
 Spanish 48-57
 Swedish 48-57
 isgraph C 33-126
 English 33-126
 Danish 33-126, 161-163, 165, 167-171, 176-179, 181-183, 185-187,
 189-207, 209-221, 223-239, 241-253
 Digital Multinational 33-126, 161-163, 165, 167-171, 176-179, 181-183, 185-187,
 189-207, 209-221, 223-239, 241-253
 Finnish 33-126, 161-163, 165, 167-171, 176-179, 181-183, 185-187,
 189-207, 209-221, 223-239, 241-253
 French 33-126, 161-163, 165, 167-171, 176-179, 181-183, 185-187,
 189-207, 209-221, 223-239, 241-253
 German 33-126, 161-163, 165, 167-171, 176-179, 181-183, 185-187,
 189-207, 209-221, 223-239, 241-253

 Function Locale Character Values

 Italian 33-126, 161-163, 165, 167-171, 176-179, 181-183, 185-187,
 189-207, 209-221, 223-239, 241-253
 Norwegian 33-126, 161-163, 165, 167-171, 176-179, 181-183, 185-187,
 189-207, 209-221, 223-239, 241-253
 Portuguese 33-126, 161-163, 165, 167-171, 176-179, 181-183, 185-187,
 189-207, 209-221, 223-239, 241-253
 Spanish 33-126, 161-163, 165, 167-171, 176-179, 181-183, 185-187,
 189-207, 209-221, 223-239, 241-253
 Swedish 33-126, 161-163, 165, 167-171, 176-179, 181-183, 185-187,
 189-207, 209-221, 223-239, 241-253
 islower C 97-122
 English 97-122
 Danish 97-122, 229-230, 233, 248, 252
 Digital Multinational 97-122, 224-239, 241-253
 Finnish 97-122, 228-229, 233, 246, 252
 French 97-122, 224, 226, 230-235, 238-239, 244, 247, 249, 251-252
 German 97-122, 228, 246-247, 252

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p71.decw$book (3 of 5)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

 Italian 97-122, 224, 231-233, 236, 242, 249
 Norwegian 97-122, 229-230, 248
 Portuguese 97-106, 108-118, 120, 122, 224-227, 231, 233-234, 237, 243-245,
 250
 Spanish 97-122, 225, 233, 237, 241, 243, 250, 252
 Swedish 97-122, 228-229, 246
 isprint C 33-126
 English 32-126
 Danish 33-126, 161-163, 165, 167-171, 176-179, 181-183, 185-187,
 189-207, 209-221, 223-239, 241-253
 Digital Multinational 33-126, 161-163, 165, 167-171, 176-179, 181-183, 185-187,
 189-207, 209-221, 223-239, 241-253

 Function Locale Character Values

 Finnish 33-126, 161-163, 165, 167-171, 176-179, 181-183, 185-187,
 189-207, 209-221, 223-239, 241-253
 French 33-126, 161-163, 165, 167-171, 176-179, 181-183, 185-187,
 189-207, 209-221, 223-239, 241-253
 German 33-126, 161-163, 165, 167-171, 176-179, 181-183, 185-187,
 189-207, 209-221, 223-239, 241-253
 Italian 33-126, 161-163, 165, 167-171, 176-179, 181-183, 185-187,
 189-207, 209-221, 223-239, 241-253
 Norwegian 33-126, 161-163, 165, 167-171, 176-179, 181-183, 185-187,
 189-207, 209-221, 223-239, 241-253
 Portuguese 33-126, 161-163, 165, 167-171, 176-179, 181-183, 185-187,
 189-207, 209-221, 223-239, 241-253
 Spanish 33-126, 161-163, 165, 167-171, 176-179, 181-183, 185-187,
 189-207, 209-221, 223-239, 241-253
 Swedish 33-126, 161-163, 165, 167-171, 176-179, 181-183, 185-187,
 189-207, 209-221, 223-239, 241-253
 ispunct C 33-47, 58-64, 91-96, 123-126
 English 33-47, 58-64, 91-96, 123-126
 Danish 33-34, 39-41, 44-46, 58-59, 63, 91, 93, 123, 125, 161, 183, 191
 Digital Multinational 33-34, 39-41, 44-46, 58-59, 63, 91, 93, 123, 125, 161, 183, 191
 Finnish 33-34, 39-41, 44-46, 58-59, 63, 91, 93, 123, 125, 161, 183, 191
 French 33-34, 39-41, 44-46, 58-59, 63, 91, 93, 123, 125, 161, 183, 191
 German 33-34, 39-41, 44-46, 58-59, 63, 91, 93, 123, 125, 161, 183, 191
 Italian 33-34, 39-41, 44-46, 58-59, 63, 91, 93, 123, 125, 161, 183, 191
 Norwegian 33-34, 39-41, 44-46, 58-59, 63, 91, 93, 123, 125, 161, 183, 191

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p71.decw$book (4 of 5)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

 Portuguese 33-34, 39-41, 44-46, 58-59, 63, 91, 93, 123, 125, 161, 183, 191
 Spanish 33-34, 39-41, 44-46, 58-59, 63, 91, 93, 123, 125, 161, 183, 191
 Swedish 33-34, 39-41, 44-46, 58-59, 63, 91, 93, 123, 125, 161, 183, 191
 isspace C 9-13, 32

 Function Locale Character Values

 English 9-13, 32
 Danish 9-13, 32
 Digital Multinational 9-13, 32
 Finnish 9-13, 32
 French 9-13, 32
 German 9-13, 32
 Italian 9-13, 32
 Norwegian 9-13, 32
 Portuguese 9-13, 32
 Spanish 9-13, 32
 Swedish 9-13, 32
 isupper C 65-90
 English 65-90
 Danish 65-90, 197-198, 201, 216, 220
 Digital Multinational 65-90, 192-207, 209-221
 Finnish 65-90, 196-197, 214, 220
 French 65-90, 192, 194, 198-203, 206-207, 212, 215, 217, 219-220
 German 65-90, 196, 214-215, 220
 Italian 65-90, 192, 199-201, 204, 210, 217
 Norwegian 65-90, 197-198, 216
 Portuguese 65-74, 76-86, 88, 90, 192-195, 199, 201-202, 205, 211, 213, 218
 Spanish 65-90, 193, 201, 205, 209, 211, 218, 220
 Swedish 65-90, 196-197, 214
 isxdigit For all character sets 48-57, 65-70, 97-102

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p71.decw$book (5 of 5)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 4-1: PDP-11 C Character-Set and Collating Sequence Locales

 Character Set String

 1
 Support Module Name RT-11 Global

 2

 C

 3
 C

 4
 Danish danish c$daty
 Digital Multinational dec_mcs c$dmty
 English english c$enty
 Finnish finnish c$fity
 French french c$frty
 German german c$gety
 Italian italian c$itty
 Norwegian norwegian c$noty
 Portuguese portuguese c$poty
 Spanish spanish c$spty
 Swedish swedish c$swty

 1
 The string must be typed exactly as indicated.
 2
 The support module name to be included for taskbuilder/ Global symbol for RT-11 Linker; required to
incorporate locale
 support in the task.
 3

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p78.decw$book (1 of 2)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

 C locale is the ASCII locale.
 4
 No user action required for default C support.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p78.decw$book (2 of 2)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 4-2: PDP-11 C Monetary and Numeric Locales

 Economic Locale String

 1
 Support Module Name RT-11 Global

 2

 C C

 3
 Austrian austrian c$aumf
 Belgian Flemish belgian-flemish c$bemf
 Belgian French belgian-french c$bemf
 Danish danish c$damf
 Finnish finnish c$fimf
 French french c$frmf
 German german c$gemf
 Iceland icelandic c$icmf
 Ireland irish c$irmf
 Italian italian c$itmf
 Netherlands netherlands c$nemf
 Norwegian norwegian c$nomf
 Portuguese portuguese c$pomf
 Spanish spanish c$spmf
 Swedish swedish c$swmf
 Swiss German swiss-german c$sumf
 Swiss French swiss-french c$sumf
 United Kingdom united kingdom c$ukmf
 USA usa c$usmf

 1
 The string must be typed exactly as indicated.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p79.decw$book (1 of 2)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

 2
 The support module title to be included in ODL file to incorporate locale support in the task.
 3
 No user action required for default C support.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p79.decw$book (2 of 2)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 4-3: PDP-11 C Time Locales

 Time Locale String

 1
 Support Module Name RT-11 Global

 2

 C C

 3
 Austrian austrian c$autm
 Belgian Flemish belgian-flemish c$betm
 Belgian French belgian-french c$betm
 Danish danish c$datm
 Finnish finnish c$fitm
 French french c$frtm
 German german c$getm
 Iceland icelandic c$ictm
 Italian italian c$ittm
 Netherlands netherlands c$netm
 Norwegian norwegian c$notm
 Portuguese portuguese c$potm
 Spanish spanish c$sptm
 Swedish swedish c$swtm
 Swiss German swiss-german c$sutm
 Swiss French swiss-french c$sutm
 United Kingdom united kingdom c$uktm

 1
 The string must be typed exactly as indicated.
 2
 The support module title to be included in ODL file to incorporate locale support in the task.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p80.decw$book (1 of 2)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

 3
 No user action required for default C support.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p80.decw$book (2 of 2)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 5-1: Summary of General Utility Functions

 Function Purpose

 String Conversion

 atof Converts a string of ASCII characters to a number of type double .
 atoi Converts a string of ASCII characters to the appropriate int numeric value.
 atol Converts a string of ASCII characters to the appropriate long int numeric value.
 strtod Converts a string of ASCII characters to a number of type double .
 strtol Converts a string of ASCII characters to the appropriate long int numeric value.
 strtoul Converts a string of ASCII characters to an unsigned long int .

 Pseudorandom Sequence Generation

 rand Returns pseudorandom numbers in the range 0 to RAND_MAX.
 srand Provides a seed value for subsequent calls to rand .

 Memory Management Functions

 calloc Allocates an area of memory and initializes each element to all bits zero.
 free Makes available for reallocation an area allocated by a previous calloc, malloc,
 or realloc call.
 malloc Allocates an area of memory.
 realloc Changes the size of the area pointed to by the first argument to the number of
 bytes given by the second argument.

 Environmental Communication

 abort Causes the signal, SIGABRT, to be raised and terminates the program if the
 signal is not handled.
 atexit Registers a function that will be called at program termination.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p84.decw$book (1 of 3)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

 exit Terminates the process from which it is called.
 getenv Searches the environment array for the current process and returns the value
 associated with a specified environment.
 system Passes a given string to the host environment to be executed by a command
 processor (useful on RSX systems only.)

 Function Purpose

 Search and Sort

 bsearch Performs a search for a specified object on an array of sorted objects.
 qsort Sorts an array of objects in place.

 Integer Arithmetic

 abs Returns the absolute value of an int .
 div , ldiv Returns the quotient and remainder after the division of its arguments.
 labs Returns the absolute value of an integer as long int .

 Multibyte Character and String

 mblen , mbtowc Determines the number of bytes in a multibyte character pointed to by its charac-
 ter pointer argument.
 mbstowcs Converts a sequence of multibyte characters using the mbtowc function.
 wcstombs Converts a sequence of codes that correspond to multibyte characters into a
 sequence of multibyte characters and stores them in the array pointed to by the
 character pointer argument.
 wctomb Determines the number of bytes needed to represent a multibyte character.

 Converting Between ASCII and RAD50

 _ _alr50 Converts the first six characters of the input string to an unsigned 32-bit integer
 corresponding to the radix-50 translation.
 _ _asr50 Converts the first three characters of the input string to an unsigned 16-bit
 integer corresponding to the radix-50 translation.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p84.decw$book (2 of 3)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

 _ _lr50a Converts an unsigned 32-bit radix-50 string to the corresponding 6-character
 ASCII character string.
 _ _sr50a Converts an unsigned 16-bit radix-50 string to the corresponding 3-character
 ASCII character string.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p84.decw$book (3 of 3)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 5-2: Environment List

 Name Purpose

 HOME The user's login directory.
 TERM The type of terminal being used.
 PATH The default device and directory.
 USER The name of the user who initiated the process.
 OPSYS The operating system the program is using.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p97.decw$book1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 6-1: Summary of Math Functions

 Function Purpose

 acos Returns a value in the range 0 to ¹ , which is the arc cosine of its radian argu-
 ment.
 asin Returns a value in the range - ¹ /2 to ¹ /2, which is the arc sine of its radian
 argument.
 atan Returns a value in the range - ¹ /2 to ¹ /2, which is the arc tangent of its radian
 argument.
 atan2 Returns a value in the range - ¹ to ¹ , which is the arc tangent of y/x, where y
 and x are the two arguments.
 ceil Returns the smallest integer that is greater than or equal to its argument.
 cos Returns the cosine of its radian argument.
 cosh Returns the hyperbolic cosine of its argument.
 exp Returns the base e raised to the power of the argument.
 fabs Returns the absolute value of a floating-point value.
 floor Returns the largest integer that is less than or equal to its argument.
 fmod Computes the floating-point remainder of the first argument divided by the
 second argument.
 frexp Breaks the argument into normalized fraction and to integral powers of 2.
 ldexp Returns a value that is the first argument multiplied by 2 raised to the power of
 the second argument.
 log Returns the natural logarithm of the double argument.
 log10 Returns the base10 logarithm of its argument.
 modf Returns the signed fractional part of the first modf argument and assigns the
 integral part, expressed as a double , to the object whose address is specified by
 the second argument.
 pow Returns a value that is the first argument raised to the power of the second
 argument.
 sin Returns the sine of its radian argument.
 sinh Returns the hyperbolic sine of its argument.

 Function Purpose

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p104.decw$book (1 of 2)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

 sqrt Returns the positive square root of its argument.
 tan Returns the tangent of its radian argument.
 tanh Returns the hyperbolic tangent of its argument.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p104.decw$book (2 of 2)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 7-1: PDP-11 C RMS Macros

 Macros Purpose

 RMS$CLOSE Closes an open file.
 RMS$CONNECT Connects a record stream to an open file and initializes the stream
 context.
 RMS$CREATE Creates a new file and opens it for processing.
 RMS$DELETE Removes a record from a relative or indexed file.
 RMS$DISCONNECT Terminates a stream and disconnects the internal resources it was
 using.
 RMS$DISPLAY Writes values into control block fields.
 RMS$ENTER Inserts a file name into a directory file. This macro is not sup-
 ported on RSTS/E.
 RMS$ERASE Erases a file and deletes its directory entry.
 RMS$EXTEND Extends the allocation for an open file.
 RMS$FIND :
 Sequential Access Transfers a record or part of a record from a file to an I/O buffer.
 Key Access Transfers a record or part of a record from a sequential disk file, a
 relative file, or an indexed file to an I/O buffer.
 Record File Access (RFA) Transfers a record or part of a record from a file to an I/O buffer.
 RMS$FLUSH Writes any unwritten buffers for a stream.
 RMS$FREE Frees a locked bucket for a stream.
 RMS$GET :
 Sequential Access Transfers a record from a file to an I/O buffer and to a user buffer.
 Key Access Transfers a record from a sequential disk file, a relative file, or an
 indexed file to an I/O buffer and a user buffer.
 Record File Access (RFA) Transfers a record from a file to an I/O buffer and to a user buffer.
 RMS$NXTVOL Advances the context for a stream to the beginning of the next
 magnetic tape volume. This macro is not supported on RSTS/E.
 RMS$OPEN Opens a file for processing by the calling task.
 RMS$PARSE Analyzes a file specification.

 Macros Purpose

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p108.decw$book (1 of 2)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

 RMS$PUT :
 Sequential Access Transfers a record from a user buffer to an I/O buffer and to a file.
 Key Access Transfers a record from a user buffer to an I/O buffer and to a
 sequential disk file, a relative file, or an indexed file.
 RMS$READ :
 Sequential and VBN Access

 1
 Transfers blocks to an I/O buffer.
 RMS$RELEASE This macro is supplied for VMS compatibility only.
 RMS$REMOVE Removes the directory entry for a file. This macro is not supported
 on RSTS/E.
 RMS$RENAME Changes the directory entry for a file.
 RMS$REWIND Resets the context for a stream to the beginning-of-file. This
 macro is not supported on RSTS/E.
 RMS$SEARCH Scans a directory and returns a file specification and identifiers in
 NAM block fields.
 RMS$SPACE Moves a magnetic tape backwards or forwards. This macro is not
 supported on RSTS/E.
 RMS$TRUNCATE Removes records from the latter part of a sequential file.
 RMS$UPDATE Transfers a record from a user buffer to a disk file, overwriting the
 existing record.
 RMS$WAIT Suspends processing until an outstanding asynchronous operation
 on the stream is completed. This macro is not supported on
 RSTS/E.
 RMS$WRITE :
 Sequential and VBN Access

 1
 Writes blocks to a file.

 1
 Virtual Block Number

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p108.decw$book (2 of 2)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 7-2: Common RMS Run-Time Processing Functions

 Category Function Description

 File
 Processing

 RMS$CREATE Creates and opens a new file of any organization.
 RMS$OPEN Opens an existing file and initiates file processing.
 RMS$CLOSE Terminates file processing and closes the file.
 RMS$ERASE Deletes a file.
 Record
 Processing

 RMS$CONNECT Associates a file access block with a record access block to establish
 a record access stream; a call to this function is required before any
 other record processing function can be used.
 RMS$GET Retrieves a record from a file.
 RMS$PUT Writes a new record to a file.
 RMS$UPDATE Rewrites an existing record to a file.
 RMS$DELETE Deletes a record from a file.
 RMS$REWIND Positions the record pointer to the first record in the file.
 RMS$DISCONNECT Disconnects a record access stream.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p110.decw$book1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 7-3: Control Block Types

 Structure Description

 FAB File access block
 NAM Name block
 RAB Record access block

 Extended Attribute Blocks

 XABALL Area allocation
 XABDAT Date and time
 XABPRO File protection
 XABSUM File summary block

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p115.decw$book1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 7-4: PDP-11 C Symbols for Defining Pool Space

 Symbol Purpose

 RMSPBDB Defines space for BDBs in BDB pool.
 RMSPBUF Defines space for I/O buffers in I/O buffer pool.
 RMSPFAB Defines space for FAB pool.
 RMSPIDX Defines space for IDX pool.
 RMSPRAB Defines space for RABs, for sequential and relative files, and for block-
 accessed indexed files in RAB pool.
 RMSPRABC ,
 RMSPRABK , and
 RMSPRABX

 Define space for key buffers in key buffer pool.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p119.decw$book1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 7-5: PDP-11 C Data Structures and Headers

 Structure Tag Header File Description

 FAB fab.h Defines the file access block structure.
 A_
 RAB(asynchronous)
 S_RAB(synchronous)

 rab.h, rab1.h
 rab.h, rab1.h

 Defines the record access block structure.
 NAM nam.h Defines the name block structure.
 XABALL
 XABDAT
 XEBEC
 XABPRO
 XABSUM

 xab.h
 xab.h
 xab.h
 xab.h
 xab.h

 Defines all the extended attribute block structures.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p128.decw$book1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 8-1: PDP-11 C FCS Macros

 Macro Purpose

 Compile-Time FDB Declaration

 FCS$FDBDF$ Allocates space in the program for the FDB.

 Run-Time FDB Initialization

 FCS$FSRSZ$ Establishes the size of the FSR.

 Run-Time FSR Initialization

 FCS$FINIT$ Initializes coding to set up the FSR.

 File Processing

 FCS$CLOSE$ Terminates file processing.
 FCS$DELET$ Removes a named file from the associated volume directory.
 FCSGET Reads logical data records from a file.
 FCSGETR Reads fixed-length records from a file in random mode.
 FCSGETS Reads records from a file in sequential mode.
 FCS$OFID$x Opens an existing file by using file identification information in the FNB.
 FCS$OFNB$x Opens a file by using file name information in the FNB.
 FCS$OPEN$x Opens and prepares a file for processing. The x is the alphabetic suffix
 indicating the type of operation to be performed on the file.
 FCS$OPNS$x Opens and prepares a file for processing and allows shared access to that
 file.
 FCS$OPNT$D Creates and opens a temporary file for processing.
 FCS$OPNT$W Creates and opens a temporary file for processing data.
 FCSPUT Writes logical data records to a file.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p141.decw$book (1 of 3)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

 FCSPUTR Writes fixed-length records to a file in random mode.
 FCSPUTS Writes records to a file in sequential mode.
 FCS$READ$ Reads virtual data blocks from a file.

 Macro Purpose

 File Processing

 FCS$WAIT$ Suspends program execution until a requested block I/O operation is
 completed.
 FCS$WRITE$ Writes virtual data blocks to a file.

 File Control Routines

 FCS$ASCPP and FCS$PPASC Converts a directory string from ASCII to binary or from binary to
ASCII.
 FCS$ASLUN Assigns a logical unit number (LUN) to a specified device and unit and
 returns the device information to a specified FDB filename block.
 FCS$CTRL Performs device-specific control functions.
 FCS$DLFNB Deletes a file by FNB.
 FCS$ENTER Inserts an entry by file name into a directory.
 FCS$EXPLG Expands a logical name and returns a pointer to the task that points to the
 expanded string.
 FCS$EXTND Extends either contiguous or noncontiguous files.
 FCS$FIND Locates a directory entry by file name and lists it in the file identification
 field (N.FID) in both the MFD and UFD.
 FCS$FLUSH Writes the block buffer to the file being written in record mode.
 FCS$GTDID and FCS$GTDIR Inserts directory information in a specified file name block (FNB).
 FCS$MARK Points to a byte or record within a specified file.
 FCS$MRKDL Marks a temporary file for deletion.
 FCS$PARSE Performs any necessary logical expansion and parses the resultant string.
 FCS$POINT, FCS$POSIT,
 and FCS$POSRC

 Points to a byte or record within a specified file.
 FCS$PRINT$ Queues a file for printing on a specified device.
 FCS$PRSDI Same as $PARSE but performs only those operations associated with
 requisite directory identification information.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p141.decw$book (2 of 3)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

 FCS$PRSDV Same as $PARSE but performs only those operations associated with
 requisite device and unit information.

 Macro Purpose

 File Control Routines

 FCS$PRSFN Same as $PARSE but performs only operations associated with requisite
 file name, file type, and file version information.
 FCS$REMOV Deletes an entry from a directory by file name.
 FCS$RENAM Changes the name of a file in its associated directory.
 FCS$RDFDR Reads and writes directory string descriptors.
 FCS$RDFFP Reads and writes the default file protection word in a location in the
 program section of the FSR.
 FCS$RDFUI Reads and writes the default UIC maintained program section.
 FCS$RFOWN Reads the contents of the file owner word in the program section.
 FCS$TRNCL Truncates a file to the logical end of the file, deallocates any space beyond
 that point, and closes the file.
 FCS$WDFDR Reads and writes directory string descriptors.
 FCS$WDFFP Reads and writes the default file protection word in a location in the
 program section of the FSR.
 FCS$WDFUI Reads and writes the default UIC maintained program section.
 FCS$WFOWN Initializes the file owner word in the program section.
 FCS$XQIO Executes a specified QIO$ function and waits for its completion.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p141.decw$book (3 of 3)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 9-1: Directive Identification Codes

 DIC$CMKT DIC$CMKTA DIC$DECL DIC$SPND DIC$WSIG
 DIC$EXIT DIC$DSCP DIC$ENCP DIC$DSAR DIC$IHAR
 DIC$ENAR DIC$ASTX DIC$GSSW DIC$STOP DIC$ULGF
 DIC$RMAF DIC$STAF DIC$STAFA DIC$SRRA DIC$EXST
 DIC$CLEF DIC$SETF DIC$RDEF DIC$RDAF DIC$WTSE
 DIC$EXIF DIC$CRRG DIC$ATRG DIC$DTRG DIC$GTIM
 DIC$GTSK DIC$RREF DIC$SRDA DIC$SPRA DIC$SFPA
 DIC$GMCX DIC$CRAW DIC$MAP DIC$UMAP DIC$STSE
 DIC$ELVT DIC$CRGF DIC$ELGF DIC$SPEA DIC$SREA
 DIC$SCAA DIC$FEAT DIC$MSDS DIC$TFEA DIC$RRST
 DIC$GLUN DIC$CSRQ DIC$RDXF DIC$WTLO DIC$RSUM
 DIC$STIM DIC$ABRT DIC$EXTK DIC$SVDB DIC$SVTK
 DIC$SNXC DIC$USTP DIC$STLO DIC$CNCT DIC$SCAL
 DIC$SREX DIC$SWST DIC$CPCR DIC$ALUN DIC$ALTP
 DIC$GPRT DIC$GREG DIC$RCVD DIC$RCST DIC$EMST
 DIC$MVTS DIC$MRKT DIC$SREF DIC$SDAT DIC$CRVT
 DIC$SCLI DIC$ACHN DIC$DLON DIC$DLOG DIC$SDIR
 DIC$VRCD DIC$VRCX DIC$VRCS DIC$GDIR DIC$RQST
 DIC$GCCI DIC$CINT DIC$SDRC DIC$GCII DIC$CLON
 DIC$CLOG DIC$FSS DIC$VSDA DIC$VSRC DIC$SMSG
 DIC$SDRP DIC$RLON DIC$RLOG DIC$TLON DIC$TLOG
 DIC$RUN DIC$QIO DIC$QIOW DIC$SPWN DIC$SPWNA
 DIC$PFCS DIC$PRMS DIC$RPOI DIC$GMCR

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p157.decw$book1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 9-2: FIRQB and XRB Data Structures

 Use FIRQB XRB

 Address definition
 macro

 RSTS$FIRQB RSTS$XRB
 Structure definition FIRQB XRB
 Clear structure func-
 tion

 void RSTS$CLRFQB (void) void RSTS$CLRXRB (void)

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p160.decw$book1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table 10-1: Register Usage for PDP-11 C-Supported Linkages

 Linkage Called-Function Actions Calling-Function Actions

 C Saves registers used by the
 called function with the
 exception of R1 and F1.

 Removes parameters after return.
 FORTRAN None. Removes parameters after it returns. Saves registers before
 call. Restores registers after call.
 Pascal Saves registers. Removes
 parameters before re-
 turn. Cannot be used with
 variable arguments.

 None.
 RSX SST Saves and restores used
 registers. Removes trap-
 dependant parameters
 before returning. Returns
 by executing an RTI

 Not callable.
 RSX AST Saves and restores used
 registers. Removes trap-
 dependant parameters
 before returning. Returns
 by executing an ASTX$
 directive.

 Not callable.
 RSX CSM Same as C linkage, but
 allows C function to be
 placed in a supervisor-
 mode library.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p163.decw$book (1 of 2)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

 Removes parameters after return.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p163.decw$book (2 of 2)1/25/06 4:13 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Table B-1: PDP-11 C Run-Time Entry Points

 Entry Point Module Description

 abort C$ABRT Aborts the current process.
 abs C$ABS Integer absolute value math library function.
 acos C$ACOS Arc cosine math library function.
 _ _alr50 C$ASL5 Converts first six characters in the input string to an un-
 signed 32-bit integer corresponding to the radix-50 transla-
 tion.
 asctime C$ASTM Converts broken-down time into a character string.
 asin C$ASIN Arc sine math library function.
 _ _asr50 C$ASR5 Converts the first three characters of the input string to
 an unsigned 16-bit integer corresponding to the radix-50
 translation.
 atan C$ATAN Arc tangent math library function.
 atan2 C$ATN2 Arc tangent math library function.
 atexit C$ATEX Registers functions to be called without arguments at pro-
 gram termination.
 atof C$ATOF Converts ASCII to floating-point binary.
 atoi C$ATOI Converts ASCII to integer binary.
 atol C$ATOL Converts long ASCII to binary.
 bsearch C$BSCH Binary search routine.
 cabs C$CABS Returns the square root of two squared arguments.
 calloc C$CLLC Allocates and clears storage.
 cc$rms_fab C$RMS_
 PROTOTYPES

 File access block prototype.
 cc$rms_nam C$RMS_
 PROTOTYPES

 Block naming prototype.
 cc$rms_rab C$RMS_
 PROTOTYPES

 Access-block recording prototype.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p424.decw$book (1 of 6)1/25/06 4:14 PM

PDP-11 C Run-Time Library Reference Manual

 cc$rms_xaball C$RMS_
 PROTOTYPES

 Allocation control extended attribute block prototype.

 Entry Point Module Description

 cc$rms_xabdat C$RMS_
 PROTOTYPES

 Date and time extended attribute block prototype.
 cc$rms_xabfhc C$RMS_
 PROTOTYPES

 File header characteristics extended attribute block prototype.
 cc$rms_xabkey C$RMS_
 PROTOTYPES

 Indexed file key extended attribute block prototype.
 cc$rms_xabpro C$RMS_
 PROTOTYPES

 File protection extended attribute block.
 cc$rms_xabrdt C$RMS_
 PROTOTYPES

 Revision date and time extended attribute block prototype.
 cc$rms_xabsum C$RMS_
 PROTOTYPES

 Summary extended attribute block prototype.
 cc$rms_xabtrm C$RMS_
 PROTOTYPES

 Terminal characteristics of the extended attribute block
 prototype.
 ceil C$CEIL Ceiling math library function.
 clearerr $PCLEA Clears end-of-file error.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p424.decw$book (2 of 6)1/25/06 4:14 PM

PDP-11 C Run-Time Library Reference Manual

 clock C$CLCK Determines CPU time.
 cos C$COS Cosine math library function.
 cosh C$COSH Hyperbolic cosine math library function.
 ctime C$CTIM Converts time to an ASCII string.
 difftime C$DFTM Computes the difference between two times.
 div C$DIV Computes the quotient and remainder.
 exit C$EXIT Closes files and exits.
 exp C$EXP Base-e exponential math function.
 fabs C$FABS Absolute math function.
 _ _fbuf C$FGBF Returns the current buffer length associated with a file
 pointer.
 fclose $PCLOS Closes a file.
 feof $PEOF Tests the end-of-file indicator.

 Entry Point Module Description

 ferror $PERRO Tests the error indicator.
 fflush $PFLUS Flushes a file buffer.
 _ _fger C$FGER Returns the low level error code that is associated with a
 previously called file operation.
 fgetc $PFGTC Gets a character from a file.
 fgetname C$FGNM Returns a pointer to a file specification associated with a file
 variable.
 fgetpos C$PGETP Stores the current value of the file position indicator for the
 stream pointed to by stream .
 fgets $PFGTS Gets a string from a file.
 _ _fgnm C$FGNM Returns a pointer to a file specification associated with a file
 variable.
 floor C$FLOR Returns the largest integer that is less than or equal to its
 argument.
 _ _flun C$FGLN Returns the logical unit number associated with a file pointer.
 fmod C$FMOD Computes the floating-point remainder of X/Y.
 fopen $POPE Opens a file by file pointer.
 fprintf $PFPRI Formats a string to a file.
 fputc $PFPTC Writes a character to a file.
 fputs $PFPTS Writes a string to a file.
 fread $PREAD Reads from a file.
 _ _frec C$FGRC Returns the current record length associated with a file
 pointer.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p424.decw$book (3 of 6)1/25/06 4:14 PM

PDP-11 C Run-Time Library Reference Manual

 free C$FREE Deallocates storage.
 freopen $PREOP Closes and reopens a file.
 frexp C$FRXP Extract fraction exponent math function.
 fscanf $PFSCA Scans input from a file.
 fseek $PSEEK Positions to an offset in a file.
 fsetpos $PSETP Sets file position indicator.

 Entry Point Module Description

 ftell $PTELL Returns current offset in a file.
 fwrite $PWRIT Writes to a file.
 getc $GETC Gets a character from standard input.
 getchar C$GTCR Reads a character from standard input.
 getenv C$GENV Returns the value of the environment.
 gets $PGETS Gets a string from standard input.
 gmtime C$GMTM Converts calendar time into broken-down time.
 hypot C$HYPT Euclidean distance math library function.
 _ _ischar C$ISCH Returns a nonzero integer if its argument is contained in the
 current character set.
 labs C$LABS Returns the absolute value of an integer as long integer.
 ldexp C$LDXP Power of 2 math library function.
 ldiv C$LDIV Computes long integer quotient and remainder.
 localeconv C$LCON Sets components of an object with type struct lconv .
 localtime C$LCTM Places time in a time structure.
 log C$LOG Logarithm base-e math library function.
 log10 C$LG10 Logarithm base-10 math library function.
 longjmp C$LGJP Returns to a setjmp entry point.
 _ _lr50 C$L5TA Converts an unsigned 32-bit radix-50 string to the corre-
 sponding 6-character ASCII character string.
 malloc C$MLLC Allocates memory.
 mblen C$MBLN Determines the number of bytes in multibyte character.
 mbstowcs C$MBCS Converts the multibyte characters to a sequence of corre-
 sponding codes.
 mbtowc C$MBWC Determines the number of bytes in multibyte character.
 memchr C$MCHR Locates the first occurrence of a character.
 memcmp C$MCMP Compares the lexical values of two arrays.

 Entry Point Module Description

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p424.decw$book (4 of 6)1/25/06 4:14 PM

PDP-11 C Run-Time Library Reference Manual

 memcpy C$MCPY Moves characters from one array to another.
 memmove C$MMOV Moves characters from one array to another.
 memset C$MSET Puts a given character in n bytes of an array.
 mktime C$MKTM Converts the broken-down time into calendar time.
 modf C$MODF Extract the fraction and the integer math function.
 perror $PPERR Prints an error message.
 pow C$POW Raise to a power math library function.
 printf $PPRIN Formats a string to standard output.
 puts $PPUTS Writes a string to standard output.
 qsort C$QSRT Sorts an array of data objects.
 raise C$RASE Generates a signal.
 rand C$RAND Computes a random number.
 realloc C$RLLC Changes the size of an area of storage.
 remove $PREMO Deletes a file.
 rename $PRENA Renames a file.
 rewind $PREWI Returns to the beginning of the file.
 scanf $PSCAN Formats input from the standard input.
 setbuf C$PSETB Associates buffer with I/O file.
 setlocale C$SLOC Selects the part of the program's locale as specified by cate-
 gory and locale .
 setvbuf $PSETV Establishes I/O buffering for a file.
 signal C$SIGL Sets a signal.
 sin C$SIN Sine math library function.
 sinh C$SINH Hyperbolic sine math library function.
 sleep C$SLEP Suspends execution for a specified time interval.
 _ _sleep C$SLEP Suspends execution for a specified time interval.
 sprintf C$SPRR Formats a string to a memory buffer.

 Entry Point Module Description

 sqrt C$SQRT Square root math library function.
 srand C$SRND Reinitializes the random number generator.
 _ _sr50a C$S5TA Converts an unsigned 16-bit radix-50 string to the corre-
 sponding 3-character ASCII character string.
 sscanf C$SSCR Formats the input from memory.
 strcat C$SCAT Concatenates two strings.
 strchr C$SCHR Searches for a character in a string.
 strcmp C$SCMP Compares two strings.
 strcoll C$SCOL Compares two strings.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p424.decw$book (5 of 6)1/25/06 4:14 PM

PDP-11 C Run-Time Library Reference Manual

 strcpy C$SCPY Moves a string to another string.
 strcspn C$SCSP Searches a string for a character.
 strerror C$SERR Translates an error message code.
 strftime C$SFTM Converts time and date format to a user-defined format.
 strlen C$SLEN Determines the length of a string.
 strncat C$SNCA Concatenates two strings.
 strncmp C$SNCM Compares two strings.
 strncpy C$SNCP Moves one string to another.
 strpbrk C$SPBK Searches a string for a character.
 strrchr C$SRCH Searches a string for a character.
 strspn C$SSPN Searches a string for a character.
 strstr C$SSTR Locates the first occurrence of a sequence of characters from
 one string pointed to by another string.
 strtod C$STOD Converts a string to a double-precision number.
 strtok C$STOK Locates text tokens in a given string.
 strtol C$STOL Converts a character string into a long integer value.
 strtoul C$STUL Converts a character string into an unsigned value.
 strxfrm C$SXFR Transforms a string and places the results into an array.

 Entry Point Module Description

 system C$SYTM Passes a string to a command processor for execution.
 tan C$TAN Tangent math library function.
 tanh C$TANH Hyperbolic tangent math library function.
 time C$TIME Gets the epoch time.
 tmpfile $PTMPF Creates a temporary file.
 tmpnam C$PTMPN Generates a temporary file name.
 tolower C$TLWR Converts uppercase to lowercase.
 toupper C$TUPR Converts lowercase to uppercase.
 _ _tzset C$TZSE Sets time variables.
 ungetc C$PUNGE Pushes a character back into the stream.
 vfprintf C$PVFPR Prints formatted output.
 vprintf $PVPRI Prints formatted output.
 vsprintf C$VSPR Prints formatted output.
 wcstombs C$WCSB Converts the sequence of codes corresponding to multibyte
 characters into multibyte characters.
 wctomb C$WCMB Determines the number of bytes needed to represent multibyte
 character.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p424.decw$book (6 of 6)1/25/06 4:14 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 FCSPUTS

 The FCSPUTS function writes records to a file in
 sequential mode.

 Format
 #include <fcs.h>
 short FCSPUTS (fcs$fdb
 *

 fdb, char
 *

 urba, short urbs, void (
 *

 err)())

 Arguments
 fdb
 Specifies a pointer to the associated FDB.

 urba
 Specifies a pointer to the record buffer.

 urbs
 Specifies the numeric value that defines the size (in bytes) of
 the record buffer.

 err
 Specifies the address of the optional, user-coded, error-
 handling routine.

 Description
 The FCSPUTS function is specifically for use in an
 overlaid environment in which the amount of memory
 available to the program is limited and files are to be written
 in sequential mode.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p377.decw$book (1 of 2)1/25/06 4:14 PM

PDP-11 C Run-Time Library Reference Manual

 Return Values

 1 Indicates success.
 0 Indicates failure.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p377.decw$book (2 of 2)1/25/06 4:14 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 fflush

 The fflush function writes out any buffered information for
 a file opened for output or update.

 Format
 #include <stdio.h>
 int fflush (FILE
 *

 file_ptr);

 Arguments
 file_ptr
 Is a file pointer.

 Description
 Any unwritten data in the output buffer for a file is written
 to the device. If the file_ptr is NULL, all files open for output
 are flushed.

 Return Values

 0 Indicates that the operation is
 successful.
 EOF Indicates that an error occurred
 in writing out the data. (EOF is a
 preprocessor constant defined in
 the <stdio.h> header file.)

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p208.decw$book1/25/06 4:14 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 sqrt

 The sqrt function returns the square root of its argument.

 Format
 #include <math.h>
 double sqrt (double x);

 Description
 The argument and the returned value are both objects of
 type double . The returned value will always be the positive
 square root. If x is negative, the function sets errno to EDOM
 and returns zero. EDOM is defined in the <errno.h> header
 file.

 Return Values
 Returns the value of the square root.

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p293.decw$book1/25/06 4:14 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 1
 Brian W. Kernighan and Dennis M. Ritchie, The C
 Programming Language , second edition (Englewood Cliffs,
 New Jersey: Prentice-Hall, 1988).

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p12.decw$book1/25/06 4:14 PM

PDP-11 C Run-Time Library Reference Manual

[next] [previous] [contents]

 Figure 10-3: Stack Usage Using Pascal Linkage

http://www.sysworks.com.au/disk$vaxdocmar963/decw$book/d33vaa10.p169.decw$book1/25/06 4:14 PM

	www.sysworks.com.au
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual
	PDP-11 C Run-Time Library Reference Manual

