PDP-11 C Guideto PDP-11 C

Available tables:

. Contents (316 entries)
. Examples (29 entries)
. Figures (7 entries)
. Tables (24 entries)

. Index (887 entries)

Contents
(316 entries)

CONTENTS

. Title Page

. Copyright Page

. Preface

. 1 Developing PDP-11 C Programs

. 1.1 DCL Commands for Program Development

. 1.2 Creating aPDP-11 C Program

. 1.21Usng EDT

. 1.22Using VAXTPU

. 1.2.3Using KED

. 1.3 Compiling a PDP-11 C Program

. 1.3.1 The Compile Command

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.decw$book (1 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. 1.3.1.1 Compiling a Program on RSX Systems

. 1.3.1.2 Compiling a Program on RSTS/E Systems

. 1.3.1.3 Compiling a Program on RT-11 Systems

. 1.3.1.4 Compiling a Program on VMS Systems

. 1.3.2 Prompt Mode

. 1.3.3Indirect Command Files

. 1.3.4The PDP-11 C Command Qualifiers

. 1.3.5 Compiler Error M essages

. 1.3.6 Compiler Listings

. 1.4 Copying Files Among Target Environments

. 1.4.1FileTransfer (FIT) Program

. 1.4.2 File Transfer Utility (FLX)

. 143 VMSEXCHANGE Utility

. 15LinkingaPDP-11 C Program

. 15.1 Linking a Program on RSX Systems

. 1.5.2 Linking a Program on RSTS/E Systems

. 1.5.2.1 Invoking the RSX Task Builder on RSTS'E

. 15.2.2 Invoking the RT-11 Linker on RSTS/E

. 1.5.3 Linking a Program on RT-11 Systems

. 1.5.4 Linking a Program on VMS Systems

. 1.5.5 Task Builder Command-Line Elements

. 15.5.1 Creating CMD and ODL Filesfor Task Building

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.decw$book (2 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

http://www.sysworks.com.au/di sk$vaxdocsep953/decwSbook/d33vaall.decw$book (3 of 15)1/25/06 3:39 PM

1.5.5.2 Command-Line Elementsin CMD Files

1.5.5.3 Task Builder Qualifiers

1.5.6 Task Builder Error M essages

1.5.7 Storage Considerations

1.5.8 Library Usage

1.5.8.1 PDP-11 C Run-Time System Object Libraries

1.5.8.2 Using System Libraries

1.5.8.3 Creating User Libraries

1.5.8.4 Using the supervisor-mode Library

1.5.9 Overlays

1.6 Running aPDP-11 C Program

1.7 Debugging a PDP-11 C Program

2 Program Structure

2.1 C Programming L anguage Background

2.2 The PDP-11 C Programming L anguage

2.3 Writing a Program

2.4 Producing | nput/Output

2.5 Controlling Program Flow

2.5.1 Testing for a Condition (if Statement)

2.5.2 Testing for Multiple Conditions (switch Statement)

2.5.3 Loops

2.6 Values, Addresses, and Pointers

PDP-11 C Guideto PDP-11 C

. 2.7 Function Definitions

. 2.7.1 Main Function and Function Identifiers

. 2.7.2 Parameter List Declarations

. 2.7.4Vaiable-Length Parameter Lists

. 2.8 Function Declarations

. 2.8.1 Function Prototypes

. 2.9 Using Parameters and Arguments

. 2.9.1 Function and Array ldentifiers as Arguments

. 2.9.2 Passing Arguments to the Function Main

. 2.10 Identifiers

. 2.11 Keywords

. 2.12 Blocks

. 2.13 Comments

. 2.14 Lexica Continuation

. 2.15 String Literal Concatenation

. 2.16 Trigraphs

. 3 Statements

. 3.1 The Labeled Statement

. 3.2 Compound Statement

. 3.3 The Null Statement

. 3.4 The Expression Statement

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.decw$book (4 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. 3.5 Sdlection Statements

. 3.5.1 Theif Conditional Statement

. 3.5.2 The switch Statement

. 3.6 lteration Statements (L oopinQ)

. 3.6.1 Thewhile Statement

. 3.6.2 Thefor Statement

. 3.6.3 The do Statement

. 3.7 Jump Statements

. 3.7.1 The goto Statement

. 3.7.2 The continue Statement

. 3.7.3 The break Statement

. 3.7.4 Thereturn Statement

. 4 Expressions and Operators

. 4.1 Addresses (lvalues) and Objects (rvalues) of Variables

. 4.2 Overview of the PDP-11 C Operators

. 4.3 Primary Expressions and Operators

. 4.3.1 Parenthetical Expressions

. 4.3.2 Function Calls

. 4.3.3 Array References

. 4.3.4 Structure and Union References

. 4.4 Unary Operators

. 4.4.1 Negating Arithmetic and L ogical Expressions

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.decw$book (5 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. 4.4.2 Incrementing and Decrementing V ariables

. 4.4.3 Computing Addresses and Dereferencing Pointers (& *)

. 4.4.4 Caculating aOne's Complement (~)

. 4.4.5 Forcing Conversions to a Specific Type (Cast Operator)

. 4.4.6 Caculating Sizes of Variables and Data Types (s zeof)

. 4.5 Binary Operators

. 4.5.1 Additive Operators (+ -)

. 4.5.2 Multiplication Operators (* / %)

. 4.5.3 Equality Operators (= =1=)

. 4.5.4 Relational Operators (< > <= >=)

. 455 Bitwise Operators (& |)

. 4.5.6 Logical Operators (&& ||)

. 4.5.7 Shift Operators (<< >>)

. 4.6 Conditional Operator (?:)

. 4.7 Assignment Expressions and Operators

. 4.8 Comma Expression and Operator (,)

. 4.9 Data Type Conversions

. 4.9.1 Converting Operands

. 4.9.2 Converting Function Arguments

. 5 DataTypes and Declarations

. 5.1 Constants

. 5.2 Variables

http://www.sysworks.com.au/di sk$vaxdocsep953/decwSbook/d33vaall.decw$book (6 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. 5.2.1 Classification of Variables

. 5.2.1.1 Data Type Keywords

. 5.2.1.2 Format of aVariable Declaration

. 5.3 Integers (int, long, short, char, signed, unsigned)

. 5.3.1 Integer Constants

. 5.3.2 Character Constants

. 5.3.3 Escape Sequences

. 5.5 Pointers

. 5.6 Enumerated Types (enum)

. 5.7Arrays([1)

. 5.7.1 Initialization of Arrays

. 5.8 Character-String Variables and Constants (char * , char[1)

. 5.9 Structures and Unions (struct, union)

. 5.9.1 Declaring a Structure or Union

. 5.9.2 Referencing Members of Structures or Unions

. 5.9.3 Initidlization of Structures and Unions

. 5.9.4 Variant Structures and Unions

. 595 Bit-Fields

. 5.10 Agaregates

. 5.10.1 Arrays and Character Strings

. 5.10.2 Structures and Unions

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.decw$book (7 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. 5.11 Thevoid Keyword

. 5.12 The typedef Keyword

. 5.13 Interpreting Declarations

. 6 Scope, Storage Classes, and Allocation

. 6.1 The Scope of an Identifier

. 6.1.1 The Compilation and Linking Process

. 6.1.2 Position of the Declaration

. 6.1.3 Lexical Scope and Link-Time Scope

. 6.1.4 Program Example

. 6.2 Storage Allocation

. 6.3 Interna Storage Class

. 6.3.1 Defining aVariable for Automatic Storage Allocation (auto)

. 6.3.2 Defining a Variable for Placement in a Machine Register (register)

. 6.4 Static Storage Class

. 6.5 Globa Storage Class

. 6.5.1 Global Names on PDP-11 Systems

. 6.5.2 Global Definitions

. 6.6 Defining Global Definitions (globaldef) and References (globalref)

. 6.7 Defining Global Vaues (globalvaue)

. 6.8 Explicit psect Control

. 6.8.1 Reducing Storage Requirements in Overlaid Tasks

. 6.8.2 Data Sharing Using psects

http://www.sysworks.com.au/di sk$vaxdocsep953/decwSbook/d33vaall.decw$book (8 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. 6.9 Data Type Qualifiers

. 6.9.1 The const Qualifier

. 6.9.2 Thevolatile Qualifier

. 6.10 Storage-Class Specifiers

. 7 Preprocessor Directives

. 7.1 Token Definitions (#define, #undef)

. 7.1.1 Object-Like Macros

. 7.1.2 Canceling Definitions (#undef)

. 7.1.3 Function-Like Macros

. 7.1.3.1 Stringizing Preprocessing Operator (#)

. 7.1.3.2 Token Concatenation Preprocessing Operator (##)

. 7.1.4Listing Substituted Lines

. 7.2 Conditional Compilation (#if, #ifdef, #ifndef, #else, #dlif, #endif)

. 7.2.1 The defined Operator

. 7.3 The#error Directive

. 7.4 FilelInclusion (#include)

. 7.4.1 Inclusion Using Angle Brackets (<>)

. 7.4.2 Inclusion Using Quotation Marks (" ")

. 7.4.3 Token Substitution in #include Directives

. 7.5 Specification of Line Numbers (#line, #)

. 7.6 Specification of Module Name and | dentification (#module)

. 7.7 Implementation-Specific Preprocessor Directive (#pragma)

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.decw$book (9 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. 7.7.1 #pragma charset

. [.7.2 #pragma psect

. 7.7.3 #pragma module

. 7.7.4 #pragmalist

. 7.7.6 #pragma[no]standard

. 7.8 Predefined Macros

. 7.8.1 PDP-11 C Predefined Macros

. 7.8.2 Digital Extension Macros

. 7.83The DATE Macro

. 7.84The TIME Macro

. 7.85The FILE Macro

. 7.86The LINE Macro

. 7.87The STDC Macro

. 7.8.8The RAD50 and RAD50L Macros

. 8 PDP-11 C Implementation Notes

. 8.1 Use of Memory Management Functions

. 8.1.1 Providing Alternative Space for Memory Management

. 8.2 Compilation Performance and Capacity on PDP-11 Host Systems

. 8.2.1 Data Caching

. 8.2.2 PDP-11 C Work File

. 8.3 PDP-11 C Run-Time Psects

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.decw$book (10 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. 8.4 Overlaying Tasks

. 8.5RT-11 User Service Routine (USR) Load Area

. 8.6 Event Flags

. 8.7 Argument Passing Using Linkages

. 8.8 Defining Y our Own Locales

. 8.9 Excluding printf Format Support Code

. A PDP-11 C Compiler Messages

. A.lIntroduction

. A.2 Compiler Messages

. ALC TEMPOVERFLOW...CLP INPUT LINE LONG

. CLP INV_FILENAME...CLP MISS VALUE

. CLP_ MODE INCONSIST...LEX CLOSE FAILED

. LEX_ CMT UNCLOSED...LEX IFEVALSTACK

« LEX IFSYNTAX ...LEX INVALIDIF

. LEX_INVDEENAME ...LEX [OEXISTS

« LEX IOENF. ..LEX MESCHARSETDEF

. LEX MESCHARSETREF...LEX PASTEATEND

. LEX PASTEUPFRONT ...LEX TOOMANYMACPARM

. LEX_ UNDEFIFMAC...MIO STACKOVERFLOW

. MRF CLOSE...OGN NO OBJ PRODUCED

. OGN_NO ROOM_FOR FILE...OVL ROOT

. OVL ROQOT2...SYN BADPSECT

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.decw$book (11 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. SYN BITWINTREQ...SYN DUPMAINFUNC

. SYN DUPMEMBER...SYN ILLFUNCPARAM

« SYN ILLFUNCTYPE...SYN INVBREAK

. SYN INVCASEEXPR...SYN INVFUNCCLASS

. SYN INVFUNCDECL ...SYN INVREL

« SYN INVSTORCLASS...SYN LREM_INT

. SYN MAINO2PARAMS. .. SYN SHIFTINTREQ

. SYN SIZEOFOBJ...SYN UNDEFSTRUCT

« SYN _UNOTSCALREQ. .. WF UNEXPECTED

. B PDP-11 C Header Files

. CPDP-11 C Internationalization

. C.1 Compiler Internationalization

. C.2 Run-Time Internationalization

. C.2.1 Set Locale Function (setlocale)

. C.2.2 Defining aLocale Structure (localeconv)

. C.2.3 Character Handling Functions

. D Language Summary

. D.1 Data Type Keywords

. D.2 Precedence of Operators

. D.3 Statements

. D.4 Conversion Rules

. D.5PDP-11 C Escape Sequences

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.decw$book (12 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. D.6 Preprocessor Directives

. Glossary
EXAMPLES

. 1-1 Default Compiler Listing

. 1- 2 Compiler Listing Options

. 2-1Smple Additionin PDP-11 C

. 2- 2 Output of Information

. 2- 3 Output Using the Newline Character

. 2-5 Conditional Execution Using the switch Statement

. 2- 6 Looping Using the do Statement

. 2- 7 Looping Using the for Statement

. 2- 8 Case Conversion Program

. 2-9Including <stdarg.h> in a Parameter List

. 2- 10 Declaring Functions

. 2-11 Declaring Functions Passed as Arguments

. 2-12 Echo Program Using Command-Line Arguments

. 2- 13 Scope of Variable Declarations in Nested Blocks

. 3- 1 Counting Blanks, Tabs, and Newlines Using the switch Statement

. 5-1Initidlizing an Array of Structures

. 5- 2 Character String Constants and Arrays

. 5- 3 Single Storage Allocation of Unions

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.decw$book (13 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. 5- 4 Structures

. 6- 1 Scope and Externally Defined Variables

. 6- 2 Reinitializing Two auto Variables

. 6- 3 Using the globalvalue Specifier

. 7-1 Nested Substitution Directives

. 7-2Usng RAD50 and RADS50L Macros

. 8-1 Setting Up Your Own Locale Tables

« C- 1 Sample Program Using local econv

. C- 2 Using the Macro and Function Versions of isalnum

FIGURES

. 1-1 DCL Commands for Developing Programs

. 2-1rvaues, lvalues, and Assigning Pointers

. 2- 2 The Indirection Operator in Assignments

. 4-1 Boolean Algebra and the Bitwise Operators

. 4- 2 Shift Operators

. 5-1 Alignment of Structure Members

TABLES

. 1-1 Copying Files Among Operating Systems

. 2-1PDP-11 C Keywords

. 2-2VAX C Keywords

. 2- 3 Trigraph Sequences and Equivalence Characters

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.decw$book (14 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. 4- 1 PDP-11 C Operators

. 4- 2 Precedence of PDP-11 C Operators

. 5-1PDP-11 C Data Type Keywords

. 5-2 Size and Range of PDP-11 C Integers

. 5- 3PDP-11 C Escape Sequences

. 6-1PDP-11 C Storage Classes and Storage-Class Specifiers

. 6- 2 Scope and the Storage-Class Specifiers

. 6- 3 Location, Lifetime, and the Storage-Class K eywords

. 7-1Logica Namesfor PDP-11 C Include Files

. 7- 2 PDP-11 Character Sets

. 7- 3 Psect Types and Associated Data Types

. 8-1PDP-11 RTL Psects

. 8- 2 Globa Symbols

. B-1PDP-11 C Standard Library Header Files

. B-2PDP-11 C FCS Extension Library Header Files

. B-3PDP-11 CRMS Extension Library Header Files

. B-4PDP-11 C System Interface Header Files

. D-1 Data Type Keywords

. D- 2 Precedence of Operators

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.decw$book (15 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

Available tables:

. Contents (316 entries)
. Examples (29 entries)
. Figures (7 entries)
. Tables (24 entries)

. Index (887 entries)

Contents
(887 entries)

CONTENTS

. Title Page

. Copyright Page

. Preface

. 1 Developing PDP-11 C Programs

. 1.1 DCL Commands for Program Development

. 1.2 Creating aPDP-11 C Program

. 1.21Usng EDT

. 1.22Using VAXTPU

. 1.2.3Using KED

. 1.3 Compiling a PDP-11 C Program

. 1.3.1 The Compile Command

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tContents.decw$book (1 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. 1.3.1.1 Compiling a Program on RSX Systems

. 1.3.1.2 Compiling a Program on RSTS/E Systems

. 1.3.1.3 Compiling a Program on RT-11 Systems

. 1.3.1.4 Compiling a Program on VMS Systems

. 1.3.2 Prompt Mode

. 1.3.3Indirect Command Files

. 1.3.4The PDP-11 C Command Qualifiers

. 1.3.5 Compiler Error M essages

. 1.3.6 Compiler Listings

. 1.4 Copying Files Among Target Environments

. 1.4.1FileTransfer (FIT) Program

. 1.4.2 File Transfer Utility (FLX)

. 143 VMSEXCHANGE Utility

. 15LinkingaPDP-11 C Program

. 15.1 Linking a Program on RSX Systems

. 1.5.2 Linking a Program on RSTS/E Systems

. 1.5.2.1 Invoking the RSX Task Builder on RSTS'E

. 15.2.2 Invoking the RT-11 Linker on RSTS/E

. 1.5.3 Linking a Program on RT-11 Systems

. 1.5.4 Linking a Program on VMS Systems

. 1.5.5 Task Builder Command-Line Elements

. 15.5.1 Creating CMD and ODL Filesfor Task Building

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal 1.t Contents.decw$book (2 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tContents.decw$book (3 of 15)1/25/06 3:39 PM

1.5.5.2 Command-Line Elementsin CMD Files

1.5.5.3 Task Builder Qualifiers

1.5.6 Task Builder Error M essages

1.5.7 Storage Considerations

1.5.8 Library Usage

1.5.8.1 PDP-11 C Run-Time System Object Libraries

1.5.8.2 Using System Libraries

1.5.8.3 Creating User Libraries

1.5.8.4 Using the supervisor-mode Library

1.5.9 Overlays

1.6 Running aPDP-11 C Program

1.7 Debugging a PDP-11 C Program

2 Program Structure

2.1 C Programming L anguage Background

2.2 The PDP-11 C Programming L anguage

2.3 Writing a Program

2.4 Producing | nput/Output

2.5 Controlling Program Flow

2.5.1 Testing for a Condition (if Statement)

2.5.2 Testing for Multiple Conditions (switch Statement)

2.5.3 Loops

2.6 Values, Addresses, and Pointers

PDP-11 C Guideto PDP-11 C

. 2.7 Function Definitions

. 2.7.1 Main Function and Function Identifiers

. 2.7.2 Parameter List Declarations

. 2.7.4Vaiable-Length Parameter Lists

. 2.8 Function Declarations

. 2.8.1 Function Prototypes

. 2.9 Using Parameters and Arguments

. 2.9.1 Function and Array ldentifiers as Arguments

. 2.9.2 Passing Arguments to the Function Main

. 2.10 Identifiers

. 2.11 Keywords

. 2.12 Blocks

. 2.13 Comments

. 2.14 Lexica Continuation

. 2.15 String Literal Concatenation

. 2.16 Trigraphs

. 3 Statements

. 3.1 The Labeled Statement

. 3.2 Compound Statement

. 3.3 The Null Statement

. 3.4 The Expression Statement

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tContents.decw$book (4 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. 3.5 Sdlection Statements

. 3.5.1 Theif Conditional Statement

. 3.5.2 The switch Statement

. 3.6 lteration Statements (L oopinQ)

. 3.6.1 Thewhile Statement

. 3.6.2 Thefor Statement

. 3.6.3 The do Statement

. 3.7 Jump Statements

. 3.7.1 The goto Statement

. 3.7.2 The continue Statement

. 3.7.3 The break Statement

. 3.7.4 Thereturn Statement

. 4 Expressions and Operators

. 4.1 Addresses (lvalues) and Objects (rvalues) of Variables

. 4.2 Overview of the PDP-11 C Operators

. 4.3 Primary Expressions and Operators

. 4.3.1 Parenthetical Expressions

. 4.3.2 Function Calls

. 4.3.3 Array References

. 4.3.4 Structure and Union References

. 4.4 Unary Operators

. 4.4.1 Negating Arithmetic and L ogical Expressions

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tContents.decw$book (5 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. 4.4.2 Incrementing and Decrementing V ariables

. 4.4.3 Computing Addresses and Dereferencing Pointers (& *)

. 4.4.4 Caculating aOne's Complement (~)

. 4.4.5 Forcing Conversions to a Specific Type (Cast Operator)

. 4.4.6 Caculating Sizes of Variables and Data Types (s zeof)

. 4.5 Binary Operators

. 4.5.1 Additive Operators (+ -)

. 4.5.2 Multiplication Operators (* / %)

. 4.5.3 Equality Operators (= =1=)

. 4.5.4 Relational Operators (< > <= >=)

. 455 Bitwise Operators (& |)

. 4.5.6 Logical Operators (&& ||)

. 4.5.7 Shift Operators (<< >>)

. 4.6 Conditional Operator (?:)

. 4.7 Assignment Expressions and Operators

. 4.8 Comma Expression and Operator (,)

. 4.9 Data Type Conversions

. 4.9.1 Converting Operands

. 4.9.2 Converting Function Arguments

. 5 DataTypes and Declarations

. 5.1 Constants

. 5.2 Variables

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal 1.t Contents.decw$book (6 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. 5.2.1 Classification of Variables

. 5.2.1.1 Data Type Keywords

. 5.2.1.2 Format of aVariable Declaration

. 5.3 Integers (int, long, short, char, signed, unsigned)

. 5.3.1 Integer Constants

. 5.3.2 Character Constants

. 5.3.3 Escape Sequences

. 5.5 Pointers

. 5.6 Enumerated Types (enum)

. 5.7Arrays([1)

. 5.7.1 Initialization of Arrays

. 5.8 Character-String Variables and Constants (char * , char[1)

. 5.9 Structures and Unions (struct, union)

. 5.9.1 Declaring a Structure or Union

. 5.9.2 Referencing Members of Structures or Unions

. 5.9.3 Initidlization of Structures and Unions

. 5.9.4 Variant Structures and Unions

. 595 Bit-Fields

. 5.10 Agaregates

. 5.10.1 Arrays and Character Strings

. 5.10.2 Structures and Unions

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tContents.decw$book (7 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. 5.11 Thevoid Keyword

. 5.12 The typedef Keyword

. 5.13 Interpreting Declarations

. 6 Scope, Storage Classes, and Allocation

. 6.1 The Scope of an Identifier

. 6.1.1 The Compilation and Linking Process

. 6.1.2 Position of the Declaration

. 6.1.3 Lexical Scope and Link-Time Scope

. 6.1.4 Program Example

. 6.2 Storage Allocation

. 6.3 Interna Storage Class

. 6.3.1 Defining aVariable for Automatic Storage Allocation (auto)

. 6.3.2 Defining a Variable for Placement in a Machine Register (register)

. 6.4 Static Storage Class

. 6.5 Globa Storage Class

. 6.5.1 Global Names on PDP-11 Systems

. 6.5.2 Global Definitions

. 6.6 Defining Global Definitions (globaldef) and References (globalref)

. 6.7 Defining Global Vaues (globalvaue)

. 6.8 Explicit psect Control

. 6.8.1 Reducing Storage Requirements in Overlaid Tasks

. 6.8.2 Data Sharing Using psects

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tContents.decw$book (8 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. 6.9 Data Type Qualifiers

. 6.9.1 The const Qualifier

. 6.9.2 Thevolatile Qualifier

. 6.10 Storage-Class Specifiers

. 7 Preprocessor Directives

. 7.1 Token Definitions (#define, #undef)

. 7.1.1 Object-Like Macros

. 7.1.2 Canceling Definitions (#undef)

. 7.1.3 Function-Like Macros

. 7.1.3.1 Stringizing Preprocessing Operator (#)

. 7.1.3.2 Token Concatenation Preprocessing Operator (##)

. 7.1.4Listing Substituted Lines

. 7.2 Conditional Compilation (#if, #ifdef, #ifndef, #else, #dlif, #endif)

. 7.2.1 The defined Operator

. 7.3 The#error Directive

. 7.4 FilelInclusion (#include)

. 7.4.1 Inclusion Using Angle Brackets (<>)

. 7.4.2 Inclusion Using Quotation Marks (" ")

. 7.4.3 Token Substitution in #include Directives

. 7.5 Specification of Line Numbers (#line, #)

. 7.6 Specification of Module Name and | dentification (#module)

. 7.7 Implementation-Specific Preprocessor Directive (#pragma)

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tContents.decw$book (9 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. 7.7.1 #pragma charset

. [.7.2 #pragma psect

. 7.7.3 #pragma module

. 7.7.4 #pragmalist

. 7.7.6 #pragma[no]standard

. 7.8 Predefined Macros

. 7.8.1 PDP-11 C Predefined Macros

. 7.8.2 Digital Extension Macros

. 7.83The DATE Macro

. 7.84The TIME Macro

. 7.85The FILE Macro

. 7.86The LINE Macro

. 7.87The STDC Macro

. 7.8.8The RAD50 and RAD50L Macros

. 8 PDP-11 C Implementation Notes

. 8.1 Use of Memory Management Functions

. 8.1.1 Providing Alternative Space for Memory Management

. 8.2 Compilation Performance and Capacity on PDP-11 Host Systems

. 8.2.1 Data Caching

. 8.2.2 PDP-11 C Work File

. 8.3 PDP-11 C Run-Time Psects

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tContents.decw$book (10 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. 8.4 Overlaying Tasks

. 8.5RT-11 User Service Routine (USR) Load Area

. 8.6 Event Flags

. 8.7 Argument Passing Using Linkages

. 8.8 Defining Y our Own Locales

. 8.9 Excluding printf Format Support Code

. A PDP-11 C Compiler Messages

. A.lIntroduction

. A.2 Compiler Messages

. ALC TEMPOVERFLOW...CLP INPUT LINE LONG

. CLP INV_FILENAME...CLP MISS VALUE

. CLP_ MODE INCONSIST...LEX CLOSE FAILED

. LEX_ CMT UNCLOSED...LEX IFEVALSTACK

« LEX IFSYNTAX ...LEX INVALIDIF

. LEX_INVDEENAME ...LEX [OEXISTS

« LEX IOENF. ..LEX MESCHARSETDEF

. LEX MESCHARSETREF...LEX PASTEATEND

. LEX PASTEUPFRONT ...LEX TOOMANYMACPARM

. LEX_ UNDEFIFMAC...MIO STACKOVERFLOW

. MRF CLOSE...OGN NO OBJ PRODUCED

. OGN_NO ROOM_FOR FILE...OVL ROOT

. OVL ROQOT2...SYN BADPSECT

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tContents.decw$book (11 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. SYN BITWINTREQ...SYN DUPMAINFUNC

. SYN DUPMEMBER...SYN ILLFUNCPARAM

« SYN ILLFUNCTYPE...SYN INVBREAK

. SYN INVCASEEXPR...SYN INVFUNCCLASS

. SYN INVFUNCDECL ...SYN INVREL

« SYN INVSTORCLASS...SYN LREM_INT

. SYN MAINO2PARAMS. .. SYN SHIFTINTREQ

. SYN SIZEOFOBJ...SYN UNDEFSTRUCT

« SYN _UNOTSCALREQ. .. WF UNEXPECTED

. B PDP-11 C Header Files

. CPDP-11 C Internationalization

. C.1 Compiler Internationalization

. C.2 Run-Time Internationalization

. C.2.1 Set Locale Function (setlocale)

. C.2.2 Defining aLocale Structure (localeconv)

. C.2.3 Character Handling Functions

. D Language Summary

. D.1 Data Type Keywords

. D.2 Precedence of Operators

. D.3 Statements

. D.4 Conversion Rules

. D.5PDP-11 C Escape Sequences

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tContents.decw$book (12 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. D.6 Preprocessor Directives

. Glossary
EXAMPLES

. 1-1 Default Compiler Listing

. 1- 2 Compiler Listing Options

. 2-1Smple Additionin PDP-11 C

. 2- 2 Output of Information

. 2- 3 Output Using the Newline Character

. 2-5 Conditional Execution Using the switch Statement

. 2- 6 Looping Using the do Statement

. 2- 7 Looping Using the for Statement

. 2- 8 Case Conversion Program

. 2-9Including <stdarg.h> in a Parameter List

. 2- 10 Declaring Functions

. 2-11 Declaring Functions Passed as Arguments

. 2-12 Echo Program Using Command-Line Arguments

. 2- 13 Scope of Variable Declarations in Nested Blocks

. 3- 1 Counting Blanks, Tabs, and Newlines Using the switch Statement

. 5-1Initidlizing an Array of Structures

. 5- 2 Character String Constants and Arrays

. 5- 3 Single Storage Allocation of Unions

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tContents.decw$book (13 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. 5- 4 Structures

. 6- 1 Scope and Externally Defined Variables

. 6- 2 Reinitializing Two auto Variables

. 6- 3 Using the globalvalue Specifier

. 7-1 Nested Substitution Directives

. 7-2Usng RAD50 and RADS50L Macros

. 8-1 Setting Up Your Own Locale Tables

« C- 1 Sample Program Using local econv

. C- 2 Using the Macro and Function Versions of isalnum

FIGURES

. 1-1 DCL Commands for Developing Programs

. 2-1rvaues, lvalues, and Assigning Pointers

. 2- 2 The Indirection Operator in Assignments

. 4-1 Boolean Algebra and the Bitwise Operators

. 4- 2 Shift Operators

. 5-1 Alignment of Structure Members

TABLES

. 1-1 Copying Files Among Operating Systems

. 2-1PDP-11 C Keywords

. 2-2VAX C Keywords

. 2- 3 Trigraph Sequences and Equivalence Characters

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tContents.decw$book (14 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. 4- 1 PDP-11 C Operators

. 4- 2 Precedence of PDP-11 C Operators

. 5-1PDP-11 C Data Type Keywords

. 5-2 Size and Range of PDP-11 C Integers

. 5- 3PDP-11 C Escape Sequences

. 6-1PDP-11 C Storage Classes and Storage-Class Specifiers

. 6- 2 Scope and the Storage-Class Specifiers

. 6- 3 Location, Lifetime, and the Storage-Class K eywords

. 7-1Logica Namesfor PDP-11 C Include Files

. 7- 2 PDP-11 Character Sets

. 7- 3 Psect Types and Associated Data Types

. 8-1PDP-11 RTL Psects

. 8- 2 Globa Symbols

. B-1PDP-11 C Standard Library Header Files

. B-2PDP-11 C FCS Extension Library Header Files

. B-3PDP-11 CRMS Extension Library Header Files

. B-4PDP-11 C System Interface Header Files

. D-1 Data Type Keywords

. D- 2 Precedence of Operators

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tContents.decw$book (15 of 15)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

Available tables:

. Contents (316 entries)
. Examples (29 entries)
. Figures (7 entries)
. Tables (24 entries)

. Index (887 entries)

Examples
(887 entries)
EXAMPLES

1- 1 Default Compiler Listing

. 1- 2 Compiler Listing Options

. 2-1 Simple Additionin PDP-11 C

. 2- 2 Output of Information

. 2- 3 Output Using the Newline Character

. 2-5 Conditional Execution Using the switch Statement

. 2- 6 Looping Using the do Statement

. 2- 7 Looping Using the for Statement

. 2- 8 Case Conversion Program

. 2-9Including <stdarg.h> in a Parameter List

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tExamples.decw$book (1 of 2)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. 2-10 Declaring Functions

. 2-11 Declaring Functions Passed as Arguments

. 2- 12 Echo Program Using Command-L ine Arguments

. 2-13 Scope of Variable Declarations in Nested Blocks

. 3- 1 Counting Blanks, Tabs, and Newlines Using the switch Statement

. 5-1Initializing an Array of Structures

. 5- 2 Character String Constants and Arrays

. 5- 3 Single Storage Allocation of Unions

. 54 Structures

. 6-1 Scope and Externally Defined Variables

. 6- 2 Reinitializing Two auto Variables

. 6- 3 Using the globalvalue Specifier

. 7-1 Nested Substitution Directives

. 7-2Using RAD50 and RADS50L Macros

. 8- 1 Setting Up Your Own Locale Tables

. C-1 Sample Program Using local econv

. C-2Using the Macro and Function Versions of isalnum

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tExampl es.decw$book (2 of 2)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

Available tables:

. Contents (316 entries)
. Examples (29 entries)
. Figures (7 entries)
. Tables (24 entries)

. Index (887 entries)

Figures

(887 entries)
FIGURES

1- 1 DCL Commands for Developing Programs

. 2-1rvaues, lvalues, and Assigning Pointers

. 2- 2 Thelndirection Operator in Assignments

. 4- 1 Boolean Algebra and the Bitwise Operators

. 4- 2 Shift Operators

. 5-1 Alignment of Structure Members

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.tFigures.decw$book 1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

Available tables:

. Contents (316 entries)
. Examples (29 entries)
. Figures (7 entries)
. Tables (24 entries)

. Index (887 entries)

Tables

(887 entries)
TABLES

. 1- 1 Copying Files Among Operating Systems

. 2-1PDP-11 C Keywords

. 2-2VAX CKeywords

. 2- 3 Trigraph Sequences and Equivalence Characters

. 4- 1 PDP-11 C Operators

. 4- 2 Precedence of PDP-11 C Operators

. 5-1PDP-11 C Data Type Keywords

. 5-2 Size and Range of PDP-11 C Integers

. 5- 3PDP-11 C Escape Sequences

. 6-1PDP-11 C Storage Classes and Storage-Class Specifiers

. 6- 2 Scope and the Storage-Class Specifiers

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal 1.t Tables.decw$book (1 of 2)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

. 6- 3 Location, Lifetime, and the Storage-Class K eywords

. 7-1Logica Namesfor PDP-11 C Include Files

. /-2 PDP-11 Character Sets

. 7- 3 Psect Types and Associated Data Types

. 8-1PDP-11 RTL Psects

. 8- 2 Globa Symbols

. B-1PDP-11 C Standard Library Header Files

. B-2PDP-11 C FCS Extension Library Header Files

. B-3PDP-11 C RMS Extension Library Header Files

. B-4PDP-11 C System Interface Header Files

. D-1 Data Type Keywords

. D- 2 Precedence of Operators

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal 1.t Tables.decw$book (2 of 2)1/25/06 3:39 PM

PDP-11 C Guideto PDP-11 C

Available tables:

. Contents (316 entries)
. Examples (29 entries)
. Figures (7 entries)
. Tables (24 entries)

. Index (887 entries)

Index
(887 entries)
INDEX

A

. ACCVIO

. Additive operators

. Address-of operator

. Aggregates
. arrays
See also Bracket operators ([])

. Character string (%c)

. Character string (%S)

. Character strings

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tlndex.decw$book (1 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. defined
. Structures
. unions

. Vvariant
Allocation

. qudlifiers

. AND bitwise operator

. Arguments

. command-line

. conversion of

. DCL command-line

. evauation order in lists

. function prototypes

functions used as

main function argument
L) argc

. agv

. passing by value

. rulesgoverning

to afunction

. conversion of

. Arguments in #define preprocessor macros

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal 1.t ndex.decw$book (2 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. Arithmetic conversion

Arithmetic operators

. hegation
. Arrays

. asSexpressions

. declaration of

. 1nitialization of

. referencesto

Assignment
operators

. precedence of

. Asterisk notation (*)

. auto

. \b, backspace

Binary operators
- additive
. bitwise
. equality
- logical

. multiplication

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal 1.t ndex.decw$book (3 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. precedence of

. relationa
. shift

. subtraction
. Bit-fields

. Bitwise operators

. Blocks

. Boolean algebra

See also Bitwise operators
Braces({ })

. 1n compound statements

. ininitializer lists

. Caching

. Case sensitivity

. Cast operator

CC command
. qualifiers
CC commands

. qudlifiers

. CHANGE command

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal 1.t ndex.decw$book (4 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

Character

. constants

datatype
- variable
- Sirings
See also Arrays

. Character handling functions

Character set

. how to specify

. Character-string constants

See also Arrays

. limit of length

#charset

. preprocessor directive

Comma operator

. precedence of

. Command L anguages

. CCL
. DCL

. MCR

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal 1.t ndex.decw$book (5 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. Command-line arguments

. DCL

Commands

. Comments
Common blocks

. resident
Compilation unit

. 1n determining scope

. Compiler messages

. Compiling
. listings

. ONRSTSE
« ONRSX

. ONRT-11

. onVMS

performance issues

. on PDP-11 host systems

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal 1.t ndex.decw$book (6 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. prompting mode

. Compound statements

. Condition compilation

. Conditional operator

. precedence of

. const keyword

. Constants
. Character

« ESCape seguence

. hexadecimal escape sequence

. Character strings

. floating-point

. integer

. values of

. Conversions
. arithmetic

. function arguments

. Of datatypes

. of function arguments

. rules

. Wwith cast operator

Copying files

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal 1.t ndex.decw$book (7 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. among operating systems

. /CR Task Builder qualifier

. Cross-reference listing

. /DA Task Builder qualifier

. Datacaching

. Datasharing

. Datatype keywords

. conversion of

. function prototypes

. qudlifiers

. Declarations

aggregate
. arays
. Structures
. unions

. format of
function
. void

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal 1.t ndex.decw$book (8 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. function prototypes

. Inside of blocks

. Interpreting

. overlapping scope of

« parameters
position of

. determining scope

scalar

. Character constant

. Character variable

. enumerated
. integer

. pointer

. Vacuous tag declarations

. Declarators

. Decrement operator

. Side effects within macros

. Default widening conventions

. defined operator

. #define directive

. Definitions

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal 1.t ndex.decw$book (9 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

function

. void

. functions

. Dereferencing

See also Pointers

DIGITAL Command Language
See also Command Languages
Directives

. Hdefine

L] #df

i
else

1

3+

endif

. #Herror

if

H

. #Hifdef

. #Hinclude

. #module

. #Hpragma

. #pragma charset

. #pragmalinkage

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tlndex.decw$book (10 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. #pragmalist

. #pragmamodule

. #Hpragma psect

. #pragma[no]standard

. #undef

. Disk libraries

. Division operator

. double keyword

. Editors
. EDT

. EVE

#elif

. preprocessor directive

. Ellipses
H#else

. preprocessor directive

#endif

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.tlndex.decw$book (11 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. preprocessor directive

. enum keyword

. Enumerated data type

. declaration of

. Equality operators

#error

. preprocessor directive

. Error Messages

. Compiler

. Escape sequences

. hexadecimal values

Evaluating expressions
See Expressions

. Event flags

. Explicit psect control

. Expressions

. 3asstatements

. assignment

. changesto operators

« COmMMma

evaluation order

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.tlndex.decw$book (12 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. ambiqguity of

. primar

. array reference

. formal syntax of

. function call
. |lvalues

. parentheses

. Structure reference

. union reference

. [extern] keyword

. [extern] specifier

. \f, form feed

. FCSFSL library

. FCSRESibrary

. FileTransfer (FIT) Program

. File Transfer Program (FL X)

Files

. compiler input

. map

. float keyword

Floating-point

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tlndex.decw$book (13 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. constants

datatype

. declaration of

. double

- long

. precision of
. sizesof

. Floating-point microcode option

. Floating-point processor

Forward referencing

. Structures

. [FP Task Builder qualifier

. Function argument conversion

Functions

. address of

. argument conversion

. arguments

. asarguments

. calsto

. within macros

. declarations

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tlndex.decw$book (14 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. definitions
definitions of

. argument conversion

. identifiers

. Implicit declaration of

. introduction to

. localeconv

. parameter declaration

. parameter lists

. parameters

. excluding format code

. printf
. prototypes

. for PDP-11 C RTL functions

. scoperules

. widening rules

. return datatypes

. return values of

. scope of

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tlndex.decw$book (15 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. Setlocale
. strcpy
. undeclared

. Vvarargs functions and macros

. Vvoid function return type

. void keyword

. F floating declaration

. Global definitions

. Global names

Global storage class

. [extern]
. globaldef

. globalref

. globalvaue keyword

H

. Header files

. descriptions of
|

. ldentifiers
#f

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.tlndex.decw$book (16 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. defined operator

. preprocessor directive

#ifdef

. preprocessor directive

#ifndef

. preprocessor directive

#include

. preprocessor directive

. Includefiles

. Including files

. Increment operator

. Sde effects within macros

. Indirection operator

Initialization

o drays

. Character-string variables

. Characters
. integers
. Structures
. unions

. Initializers

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.tlndex.decw$book (17 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. Input/output

. Integer constants

. invalid
Integer data types

. declaration of

. Sizesof

. Interna storage class

I nternationalization
. compiler

. lteration statements

See also Statements

. Jump statements

. KEF11A option

. Keywords

. auto
. break
. case

- Char

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.tlndex.decw$book (18 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. const
. continue
. default

- do

. globaldef
. globalref
. globalvalue

. goto

. return

. short

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.tlndex.decw$book (19 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. union

. unsigned

. Variant struct

. Vvariant union

. Labeled statements

. /LB Task Builder qualifier

. LB:SYSLIB.OLB

. LB:[1,1]SYSLIB.OLB

. Lexica continuation

. Lexical scope

. Library

. CEISRE.OLB

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tlndex.decw$book (20 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

CEISRSX.OLB

. CFPURE.OLB

. CFPURSX.OLB

. CFPURT.OLB

. disk

. Librarian Utility Program

. resident
- RSTSE
- RSX

. RSX system
. run-time

. Supervisor-mode

. System

- System

. text

. user
Lifetime

. of stored objects

Limit

#line

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.tlndex.decw$book (21 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. preprocessor directives

. Link-time scope

#linkage

. preprocessor directive

. Linkages
Linking

. on RSTS/E systems

. 0on RSX systems

. on RT-11 systems

. on VMS systems

#list

. preprocessor directive

Locales

. defining your own

Logical

. hegation operator

. operators

. long keyword

. Loop constructs

. forloop

. loop incrementing

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tlndex.decw$book (22 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. lvalues

. Macro definitions

. canceling

. listing substituted lines

. haming parametersin

. possible side effects

. Macro substitution

. Introduction to

. Macros

. DATE

. Digital extension

. FILE

. function-like

. LINE

. object-like

. RAD50

. RAD50L
. STDC

. TIME

Main function

See also Arguments

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.tlndex.decw$book (23 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. passing parameters to

. ntax of
. Mapfile

. Maximum depth

Members
. defined

. Variant aggregates

. on RSTSE
. 0on RSX
. ONnRT-11

providing alternative space

IMEMORY qualifier

. 1ndatacaching

Messages
. compiler

. Mixed language programming

#module

. preprocessor directive

Module name

. changing the default

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tlndex.decw$book (24 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. Modulo operator

. IMP Task Builder qualifier

. /MU Task Builder qualifier

. Multiplication operators

N
« \n, newline
Negation
. arithmetic and logical
#pragma| no]standard
. preprocessor directive
- NUL
Null
- pointer
« Null statement
@)

Object module

. 1n determining scope

Objects
. of variables

. ODT system debugaing aid

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.tlndex.decw$book (25 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. One's complement operator

. Operand conversion

Operating Systems
» host
. target

. Operators

. address of (&)

- AND
. assignment
- binary
- additive
. bitwise
- equality
- logical

. modulo

. relationa
. shift

. Subtraction
- bracket

. categories of

« COmMmMma

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tlndex.decw$book (26 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. conditional

. decrement (- -)

. defined

. Increment (+4)

. indirect

. Indirection (*)

. list of
. logical OR

. hot equal to (1=)

. precedence of

. unar
. address of
. Cast

. Increment and decrement

. indirection

« hegation

. 0one's complement

. OR bitwise operator

. Overlaying tasks

. Overlays

. Parameters

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tlndex.decw$book (27 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. declarations

. function prototypes

. main function

. rulesqgoverning

. Parametersin #define preprocessor macros

PDP-11 C language

. Character strings

. €elements

. list of operators

. members

. scalars

. Structures and unions

. PDP-11 C Run-Time Library (RTL)

. linking to

. portability concerns

. PDP11C$INCLUDE logical name

. Performance | ssues

PDP-11 C work file

Pointer

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.tlndex.decw$book (28 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C
. arithmetic

. Pointer arithmetic

. Pointers

. declaration of

. null

. uUnary operator

Portability concerns

. character string length

. Character-string constants

. #charset directive

. comparing pointers and integers

. direction of bit-field packing

. global system status values

. IntvauesonaVAX

. length of argument list

. length of bit-fields

. length of identifiers

. lexical scope and compilation units

. #linkage directive

. #list directive

. long float keyword

. #module directive

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tlndex.decw$book (29 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. parameter declarations

. #pragma[no]standard directive

. predefined symbols

. preprocessor implementations

. preprocessor substitutions

. #psect directive

. referencing aggregate members

. Structure alignment

. UNIX file specifications

inline

. preprocessor directive

#pragma

. preprocessor directive

. Precedence of operators

. Ininterpreting declarations

. Predefined symbols

. Preprocessor directives

#ch
#def
#elif

arset
ine
i
se

H*
@

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tlndex.decw$book (30 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. Hendif

. Herror

. #Hifdef
. #Hifndef
. #include

. token substitution

. #line

. #linkage
. #Hist

. #module

- #pragma

. Hpragma[no]standard

. #undef

. Preprocessor substitutions

. Primary expressions

See also Expressions

. array reference

. function call

. lvalues

. parentheses

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.tlndex.decw$book (31 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. Structure reference

. union reference

Primary operators

. precedence of

. Privacy
See also Scope

Program creation

. compiling
. editing
. running

. Program structure

. ANSl standard

. introduction to

. portability concerns

UNIX system environment

#psect

. preprocessor directive

. \r, carriage return

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tlndex.decw$book (32 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. RAD50
. RAD50L
. register

. register keyword

. Relational operators

. Reserved words

. Resident libraries

. RMSRESlibrary

. RUN command

. run-timeerrors

. Run-time errors

. Run-timelibrary

. Run-time PSECTS

. Scadar datatypes

. declarations
. Character
. enumerated

. floating-point

. integer

. pointers
. defined

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tlndex.decw$book (33 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C
. Scope

. auto variables

. 1nacompilation unit

. Inaprogram

. 1nan object module

. lexical scope

. link-time scope

. of functions

. position of declarations

. Selection statements

. Shift operators

. Sizeof keyword

Slash characters

. double

. /SP Task Builder qualifier

Specifiers
. Storageclass
Stack

cal cul ating space

Statements

blocks

. break

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.tlndex.decw$book (34 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. Case

. compound
. continue
. default

. do

. expressions

. while

. Static

. static keyword

. Static storage class

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.tlndex.decw$book (35 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

Storage

. qualifiers

. Storage allocation

. explicit psect control

. for program sections

. lifetime of variables

. location of

. overlaid tasks

. psect
. registers

. run-time stack

. Storage classes

. defined

. global

. definitions and declarations

. In determining scope

. internal

. auto keyword

. reqgister keyword

. list of

. order of keywords in declarations

qualifiers

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tlndex.decw$book (36 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. const

. introduced
. volatile

. Specifiers

. auto keyword

. extern

. globaldef
. globalref

. globalvalue

. keyword register

. list of
. (none)
. static

. static keyword

. Storage-class modifiers

. Storage-class qualifiers

. strcpy
String data type

. declaration of

See also Arrays

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.tlndex.decw$book (37 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. String literal concatenation

. Stringizing preprocessing operator

. Strncpy
Structures
. bit-fields

. declaration of

. forward referencing

. initialization

. initialization of

. introduction to

members of

. referencesto

. Variant aggregates

Substitution

« Macros

token

within #include directives

Subtraction operator

supervisor-mode Library

. Symbolic constants

Syntax

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.tlndex.decw$book (38 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. Mmain function

. SYS

. SYSPLIBRARY

. \t, horizontal tab

Tags

. Vacuous declarations

Task Builder

. command-line elements

. creating CMD files

. creating ODL files

« EITOr messages

. qualifiers

. Uuses

. Taskimage
Token
substitution

. within #include directives

. Token concatenation preprocessing operator

. Token replacement

Tranferring files

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tlndex.decw$book (39 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. among operating systems

. Trigraphs
truth

. vaue

. TSK filetype

. Type conversions

. Type specifiers

. typedef keyword

U

Unary expressions
. address of
. Casl

. Increment and decrement

. indirection

« hegation

. 0one's complement

. Sizeof

Unary operators

. precedence of

#undef

. preprocessor directive

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.tlndex.decw$book (40 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

Union
. initialization
Unions

. declaration of

. initialization of

. Introduction to

members of

. referencesto

. Variant aggregates

. User Service Routine load area

User-defined functions

See Functions

. Usud arithmetic conversions

\

« \v, vertical tab

. Vacuous tag declarations
Vaues

. defined

- Lvalues

. of constants

. of variables

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.tlndex.decw$book (41 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

- Rvalues
Variables

. Character
declarations

. format of

. declared in overlapping blocks

. identifiers

. Objects of

. values of

. Vvariant union

Virtual address space

« INCreasing

. VMS EXCHANGE Utility

. void keyword

. Vvolatile keyword

« White space

. XOR bitwise operator

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.tlndex.decw$book (42 of 42)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

1989, 1990, 1992Digital Equipment Corporation

PDP-11C
Guideto PDP-11C

January 1992

This guide describes how to create, link, and execute PDP-11 C
programs. It contains information on PDP-11 C program development
in the PDP-11 and VMS environments and cross-system portability
concerns.

Revision/Update Information: Thisisarevised manual.
Operating System and Version: Micro /RSX Version 4.3 or higher

RSTS/E Version 10.0 or higher
RSX-11M (mapped) Version 4.6 or
higher
RSX-11M-PLUS Version 4.3 or
higher
RT-11 Version 5.5 or higher
VMSVersion 5.4 or higher

Software Version: PDP-11 C Version 1.2

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaall.p5.decw$book1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear in
this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that
is not supplied by Digital Equipment Corporation or its affiliated companies.
Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c)(1)(ii) of the Rightsin Technical Data
and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1989, 1990, 1992.

All Rights Reserved.

Printed in U.S.A.

The Reader's Comment form at the end of this document requests your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: DEC, PDP, PDP-11,
Micro /RSX, RSTS, RSTS/E, RSX, RSX-11M, RSX-IIM-PLUS, RSX-11S, RT-11,
RX-11, VAX, VAXcluster, VAX-11 RSX, VMS, and the DIGITAL logo.

UNIX isaregistered trademark of UNIX System Laboratories, Inc.

This document is available on CDROM.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaall.p6.decw$book1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Preface

This guide combines reference information for the PDP-11 C
programming language with information necessary for
developing and debugging PDP-11 C programs on PDP-11
and VMS environments. The guide a so includes information
concerning the porting of C programs to and from PDP-11
and other environments, as well as the differences between
PDP-11 C and other implementations of the C programming
language. For additional information concerning porting
programs to and from other operating systems, refer to the
PDP-11 C Run-Time Library Reference Manual .

Intended Audience

This guide is intended for experienced programmers who
need to learn PDP-11 C, or for users who need to know the
difference between PDP-11 C and other implementations.
Readers should be familiar with one high-level language, the
DIGITAL Command Language (DCL) and their operating
systems.

Document Structure

This guide has eight chapters, four appendixes, and a
glossary. They are as follows:

Chapter 1 explains how to edit, compile, link, and run
aPDP-11 C program. It also describes how to use
debugging aids.

Chapter 2 explains program structure.

Chapter 3 describes PDP-11 C statements.

Chapter 4 discusses expressions and operators used in
PDP-11 C.

Chapter 5 explains data types and declarations.

Chapter 6 describes storage classes and allocation.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pll.decw$book (1 of 5)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

Chapter 7 explains preprocessor directives.

Chapter 8 explains features of the PDP-11 C implemen-
tation.

Appendix A lists PDP-11 C compiler messages.
Appendix B describes PDP-11 C definition modules.

Appendix C describes compiler and run-time interna-
tionalization.

Appendix D provides asummary of al PDP-11 C
language features.

The Glossary provides an alphabetical listing of key terms

used in this manual.
Associated Documents

Y ou may find the following documents useful when
programming in PDP-11 C:

PDP-11 C Installation Guide -For system programmers
who install the PDP-11 C software.

PDP-11 C Run-Time Library Reference Manual -For
programmers who wish to use the PDP-11 C Run-Time
Library functions and who need additional information
concerning porting programs to and from other operating
systems.

RSX-11M/M-PLUS and Micro /RSX Task Builder
Manual -For programmers who need information about
using the Task Builder on RSX systems.

RSTYE Task Builder Reference Manual -For program-
mers who need information about using the Task Builder
on RSTS/E systems.

RT-11 System Utilities Manual -For programmers who

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pll.decw$book (2 of 5)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

need information about using the linker on RT-11.

The C Programming Language

1

_-For those who need a
more intensive tutorial than that provided in Chapter 2.
Conventions

Convention Meaning

XXX

The symbol

XXX

represents asingle
stroke of akey on aterminal. For
example,

Tab

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaall.pll.decw$book (3 of 5)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

indicates that you
should press the key labeled Tab.
Ctrl/ x The symbol Ctrl/ x , where letter x rep-
resents aterminal control character,
Is generated by holding down the
Ctrl key while pressing the key of the
specified terminal character.
... Horizonta ellipsisindicates that you
can enter additional parameters,
values or other information. A comma
that precedes the ellipsis indicates that
successive items must be separated by
commas.

A vertical dlipsisindicates that not
all the text of a program or program
output isillustrated. Only relevant
material is shown in the example.

[] Brackets usually indicate optional
syntax. However, brackets that are
part of directory names and brackets
that are used to delimit the dimen-
sions of amultidimensional array in
PDP-11 C source code do not indicate
optional syntax.

UPPERCASE WORDS Uppercase words and letters in syntax
formats indicate that you enter the
word or |etter exactly as shown.

|lowercase words L owercase words or |ettersin syntax
formats indicate that you substitute a
word or value of your choice.

boldface Boldface typein interactive examples
Is used to show user input. Boldface
type in the text identifies language
keywords and the names of PDP-11 C
Run-Time Library functions.

italic Italic type is used to identify variable
names and the names of definition

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pll.decw$book (4 of 5)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

modul es.

sc-specifier ::
auto

static

extern
register

In syntax definitions, items appear-
Ing on separate lines are mutually
exclusive alternatives.

i A deltasymbol isused in some con-
textsto indicate asingle ASCII space
character.

Unless otherwise stated, all commands are followed by
pressing the Return key.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pll.decw$book (5 of 5)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

1. Developing PDP-11 C Programs

This chapter describes how to create, compile, link, and run
aPDP-11 C program using DCL commands as well as
aternative MCR and CCL commands where applicable.

The host operating systems are as follows:

RSX-11M-PLUS
RSX-11M (mapped)
Micro /RSX

RSTYE (RSX RT)

RT-11 (XM Monitor only)

VMS

The target operating systems are as follows:

RSX-11IM-PLUS
RSX-11M

RSX-11S

Micro /RSX
RSTS/E (RSX RT)
RSTS/E (RT-11 RT)
RT-11

VAX-11 RSX

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.p13.decw$book1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

1.1 DCL Commandsfor Program Development

This section briefly describes the Concise Command
Language (CCL), DIGITAL Command Language (DCL), and
Monitor Console Routine (MCR) commands used to create,
compile, link, and run aPDP-11 C program. Figure 1-1
shows these commands. For a more detailed description

of each command onthe VM S, RSX, RSTS/E, and RT-11
operating systems, see the sections that follow.

The following example shows each of the commands shown
in Figure 1-1 executed in sequence. For the specific
compiler and linker command formats and qualifiers on
your operating system, see the section on linking for that
system.

$ edit ave.c

$ccave

$link ave,lb:[1,1]cfpursx/library

$run ave

Throughout this chapter, the PDP-11 C compile command
will be CC in sections that are not referring to a specific
operating system. However, note that different operating
systems require different compile commands. Refer to
Section 1.3 for the different command formats found on

each specific operating system.

To create a PDP-11 C source program at DCL level, you
must invoke atext editor. In the previous example, Digital's
standard editing utility, EDT, isinvoked to create the source
program AVE.C. You can use the EDT editor on RSX,
RSTS/E, and VMS systems. Other editors are available on
specific operating systems. By convention, the file type for a
PDP-11 C source program is the letter C.

When you compile your program using PDP-11 C, you
do not have to specify thefile type; by default, PDP-11 C
searches for afile with a C file type.

If your source program compiles successfully, the PDP-

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl4.decw$book (1 of 2)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

11 C compiler creates an object file with the file type OBJ.
However, if the PDP-11 C compiler detects errorsin your
source program, the compiler displays each error on your
screen and then returns to the operating system prompt.

Y ou can then reinvoke your text editor to correct the errors.
Object fileswill be created if the error severity is either a
warning level or an informational level. If the error severity
isan error level, no object file will be created.

Y ou can include command qualifiers when invoking the
compiler. Command qualifiers cause the PDP-11 C compiler
to perform additional actions. In the following example, the
/LIST qualifier causes the PDP-11 C compiler to produce a
listing file:

$cellist ave

For acomplete list and explanation of al the command
gualifiers supported by the PDP-11 C compiler, see
Section 1.3.4.

Once your program has compiled successfully, you invoke the
Task Builder (for RSTS/E or RSX target systems) or the RT-
11 Linker (for RT-11 or RSTSE target systems) to create an
executable image file. The Task Builder and RT-11 Linker
use the object file produced by PDP-11 C asinput to produce
an executablefile.

Y ou can specify command qualifiers with the DCL command
LINK or with the MCR or CCL command TKB. For a

list and explanation of the most commonly used command
qualifiers available with the LINK or TKB commands, see
Section 1.5.5.3.

Once the executable file has been created, you can run your
program with the RUN command.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl4.decw$book (2 of 2)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

1.2 Creating a PDP-11 C Program

To create or modify a PDP-11 C program, you must invoke
atext editor. The following table shows which editors are
available for each operating system.

System Editors

RSX EDT
RSTSEEDT
VMSEDT or VAXTPU
RT-11 KED

1.2.1Using EDT
The Digital Editor (EDT) is an interactive general-purpose
text editor that offers three editing modes. keypad, nokeypad,
and line. With keypad mode, you issue commands by using
the numeric keypad that appears on the right of your main
keyboard. With nokeypad mode, you enter commands on
acommand line, which EDT processes when you press the
Return key. With line mode, you issue commands at the line
mode asterisk prompt (

*

). Line mode focuses on the line as
the unit of text.

EDT isavailable for use on RSTSE, RSX, and VMS systems.
The editor available on RT-11 isKED, referenced in
Section 1.2.3 of this guide.

K eypad mode and nokeypad mode continually display the
contents of the file on your screen. When you begin your
editing session, editing in line mode is the default. Unlike
keypad and nokeypad mode, line mode displays only oneline

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl6.decw$book (1 of 6)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

of text on your screen.

Use the following syntax to invoke the EDT editor and create
afile.

OnRSTSIE :
Under DCL, enter:
edit [/qualifier . . .] file-specification

When you are working under RSTS/E DCL, you have the
option of using the CCL EDT command with its qualifiers
and specifiers.

Under CCL, enter:
edt [[output_file spec] [,journal-file]=jrn_file _spec] input_file spec
[,command-file] [/qualifier . ..]

OnRSX :
Under DCL, enter:
edit/edt [/qudlifiers. ..] input_file spec
Under MCR, enter:
edt [[output_file spec][,journal-file=jrn_file_spec]] input_file_spec[,com_
file_spec] [/qudlifier. . .]
OnVMS:

Use the following command:
edit/edt file_spec

Use these keys to move between types of editing modes:

To change from line mode to keypad mode, enter the
CHANGE command at the asterisk prompt.

To return to line mode from keypad mode, press Ctrl/Z.
To change from line mode to nokeypad mode, use the SET

NOKEY PAD command, and then enter the CHANGE
command at the asterisk prompt.

When you invoke EDT to create afile, ajournal fileis created

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl6.decw$book (2 of 6)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

automatically. You can use thisjournal file to recover your
editsif the system fails during an editing session. To recover
your edits, use the EDIT/RECOVER command followed by
the name of the file you were editing.

EDT provides an online help facility that you can access
during an editing session.

In line mode, use the HEL P command. EDT displays
genera information on EDT as well as detailed
information on both line mode editing and nokeypad
mode editing.

In keypad mode, press the HEL P key or the PF2 key.
EDT displays a keypad diagram on your screen and a list
of keypad editing keys. For help on a specific editing key,
press that key.

On VMS, you can define a global symbol for the EDIT
/EDT command by placing a symbol definition in your
LOGIN.COM file. For example:

$EDT =="EDIT/EDT"

After thiscommand line is executed, you can enter EDT at
the DCL prompt followed by the name of the file you want to
modify or create.

For more information on using the advanced features of
EDT on VMS, see the Guide to VMS Text Processing . For
more information on using the advanced features of EDT on
RSTSE and RSX, seethe EDT Editor Manual .

1.2.2 Using VAXTPU

The VAX Text Processing Utility (VAXTPU) isahigh-
performance, programmable utility. VAXTPU provides the
Extensible VAX Editor (EVE) editing interface. Y ou can also
create your own interfaces.

Like EDT, VAXTPU provides you with an online help facility
that you can access during your editing session. When you
invoke VAXTPU to create afile, ajournal fileis created

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl6.decw$book (3 of 6)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

automatically. You can use thisjournal file to recover your
editsif the system fails during an editing session. To recover
your edits, use the EVE/RECOVER command.

Unlike EDT, VAXTPU provides multiple windows. This
feature allows you to view two files on your screen at the
same time. VAXTPU aso provides you with other advanced
features, such as two editing interfaces.

The following section describes how to use the EVE interface.

The EVE Interface

EVE isan interactive text editor that allows you to execute
common editing functions using the EVE keypad, or to
execute more advanced functions by typing commands on

the EVE command line. The following command line invokes
the EVE editor and creates the file, AVE.C:

$ edit/tpu ave.c

Y ou can define aglobal symbol for the EDIT/TPU command
by placing a symbol definition in your LOGIN.COM file. For
example:

$EVE =="EDIT/TPU"

After this command line is executed, you can enter EVE at
the DCL prompt followed by the name of the file you want to
modify or create.

VAXTPU uses a buffer, atemporary holding area, to manage
the editing session. The contents of the edit session are shown
in an area of the screen that is called awindow. The [End

of file] message defines the end of the workspace. It isonly
visible on the screen and is not interpreted. A highlighted
status line, located at the bottom of the window, shows the
buffer name, current mode (insert or overstrike), and the
current direction (forward or reverse).

VAXTPU manages the buffers with commands that do the
following:

List all of the buffers used in this edit session

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl6.decw$book (4 of 6)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

Delete a specified buffer
Change the buffer displayed in the window

Create a new buffer that contains the contents of a
specified file

Write the contents of a buffer to a specified file

The EVE editing interface allows you to view more than
one window on your terminal screen at the same time.

For example, you can edit the source code in one window
and display thelisting file in another window. To help you
manage the windows, VAXTPU commands are available to
do the following:

Split the screen into more than one window
Put the cursor in the next, previous or other window
Restore the current window as a single, large window

Enlarge or shrink the current window by a specified
number of lines

For more information about windows, buffers, and the
VAXTPU commands, access the online help utility for the
EVE editor. Pressthe Do or PF4 key, or enter Ctrl/B to

reveal the VAXTPU prompt and enter the HEL P command.
Guide to VMS Text Processing has more information on using
the advanced features of EVE.

1.2.3Using KED

The PDP-11 Keypad Editor (KED) is a program that you
can useto create, inspect, and edit files. When you use the
keypad editor, you control the different editing processes by
using a set of functions and a set of commands.

The following command line invokes the editor and creates
thefile AVE.C:

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl6.decw$book (5 of 6)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

. edit ave.c

The keypad editor provides a help function. When the keypad
editor fails, it signals you by loading a one line explanation of
the signal in an internal message buffer. When you use the
help function, the editor temporarily erases the bottom three
screen lines and displays the explanation.

For more information about KED, see the PDP-11 Keypad
Editor User's Guide.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl6.decw$book (6 of 6)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

1.3 Compiling a PDP-11 C Program

The PDP-11 C compiler can compile any program
conforming to the ANSI Standard for the C language. The
PDP-11 C compiler is highly compatible with VAX C.

The PDP-11 C compiler performs the following functions:

Detects errorsin your source program

Displays each error on your screen and writes the errors
to thelisting file (if selected)

Generates machine language instructions from the source
statements

Groups these language instructions into an object module
for the Task Builder or the RT-11 Linker

1.3.1 The Compile Command

To invoke the PDP-11 C compiler, use the compile command.
The compile command has the following format:
command[/qualifier .. .] [file-spec [/qudlifier .. .]], ...

The command used to invoke the compiler differs depending
on the specific operating system and command line
interpreter you are using. See the following sections for

the specific command you will need.

Note

All user input is converted to uppercase unless
enclosed by quotation marks.

/qualifier
Specifies an action to be performed by the compiler on all

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl7.decwdbook (1 of 22)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

files or specific files listed. When a qualifier appears directly
after the compile command, it affects all the fileslisted.
However, when aqualifier appears after afile specification
in acomma-separated lit, it affects only the file that
immediately precedesit. When files are concatenated, the
qgualifier affects all the filesin the concatenation.

file-spec

Specifies an input source file that contains the program or
module to be compiled. Y ou are not required to specify afile
type if you have given your filea C file type; the PDP-11 C
compiler adopts the default file type C.

Y ou can include more than one file specification on the
same command line by separating the file specifications
with either acomma (,) or aplussign (+). If you separate
the file specifications with commas, you can control which
source files are affected by each qualifier. Using the comma
separator also causes the compiler to generate individual
output files for each source file specified. In the following
example, the PDP-11 C compiler creates an object file for
each source file but creates only alisting file for the source
files PROG1 and PROGS.

$ cc/list progl, prog2/nolist, prog3

If you separate file specifications with plus signs, the PDP-11
C compiler concatenates each of the specified source files

to form a compilation unit and creates one object file and

one listing file. In the following example, only one object file
Is created, PROG3.0BJ, and only one listing file is created,
PROG2.LST. Unlike VAX C, the names of default object and
listing files are taken from the last source filein thelist.

$ cc progl + prog2/list + prog3

Note that any qualifiers specified for asingle file within alist
of files separated with plus signs affect all the filesin the list.

1.3.1.1 Compiling a Program on RSX Systems

On RSX systems, you can invoke the PDP-11 C compiler
from either DCL or MCR. Y ou can invoke the compiler from
DCL by entering the following command line:

CC[/qualifier .. .] [file_spec[/qudlifier...]],...

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl7.decwdbook (2 of 22)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

PDP-11 Cisinstaled with the MCR task name CCC. Y ou
can invoke the compiler from MCR by entering the following
command line:

CCCl/qudlifier . . .] [file_spec[/qudlifier...]], ...

The following example produces an object module format that
can be read by the RSX Task Builder:
$ ccecprogl

1.3.1.2 Compiling a Program on RSTS/E Systems
Y ou can invoke the compiler on RSTS/E using either the CCL
CCC command or the DCL CC command.

To use CCL, enter:
CCCl/qudlifier . . .] [file_spec[/qudlifier...]], ...

Touse DCL, enter:
CCl/qualifier . . .] [file_spec [/qualifier...]], ...

The following examples produce object module formats that
can be read by the RSTS/E Task Builder:

$ ccc progl

$ccprogl

Note

The OBJ formats for RSX and RSTS/E are identical.

1.3.1.3 Compiling a Program on RT-11 Systems

On RT-11 systems, you invoke the compiler by using the CC
command:

CC [/qualifier ...] [file_spec[/qudifier...]], ...

The following example produces an object module format
that can be linked by the RT-11 Linker on RT-11 or RSTSE
systems:

$cc/list progl

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl7.decwdbook (3 of 22)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

Note

On RT-11 systems, you must include at least asingle
space character between the CC command and the
first qualifier or file specification.

See Section 1.3.4 for more details on command qualifiers and
how to avoid using parentheses on the command line.

1.3.1.4 Compiling a Program on VM S Systems

To invoke the PDP-11 C compiler on VMS systems, use the
PDPCC command:

PDPCC [/qudlifier .. .] [file_spec[/qudifier...]], ...

The resulting object file will be in the correct format for the
PDP-11 target systems.

The following example produces an object file (OBJfile type)
that can be linked by the RSX Task Builder on either RSX
systems or under the RSX emulator on RSTS/E systems:

$ pdpcc/environment=(pic)/list prog2

If you have the VAX-11 RSX emulator installed on your
VMS system, you can also link this object fileon VMS.

1.3.2 Prompt M ode

The PDP-11 C compiler supports a prompting mode that
enables you to create an environment to compile one or more
programs. In prompting mode, you can set the qualifiers
once and until you reset the qualifiers or exit the prompting
mode, those qualifiers will remain activated. This modeis
invoked whenever the compiler is called without specifying

any filespec.

The format of the command level interface is exactly the
same as that of DCL. For example:

$cc

CC> progllist/environment=fpu

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl7.decwdbook (4 of 22)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

Toreturnto DCL, enter Ctrl/Z.

In this example, the file PROGL is compiled, alisting fileis
created, and the compiler generates code using the Floating
Point Processor.

To continue alinein prompting mode, use a hyphen (-).
The command line processor treats this exactly like DCL
does. Note that any prompt line that contains an input

file specification and does not end in a hyphen will start a
compilation. The next CC> prompt will be displayed only
after that compilation has finished. To exit from prompt
mode, enter Ctrl/Z. Aswith other PDP-11 layered products,
any command line that is terminated by Ctrl/Z is not
executed. Incomplete command lines consisting only of
gualifiers may be used to establish defaults for the remainder
of the compilation.

The following exampleillustrates prompting mode and the
informational messages that are displayed.

$cc

CC> /define=(check=1,debug=1)

CC> progl

CC> prog2,prog3

CC> prog4+prog5+prog6-

_CC> ,prog7

To return to DCL, enter Ctrl/Z.
The previous example equates to the following DCL
commands:
$ cc/define=(check=1,debug=1) progl
$ cc/define=(check=1,debug=1) prog2,pr og3
$ cc/define=(check=1,debug=1) prog4+prog5+prog6,pr og7

1.3.3 Indirect Command Files

The compiler can receive input from an indirect command
file. Thisfile, which has a default file extension CMD,
contains the same type of information as required by the
prompting mode. The only difference is that thereisno
Ctrl/Z terminating the input. The compiler stops processing
command lines when the end-of -file is reached.

Y ou can invoke an indirect command file in one of two ways.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl7.decwdbook (5 of 22)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

Specify the indirect command-file specification preceded
by the at sign (@) character. (Not available on RT-11
systems.)

Specify the indirect command file specification as avalue
to the/COMMAND qualifier.

Y ou can use either method in the command line or in
prompting mode.

Note

Y ou cannot specify indirect filesusing the at sign
(@) character on RT-11 command lines; use the
ICOMMAND qualifier.

Y ou may also use preceding qualifiers to establish defaults
for the remainder of the compilations in the command file.
Within an indirect command file, the exclamation point (!)
delimits a comment that extends from ! to the end of the

line. Indirect command-file invocations may be nested. The
maximum nesting depth is determined by available resources
In the host environment.

The following example illustrates the use of PDP-11 C
indirect command files:

$ type myccsetup.cmd

I Set up file for compilation under PDP-11 C
/IDEFINE=("CHECK=1","DEBUG=1") ! Enable CHECK and DEBUG variants
/INCLUDE_DIRECTORY =PROJ$:.[HEADERS]
/LIST

/ENVIRONMENT=(NOFPU,NOPIC)

$type build.cmd

@MY CCSETUP

PROG1

PROG2,PROG3

PROG4+PROG5+PROG6-

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl7.decwdbook (6 of 22)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

,PROG7
$ cc @build

The effect of executing the previous command yields the

following results for the last two linesin the BUILD.CMD

command:

CC/DEFINE = ("CHECK=1", "DEBUG=1")/INCLUDE_DIRECTORY =PROJ$:.[HEADERS]-
/LIST/ENVIRONMENT=(NOFPU,NOPIC)-
PROG1,PROG2,PROG3,PROG4+PROG5+PROG6,PROG7

1.3.4 The PDP-11 C Command Qualifiers

Thefollowing list shows all the command qualifiers and their

defaults. A description of each qualifier follows the list.

Command Qualifiers Default

/COMMAND-=file-spec/COMMAND

/[NO]DEFINE[=(definition list)] /NODEFINE

/ENVIRONMENT=([NO]FPU, [NO]JPIC) /ENVIRONMENT=(FPU,NOPIC)

/INO]JERROR_LIMIT /ERROR_LIMIT=30

/INO]INCLUDE_DIRECTORY =(pathname][, . ..])
/INOINCLUDE_DIRECTORY

[[INO]LIST[=file-spec] INOLIST

[INOJMACRO /NOMACRO

[INOIMEMORY /NOMEMORY

/[INOJMODULE /MODULE

/[NO]OBJECT[=file-spec] /OBJECT

/SHOWI[=(option, . . .)] (See description for default values)

/INO]STANDARD[=(option, .. .)] INOSTANDARD

/INO]TERMINAL /TERMINAL=NOSOURCE

/INO]JTITLE /NOTITLE

/INO]JUNDEFINE[=(undefine list)] /NOUNDEFINE

[INO]JWARNINGS[=(option, . . .)] /WARNINGS

/INOJWORK_FILE_SIZE /INOWORK_FILE_SIZE

Note

Using [NO] before any qualifier prohibits specifying
any values for the qualifier.

Y ou can place command qualifiers either on the command

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl7.decwdbook (7 of 22)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

lineitself or on individual file specifications. If placed on a
file specification, the qualifier affects only the compilation
of the specified source file and all subsequent source files
in the compilation unit. If placed on the command used to
invoke PDP-11 C, the qualifier affects all sourcefilesinall
compilation units unlessit is overridden by a qualifier on an
individual file specification.

Several command qualifiers accept a comma-separated

list of values enclosed within parenthesis. However on
RT-11 systems, RT-11 factors commands that contain
parenthesis resulting in an incorrect or inappropriate PDP-
11 C command line. Use left and right curly braces({ }) in
place of left and right parenthesis on RT-11 command lines.

The rest of this section describes the command qualifiers.

/COMMAND-=file-spec

Specifies an indirect command file. Y ou must specify a
file-spec value. The default file typeis CMD. Refer to
Section 1.3.3 for more information on command files.

/[[NO]DEFINE=(" identifier[(param, .. .)] token-string "
[.-.])

/INOJUNDEFINE=(" identifier "[,...])

Performs, from the command line, the same functions
performed by the #define and #undef preprocessor
directives. The /DEFINE qualifier defines a token string
or macro to be substituted for every occurrence of a given
identifier in the compilation units; /UNDEFINE cancelsa
previous definition. When /DEFINE is specified multiple
times for a compilation unit, only the last /DEFINE is
effective; the sameistrue for the /UNDEFINE qudlifier.
When both /DEFINE and /UNDEFINE are specified for a
compilation unit, /DEFINE is evaluated before /UNDEFINE.

Each string literal specified with the/DEFINE and
/UNDEFINE qualifiersis processed as though the string
(without quotes) was specified as the right-hand portion

of the #define and #undef preprocessor directives,
respectively. Thus, the following command-line qualifiers
are equivalent to the preprocessor directives that follow them:

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl7.decwdbook (8 of 22)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

/IDEFINE=("DUMP","CLEAR(X) (x=0)")
/UNDEFINE=("DEBUG","TEST")

define DUMP

define CLEAR(X) (x=0)

undef DEBUG

undef TEST

Y ou can specify quotation marks within a macro definition by

placing one quotation adjacent to another. For instance, the

following command-line qualifier and preprocessor directive

are equivalent:

/IDEFINE="COMPLAIN (fprintf(stderr, ""Unrecognized option\n""))"
define COMPLAIN (fprintf(stderr, "Unrecognized option\n"))

The /UNDEFINE qualifier is useful for undefining the
predefined PDP-11 C preprocessor constants. For example,
If you use a preprocessor constant (suchas __pdplic or
__PDP11C) to conditionally compile segments of PDP-11 C
code, you can undefine that constant to see how the portable
sections of your program execute. Consider the following
program:

#include <stdio.h>

int main()

{

#ifdef _ PDP11C

printf("1'm being compiled with PDP-11 C.");

#else

printf("I'm being compiled on some other compiler.”);
#Hendif

}

For example, on RSTS/E systems, output from the program is
asfollows:

$ cc exampl.c

$ link/cc exampl.obj

$ run exampl.tsk

I'm being compiled with PDP-11 C.

$ cc/undefine="__pdplic" exampl

$ link/cc exampl.obj

$ run exampl.tsk

I'm being compiled on some other compiler.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl7.decwdbook (9 of 22)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

Since /DEFINE and /UNDEFINE are not part of the source
file, they are not associated with alisting line number or
source line number. Therefore, when an error occursin
acommand line definition, the message displayed at the
terminal does not indicate aline number. In the listing

file, these diagnostic messages are printed after the source
listing in the order that they were encountered. When the
expansion of a definition causes an error at a specific source
line in the program, the diagnostics-both at the terminal and
in the listing file-are associated with that source line.

A command line containing the /DEFINE and the
/UNDEFINE qualifiers can be 256 characters long.
Continuation characters cannot appear within quotes or
they will be included in the token stream. The length of a
command line cannot exceed the maximum length allowed
by DCL.

The defaults are /NODEFINE and /NOUNDEFINE.

/ENVIRONMENT=([NO]JFPU, [NO]PIC)

Specifies the type of environment in which the generated code
Isto execute. Y ou can specify the following values: [NO]FPU,
[NOJPIC. If you specify this qualifier, you must provide at
least one value, or an error message will be generated.

If you specify or default to FPU, floating-point processor
instructions will be generated as appropriate. If you specify
NOFPU, floating-point processor instructions will not be
generated.

Do not specify FPU if you are going to link against the
Extended Instruction Set (EIS) run-time library. If any
of the modules are compiled for FPU, you should link

to the FPU run-time library. For more information, see
Section 1.5.8.1.

If you specify PIC, PDP-11 C produces position-independent
code. If you specify or default to NOPIC, code may be
generated that is not position-independent. For information
about position-independent code, see the discussion in the
PDP-11 MACRO-11 Language Reference Manual .

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl7.decw$book (10 of 22)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11C
The default is/ENVIRONMENT=(FPU,NOPIC)

/INOJERROR_LIMIT[=valu€]

Specifies the maximum error count. If the number of errors
encountered (exclusive of informationals and warnings)
exceeds the integer value specified, the compilation is
aborted without further source code analysis. The default is
/ERROR_LIMIT=30. If you specify the/NOERROR_LIMIT
qualifier, compilation proceeds regardless of the number of
errors encountered.

/[INO]INCLUDE_DIRECTORY=(pathname],...])
Provides an additional level of search for include files. Each
pathname argument can be either alogical name or alega
directory specification.

The forms of inclusion affected are the # include " file-
spec” and # include <file-spec> forms. The quoted formis
generally used with user-defined header files. The bracketed
form is generally used with header files supplied with PDP-
11 C.

The default is/NOINCLUDE_DIRECTORY .

/[NO]L I ST[=file-spec]

Directs the compiler to produce alisting file. Y ou must
specify this qualifier to get any type of listing. See the /SHOW
qualifier for an explanation of the options available for the
contents of the listing file.

When /LIST isin effect, the compiler, by default, creates a
listing file with the same name as the source file and with the
LST file extension. If you include afile specification with the
/LIST quadlifier, the compiler uses that specification to name
thelisting file.

The default is/NOLIST.

[[NOJMACRO[=file-spec]

Specifiesa MACRO-11 file specification. If you do not specify
afile name, the default file name is used, which isthe file
name of the last file in the compilation unit. If you do not
specify afiletype, thetype MAC isused. A lega MACRO-11

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl7.decw$book (11 of 22)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

source program corresponding to the translation of the source
program is placed in the specified file.

The /MACRO qudlifier differs from the/SHOW=MACHINE _
CODE qudlifier asfollows: the/MACRO qualifier places a
MACRO-11 source program in a separate file rather than
thelisting file. The MACRO-11 source program may be
assembled under MACRO-11 without modification. The
/ISHOW=MACHINE_CODE qualifier places a machine code
listing similar to the list file output produced by MACRO-11
into the listing file.

The default is/INOMACRO.

[[INOJMEMORY[=valu€]

Y ou use this qualifier to determine the amount (in 8Kb
regions) of extended memory to allocate in a PDP-11
host environment. This qualifier isignored in VMS host
environments and on PDP-11 host systems that do not
support the |- and D-space feature.

This switch only affects compiler performance. The specified
integer value determines the number of 8192-byte regions
that are to be allocated. Y ou can specify an integer between
0 and 511 to allocate up to the 4Mb architectural limit of

the PDP-11. If the specified amount of extended memory

Is not available, the largest number of available 8192-byte
regions are allocated. In general, the greater amount of
extended memory allocated, the less work file activity and the
faster the performance of the compiler. However, using more
extended memory reduces the amount of remaining memory
for other tasks or jobs while PDP-11 C is operating. The
default valueis/IMEMORY =8. The/NOMEMORY qualifier
Is equivalent to/ MEMORY =0.

Note

If thisqualifier isused, it must be specified with the
first compilation unit.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl7.decw$book (12 of 22)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

/[[NOJMODUL E=(identifier |" string " [,identifier |" string"])
The module identifier isthe name used by the object librarian,
and the identifier appearsin object libraries, object librarian
listings, and link maps. The last-file-spec-name is the | ast

file name specified for a given compilation unit (that is, the
last file in alist separated by plus (+) signs). By defaullt,
PDP-11 C uses the last name as the module identifier. The
module qualifier can be used to override the default module
identifier or the module identifier specified by the #module
or #pragma module preprocessor directives. This qualifier
will accept at most two identifier or string values. If this
gualifier is asserted, the user must supply at least the first
value.

The default is/MODULE=(last-file-spec-name, "V 1.0").

/[[NO]JOBJECT[=file-spec]

Directs the compiler to produce an object module. By defaullt,
/OBJECT creates an object module file with the same name
asthe last source file of a compilation unit and with the
OBJfile extension. If you include afile specification with
/OBJECT, the compiler uses that specification instead. See
Section 1.3.1 for more information about file specifications.

The compiler executes faster if it does not have to produce an
object module. Use the /NOOBJECT qualifier when you need
only alisting of a program or when you want the compiler to
check a sourcefile for errors.

The default is/OBJECT.

/SHOW=(option, .. .)

The qualifier /'SHOW sets or cancels listing options. Y ou must
use the /LIST qualifier with the /SHOW qualifier to select or
cancel any of the following options:

Option Usage

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl7.decw$book (13 of 22)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

ALL The ALL option prints all listing infor-
mation.

[NO]CONDITIONALS The CONDITIONALS option causes con-
ditional program segments that were
not compiled (due to #if type preproces-
sor directives) to appear in the listing.
Specifying NOCONDITIONALS causes
conditional program segments that were
not compiled to be omitted in the listing.
The default is CONDITIONALS.

[NO]JEXPANSION The EXPANSION option prints final
macro expansions in the program listing.
When you specify this option, the macro
nesting level of the last macro expanded
on the line prints next to each line.

The NOEXPANSION option is the default.

[NO]INCLUDE The INCLUDE option prints the contents
of #include filesin the program listing.
The NOINCLUDE option is the default.

[NO]INTERMEDIATE The INTERMEDIATE option prints al
intermediate and final macro expansions
in the program listing.

The NOINTERMEDIATE option isthe
default.

[NOJMACHINE_CODE The MACHINE_CODE option directs the
compiler to list the generated machine
codein thelisting file.

The NOMACHINE_CODE option isthe
default.

NONE The NONE option creates an empty
listing file, with only the header.

[NO]SOURCE The SOURCE option places the source
program statements in the program
listing.

The SOURCE option is the default.

[[NO]STANDARDI[=(option, .. .)]

Determines what language features will be allowed. If you
specify the ANSI option, this instructs the compiler to compile
and generate code according to ANSI C Standard syntax and
semantics. If you specify /[STANDARD without an option, the
default is/ISTANDARD=ANSI.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl7.decw$book (14 of 22)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

The default is/INOSTANDARD, which implies PDP-11 C
native syntax and semantics.

When specifying the default NOSTANDARD qualifier,
PDP-11 C allowsthe use of $ inidentifier names. However,
PDP-11 C does not support the use of $ in identifier names
when specifying the/STANDARD=ANSI qualifier.

[INO]JTERMINAL[=[NO]SOURCE]

Determines whether compiler messages are displayed

at the terminal. If you specify either /TERMINAL or
ITERMINAL=NOSOURCE, compiler messages are displayed
on the user terminal or in the batch log, but associated user
source text is not displayed. If you specify /INOTERMINAL,
only the summary message is displayed on the user terminal

or in the batch log.

If you specify /TERMINAL=SOURCE, the compiler displays
the source line of each error, as well as the compiler messages
associated with the error.

The default is/TERMINAL=NOSOURCE.

/INO]TITLE=["Jidentifier["]

Controls the compiler-produced output list header for the
program file. The identifier isthelist title name for a
given compilation unit. Thislist title name will override
the #pragmallist title.

This qualifier, if asserted, must be supplied with a string
value. Use quotation marks around the identifier to retain
lowercase characters or if the identifier contains a space
character. By default, if no quotation marks are used, the
identifier is converted to uppercase.

The default is/INOTITLE.

[INOJWARNINGSY=(option, . ..)]

Controls whether the compiler prints warning diagnostic
messages, informational diagnostic messages, neither, or both.
The default qualifier, WARNINGS, causes the compiler to
print all diagnostic messages. The/NOWARNINGS qualifier

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl7.decw$book (15 of 22)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

suppresses both the informational and the warning messages.
Note, however, that error and fatal messages cannot be
suppressed.

The two options are as follows:

Option Usage

NOINFORMATIONALS The NOINFORMATIONALS option causes
the compiler to suppress informational
messages.

NOWARNINGS The NOWARNINGS option causes the
compiler to suppress al warning mes-

sages.

The informational message, SUMMARY , cannot be sup-
pressed with /NOWARNINGS or /WARNINGS=NOINFORMATIONALS.

The default is/ WARNINGS.

/INOJWORK _FILE_SIZE=value

The valueis an integer value between 1 and 65535
representing the number of 512-byte disk blocksto allocate
for the work file. This qualifier isignored on VMS systems.

If the/ WORK_FILE_SIZE quadlifier is not specified, a default
work file size of 2048 is used. The size of the work file
determines the PDP-11 C compiler's capacity for processing
source input. Note that the/MEMORY qualifier affects both
the performance and capacity of the PDP-11 C compiler.

Specifying the WORK_FILE_SIZE qualifier with large values
can impact compiler performance in varying degrees. See

the Implementation Notes in Chapter 8 of this guide for more
detail.

The work fileis placed on the SY: device. PDP-11 C first
attempts to open the work file contiguously. If insufficient
contiguous disk storage is available, PDP-11 C then attempts
to open the work file using noncontiguous disk storage. If

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl7.decw$book (16 of 22)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

insufficient non-contiguous disk storage is available, PDP-11
C issues a diagnostic message and aborts. PDP-11 C does not
extend the work file: if work file storage is exhausted during
compilation, a diagnostic message isissued and PDP-11 C
aborts.

Note

If this qualifier is used, it must be specified with the
first compilation unit.

1.3.5 Compiler Error Messages
If there are errorsin your source file when you compile
your program, the PDP-11 C compiler signals these errors
and displays diagnostic messages. Reference the diagnostic
message, locate the error, and, if necessary, correct the
error. Diagnostic messages displayed by PDP-11 C have the
following format:
The following messages pertain to file

n: %PDP11C-s-ident, message-text

The parts of this message are described as follows:

% PDP11C
Is the facility name of the PDP-11 C compiler. This portion
indicates that the message is being issued by PDP-11 C.

S
|s the severity of the error, represented as follows:

F Fatal error. The compiler stops executing when afatal error
occurs and does not produce an object, listing, or macro file.
Y ou must correct the error before you can compile the program.

E Error. The compiler continues, but does not produce an object
or macro file. You must correct the error before you can
successfully compile the program. Produces alisting file, if
specified.

W Warning. The compiler produces an object module and macro
file, if specified. It attemptsto correct the error in the state-

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl7.decw$book (17 of 22)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

ment, but you should verify that the compiler's action is ac-
ceptable. Otherwise, your program may produce unexpected
results.

| Information. This message usually appears with other mes-
sages to inform you of specific actions taken by the compiler. No
action is necessary on your part.

ident
|'s the message identification. Thisis a descriptive abbrevia-
tion (mnemonic) of the message text.

message-text

|s the compiler's message. In many cases, it consists of more
than one line of output. A message generally provides you
with enough information to determine the cause of the error
so that you can correct it.

file
The name of the source file in which the error occurred.

n
Gives you the number of the line where the error occurs. The
number is relative to the beginning of the file specified by file.
Y ou can use the #line preprocessor directive to change both
the line number and name that appear in the message.

The messages produced by the PDP-11 C compiler are listed
in Appendix A.

The compiler command gives you control over the display
of messages. The/NOWARNINGS qualifier, discussed
previously, suppresses warning messages generated by the
compiler.

1.3.6 Compiler Listings

A compiler listing provides information that can help you
debug your PDP-11 C program. To generate alisting file,
gpecify the /LIST qualifier when you compile your PDP-11 C
program.

Under DCL on RSX-11M/M-PLUS systems:
$ ccllist

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl7.decw$book (18 of 22)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

Under MCR on RSX-11M/M-PLUS systems:
> ccllist

Under CCL on RSTSE systems:
$ccllist

On RT-11 systems:
. ccllist

On VAX systems:
$ pdpcc/list

By default, the name of the listing file is the name of the
source program with afiletype of LST. You can include afile
specification with the /LIST qualifier to override this default.

When used with the /LIST qualifier, the compiler command
qualifier /SHOW supplies additional information in the
compiler listing. See Section 1.3.4 for a description of each

gualifier's function.

If the compiler command line contains the /LIST qualifier
but does not contain the /SHOW qualifier, you are given the
default listing. The default listing includes the following:

Margin information
PDP-11 C source text

Errors encountered during the compilation

Command line used to invoke the compiler

The left-hand margin of the source listing produced by the
PDP-11 C compiler contains several items of information,
arranged into fields in the following format:

nnnNNN i X mm

nnnnn
|'s the compiler-generated listing line number; it starts at

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl7.decw$book (19 of 22)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

1 and isincremented by one for each line in the function,
including lines read from included files (whether or not the
/SHOW=INCLUDE qualifier was specified in the command
line). All lines appearing before a function that do not belong
to another function are included in the line numbering of the
function.

|

Isthe level of nesting of lines read from included files; this
field is present only if /[SHOW=INCLUDE is specified on the
command line. Level 0, which appears as a blank, indicates
lines read from the source file, or files, specified on the
command line.

X
If the source line isignored by the compiler as aresult of the
evaluation of a previous #if , #ifdef , or #ifndef preprocessor
directive, thisfield appears as an ~ x"; otherwise it is blank.

mm
Isthe level of nesting of the last macro expanded in the

line; thisfield is present only if the/SHOW=EXPANSIONS
or /[SHOW=INTERMEDIATE qudlifier is specified on the
command line. Level O corresponds to the original source line
and appears as ablank. When thisfield is nonzero, however,
thefields "nnnnn", i", and ""ss" all appear as blanks.

In all cases, the numbers listed areright justified in their
fields with no leading zeros.

Note

The spacing within the compiler listingsin this
chapter may not be consistent with the spacing in
actual compiler listings. These listings are condensed
to fit on the page.

Example 1-1 shows the default compiler listing.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl7.decw$book (20 of 22)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

Key to Example 1-1.

1 The name of the module appears at the top left of the
listing, followed by the title string, the right-most 38
characters of the name of the source file, the version of
the compiler, and the page number. The module name
Is specified with the #module or #pragma module
preprocessor directive (seeitem 5) or is defaulted from
the file name. Thetitle string (if any) is specified with the
#pragma list title preprocessor directive (seeitem 4).

2 The module message identification appears on the second
line of the listing followed by the listing subtitle string and
the date and time of compilation. The module message
identification is specified with the #module or #pragma
module preprocessor directive or is defaulted to "V 1.0."
The subtitle string is specified with the #pragma list
subtitle preprocessor directive.

3 The compiler generates listing line numbers. The
generated line number isreset to zero at the end of each
function.

4 A title and subtitle string may be specified with the
#pragma list title and #pragma list subtitle
preprocessor directives, respectively. The title string has
effect for the entire compilation unit and may be specified
only once. A subtitle string has effect starting with the
next page of the listing and may be specified any number
of times.

5 Theinternal object module title and message identification
used by the librarian and linker or task builder may
be specified with the #module or #pragma module
preprocessor directive. The default object moduletitleis
taken from the first six characters of the object file name;
the default object module message identificationis "V 1.0.

6 Compiler messages are generally cited against a point of
interest in the source program. To indicate the point of
interest, adigit is placed on the following line immediately
beneath the point of interest. The corresponding message
follows preceded by the point of interest digit, followed
by an indication of the file specification and line number
(relative to the start of the file, not the listing line number)
of the source file to which the message pertains.

7 Source lines that are excluded from the compilation with
the #if preprocessor directive appear with an X in the

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl7.decw$book (21 of 22)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

left margin. Such lines may also be excluded from the
listing with the /SHOW=NOCONDITIONALS qualifier.

8 A summary of the number of informational, warning,
and error messages at the bottom of the listing, followed
by the command used to compile the module.

Example 1-2 shows all compiler listing options.

Key to Example 1-2:

1 Source lines included with the #include preprocessor di-
rective appear in the listing with the /SHOW=INCLUDE
and /[SHOW=ALL qualifiers. The nesting level of the
include file appearsin the left margin.

2 Final macro expansions are shown with the/SHOW=EXPANSION
qualifier. Intermediate and final macro expansions
are shown with the/SHOW=INTERMEDIATE and
ISHOW=ALL qualifiers. Regardless of qualifiers specified,
the final macro expansion is always shown for aline that
has an associated compiler message. The macro nesting
level of the last macro expanded on the line appearsin
the left margin.

3 The macro ERROR_RECOVERY is defined as TRUE
through the command line (see item 8). The intermediate
expansion to TRUE is shown in the listing before the final
expansion to 1.

4 A machine code listing similar in format to that produced
by MACRO-11 isincluded in the listing after each
function with the /SHOW=MACHINE and /SHOW=ALL
qualifiers.

5 The relocatabl e object module memory location and the
machine code instructions are listed.

6 The assembly language code is shown beside its
corresponding machine code instruction.

7 Comments annotate the assembly language listing and
correlate the assembly language statements with the
PDP-11 C source language statements.

8 The /DEFINE qualifier is used to define the ERROR _
RECOVERY macro and drive the conditional compilation
of the module.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl7.decw$book (22 of 22)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

1.4 Copying Files Among Target Environments

To copy text and object filesamong RSTS/E, RSX, RT-11,
or VMS systems you can use DECnet or physical media.
For more information about DECnet, refer to the DECNET
documenation for your operating system.

Use Table 1-1 and the following sections to determine the

appropriate tools to transfer files using physical media. Y ou
may need to refer to the specific documentation for more
detail.

1.4.1 File Transfer (FIT) Program
FIT transfers files between RSTS/E directory-structured
devices and RT-11 directory-structured devices.

Using FIT, you can:

Transfer files between RSTS/E-structured devices and
RT-11-structured devices

List the directory of an RT-11-structured device,
including RX01 and RX02 flexible diskettes

Delete files on an RT-11-structured device
Initialize (zero) an RT-11-structured device

Compress (sgqueeze) the files on an RT-11-structured
device

To runthe FIT program, use the following syntax:
[output[/switch]=]input[/switch]

Thefollowing isasample FIT session:
$ run auxlib$:fit

FIT V9.0-14 RSTSV9.6-11 GNAT
FIT> dlO:*.obj/rt11/1i

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p20.decw$book (1 of 3)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

Name .Typ Size Date RT Pos
COINIT.OBJ 1 06-Jan-89 RT11 68
COFINI.OBJ 1 06-Jan-89 RT11 69
PRINTF.OBJ 1 06-Jan-89 RT11 70
WRITE .OBJ 1 06-Jan-89 RT11 71
COCSAL.OBJ1 06-Jan-89 RT11 72
COCSAV.0BJ1 06-Jan-89 RT11 73
COMAIN.OBJ1 06-Jan-89 RT11 78
COMAI| .0OBJ1 06-Jan-89 RT11 79
CRT .OBJ5 06-Jan-89 RT11 80
XBL201.0BJ 2 06-Jan-89 RT11 185
XBL .0OBJ 2 06-Jan-89 RT11 260
Total of 17 blocksin 11 filesin DLO:
Total of 15869 free blocksin DLO:
FIT>* *=dlO:write.obj/rt1l

To exit the FIT program, enter Ctrl/Z. For more information
on the FIT program, see the RSTSE Utilities Reference
Manual .

1.4.2 File Transfer Utility (FL X)

FLX alowsyou to use foreign volumes (not in Files-11
format) in DOS-11 or RT-11 format. FLX converts the
format of afileto the format of the volume to which thefile
Is being transferred.

You can use FLX interactively or by means of an indirect
command file. FLX allows only one level of indirect
command file specification.

Y ou can invoke FLX by either specifying FLX or by
specifying FLX and acommand line. The format for
entering FL X command lines follows:
devicespec/sw=infile/sw, . . . ,infilen/sw

For more information on FL X, see the RSX-11M/M-PLUS
Utilities Manual .

1.4.3VMSEXCHANGE Utility

The VM S EXCHANGE Utility performsfile transfers and
format conversions on RT-11 block-addressable volumes
and DOS-format tapes. EXCHANGE recognizes RT-11

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p20.decw$book (2 of 3)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

volumes on any VMS block-addressable device. However,
RT-11 supports only some of the devices that are recognized
by EXCHANGE.

For more information on the EXCHANGE Utility, see the
VMS Exchange Utility Manual .

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p20.decw$book (3 of 3)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

1.5Linking a PDP-11 C Program

After you compile aPDP-11 C source program or module,
invoke the Linker or Task Builder to combine your PDP-

11 system object modules into one executable image. The
executable image can then be executed on a PDP-11 system
or aVMS system with an RSX emulator. A source program
or module cannot run until you link it with the Task Builder
or Linker. The following sections show methods you can use
to invoke the Linker or Task Builder.

The RT-11 Linker and RSX Task Builder are system
programs that link relocatable object modules to form an
executable task image. Use the RT-11 Linker to build tasks
that execute on the RT-11 operating system or to build tasks
on the RSTS/E system that execute under the RT-11 Run-
Time System. Use the RSX Task Builder to build executable
tasks for the following systems.

RSX-11M/M-PLUS

Micro /RSX

RSX-11S

VAX-11 RSX operating systems

Tasks built on RSTS/E operating systems that execute
under the RSX Run-Time System

When you execute the LINK command or TKB command,

the Task Builder or RT-11 Linker performs the following
functions:

Resolves local and global symbolic referencesin the object
code

Assigns values to the global symbolic references

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p22.decw$book (1 of 23)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

Signals an error message for any unresolved symbolic
reference

Allocates memory space for the executable image

The Task Builder also resolves references to resident common
blocks and resident libraries.

The object modules to be linked can come from user-specified
input files, user libraries, or system libraries. The Task
Builder resolves references to symbols defined in one module
and referred to in other modules. Should any symbols remain
undefined after all user-specified input files are processed, the
Task Builder automatically searches the appropriate system
object library to attempt to resolve them. For additional
information about libraries, refer to the Section 1.5.8.

Y ou can also use the Task Builder to build tasks with overlay
structures. For additional information about the Task Builder
and Task Builder options, refer to the RSX-11M/M-PLUS
and Micro /RSX Task Builder Manual or the RSTSE Task
Builder Reference Manual and Section 1.5.9.

1.5.1 Linking a Program on RSX Systems

Usethe DCL LINK command to invoke the Task Builder.
For example, to link the PDP-11 C program PROGL1 on
RSX, use the following command line;

$link progl,lb:[1,1]cfpursx.olb/library

Y ou can also use the following format to link a program,
using acommand file as follows:
LINK @command-file

For example, if you want to link using the command file
PROG1.CMD, you enter the following command:
$link @progl.cmd

Alternatively, you can invoke the Task Builder (under either
the DCL or MCR command line interpreters) by typing a
RUN command in the following format:

$runtkb

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p22.decw$book (2 of 23)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

Or, if your system manager hasinstalled TKB, you can enter
the following:
$tkb

In either case, after you press the Return key, the Task
Builder prints the TKB> prompt. Y ou then enter the TKB
command.

After you press the Return key, the Task Builder prints
another TKB> prompt. Y ou then:

1. Enter additional input files, if any.

2. Enter aline containing only two slashes (/) to tell the
Task Builder to create atask image and to exit.

3. Press the Return key.

See the RSX-11M/M-PLUS and Micro /RSX Task Builder
Manual for detailed instructions.

1.5.2 Linking a Program on RSTSE Systems

There are two ways you can link programs on RSTS/E. Y ou
can invoke the RSX Task Builder or the RT-11 Linker. The
following sections describe these two methods.

1.5.2.1 Invoking the RSX Task Builder on RSTSE

There are three ways to invoke the RSX Task Builder on
RSTS/E. Y ou can invoke the Task Builder by using the DCL
LINK command as follows:

$ link/cc progl

Y ou can run the Task Builder by entering aRUN command
in the following format:
$runtkb

Or, if your system manager hasinstalled TKB asa CCL
command, you can enter the following:
$tkb

In each case, after you press the Return key, the Task
Builder prints the TKB> prompt. Y ou then enter the TKB
command.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal 1l.p22.decw$book (3 of 23)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

After you press the Return key, the Task Builder prints
another TKB> prompt. Y ou then:

1. Enter additional input files, if any.

2. Enter aline containing only two slashes (/) to tell the
Task Builder to create atask image and to exit.

3. Press the Return key.

The following example shows how to taskbuild FOO.C on
RSTS/E, using the taskbuilder FOO.CMD and FOO.ODL files.

FOO.C contains the source code for FOO.C, which copies the
contents of one file to another file. FOO.ODL isthe overlay
description file.

/* Sample FOO.C program.*/
#include <stdio.h>
#include <errno.h>
int main ()
{
FILE *in;
FILE *out;
int c;
char inname[133];
char outname[133];
printf ("\nlnput file?:\n");
gets(inname);
printf ("\nOutput file?\n");
gets(outname);
if (in=fopen(inname, "r"))
{
If (out = fopen(outname, "w"))
{
while ((c = getc(in)) = EOF)
putc(c,out);
fclose (out);
}
else
{

printf ("Could not open file %s\n",outname);
printf ("Error was %d\n", errno);

}

fclose (in);

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p22.decw$book (4 of 23)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

}
else
{
printf ("Could not open file %s\n",inname);
printf ("Error was %d\n", errno);
}
}

Thefollowing file, FOO.CMD, callsthe file FOO.ODL.
;Sample TKB CMD file to build program FOO.C for RSTSE
SY:FOO=SY:FOO/MP

I

FOO.ODL islinked with FOO.C to produce an executable file.
;Sample TKB ODL fileto build program FOO.C for RSTS/E
.ROOT USER
USER: .FCTR SY:FOO-LB:CEISRE/LB:$PRMXF-RMSROT-LIBR,RMSALL
LIBR: .FCTR LB:CEISRE/LB
@LB:RMS11S
.END

After compiling FOO.C, taskbuild the files using the following
command:
$tkb @foo

See the RSTYE Task Builder Reference Manual for more
detailed instructions.

1.5.2.2 Invoking the RT-11 Linker on RSTS/E

Y ou can link your program on RSTS/E by invoking the
RT-11 Linker. You invoke the RT-11 Linker asfollows:
$run link.sav

See Section 1.5.3 for additional information on the RT-11
Linker.

1.5.3 Linking a Program on RT-11 Systems

You can invoke the RT-11 Linker in either of two ways:
using the Keyboard Monitor LINK command or using the
RUN command.

Using the Keyboard Monitor LINK command adheres to the

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p22.decw$book (5 of 23)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

following syntax, where " “filespec" represents the file to be
linked:
LINK][/option . . . Jfilespec[/option . . .][, . . . filespec[/option . . .]]

or
LINK[/option . . .]
FILE? filespec[/option . . .][, . . . filespec[/option]]

To run the Linker using the RUN command, use the
following format:
RUN SY:LINK

The RUN command searches the system disk SY': for the
LINK program and startsit executing. The Linker returns
with a prompt when it is ready to accept input from your
terminal:

*

For example, if you want the object files WINKN, BLNKN,
and NOD linked into an executable memory image file, you
can enter a succession of commands as follows:
.run sy:link

(From this point on the linker issues the * prompt.)
* winkn,winkn=winkn,blnkn,nod

To exit the linker, enter Ctrl/C.
Note that the Linker types the asterisk (

) prompt whenever
it awaits user input. The result in the example istwo
files: WINKN.SAV, an executable memory image, and
WINKN.MAP, aload map of the memory image file. Both
are placed on the default device DK:.

When invoked with the RUN command either with or
without arguments, the RT-11 Linker accepts the first
command string in the form:
[bin-filespec][,map-filespec][,sth-filespec] = [infiles-list]

To make ajob an RT-11 virtual job, use the $VIRTUAL$JOB
macro in one of the routines in the job:

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p22.decw$book (6 of 23)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

#include <RTSY S.H>
$VIRTUALSIOB

Thefollowing is an example of how to link on RT-11:
.run sy:link
* test/m:3000/b:3000,test=test,sy:ceisrt

To exit the linker, enter Ctrl/C.

1.5.4 Linking a Program on VM S Systems

To link aprogram using VAX-11 RSX on the VMS operating
system, invoke the Task Builder as follows:

$ mcer tkb

The Task Builder can then be used as shown in Section 1.5.1.
The following example shows how to taskbuild TEST.C

on VM S and RSX using the taskbuilder TEST.CMD and

TEST.ODL files.

TEST.C contains the source code which copies the contents of
one file to another file.
[* Sample TEST.C program.*/
#include <stdio.h>
#include <errno.h>
int main ()
{ .
FILE *in;
FILE *out;
int c;
char inname[133];
char outname[133];
printf ("\nlnput file?:\n");
gets(inname);
printf ("\nOutput file?\n");
gets(outname);
if (in=fopen(inname, "r"))
{
if (out = fopen(outname, "w"))
{
while ((c = getc(in)) = EOF)
putc(c,out);
fclose (out);

}

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p22.decwdbook (7 of 23)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

else
{
printf ("Could not open file %s\n",outname);
printf ("Error was %d\n", errno);
}
fclose (in);
}
else
{
printf ("Could not open file %s\n",inname);
printf ("Error was %d\n", errno);
}
}

Thefollowing file, TEST.CMD, callsthefile TEST.ODL.

;Sample TKB CMD file to build program TEST.C for RSX or VM S
SY.TEST/CP=SY . TEST/MP

/l

TEST.ODL islinked with TEST.C to produce an executable
file.
;Sample TKB ODL file to build program TEST.C for RSX or VM S
.ROOT USER
USER: .FCTR SY:TEST-LB:[1,1]CEISRSX/LB:$PRMXF-RMSROT-LIBR,RMSALL
LIBR: .FCTR LB:[1,1]CEISRSX/LB
@LB:[1,1]RMS11S
.END

After compiling TEST.C, taskbuild the files using either of the
following commandson VMS:
$ mer tkb @test

or
$ mer tkb
TKB> @TEST

1.5.5 Task Builder Command-Line Elements

When you invoke the Task Builder, certain files must be
present, and you can use various qualifiers. The following
sections describe the files that you need for task building and
the qualifiers that you can specify.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p22.decw$book (8 of 23)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

1.5.5.1 Creating CMD and ODL Filesfor Task Building
Before you link a PDP-11 C object file, you may want to
produce a command (CMD) file and an overlay description
file (ODL).

Thefollowing is an example of a CMD file that the Task
Builder usesto produce a TSK file:
SY:XBL201/CP=SY:XBL201U/MP

Il

For more information on CMD files, see the RSX-11M/M-
PLUS and Micro /RSX Task Builder Manual or the RSTSE
Task Builder Reference Manual .

The following is an example of an ODL file that is used by the
CMD filefor an RSX system:
.ROOT USER
USER: .FCTR SY:XBL201-LIBR
LIBR: .FCTR LB:[1,1]CEISRSX/LB
.END

For information about overlaying, see the Overlay Capability
and Overlay Loading Methods chaptersin the RSX-11M
IM-PLUS and Micro /RSX Task Builder Manual , or the
appropriate sections about overlaying in the RSTSE Task
Builder Reference Manual .

1.5.5.2 Command-Line Elementsin CMD Files

The elements that you specify on thefirst linein the CMD
file are asfollows:
task-file/qualifier,map-file/qualifier,infiles-list/qualifier

task-file

The file specification of the task-image output file. Thisfile
specification may be omitted if no task-image fileis desired.
If aspecification is entered, only afile nameisrequired; afile
type value of TSK (EXE under VAX-11/RSX) is assumed

if no filetypeis specified. Therefore, the following two
commands are equivalent. Note, however, that no map fileis
created in either case.

TKB> FILELY/FP=FILE1

TKB> FILE1.TSK/FP=FILE1

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p22.decw$book (9 of 23)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

map-file

The file specification of the map output file. Thisfile
specification may be omitted if no task-image map file
isdesired. If aspecification is entered, only afile nameis
required; afiletype value of MAP isassumed if no file type
Is specified. On RSX systems, the map file is automatically
spooled to the line printer. On some operating systems, the
map fileis automatically deleted after it is printed.

infiles-list

Thelist of input files that contains compiled PDP-11 C object
modules. (Thislist may also contain compiled or assembled
libraries and modules that were written in alanguage other
than C, such as MACRO.) In many cases, thislist contains
only one file specification; however, when there is more

than one specification, you must separate the individual
specifications with commas. Only afile nameis normally
required; afile type value of OBJis assumed.

1.5.5.3 Task Builder Qualifiers

Y ou can use command qualifiers to modify the Task Builder's
output, as well asto include the On-Line Debugging Tool
(ODT). Task building output consists of an image file and an
optional map file,

The following list summarizes some of the most commonly
used command qualifiers that you can specify in the CMD
file. A brief description of each qualifier follows thislist. For
acomplete list of task-building command qualifiers, see the
sections about link qualifiersand TKB qualifiersin the RSX-
11M/M-PLUS and Micro /RSX Task Builder Manual , or

the section about task builder qualifiersin the RSTSE Task
Builder Reference Manual .

Task-Image Output File Qualifiers
Y ou can use the following qualifiers for the task-image
output file:

IFP

Specifies that the task uses the Floating-Point Processor
(FP11) or floating-point microcode option (KEF11A).

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p22.decw$book (10 of 23)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

/DA
Specifies that the system debugging aid ODT isto be included
in the task.

/ICP

Specifies that the task be checkpointable; must use for tasks
using standard 1/0 or memory management (calloc, free, and
SO 0n).

/ID

Specifies that the task use |- and D-space. Y ou can build

an |- and D-space task on RSX-11M-PLUS (Version 4.3

or higher), Micro /RSX (Version 4.3 or higher), and RSTS/E
(Version 10.0 or higher).

The PDP-11 C compiler generates code that will runin |-
and D-space.

/MU

Specifies that multiple versions of the task may be run
simultaneously. The read-only portions of the task are
shared.

Map File Qualifiers
Y ou can use the following qualifiers for the map file:

ICR
Specifies that aglobal cross-reference listing is to be appended
to the map file.

ISP
Specifies that the map file isto be spooled to the line printer.

Input-File Qualifiers
Y ou can use the following qualifiers for input files:

/LB
Specifiesthat the input fileisto be alibrary file. (See
Section 1.5.8.)

IMP
Specifies that the input file is an overlay description file. (See

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p22.decw$book (11 of 23)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

Section 1.5.9.)

1.5.6 Task Builder Error M essages

If the Task Builder detects any errors while linking object
modules, it displays messages indicating the cause and
severity of the error. If any fatal error conditions occur
(that is, errors with a severity of

*

FATAL

), the Task Builder
does not produce an imagefile.

Some common errors that occur during linking are as
follows:

Theinput file has afile type other than OBJ, and nofile
type was specified on the command line.

If you do not specify afiletype, the Task Builder searches
for afile that has afile type of OBJ by default. If thefile
Is not an object file and you do not identify it with the
appropriate file type, the Task Builder signals an error
message and does not produce an image file.

Y ou tried to link a nonexistent module.

The Task Builder signals an error message if you misspell
amodule name or if the compilation contains fatal
diagnostics.

A reference to a symbol name remains unresolved.

An error occurs when you omit required module or
library names from the command line and the Task
Builder cannot locate the definition for a specified
globa symbol reference. In the following example on
RSTS/E, amain program module, OCEAN.OBJ, calls
the subprogram modules REEF.OBJ, SHEL L S.OBJ,

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p22.decw$book (12 of 23)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

and SEAWD.OBJ, and the following LINK command is
executed:
$ link/cc ocean, reef, shells, Ib:cfpure/lb

Because SEAWD is not included in the link, the Task

Builder signals the following error message:

TKB -- *DIAG* -1 undefined symbols segment OCEAN
SEAWD

The task has grown over the 32K limit.

The error would be as follows:
Segment OCEAN has addr overflow:allocation deleted

If an error occurs when you link modules, you can often
correct the error by reentering the command string and
specifying the correct modules or libraries. If an error
indicates that a program module cannot be located, you may
be linking the program with the wrong PDP-11 C library.

1.5.7 Storage Consider ations

Most storage for objects with the auto storage class specifier
is allocated on the stack in PDP-11 C. Therefore, when
linking, you should carefully consider how much automatic
storage your program needs at any time. Since C is a stack
language, many PDP-11 C programs require additional

stack space beyond the default provided by TKB or the RT-
11 Linker. If you do not allow for this, insufficient stack
space will cause your program to behave unpredictably.

As your program executes, it uses stack space for the
following:
Automatic variables within subroutines
Parameters passed to subroutines
Subroutine return addresses and return values

Registers saved by subroutines (up to 54 bytes)

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p22.decw$book (13 of 23)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

Run-time library storage

Determine the amount of storage you need to allocate by
summing the space used for each item that uses stack

space. Include items from both the main program and each
subroutine. Each automatic variable, parameter, return
address, and return value requires the following space on the
stack:

char, short, pointer-2 bytes
long, float-4 bytes
double-8 bytes

arrays, structures-multiples of the variables involved

Aswith variables, you need to calculate the size of the
parameters, return addresses and values, and registers
for each subroutine as well as for the main program.

To set the size of the stack when using the RSX Task Builder
on RSX or RSTS systems, use the STACK option to set the
number of words of STACK used. The following Task Builder
command file allocates 1024 bytes of space to the stack:
SY:TEST/CP=SY:TEST/MP

/

STACK=512

I

On RT-11 systems, the stack is located above address 476. To
set the stack size when using the RT-11 Linker on RT-11 or
RSTS systems, use the /M and /B qualifiersto set the address
of where the stack begins and to link the code above the
stack. The following Linker commands allocate about 1024
bytes of space to the stack:

rlink

test/m:2500/b: 2500, test=test,sy:ceisrt

1.5.8 Library Usage
Libraries consist of a collection of object modules. When the

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p22.decw$book (14 of 23)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

Task Builder or Linker encounters alibrary specification, it
searches the library for definitions of any of the currently
undefined globa symbols. The modules containing these
definitions are included in the task image being built.

Run-time libraries (RTL) contain functions and macrosto
perform input, output, and various task related to specific
operating environments. For proper support, you must link
your program to the run-time library developed for your
operating system. Section 1.5.8.1 explains how to select and

specify the run-time library.

Disk and resident libraries are available for use with some
operating systems. Disk Libraries are stored in files on
disk. The Task Builder can make adisk library a physical
part of atask image. From disk libraries, the Task Builder
copies object modules into the task image of each task that
references those modules.

Resident Libraries are located in main memory and are
shareable; that is, asingle copy of each library is used by all
tasks that refer to it. The Task Builder can make a resident
library alogical part of atask image but not a physical part;
that is, the Task Builder can link the library to atask image
but cannot copy the library to atask image.

Section 1.5.8.2 has more information about system disk and

resident libraries. User disk and user resident libraries are
described in Section 1.5.8.3.

PDP-11 C provides arun-time library that can beinstalled
as a supervisor-mode library on some systems. When
auser task islinked to thislibrary, alarge part of the
PDP-11 C run-time library resides in supervisor mode,
thereby increasing the amount of user mode intruction
space available for your program. Section 1.5.8.4 has more
information about using the PDP-11 C supervisor-mode
library. Refer to the RSX-11M/M-PLUS and Micro /RSX
Task Builder Manual and the RSTSE Task Builder
Reference Manual for more information about supervisor-
mode libraries.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p22.decw$book (15 of 23)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

1.5.8.1 PDP-11 C Run-Time System Object Libraries

Y ou must link your program with the correct PDP-11 C
run-time library (RTL), so that the proper run-time support
isincluded. Each supported target operating system has two
run-time libraries associated with it. The FPU run-time
libraries support floating-point instructions, and the EIS
run-time libraries support EIS instructions.

When you compile your programs with /ENVIRONMENT=NOFPU,
you may link them to either the FPU or EIS run-time

library. However, if the target machine has floating-point

hardware, it is suggested that you link to the FPU library.

When you compile your programs with /ENVIRONMENT=FPU,
you should link to the FPU run-time library. Though

linking to the EIS library will work in some cases, certain

RTL routines might encounter problems. The release notes
indicate some, but not al, of the problems that you could
encounter.

The following table shows the different library names and
the instruction set they require for each supported operating
system.

I nstruction Set

RSX
Systems

RSTSE
Systems

RT-11
Systems

FPU (floating-point) CFPURSX CFPURE CFPURT
EIS CEISRSX CEISRE CEISRT

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p22.decw$book (16 of 23)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

For programs that use standard 1/O, refer to the /CP
taskbuilder switch and the input/output support package
sectionsin the PDP-11 C Run-Time Library Reference
Manual for additional information.

1.5.8.2 Using System Libraries

Each system has a system disk library. Consult with your
system manager to determine which system resident libraries
are available on your system. Y ou can create your own user
disk and resident libraries.

Each RSX and RSTS/E system has a system disk library
called LB:SYSLIB.OLB. In addition, each RSX system has
avallable to it three system resident libraries. RSTS/E systems
have one system resident library available that are pertinent

to PDP-11 C.

The system disk library isasfollows:
LB:[1,1]SYSLIB.OLB

The Task Builder automatically searches the system disk
library to see if any undefined global references remain after
al the input files have been processed. If the definition of one
of these undefined global symbolsisfound, the appropriate
object moduleisincluded in the task being built.

Consult your system manager to determine which of the
following system resident libraries are available on your
system.

Library System Description

FCSRES RSX only A shared library of commonly used FCS-
11 input/output (1/O) routines

FCSFSL RSX only A supervisor-mode File Control Services
(FCYS) library

RMSRES RSX and

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p22.decw$book (17 of 23)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

RSTSE

A shared library of RMS-11 1/O routines
can be built in supervisor mode on RSX-
11IM-PLUS systems

These system resident libraries are linked to atask by using
the Task Builder option, as follows:

For FCSRES:
LIBR = FCSRES.RO

For FCSFSL:
RESSUP=FCSFSL/SV

For RMSRES on a RSX system:
LIBR = RMSRES.RO

or
RESSUP=LB:[3,54|RMSRES/SV:0

For RMSRES on a RSTS/E system:
LIBR = RMSRES:RO

or
RESSUP=-RM S$:RMSRES/SV:0

1.5.8.3 Creating User Libraries
Using the Librarian Utility Program (LBR), you can
construct your own PDP-11 C or assembly language disk
libraries. Y ou then access these libraries by using the
library qualifier, /LB after the library name. Consult the
RSX-11M/M-PLUS Utilities Manual and the RSTSE
Programmer's Utilities Manual for further information on
the LBR.

For example, if MATRIXLIB.OLB isadisk library containing
matrix manipulation routines and PROG isthe object file of a
compiled PDP-11 C program that calls the matrix routines,
you could enter the following command line for the Task

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p22.decw$book (18 of 23)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

Builder:
$ tkb prog/fp=prog,matrixlib/lb

Y ou can construct resident libraries using the taskbuilder.
For more information, see the RSX-11M/M-PLUS and Micro /RSX Task Builder Manual .

1.5.8.4 Using the supervisor-mode Library

When atask uses supervisor-mode libraries the virtual
address space available for the task is increased because the
supervisor-mode library resides in a different address space.
Refer to the RSX-11M/M-PLUS and Micro /RSX Task
Builder Manual and the RSTS'E Task Builder Reference
Manual for more information about supervisor-mode
libraries.

PDP-11 C provides arun-time library that can be installed
as a supervisor-mode library on RSX-11 M-PLUS,

Micro /RSX and RSTS/E systems that support the FPU
processor. PDP-11 C does not provide a supervisor-mode
library for the RT-11 operating system.

When you link a user task to the run-time supervisor-
mode library, the user mode instruction space available
Is substantially increased. This allows you to write larger
programs without using overlays.

Even more user mode instruction space can be made

available when the run-time supervisor-mode library is

used together with the system resident libraries, RMSRES

for RSTSE and RSX systems, and FCSFSL and FCSRES for
RSX systems. (See Section 1.5.8.2 for more information about

system resident libraries.)

Since the run-time supervisor-mode library is Position
Independent Code (PIC), it does not have to reside in APRO
when other supervisor-mode libraries are linked with the
task.

The supervisor-mode library contains a subset of the
CFPURSX.OLB or CRPURE.OLB PDP-11 C run-time
libraries. The files for the supervisor-mode library include the
following:

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal 1l.p22.decw$book (19 of 23)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

For RSX and Micro /RSX systems:
CCSMRX.TSK
CCSMRX.STB

For RSTS/E systems:

CCSMRE.TSK
CCSMRE.STB
CCSMRE.LIB

You must install the library before you can use it. Use one of
the following formats to install the library.

For RSX and (Micro /RSX:
Using DCL.:
$ingtall/task_name:ccsmrx Ib:[1,1]ccsmrx.tsk

Using MCR:
> inslb:[1,1]ccsmrx/ron=yes

For RSTSE:
$install/library/read_only Ib:ccsmre

To link to the library, you must reference the module
CSMSUP.OBJ. The reference to CSM SUP.OBJ must occur
before any reference to the PDP11-C run-time library. This
can be done by extracting CSM SUP.OBJ as an object or by
referencing CSMSUP in the taskbuilder .ODL file.

To extract CSM SUP.OBJ as an object, use one of the
following commands:

For RSX or Micro /RSX:
LBR CSMSUP.OBJ=LB:[1,1]CFPURSX/EX:CSMSUP

For RSTS/E:
LBR CSMSUP.OBJ=LB:CFPURE/EX:CSMSUP

To reference CSM SUP in the taskbuilder .ODL file, use one
of the following commands:

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p22.decw$book (20 of 23)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

For RSX or Micro /RSX:
label .FCTR directory : yourtask -LB:[1,1] CFPURSX/LB:CSMSUP- |abel 1

For RSTS/E:
label .FCTR directory : yourtask -LB:CFPURE/LB:CSMSUP- label 1 \

For example, in the following taskbuilder .ODL filethe
CSMSUP.OBJis referenced before the reference to the RSX
PDP-11 C run-time library CFPURSX. For an RSTS/E
system, reference the PDP-11 C run-time library CFPURE.
CPCSM.ODL
.root user

user: .fctr sy:yourtask-csmsup-userl

userl:.fctr rmsrot-libr,rmsall

libr: .fctr 1b:[1,1] cfpursx/lb:$prmxf-1b:[1,1] cfpursx/lb

@lb:[1,1]rmsl1s

.end

Thetask islinked with the resident library by using the
RESSUP taskbuilder option as shown in the following
example. Note that the size of the stack is set to allow datato
be passed on the stack. The following example is written for
an RSX system, and uses CCSMRX and CFPURSX. For a
RSTS/E system, use CCSMRE and CFPURE.

CPCSM.CMD
yourtask/cp/id,yourtask/cr/ma/-sp,yourtask=yourtask/mp
stack=3000

ressup=Ib:[1,1]CCSMRX/SV:0

Programs which use RMS or FCS to support PDP-11

C standard I/O can increase the available user-mode
instruction space by linking the task with both the PDP-

11 C supervisor-mode library and either RMSRES, FCSRES
or FCSFSL.

The following taskbuilder command file and ODL file
show how a program can be linked using the RMS-11 1/0
routines library, RMSRES, and the supervisor-mode library,
CCSMRKX.
CMD File:

hello/fp/cp=hello/mp

ressup=Ib:[3,54]rmsres/sv:0

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p22.decw$book (21 of 23)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

ressup=Ib:[1,1]ccsmrx/sv
I
ODL File:
.root user-rmsrot,rmsall
user: .fctr sy:hello-csm-io-libr
csm: .fctr 1b:[1,1] cfpursx/Ib:csmsup
io: .fctr 1b:[1,1] cfpursx/Ib: $prmxf
libr: .fctr [b:[1,1]cfpursx/lb
@Ib:[1,1]rmssIx
.end

The following taskbuilder command file and ODL file show
how a program can be linked using RMSRES and the
supervisor-mode library CCSMRE.
CMD File:
hello/fp/cp=hello/mp
ressup=Ib:rms$:rmsres/sv:0
ressup=Ib:ccsmre/sv
I
ODL File:
.root user-rmsrot,rmsall
user: .fctr sy:hello-csm-io-libr
csm: .fetr [b:[1,1] cfpure/lb:csmsup
io: .fctr 1b:[1,1] cfpure/lb:$prmxf
libr: .fctr Ib:[1,1]cfpure/lb
@Ib:[1,1]rmsslx
.end

The following taskbuilder command file and ODL file
show how a program can be linked using the File Control
Services library, FCSFSL, with the supervisor-mode library
CCSMRX. To use the FCS-11 1/O routines library, FCSRES,
with the supervisor-mode library, substitute FCSRES for
FCSFSL in the SUPLIB command line in the command file.
CMD File:

hello/fp/cp=hello/mp

suplib=fcsfdl/sv:0

ressup=Ib:ccsmrx/sv

Il
ODL File:

.root user
user: .fctr sy:hello-csm-io-libr
csm: .fetr [b:[1,1] cfpursx/lb:csmsup

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p22.decw$book (22 of 23)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

io: .fctr 1b:[1,1] cfpursx/Ib:$prexf
libr: .fctr [b:[1,1]cfpursx/lb
.end

1.5.9 Overlays

The overlay facility provided by the Task Builder and RT-11
Linker allows large programs to be executed in relatively
small areas of main memory. An overlaid programis
essentially a program that has been broken down into parts,
or overlays, that are loaded into memory automatically
during program execution. Please refer to Section 8.4 for

more detailed information.

Additional information on overlays can be found in the
following books:

For the RSX environment-Overlay Capability and
Overlay Loading Methods in the RSX-11M/M-PLUS
and Micro /RSX Task Builder Manual

For the RSTS environment- RSTSE Task Builder
Reference Manual

For the RT-11 environment- RT-11 System Utilities
Manual

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p22.decw$book (23 of 23)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

1.6 Running a PDP-11 C Program

After you link your program, you can use the RUN
command to execute it. The RUN command has the
following format:

RUN file-spec

file-spec
Specifies the file you want to run.

The following example executes the image SAMPLE.TSK:
$run sample

See Section 2.9.2 for information on passing argumentsto a
main function.

During execution, an image can generate afatal error called
an exception condition. When an exception condition occurs,
the system displays an error message. Run-time errors can
also be issued by the operating system or by certain utilities.

When an error occurs during the execution of a program, the
program is terminated and the operating system condition
handler displays one or more messages on the user-terminal
device. On RSX and RSTE/E systems, the message is followed

by aregister display.

For example, if areserved instruction condition occurs, a
run-time message followed by aregister dump similar to the
following RSX register dump appears:
Task ="TT43" termind
Reserved inst execution
RO =001751
R1 = 100102
R3= 177777
R4 = 014716
R5 = 176026
SP = 001200
PC = 004002
PS=170010

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p23.decw$book (1 of 2)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

In the previous example:

RO-R5
Are the contents of each register.

SP
|'s the contents of the stack pointer.

PC

Is the value of the program counter. This value represents
the location in the program image at which the error
occurred. Thelocation is relative to the virtual memory
address that the Task Builder assigned to the code program
section of the module indicated by module name.

PS
|'s the contents of the Processor Status Word (PSW).

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p23.decw$book (2 of 2)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

1.7 Debugging a PDP-11 C Program

Y ou can use the On-Line Debugging Tool (ODT), a user-
interactive debugging aid. On RSX and RSTS/E systems, you
can use the /DA qualifier to specify that ODT beincluded in
the task when linking.

For more information about ODT, see the RSX-11M/M-
PLUSand Micro /RSX Debugging Reference Manual .

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.p24.decw$book1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

2. Program Structure

This chapter introduces the basic features of PDP-11 C to
the experienced programmer. The text provides detailed
examples and short tutorials, aswell as pointers to other
chaptersin this guide. PDP-11 C background material, and
the following components of program structure are detail ed:

Function definitions

Function declarations

Function prototypes

Function parameters and arguments
Program identifiers

Blocks

Comments

PDP-11 C language keywords
Lexical Continuation

Trigraphs

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.p25.decw$book1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

2.1 C Programming L anguage Background
The C language is a general-purpose programming language
that is manageable due to its small size, flexible due to its
ample supply of operators, and powerful dueto its utilization
of modern control flow and data structures. The C language
was originally designed and implemented on a UNIX®
system on the PDP-11. The designers of the language
comment on its functionality in the following passage:

“The[C] language . . . ishot tied to any one

operating system or machine; and although

it has been called a' system programming

language ' because it is useful for writing

operating systems, it has been used equally

well to write major programs in many

different domains.”

1

Like assembly language, C was not designed to accommodate
the needs of any particular application. The C language

mani pulates and stores data with regard to the similarities of
modern machine architecture. However, C is not as complex
as assembler language and is not machine dependent. C is
highly portable. A program is portable if you can compile and
run its source program using severa different compilers on
several different machines.

Thereisan ANSI standard for the C language that promotes
the consistency of functionality between C implementations
on different systems. There needs to be consistency if Cisto
be portable across systems; thisis one of the most desirable
features of the language. So, not only should C source
programs be portable, the language features themselves
should produce the same effects on all systems when you
compile and run programs.

The C language was developed in a UNIX system
environment and eventually was used to rewrite most of that
operating system, so many standard methods of operation in
C arerelated to UNIX. For instance, UNIX systems access
files by a numeric file descriptor, so many C implementations
provide functions to access files by file descriptor.

Some standard C constructs include preprocessor directives

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p26.decw$book (1 of 2)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

and arun-time library of functions and macros. In

many implementations, a preprocessor compl etes the tasks
designated in the preprocessor directives located in the source
code before any action is taken by the compiler.

Because the C language has no means to input and output
information, arun-time library usually provides this service.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p26.decw$book (2 of 2)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

2.2 The PDP-11 C Programming L anguage

The PDP-11 C programming language is a highly reliable
product that is highly compatible with the ANSI C Standard.
PDP-11 Cisan optimizing C language processor for Digital's
major operating systems on the PDP-11. Because C can

be used to program system applications, PDP-11 C isan
aternative to MACRO-11. Thisallows users, using a high-
level language, to write code for inclusion into read-only
memory (ROM), resident libraries, device drivers, and other
low-level system routines.

PDP-11 C runs native on the supported host systems and
produces PDP-11 objects compatible with the RSX Task
Builder and the RT-11 Linker. The standard libraries are
provided in object form and are portable across systems,
except for the library routines that provide direct access to
operating system functions. For example, Standard 1/0 (stdio)
IS operating system dependent.

Within the VMS environment, PDP-11 C is a cross compiler,
running as a native VM S image and producing PDP-11
object code. If you want to build and run your task in the
VMS environment, VAX-11 RSX or CP/RSX must be
installed on your system. If you do not want to link or run

on VMS, you must use either DECnet or physical mediato
transport generated objects to the target system. Libraries are
provided with the VM S kit to support RSX-11M, RSX-11S,
RSX-11M-PLUS, Micro /RSX, RSTS/E, RT-11, VAX-11
RSX, and VAX CoProcessor/RSX.

In the RSX, RSTSYE, and RT-11 host environments, the
compiler generates native PDP-11 object code. These
compilers can generate object code for al target systems.
The libraries for the RSX-11M, RSX-11S, RSX-11M-
PLUS, Micro/RSX, RSTS/E, RT-11, VAX-11 RSX, and
VAX CoProcessor/RSX target systems are supplied with the
RSX, RSTSE, and RT-11 compilers.

The PDP-11 C programming language incorporates the
features that are fundamental to the C language and

that exist in most C compilers. However, PDP-11 C also
provides features, unique to PDP-11 C, that work directly
and efficiently with PDP-11 operating system environments.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.p28.decw$book1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

2.3 Writing a Program
Thefirst program presented here is a ssimple one that adds
two numbers and stores the total in avariable. Example 2-1

shows how to code such a program.

Key to Example 2-1:
1 Comments. The text contained between the characters

(/

*

) and (

/) are comments. Y ou cannot place comments
within comments (that is, they cannot be nested), but you
can place comments anywhere white space is allowed.
White space is an area within the source code where
blank spaces, tabs, or blank lines separate code. In later
chapters, permitted white space is defined for PDP-11 C
constructs.

2 User-Defined Functions. PDP-11 C programs are
comprised of user-defined functions that cannot be nested.
A user-defined function named main is defined. In PDP-
11 C, execution of a program must begin by calling a
function named main.

PDP-11 C functions have methods of exchanging
information using parameters and arguments. In
the function definition in Example 2-1, the lack of

parametersis designated by the keyword void within
the parentheses. The function main in this example does
not receive information through parameters, and there
are no function calls.

To specify parameters in afunction definition, you list
the parameter identifiers within the parentheses and
separate them with commas (,). Y ou must declare the
types of parameters either within the parentheses or in a
declaration list before the body of the function. If you call
afunction from within function main (you normally do
not call the main function from another part of your

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p29.decw$book (1 of 3)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

program), the function name s followed by alist of
arguments delimited by parentheses and separated by
commas.

The function performs its task as determined by the
statements found in the body, and may or may not return
avalueto the calling expression. The body of any function
isdelimited by braces ({ }). They are analogousto the
DO-END of PL/I, or the BEGIN-END of Pascal. The
body may contain one or more r etur n statements. A
return statement specifieswhat, if anything, is returned
to the expression that called the function. Depending

on the set-up of the function, you can omit the return
statement, and its return value will remain undefined.

If afunction does not return avalue, you can declare

the function to be of type void . For more information
concerning functions, refer to Section 2.7.2.

3 Variable Declarations. The variable total is declared
and defined within the function main. Y ou must declare
all variables before referencing them within the program.
Declarations end with a semicolon (;). When you declare
avariable, you specify its data type. Data types specify
the amount of storage required and how to interpret the
stored object. The variable total is of typeint (integer).
PDP-11 C interprets variables of type int as signed
objects which require 16 bits (2 bytes or 1 word) of
memory. For more information concerning data types,

refer to Chapter 5.

When you define a variable, you specify its storage class
which affectsitslocation and lifetime. Variables declared
within a function have a default storage class of auto
(automatic). Variables of this storage class receive storage
space when the function is activated, and storage is

freed when control of the calling function resumes. See
Chapter 6 for descriptions of other types of storage classes.

Y ou specify PDP-11 C storage classes by placing the
storage class keyword either before or after the data type
keyword in the variable declaration. Note, however, that
placing the storage class keyword anywhere other than
before the data type keyword in the variable declaration

is considered " obsolescent” by the ANSI C Standard.
Keywords are the reserved words used to identify data
types (such asint , double), storage classes (such as

auto, static), statements (such asif , goto), and operators

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p29.decw$book (2 of 3)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

(such as sizeof). Keywords are predefined identifiers
and cannot be redeclared. Y ou cannot use these words to
identify variables and functionsin your programs. Y ou
must express keywords in lowercase letters. For alist of
the PDP-11 C keywords, refer to Section 2.11.

PDP-11 Cisacase-sensitive language. Y ou can declare
variables in any mixture of upper- or lowercase letters.
The case of the references must match the case of the
variable declaration. For example, if you declare total
as avariable, you must referencetotal . If you attempt
to reference Total , an error occurs; the compiler does
not recognize the variable name due to the initial capital
letter.

4 Statements. The sum of 2 + 2 is stored in variable total .
Thisis accomplished using avalid PDP-11 C statement.
Y ou can use any valid expression as a statement by
ending it with asemicolon (;). Identifier total isa
declared variable; the equal sign (=) and the plus sign
(+) arevaid PDP-11 C operators; and the numbers
being added are valid constants. For more information
concerning the various PDP-11 C statements, refer to
Chapter 3. For more information concerning the PDP-11

C operators, refer to Chapter 4.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p29.decw$book (3 of 3)1/25/06 3:40 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

2.4 Producing I nput/Output

The C language includes no facilities to administer 1/0.
However, al implementations, including PDP-11 C, have
methods that allow the programs and users to communicate.
The lack of communication in Example 2-1 isinconvenient;
there is no way to know if the program assigns the correct
value to variable total . You can use aPDP-11 C Run-Time
Library (RTL) function to output the value of variable total to
the terminal.

All C compilers conforming to the ANSI Standard are
accompanied by aRun-Time Library of functions and
macros to perform input, output, and various tasks related

to specific operating environments. The PDP-11 C Run-
Time Library (RTL) provides many of the functions and
macros that are included with other implementations of the
C language. These functions work directly and efficiently
with the host operating system environment.

PDP-11 C RTL functions are segments of object code that
are accessed when external references within your program
are resolved.

Before you can execute any of the example programsin this
manual, you must define the libraries that the Task Builder
or Linker must search to resolve referencesto PDP-11 C
RTL functions. For general information concerning libraries,
refer to Chapter 1.

A header fileis afile that contains a set of definitions or
declarations of related functions, types, and macros. The
default file type for a header fileis .H. Appendix B briefly
describes each header file provided with this implementation
of PDP-11 C.

For more information concerning macros, refer to Chapter 7.
For more information on the various methods of accessing
PDP-11 C RTL functions, refer to the PDP-11 C Run-Time
Library Reference Manual .

Example 2-2 shows that by using the PDP-11 C RTL
function printf , aPDP-11 C program can print a message
to the terminal.

Key to Example 2-2:

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p31.decw$book (1 of 3)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

1 The header file stdio.h is supplied by PDP-11 C. It defines
the arguments to and the type of value returned by the
Standard Library 1/0 functions such as printf .

2 The PDP-11 C RTL function printf writes to the
standard output file (the terminal screen). The first call to
the RTL function printf passes a string as the argument.
The second call to printf passes a string with special
formatting characters and a variable as arguments,

Within the formatting string, the percentage sign (%) is
replaced by the value of total and the letter ~"d" forces
the value of total to be expressed as a decimal number.
The period (.) printsimmediately after the value of total .
The output for Example 2-2 follows:
Here is the answer: 4.
If you want to print the value of total on a separate line,
then the newline character (\n) must be added to the string.
Example 2-3 shows how to output on two lines.

The output from Example 2-3 follows:

Hereisthe answer . . .

4.

Now that a program producing output has been presented,

it is necessary to compile, link, and execute the program to
see the results. Compiling a program trandl ates the source
code to object code; linking a program organizes storage and
resolves external references (for example, references to PDP-
11 C RTL functions); and running a program executes the
image.

A fileisdistinguished by afile name and afile type. Choose
the file name so that the file is easily identifiable to the user.
The maximum number of characters allowed in the file
name is dependent on the operating system:

RSTS/E and RT-11: maximum of six-character names
plus the file type which can have a maximum of 3
characters.

RSX: maximum of nine-character names plus the file
type which can have a maximum of 3 characters.

VMS: maximum of 39-character names plus the file type
which can have a maximum of 39 characters.
Choose the file type to reflect the function of the file. Thefile

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p31.decw$book (2 of 3)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

type C isthe default for the PDP-11 C compiler. If thefile
name ADD is given to the PDP-11 C compiler, the compiler
will look for the file ADD.C.

After you create and name your program, the program can
be compiled, linked, and executed on VMS (using VAX-11
RSX for linking and running) as follows:

$ pdpcc add.c

$ mcr tkb add/cp/fp=add,lb:[1,1]cfpursx/lb

$run add

Hereisthe answer . . .

4,

$

Thefiletype OBJisthe default assigned to the object file.
EXE, TSK, and SAV are the default file types assigned to
image filesfor VMS, RSX and RSTS/E, and RT-11 and
RSTS/E systems, respectively.

Use the CFPURSX library on RSX machines with FPU.
Refer to Section 1.5.8.1 for information on which library to

link to in other situations.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p31.decw$book (3 of 3)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

2.5 Controlling Program Flow

There will be occasions when you must execute one or more
PDP-11 C statements given a certain condition. There will
be other occasions when you must execute one or more PDP-
11 C statements repeatedly, within the body of aloop, until
you meet a certain condition. There are several statements
in PDP-11 C that accomplish these tasks. These statements
aretheif statement, the switch statement, the do statement,
and the for statement. For information concerning the

while statement, another statement that loops until meeting
acondition, refer to Chapter 3.

2.5.1 Testing for a Condition (if Statement)
When executing one or more PDP-11 C statements given a
certain condition, you can use the if statement. Example 2-4

shows a program using the if statement.

Key to Example 2-4.

1 The PDP-11 C RTL function getchar retrieves a
character from the standard input device (the keyboard).
The program pauses, waiting for the user to enter a
character and to press the Return key. The function
getchar retrieves one character and ignores any others
that are entered.

2 If the letter that the user entersiseither"a'or' A', then
amessage stating that the choiceis correct is displayed. If
any other letter is entered, then a message stating that the
choiceisincorrect is displayed. The equality operator (= =
compares the variable ch with the constants'a'and ' A ' .
Thelogical OR operator (k) presents the condition to test.
If there is more than one statement to be executed upon
condition, then you must enclose the statements within
braces ({ }). A statement or statements enclosed within
bracesis called ablock or compound statement . The
concept of blocks isimportant when determining the
scope of variables. For more information concerning
blocks, refer to Section 2.12.

The interaction between the user and the program in
Example 2-4 might be as follows:

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p34.decw$book (1 of 5)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

$run exampled

Guess which letter I'm thinking of!
b

Y ou're wrong.

You'll haveto try again!

2.5.2 Testing for Multiple Conditions (switch Statement)
The switch statement can perform the same task asthe if
statement does in Example 2-4, but switch is useful when

many conditions must be tested. Example 2-5 is an example
that uses the switch statement.

Key to Example 2-5:

1 When using the macro tolower , you must include the
header file ctype.h in the compilation process. Thefile
ctype.h islocated in the directory containing supplied
header files. (See Table 7-1.)

In PDP-11 C, the preprocessor directives are processed
by an early phase of the compiler, not by a separate
program as the name preprocessor implies. Directives,
unlike other PDP-11 C lines of source code, begin with a
number sign (#). The number sign must be the leftmost
nonwhite-space character on the preprocessor directive
line. A preprocessor directive ends with the first new
line character that follows# . Do not end preprocessor
directives with a semicolon.

The header file ctype.h is not the only modul e that
contains macros and definitions used by the RTL
functions; there are several ways to include definitionsin
the program stream. For more information concerning
the PDP-11 C RTL and the header files, refer to the
PDP-11 C Run-Time Library Reference Manual .

2 The compiler replaces the reference to the tolower
macro with aline of PDP-11 C source code that, when
the program is run, trandl ates the value of the variable
ch to alowercase letter. To see the macro definition of
tolower , print thefile CTYPE.H (see Table 7-1 for the

location of supplied header files on your system). For
more information concerning the possible side effects of
macros, refer to Chapter 7.

The output for Example 2-5 is as follows:
$run examples

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p34.decw$book (2 of 5)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

Guess which letter I'm thinking of!

A

You'reright!

The switch statement executes one or more of a series of
cases based on the value of the expression in parentheses. If
the value of variablechis'a', then the statements following
the label case' a': are executed. In Example 2-5, the

tolower macro translated all al phabetic answers to lowercase
letters, so there is no need to test for uppercase letter " A " .
When a case label is matched with the value of variable

ch, all the statements following are executed until the
compiler encounters a break statement (which terminates
the immediately enclosing statement), areturn statement
(which terminates the enclosing function), or the end of the
switch statement. The statements following the default
label are executed if the value of the variable does not
match any of the other case labels. For more information
concerning switch statements, refer to Chapter 3.

2.5.3 Loops

In the previous examples, you could only guess once during
the execution of the program. To guess another letter, you

had to execute the program again. If you want to execute

a segment of code repeatedly until a condition is met, you

may use aloop. Some loops execute a block of statements,
known as the loop body, a specified number of times. Some
loops test for a condition first and then execute the body of the
loop if the condition is true. Some loops execute the |loop body
and then test for a condition, which guarantees at least one
execution of the body. In PDP-11 C, thislast loopiscalled
the do statement. Example 2-6 shows how to use the do
statement to alter the letter-guessing program to repeat a
segment of code until the correct answer is supplied.

Key to Example 2-6:

1 The case label tests to see if the value of the character isa
newline character (\n). The newline character is entered
when you press the Return key. If it is the newline
character, the character isignored and a new character
Istaken from the terminal.

2 The while expression at the end of the do statement uses
the not equal to operator (!=) and trandates as follows:

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p34.decw$book (3 of 5)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

“whilethe variablechisnotequal to'a".
Sample output for Example 2-6 follows:
$run exampleb
Guess which letter I'm thinking of!

Keep guessing until you get it!

B

Y ou're wrong.

You'll haveto try again!

A

You'reright!

Y ou can alternately use the for statement to specify the
number of times to execute the loop body; in the previous
examples, you can use for to limit the number of guesses that
the user may attempt. Example 2-7 illustrates this use of the

for statement.

Key to Example 2-7:

1 Thefor statement controls how many times the body
of the loop is executed. The first expression inside the
parentheses following the keyword for initializes variable
I (being used as the loop incrementor) to the value 1. The
second expression establishes an upper bound; the value of
I isnot to exceed 3. The third expression establishes the
increment or decrement value of i that will be executed
after every execution of the loop body. The double plus
signs (++) represent the increment operator; they increase
the value of avariable by 1. The loop body is executed,
and each time the value of i increases by 1 until the value
of i isgreater than 3.

2 The double minus signs (- -) represent the decrement
operator. The decrement operator is used in this example
to subtract one from the value of i so that newline
characters are not counted as the guess of a letter.

Sample output for Example 2-7 follows:

$ run example7

Guess which letter I'm thinking of!

Y ou have three guesses. Make them count!
B

Y ou're wrong.

You'll haveto try again!

C

Y ou're wrong.

You'll haveto try again!

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p34.decw$book (4 of 5)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

U
Y ou're wrong.
Sorry, you ran out of guesses!

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p34.decw$book (5 of 5)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

2.6 Values, Addresses, and Pointers

In PDP-11 C, every variable has two types of values: a
memory location and a stored object. An lvalueisthe
variable's address in memory, and an rvalueisthe stored
object. Consider the following example:

put_it_here =take this object;

This assignment statement is not very different from
statements in other programming languages, but think
about the differences between locations in memory and
objects stored in memory. This assignment takes the rvalue
of take this _object and placesit in memory at the lvalue of
put_it_here.

Consider the following PDP-11 C declarations and
assignment statement:

intx=2,v,;
[* put_it_here = take this object; */
y=X

The two distinct variables have different memory locations
(Ivalues), but, after the assignment statement, they contain
objects of the equivalent value 2.
A variable's rvalue can be many things, such as an integer,
areal number, a character string, or adata structure. One
variable value can be the address of another variable. When
one variable points to another, the first one's rvalue will be
the second's |value.
A declaration of avariable whose rvalue is a pointer to
another variableis asfollows:
int * pointr;
The indirection notation (

*

) specifies that the variableisa
pointer, which in this example points to an object of data
typeint . Pointers are declared as pointing to an object of a
particular datatype.

Y ou can assign the address of a variable to the pointer as
follows:

int *pointr; /* Declarations */

intx =10,y =0;

pointr = &Xx; /* Assignment */

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p39.decw$book (1 of 2)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

The rvalue of the variable pointr isthe lvalue of variable x .
In this example, the ampersand (&), which isthe ““address
of" operator, trandates to the following: ~“take the Ivalue of
thisvariable instead of itsrvalue." In previous examples, the
rvalue of the variable on the right side of the equal sign (=)
was taken.

Figure 2-1 shows the difference between rvalues and Ivalues

asillustrated in the last example.

The value of the variable pointr contains the address of
variable x . Remember that the location of variablesin
memory and the order in which the compiler allocates them
Is unpredictable and left to the discretion of the compiler.
After you assign an address to the pointer, you will want to
useit. For example, if you want to assign thervalue of xto a
variabley, you can use the pointer in a PDP-11 C statement
asfollows:
y = *pointr;
The asterisk (

*

) isthe PDP-11 C indirection operator; the
object of the variable being pointed to by pointr is assigned to
y. The indirection operator trandates as follows. ""the rvalue
of this variable points to some other variable, so go to that
location and access the stored object.” Figure 2-2 shows
the status of the variables after you execute the last code
example.

For more information concerning pointers, refer to Chapter 5.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p39.decw$book (2 of 2)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

2.7 Function Definitions

Y ou may declare or define functions you wish to call or use
inaPDP-11 C program. Y ou should always declare user-
defined functions before you call them. The following sections
explain the rules for defining functions, but you may wish

to refer to the discussion of declarations and definitionsin
Chapter 5 before continuing here.

In afunction definition, you specify the PDP-11 C statements
that execute whenever you call the function. Y ou also specify
the parameters (if any) of the function. The parameters

of afunction provide a means to pass data to the function.
See Section 2.9 for adetailed discussion of parameters and

arguments.
Example 2-8 presents two sample function definitions.

Key to Example 2-8:

1 Program execution begins with function main. A left
brace ({) signifies the beginning of the function body;
aright brace (}) signifies the end of the body. The
function body is any set of valid PDP-11 C statements
or declarations. Often, the body includes one or more
return statements, as shown here. A return statement
can specify an expression whose value is returned to the
calling function. If the expression is omitted, the returned
value is undefined in the calling function. If the return
statement is not included, the function terminates when
the right brace is encountered, and itsreturn valueis
undefined. For more information concerning the return
statement, refer to Chapter 3.

2 This statement begins a new function identifier, lower ,
that returns an integer; function lower accepts the single
Integer parameter c_up.

For more information concerning the PDP-11 C operators
used in the previous example, refer to Chapter 4.

2.7.1 Main Function and Function Identifiers
The execution of aPDP-11 C program must begin at the
function whose identifier is main. In Example 2-8, the main

function physically precedes the function lower, but the two

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p42.decw$book (1 of 5)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

function definitions can appear in the reverse order.

Function names have compile-time scope rules that are
different from those that apply to other identifiers. Any valid
function identifier followed by aleft parenthesisis declared
implicitly as the name of afunction whose storage classis
external and whose return value is of the datatypeint . A
function prototype declares a user-defined function before it
is called. For more information concerning scope and storage
classes, refer to Chapter 6.

2.7.2 Parameter List Declarations

There are two methods to declare function parameters. The
preferred method of declaring parameter data types is shown
in the following code example:

int lower(intc up)

{

For instance, your function definition may appear as follows:
int function_name(int lower, int upper, int temp, char x, float y)

{

When you use the function prototype format in a function
definition, you must supply both an identifier and a data type
specification for each parameter. If you do not, PDP-11 C
will generate an error message.

In afunction prototype definition, you must use the keyword
void to specify an empty parameter list.

An example of the use of the void keyword follows:

char function_name(void)

{ return'a; }

The following example shows a second method of declaring
function parameters. This method does not allow parameter
type-checking and is considered obsolete.

lower(c up)

int c_up;

{

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p42.decw$book (2 of 5)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

To make your code concise, you may list the data types of
the function parameters within the parameter list. If you use
this method, your function definition also serves as afunction
prototype. See Section 2.8.1 for more information concerning

the effect of function prototypes.

2.7.3 Function-Return Data Types

By default, all PDP-11 C functions return objects of datatype
int . In Example 2-8, function lower returns an integer to the
function main, using the r etur n statement.

If you define afunction that returns anything other than an
integer, you need to specify the function-return data type

in the function definition. The following example shows the
definition of afunction returning a character:

char letter(int paraml, char paramz2, int * param3)

{

return paramz;
}
If afunction does not return avalue, or if you do not call
the function within an expression that requires a value, you
can define the function as type void . The presence of the
void keyword in afunction declaration causes an error to be
generated under the following conditions:

If the function returns avalue

If you call the void function in an expression that requires
areturn value
The following example shows how to use the void keyword to
specify afunction without a return value:
void message(char *s)
{
printf("%s\n",s);
printf(" Stop making sense!");
return;

}
2.7.4Variable-Length Parameter Lists
If you decide to define a function with a variable-length

parameter list, you can use an ellipsis (. ..) inafunction

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p42.decw$book (3 of 5)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

prototype declaration to designate the variable-length portion
of the parameter list, asfollows:
function_name(int lower, int upper, int temp, char x, float y, ...)

{

}

Within the function body, usetheva start,va arg, andva_
end macros defined in the stdarg.h header file to access the
argument list passed to the function. These macros provide a
portable means of accessing variable-length argument lists.
For more information concerning these macros, refer to the
PDP-11 C Run-Time Library Reference Manual .

When using €llipses for variable-length argument lists, you
must have at least one argument preceding the ellipses. The
following definition islegal:

function_name(double lower, ...)

{

}
The following definition is not legal:
function_name(...)

{

}
Example 2-9 shows a variable argument construct:
The output for Example 2-9 follows:

34 stringl
3.000000 string2 4

Note

If you use function prototypes, you should use
ellipses (.. .) within parameter lists so that the

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p42.decw$book (4 of 5)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

compiler does not typecheck the trailing parameters.
See Section 2.8.1 for more information concerning

function prototypes.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p42.decw$book (5 of 5)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

2.8 Function Declarations

Y ou may call afunction without declaring it if the function's
return value is an integer. If the return value is anything

else, the function may have to be declared. Example 2-10

Illustrates when you need to declare afunction.

Key to Example 2-10:

1 Since the location of the function definition is after the
main function in the source code, and since function
lower has areturn type of char , you have to declare the
function before calling it.

In afunction declaration, you can use the keyword void to
specify an empty argument list, as follows:

int main()

{

char function_name(void);

}

char function_name(void)

{}

If the function does not return a value, you can use the void
keyword in the declaration, as follows:

int main()

{

void function_name();

}

void function_name()

{}

If you specify argument data types or void in the parameter
list of afunction declaration as shown in the following
example, PDP-11 C treats the function declaration as a
function prototype for the scope of the declaration:

int main()

{

char function_name(int X, char y);

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p45.decw$book (1 of 4)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

}

Since the declaration is within the scope of main, PDP-
11 C uses the function declaration as a function prototype
only within main. See Section 2.8.1 for more information

concerning function prototypes.

2.8.1 Function Prototypes

A function prototype is a function declaration that specifies
the datatypes of its argumentsin the identifier list. PDP-11
C uses the prototype to ensure that any function definition,
and all declarations and calls within the scope of the
prototype, contain the correct number of arguments or
parameters, and that each argument or parameter is of the
correct data type.

In each compilation unit in your program, determine where
to place the corresponding function prototype. The position
of the prototype determines the prototype's scope; the scope
of the function prototype is the same as the scope of any
other declaration. PDP-11 C checks all function definitions,
declarations, and calls from the position of the prototype to the
end of its scope. Misplacing the prototype so that a function
definition, declaration, or call occurs outside the scope of the
prototype may cause an undefined function error or cause
the definition of distinct function prototype declarations.
Corresponding function prototype declarations are identical
to the declarative part of afunction definition that specifies
datatypesintheidentifier list. All function declarations not
followed by a defining block end with asemicolon (;). The
following code example is a prototype that corresponds with
either of the previous sample function definitions:

char function_name(int lower, int *upper, char (*func)(), doubley);
When declaring a function prototype that is not followed by
adefining block, you do not need to use the same parameter
identifiers as in the function definition. If you choose, you do
not need to specify any identifiers in the prototype declaration.
The scope of the identifiers within function prototypes exists
only within the identifier list; you are free to use those
identifiers outside of the prototype.

Y ou can use the following function:

Function:

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p45.decw$book (2 of 4)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

char function_name(int lower, int *upper, char (*func)(), doubley)
{}

For any of the following prototypes:

Prototypes:

char function_name(int lower, int *upper, char (*func)(), doubley);
char function_name(int &, int *b, char (*c)(), doubled);
char function_name(int, int *, char (*)(), double);

Y ou can specify variable-length argument listsin function
prototypes by using elipses. Y ou must have at |least one
argument in the list preceding ellipses. The following
example illustrates the specification of avariable-length
argument list:

char function_name(int lower, ...);

Y ou cannot omit data type specifications in a function
prototype. Also, you cannot have a variable-length argument
list that is not preceded by at least one argument. The
following prototypes are not legal and their use generates
appropriate error messages.

char function_name(lower, * upper, char (*func)(), float y);
char function_name(, , char (*func)(), float y);

char function_name(...);

Use function prototypes to ensure that all corresponding
function definitions, declarations, and calls within the

scope of the prototype conform to the number and type of
parameters specified in the prototype. A function prototypeis
considered in scope only if afunction prototype declaration is
specified within a block enclosing the function call or at the
outermost level of the sourcefile. If aprototypeisin scope,
the automatic widening of float argumentsto doubleis

not performed. However, the automatic widening of char
argument to int is performed. If the number of arguments

in afunction definition, declaration, or call does not match
the prototype, the statement generates the appropriate error
message.

If the data type of an argument in afunction call does

not match the prototype, PDP-11 C attempts to perform
conversions. If the mismatched argument is assignment
compatible with the prototype parameter, PDP-11 C converts
the argument to the data type specified in the prototype,
according to the parameter and argument conversion rules
(see Section 2.9).

If the mismatched argument is not assignment compatible
with the prototype parameter, the action generates the

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p45.decw$book (3 of 4)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

appropriate error message and the results are undefined.

The syntax of the function prototype is designed such that
PDP-11 C can provide effective compile-time error detection
on the number and types of parameters to the function. To
use prototype checking for PDP-11 C Run-Time Library
function calls, you can include the header files appropriate
for the RTL functions used in your program. Y ou place the
#include preprocessor directives at the top of any applicable
compilation units.

For more information concerning the RTL prototype include
modules, refer to the PDP-11 C Run-Time Library Reference
Manual . For more information concerning preprocessor
directives, refer to Chapter 7. For more information

concerning compilation units and scope, refer to Chapter 8.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p45.decw$book (4 of 4)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

2.9 Using Parametersand Arguments

PDP-11 C functions can exchange information by means
of parameters and arguments. (In this manual, the term
parameter denotes the variable within parentheses named
in afunction definition; the term ar gument denotes an
expression that is part of afunction call.) In Example 2-8,
function lower has the single parameter ¢_up. When this
function is called from the function main, argument cis
evaluated and passed to function lower.

The following rules apply to parameters and arguments of
PDP-11 C functions:

The number of argumentsin afunction call must be

the same as the number of parametersin the function
definition, except if the definition includes the ellipsis. A
function may or may not have arguments.

In PDP-11 C, the maximum number of arguments (and
corresponding parameters) is 255 for a single function.

Arguments are separated by commas. However, the
commais not an operator in this context, and the
arguments may be evaluated by the compiler in any
order. Do not expect function calls or expressionsin the
argument list to be evaluated in any particular order.

In PDP-11 C, arguments are passed by value; that is,
when afunction is called, the parameter receives a copy
of the argument's value, not its address. This rule applies
to all scalar variables, structures, and unions passed

as arguments. If afunction modifies the value of its
argument, those arguments will be unchanged in the
calling function.

Because arguments can be addresses or pointers, a
function can use addresses to modify the values of
variables defined in or within the scope of the calling
function.

The types of evaluated arguments must match the types

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p47.decw$book (1 of 4)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

of their corresponding parameters when a function
prototypeisin scope. In the presence of the éllipsis,
any undeclared parameters are al so subject to the
following type conversions. When afunction is called
and afunction prototypeis not in scope, PDP-11 C does
not compare the types of the arguments with those of the
corresponding parameters so it does not generally convert
the arguments to the types of the parameters. Instead,
all of the expressions in the argument list are converted
according to the following conventions:
- Any arguments of type float are converted to
double.
- Any arguments of types char or short are converted
toint .
- Any arguments of type unsigned char are converted
to unsigned int .
- Any function name appearing as an argument is
converted to the address of the named function.
Y ou must declare the corresponding parameter as a
pointer to afunction, which evaluates to a value of the
same data type as the function.
- Any array name appearing as an argument is
converted to the address of the first element of
the array. Y ou must declare the corresponding
parameter either as an array of the given type or
as a pointer to the given type. Since character-
string constants are declared implicitly as arrays of
characters, this rule also applies to the use of string
constants as arguments.
No other default conversions are performed on
arguments. If you know that a particular argument
must be converted to match the type of the corresponding
parameter, use the cast operator. For more information
concerning the cast operator, refer to Chapter 4.

If you declare variables in the parameter declaration
section that do not exist in the parameter list, the
appropriate error message will be issued.

If you do not declare parameter types, they are implicitly
declared to be of typeint .

The passing of parametersis affected by the function's

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p47.decw$book (2 of 4)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

linkage. For more information, see the #pragma linkage
section in Chapter 7.

2.9.1 Function and Array Identifiersas Arguments

Y ou can use afunction identifier without parentheses and
arguments. In this case, the function identifier evaluates to
the address of the function. This method of referencing is
useful when passing a function identifier in an argument list.
Y ou can pass the address of one function to another as one of
the arguments.

If you wish to pass the address of afunction in an argument
list, the function must either be declared or defined, even if
the return value of the function is an integer. Example 2-11

shows when you must declare user-defined functions and
how to pass functions as arguments.

Key to Example 2-11:

1 You can pass function x in an argument list, since its
definition is located before the function main.

2 Y ou must declare function y before you pass the function
in an argument list, since its function definition is located
after the main function.

3 When you pass functions as arguments, do not include
the parentheses. Similarly, when you specify arrays, do
not include subscripts.

4 When declaring parameters which represent functions,
declare them as pointers to functions. For convenience,
declarations of parameters, which are functions or arrays,
can be declared as ordinary function or array declarators;
the compiler automatically converts them to pointers.

PDP-11 C treats array parametersin the same way.
For more information about pointers, addresses, and
dereferencing, see Chapter 5.

2.9.2 Passing Argumentsto the Function Main

The function main in a PDP-11 C program can accept
arguments from the command line from which it was
invoked. The syntax for such amain function is as follows:
int main(int argc, char *argv [])

In this syntax, parameter argc is the count of arguments
present in the command line that invoked the program.
Parameter argv is an array of character strings of the

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p47.decw$book (3 of 4)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

arguments.

In the main function definition, the parameters are optional.
However, you can access only the parameters that you define.
Y ou can define function main in either of the following ways:
int main(void)

int main(int argc, char *argv[])

On RSX systems, you can pass a command line by using
RUN/COMMAND: (DCL) or RUN/CMD= (MCR);
otherwise you must install the program as described below.
On the RSX and RSTS/E operating systems, arguments may
be passed from the command line if the program isinstalled.
On RSX systems, install your program using the command
INSTALL. The following example shows how to install the
program, ECHO.C (only three characters may be used for

the name):

$install echo/task=...ech

On RSTY/E systems, you install ECHO.C asa CCL asin the
following example:

$ define/command echo

On RT-11, you need only run the program with the
arguments to main following the program name.

Example 2-12 shows ECHO.C, which displays the command-

line arguments that were used to invokeit.

Sample output for Example 2-12 follows:

$ech Long " Day's" " Journey into Night"

program: ech

argument 1: long

argument 2: Day's

argument 3: Journey into Night

At run time, PDP-11 C converts most arguments on the
command line to lowercase. PDP-11 C internally parses
and modifies the altered command line to make argument
access on PDP-11 C compatible with C programs devel oped
on other systems.

All alphabetic arguments in the command line are delimited
by spaces or tabs. Arguments with embedded spaces or tabs
must be enclosed in quotation marks (" "). Uppercase
charactersin arguments are converted to lowercase, but
arguments within quotation marks are left unchanged.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p47.decw$book (4 of 4)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

2.10 I dentifiers

Identifiers consist of up to 31 letters, digits, and underscore
characters (_). When compiling using the/NOSTANDARD
qualifier, the dollar sign ($) may aso be used in identifiers.
When using global names, all underscore characters ()

are converted to periods (.). If you create identifiers with a
length of more than 31 characters, the compiler ignores all
characters after the 31st character. If the identifier will be
seen by the RT-11 Linker or the RSX Task Builder, asin a
declaration with [extern] or #module, the first 6 characters
must be unique after conversion of all letters to uppercase
and must obey the external environment's rules.

Thefirst character must not be a digit, and to avoid conflict
with names used by PDP-11 C, should not be an underscore
character. PDP-11 C uses a preceding underscore to identify
implementation-specific macros, keywords, constants, and
functions,

Upper- and lowercase letters specify different variable
identifiers. For example, the compiler interprets abc, aBc, and
ABC as different variable names.

The dollar sign and underscore characters within identifiers
for global symbols are reserved for use by Digital. Identifiers
that contain dollar signs are not portable and are not accepted
when using the/NOSTANDARD compiler switch.

Digital recommends that you use the following conventions if
practical:

Avoid using underscores as the first character of your
identifiers.

Use uppercase lettersin identifiersif they are constants
that are given values by the #define directive.

In all instances of aglobal name, use identical spellings
and case. All names that become part of the Task Builder
or RT-11 Linker's global symbol table are represented
there in uppercase. Consider the following examples:

int globalvalue c$errn = 0;

globalvalue C3ERRN;

The compiler will consider these to denote different global

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p50.decw$book (1 of 2)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

names, however, uppercase forms for both are passed to
the RT-11 Linker or Task Builder, potentially causing
errors when the program is linked or executed. For more
information concerning the globalvalue specifier, refer

to Chapter 6.

Use lowercase or mixed case lettersfor all other
identifiers.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p50.decw$book (2 of 2)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

2.11 Keywords

Keywords are predefined identifiers. They cannot be
redeclared. They identify data types, storage classes,

and certain statementsin PDP-11 C. Note that many
conventional wordsin PDP-11 C programs are not keywords
and can be redeclared. The notable examples are the names
of functions, including main and the functions found in
libraries that accompany the PDP-11 C compiler.

Keywords must be expressed in lowercase |etters.

Table 2-1 liststhe PDP-11 C keywords.

To maintain VAX C compatibility, do not redefine VAX C
or C++ keywords. The VAX C keywords are shown in
Table 2-2.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p51.decw$book 1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

2.12 Blocks

A block isacompound statement surrounded by braces ({
}). You can use a block when the grammar of PDP-11 C
requires a single statement. The common cases are the bodies
of functionsand if , for , do, switch , and while statements.
Note that this definition of a block may conflict with its
definition in other languages. In PDP-11 C, the terms block
and compound statement are equivalent.

A block may also contain declarations. If it does, any
declarations of auto, register , or static variables are local
to the block. Example 2-13 presents nested blocks and the

differences in the scope of declared variables.

Key to Example 2-13:

1 In the outer block of the function main, variablei used in
theif statement is an integer. The default storage class
for thisvariableisauto.

2 Within the block in the if statement, variablei isasingle-
precision floating-point value with the default storage
classauto .

Sample output for Example 2-13 follows:

Inner-block variable i:30000001023.999997

Outer-block variablei:1

If initialization is specified for any auto or register variables
in anested block, it is performed each time control reaches
the block normally. Such initializations are not performed if a
goto statement transfers control into the middle of the block
or if the block isthe body of a switch statement. For more
information concerning datatypes, refer to Chapter 5. For

more information concerning scope and storage classes, refer
to Chapter 6.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p54.decw$book 1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

2.13 Comments

Comments, delimited by the character pairs (/
*

) and (

/),
can be placed anywhere that white space can appear. The
text of acomment can contain any characters except the

close-comment delimiter (

*

/). Comments cannot be nested.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p56.decw$book 1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

2.14 Lexical Continuation

Y ou can lexically continue aline in your program by

placing a backslash (\) asthe last character in the line.

Y ou can specify lexical continuation at any point, except
within atrigraph. Thisfeature is useful for specifying long
preprocessor directive lines (such as #define) and for long
string literals. For information on string literal concatenation,
see Section 2.15.

The following is an example of lexical continuation:

#define RESET() \

(\
a=0,\
b=0,\
c=0,\
d=0,\
)

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p57.decw$book 1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

2.15 String Literal Concatenation
Y ou can concatenate string literals by placing the two
string literal tokens adjacent to each other. Y ou can place
any number of space and tab characters or comments
between the two string literals. Y ou can also use string
literal concatenation across separate lines.
Thisfeature is useful for defining long string literals. You
can concatenate any number of string literals, restricted
only by memory and address space limitations of the target
environment. A terminating null byte is placed at the end of
the resulting concatenated string, but not at the end of the
individual string literals before concatenation.
Thefollowing is an example of astring literal before
concatenation:
"Thisliteral con"

"catenates.”
After concatenation, the string literal becomes the following:
"Thisliteral concatenates.”

http://www.sysworks.com.au/di sk$vaxdocsep953/decwSbook/d33vaall.p58.decw$book 1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

2.16 Trigraphs

Trigraphs are 3-character sequences used to represent
specific characters that are not supported by certain
terminals, printers, and display devices.

Note

Most Digital terminals, printers, and display devices
support all characters required for programming in
C. Generally, use of trigraphs are required only with
devices that are not produced by Digital or when
using alternate character sets (see Section 7.7.1.)

All trigraph sequences begin with two question marks (7?)
followed by a universally supported character that most
closely resembles the unsupported character.

Table 2-3 shows the defined trigraph sequences and the
characters into which each trigraph sequence is transl ated.
Trigraph sequences are trandlated in all contexts, including
sequences within string literals and character constants.
Only the trigraph sequences shown are translated; two
guestion marks (??) followed by any other character are not
translated.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p59.decw$book 1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

3. Statements
This chapter describes the statementsin the PDP-11 C
programming language. Statements are executed in the

sequence in which they appear in a program, except as
indicated.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p61.decw$book 1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

3.1 The Labeled Statement

Labels are identifiers used to flag alocation in a program and
to be the target of a goto statement.

The syntax of alabel isasfollows:

identifier:

Any statement can be preceded by alabel. The scope of

the label isthe current function body. Labels have their

own name space and, therefore, do not interfere with
variable names. Labels are used only as the targets of goto
Statements.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p62.decw$book 1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

3.2 Compound Statement
A compound statement or block is a group of two or more
statements enclosed within braces ({ }). You can use a block
wherever the grammar of PDP-11 C requires asingle
statement. It allows more than one statement to appear
where a single statement is required by the language. The
common cases are bodies of functionsand if , for , do, switch,
and while statements. The following code is an example of a
block:
if (a==2)
{

intx =5;

z=1,

if (y <x)

funct(y, 2);
else
funct(x, 2);

}
The block contains optional declarations followed by an
optional list of statements, all enclosed in braces. If you
include declarations, the variables they declare are |ocal
to the block, and for the rest of the block they supersede
any previous declaration of variables of the same name.
Inside blocks, you can initialize variables whose declarations
include the auto , register , static, or globaldef storage class
specifiers.
A block is entered either normally when control flowsinto it,
or when agoto (or switch) statement transfers control to a
label in the block itself. Automatic storage for all blocks within
afunction is alocated at function entry. If ablock is entered
through agoto (or in aswitch) statement, initialization of
variables defined within that block will not occur. For more
information concerning storage classes, refer to Chapter 6.

All function definitions are compound statements. The
compound statement following the parameter declarationsin
afunction definition is called the function body.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p63.decw$book 1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

3.3 The Null Statement

Use null statements to provide null operationsin situations
where the grammar of the language requires a statement,
but the program requires no work to be done.

The syntax of the null statement follows:

Y ou need to use the null statement with theif , while, do,
and for statements in cases where the grammar requires

a statement body but the program requires no functional
operation. The most common use of this statement isin loop
operations, where all the loop activity is performed by the
test portion of the loop. For example, the following statement
finds the first element of an array known to have a value of
0:

for(i=0; array[i] !=0; i++)

Refer to Section 3.2 and Section 3.6 for more information
concerning the statements mentioned here.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p64.decw$book 1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

3.4 The Expression Statement

Y ou can use any valid expression as a statement by
terminating it with a semicolon. The following is an example
of an expression used as a statement:

i++;

This statement increments the value of the variablei .

For more information concerning the valid PDP-11 C
expressions, refer to Chapter 4.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p65.decw$book 1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

3.5 Selection Statements

A selection statement selects from a set of statements
depending on the value of a controlling expression. The
following sections describe the if statement and the switch
Statement.

3.5.1 Theif Conditional Statement
Anif statement executes a statement depending on the
evaluation of an expression and can optionally be written
with an else clause.
The syntax of the if statement follows:
if (expression)
Statement
else
Statement
The else clause and following statement are optional.
An example of theif statement follows:
if (i<1)
funct(i);
else

{ .
| = X++;
funct(i);
}
If the evaluated expression within parentheses istrue (in
the example, if variablei islessthan 1), then the statement
following the evaluated expression executes; the statement
following the keyword el se does not execute. If the evaluated
expression is false, then the statement following the keyword
el se executes.
All logical operators define atrue result to be nonzero.
Therefore, any scalar expression in the conditional statement
can be alogical expression with predictable results (true or
false; nonzero or zero).
An ambiguity occurs when you omit an else clause from
anested if sequence. Thisisresolved by matching the else
clause with the most recent if statement that does not have
an else clause. For example, in the following example, the
else matches with the inner if :

if (x>y)

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p66.decw$book (1 of 4)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

if (x>2)
z=1;
else
z=0;
However, you can control the matching by using bracesin
the following way:

if (x>y)

3.5.2 The switch Statement

The switch statement executes one of a series of cases, based

on the value of the expression.

The syntax of the switch statement follows:

switch (expression)

Statement

The usual arithmetic conversions are performed on the

expression, but the result must be an integer type. For more

information concerning data types, refer to Chapter 5. The

statement is typically a compound statement, within which

one or more case labels prefix the statements that execute if

the expression matches the case .

The syntax for a case label and expression follows:

case constant-expression :

The constant expression must also be of typeint . No two

case labels can specify the same value.

Only one statement in the compound statement can have the

following label:

default :

The syntax for adefault statement follows:

default : statement

The case and default labels can occur in any order. Note

that each case flows into the next unless explicit action

Istaken, such as abreak statement. When the switch

statement is executed, the following sequence takes place:

1. The switch expression is evaluated and compared with
the constant expressions in the case labels.

2. If the expression's value matches a case label, the
statements following that label are executed. If the

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p66.decw$book (2 of 4)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

list of staterments ends with the break statement, the
break terminates the switch statement; otherwise,
execution falls through to the next set of statements.
(See Example 3-1.) The switch statement can also be

terminated by areturn or goto statement; if the switch
Isinside aloop, it can be terminated by a continue
statement. For more information concerning interrupting
statements, refer to Section 3.7.

3. If the expression's value does not match any case |abel
but there is a default case, the default case is executed.
It need not be the last case listed. If abreak statement
does not end the default case and it is not the last case,
the next case encountered is executed.

4. If the expression’s value does not match any case label
and there is no default , the body of the switch statement
IS not executed.

In general, the break statement should be used to ensure

that a switch statement executes as expected. Example 3-1

uses the switch statement to count blanks, tabs, and newlines
entered from the terminal.

Key to Example 3-1.
1 A series of case labelsis used to increment the counters.
2 The break statement causes control to go back to
the while loop every time a counter increments. The
program automatically passes control to the while loop if
none of the case statements is selected.
Sample execution and output for Example 3-1 follows:

$ run example.exe
Every good boy.

The quick brown fox.
Linewith 2

Tab

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p66.decw$book (3 of 4)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

Tab

tabs.
At this point, enter the end-of-file character, Ctrl/Z. The
program prints the following:
Blanks Tabs Newlines
723
If you omit the break statements, the program prints the
following:
Blanks Tabs Newlines
1225
Without the break statements, each case drops through to
the next case. The number shown for tabs happensto be
right, because the tabs case isfirst in the switch statement
and is executed only if ch=="\t". Notice that the number
shown for newlines is the correct number plus the number of
tabs, and the number shown for blanksis the total of all three
cases. Any statements that appear within a switch statement
before the first case label or default label are ineffective.
Consider the following example:
switch (ch)
{
int x = 1; /* Ineffective initialization */
printf("%d", x); /* Thisfirst printf won't be executed */
case'd :
{ int x =5; /* Proper initialization */
printf("%d", X);
break;
}

case'b':

}

In the previous example, if the variable chequals'a', then
the program prints the value 5. The initialization outside of
the case label isineffective, and the printf preceding case' a'
cannot execute because it cannot be reached.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p66.decw$book (4 of 4)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

3.6 Iteration Statements (L ooping)

An iteration statement causes a compound statement called
the loop body to be executed until an expression evaluatesto
fase. In PDP-11 C, the for and while statements evaluate

an expression and then execute the body of the loop. Some
loops execute the loop body and then evaluate the expression,
which guarantees at least one execution of the body; in
PDP-11 C, the do statement executes this loop. The following
sections describe the for , while, and do statements.

3.6.1 Thewhile Statement

The while statement eval uates an expression and executes
a statement (the loop body) zero or more times, until the
expression evaluates to false.

The syntax of awhile statement follows:

while (expression)

Statement
An example of the while loop follows:
X =0;
while (x < 10)
{
array[x] = x;
X++;
}

This statement tests the value of the variable x; if variable x
islessthan 10, it assigns x to the x th element of the array

and then increments the variable x. If the expression in
parentheses evaluates to false, the loop body does not execute,
and control passes to the statement following the while loop.

3.6.2 Thefor Statement

Thefor statement evaluates three expressions and executes

a statement (the loop body) until the second expression
evaluatesto false. The for statement is particularly useful for
executing aloop body a specified number of times.

The syntax for the for statement is as follows:

for (expression-1 ; expression-2 ; expression-3)

statement

Thefor statement executes the loop body zero or more times.
It uses three expressions as shown. Semicolons (;) are used

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p68.decw$book (1 of 3)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

to separate the expressions; notice that a semicolon does

not follow the last expression. A for statement executes the

following steps:

1. Expression-1 is evaluated only once, before the first
iteration of the loop. It usually specifiestheinitial values
for variables.

2. Expression-2 isalogical expression that determines
whether or not to terminate the loop. Expression-

2 is evaluated before each iteration. If the expression
evaluatesto false, the for loop body does not execute and
control passes to the statement following the for loop. If
the expression evaluates to nonzero, the body of theloop is
executed.

3. Expression-3 is evaluated after each iteration. It usually
specifies increments or decrements for the variables
initialized by expression-1.

4. |terations of the for statement continue until expression-

2 produces afalse (zero) value, or until some statement
such as break or goto causes control to be transferred
elsewhere.

An example of the for loop follows:

for (x=0; x<10; x++)
array[x]=x;

This statement initializes the variable x to 0. It then tests if

the value of x islessthan 10, and if the expression evaluates

to nonzero, assigns the value of x to the x th element in the

array. It then increments the variable x .

Thefor statement is equivalent to the following code:

expression-1;

while (expression-2)

{

statement

expression-3;

}

Any of the three expressions in aloop can be omitted. If

expression-2 is omitted, the test condition is always true; that

IS, the while in the expansion becomes while (x), where x is

not equal to zero. If either expression-1 or expression-3is

omitted from the for statement, that expression is effectively
ignored.

The following statement illustrates aloop that will beinfinite

unless the statement body executes abreak , return , or goto .

for (;;) statement

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p68.decw$book (2 of 3)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

3.6.3 Thedo Statement
The do statement executes a statement (the loop body) one or
more times, until the expression in the while clause evaluates
to false.
The syntax for the do statement follows:
do
Statement
while (expression) ;
An example of the do statement follows:
x=0;
do
{
array[x]=x;
X++:
}
while(x<10);
The statement is executed at |east once, and the expression is
evaluated after each subsequent execution of the loop body. If
the expression is true, the statement is executed again.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p68.decw$book (3 of 3)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

3.7 Jump Statements

This section describes the statements you use to break to
another statement. These statements are primarily used to
exit switch statements and loops.

3.7.1 The goto Statement
The goto statement transfers control unconditionally to a
labeled statement, where the label identifier must be located
in the scope of the function containing the goto statement.
The syntax of the goto statement follows:
goto identifier;
An example of the goto statement follows:
#include <stdio.h>
int main ()
{ . .
inti;
for (i=0; i<4; i++)
{
printf("My number is %d.\n", i);
if 1==2)
goto even_number;
else
printf("l have an odd number.\n");
}
even_number:
printf("I have an even number.\n");
}
Sample output follows:
$run goto.exe
My number isO.
| have an odd number.
My number is 1.
| have an odd number.
My number is 2.
| have an even number.
Be careful when branching into a block using the goto
statement. When a goto statement branches into a block,
initialization of automatic variables declared in that block
(and any enclosing blocks between the goto statement and
block containing the label) will not be performed.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p69.decw$book (1 of 4)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

3.7.2 The continue Statement
The continue statement passes control to the end of the
immediately enclosing while, do, or for statement.
The syntax for the continue statement follows:
continue;
The continue statement is equivalent to the goto label
statement, shown here, for each of the looping statements in
the syntax examples that follow:
while(...)dofor(...;...;...)

{{{

goto label; goto label; goto label;

label: 1abel: |abel:
11}
while(. . .);
In the preceding syntax examples, a continue statement
passes control to alocation referred to by label. The
continue statement is intended only for loops, not for switch
statements. A continue inside a switch statement that is
inside a loop causes continued execution of the enclosing loop
after exiting from the body of the switch statement.
An example of the continue statement follows:
#include <stdio.h>
int main ()
{
char c;
while ((c = getchar()) = EOF)
If (c=="\t') /*Skipsover tabs*/
continue;
else putchar(c);

}
Sampl e output follows:
$run continue.exe
Skip over any tabs

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p69.decw$book (2 of 4)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

Tab

Tab

that | type.
Skip over any tabsthat | type.
Enter the end-of-file character, Ctrl/Z to exit the program.

3.7.3 The break Statement
The break statement terminates the immediately enclosing
while, do, for , or switch statement. Control passesto the
statement following the loop or switch body.
The syntax for the break statement is as follows:
break;
An example of the break statement follows:
#include <stdio.h>
int main ()
{ .
Int c;
while (c = getchar())
{
if (c=="n)
break;
putchar(c);
}

}
Sample output follows:

$run break.exe

The program will terminate when | pressreturn.
The program will terminate when | press return.

$

3.7.4 Thereturn Statement

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p69.decw$book (3 of 4)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

The return statement causes a return from afunction, with
or without areturn value.
The syntax of the return statement follows:
return [expression];
An example of the return statement follows:
#include <stdio.h>
int main ()
{

intx =0;

int add_one(int i);

printf("%ad\n", x);

X = add_one(x);

printf("%ad\n", x);

i}nt add_one(int i)
{
i=i+1;
return i;
}

Sample output follows:

$runreturn.exe

0

1

$

The compiler evaluates the expression (if you specify one)
and returns the value to the calling function. If necessary,
the compiler converts the value to the declared type of the
containing function's return value. If there is no specified
return value, the value is undefined.

Y ou can declare a function without areturn statement to
be of type void . Y ou cannot have areturn statement with
an expression in afunction whose return typeisvoid . For
more information concerning the void data type and function
return values, refer to Chapter 2.

The value returned by the main function is passed to the
operating system when the program exits.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p69.decw$book (4 of 4)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

4. Expressions and Operators

An expression is any series of symbolsthat PDP-11 C

uses to produce avalue. The simplest expressions are
constants and variable names that yield a value directly.

Other expressions combine operators and subexpressions to
produce values.

In some instances, the compiler makes conversions so that

the data types of the operands are compatible. This chapter
refers to these rules as the usual arithmetic conversions.

See Section 4.9.1 for more information concerning these rules.

This chapter discusses the following topics:

Ivalues and rvalues

Primary expressions and operators
PDP-11 C operators

Unary expressions and operators

Binary expressions and operators

The conditional expression and operator
Assignment expressions and operators
The comma expression and operator

Data type conversions

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p70.decw$book 1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

4.1 Addresses (Ivalues) and Objects (rvalues) of Variables
A variable identifier is one of the primary PDP-11 C
expressions. (See Section 4.3 for more information concerning
primary expressions.) This type of expression yieldsasingle
value. However, when using the variable identifier with other
operators, the expression evaluates to the variable's location in
memory. The address of the variable is the variable's [value.
The object stored at that address is the variable's rvalue. For
example, PDP-11 C uses both the lvalue and the rvalue of
variables to evaluate the following expression:
X=Y;
The contents of variable y are taken and assigned to variable
X . The expression on the right side evaluates to the variable's
rvalue while the expression on the left side evaluatesto the
variable's lvalue in the performance of assignment.
The following syntax defines those PDP-11 C expressions
that either have or produce Ivalues:
lvalue ::=

identifier

primary [expression]

Ivalue . identifier

primary -> identifier

*

expression
(lvalue)
These expressions represent, respectively:
|dentifiers of scalar variables, structures, and unions

References to scalar array elements

Pointers to structure and union members, except for
references to fields that are not |values

References to pointers (also called dereferenced pointers;

an asterisk (

) followed by an address-valued expression)

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p71.decw$book (1 of 2)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

Any of the above expressions, enclosed in parentheses
All lvalue expressions represent asingle location in a
computer's memory. Chapter 2 shows the difference between

lvalues and rvalues.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p71.decw$book (2 of 2)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

4.2 Overview of the PDP-11 C Operators

Y ou can use the simpler variable identifiers and constants

in conjunction with PDP-11 C operatorsto create more
complex expressions. Table 4-1 presents the set of PDP-11 C

operators.

The operators fall into the following categories:
Unary operators take a single operand.

Binary operators take two operands and perform a
variety of arithmetic and logical operations.

The conditional operator isthe only ternary operator. It
takes three operands and eval uates either the second or
third expression, depending on the evaluation of the first
expression.

Assignment operators assign avalue to avariable,
optionally performing an additional operation before
the assignment takes place.

The comma operator guarantees | eft-to-right evaluation
of comma-separated expressions.

Primary operators usually modify or qualify identifiers
(see Section 4.3 for more information).
Table 4-2 presents the precedence by which the compiler
evaluates operations. Those operators with the highest
precedence appear at the top of the table; those with the
lowest appear at the bottom. Operators of equal precedence
appear in the same row.

Consider the following expression:

A+B*C

Theidentifiers B and C are multiplied first because the
multiplication operator (

*

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p72.decw$book (1 of 2)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

) has a higher precedence than the
addition operator (+). The associative rule applies to each
row of operators. Consider the following expression:

A/B/C

This expression is evaluated as follows because the division
operator evaluates from left to right.

(A/B)IC

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p72.decw$book (2 of 2)1/25/06 3:41 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

4.3 Primary Expressions and Operators
Simple expressions are called primary expressions ; they
denote values. Primary expressions include previously
declared identifiers, constants (including strings), array
references, function calls, and structure or union references.
The syntax descriptions of the primary expressions are as
follows:
primary ::=

identifier

constant

string-literal

(expression)
The simplest forms are identifiers, such as variable names
and string or arithmetic constants. Other forms are
expressions (delimited by parentheses), function calls, array
references, Ivalues and rvalues, and structure and union
references.

4.3.1 Parenthetical Expressions

An expression within parentheses has the same type and
value as the same expression without parentheses. Asin
declarations, any expression can be delimited by parentheses
to change the grouping of the operatorsin alarger expression.

4.3.2 Function Calls

A function call isa primary expression followed by
parentheses. The parentheses may contain alist of
arguments (separated by commas) or may be empty.

An undeclared function is assumed to be a function
returning int . If you declare an identifier asa " function

returning . . . ", but use the identifier in a context other
than afunction call, it convertsto " "the address of function
returning . . . ". When you pass an argument that isan

array or function, specify the identifier in the argument list.
The compiler passes the address of the array or function

to the called routine. This means that the corresponding
parameters in the called function must be declared as
pointers.

The following is an example of a function declaration and a
function call:

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p75.decw$book (1 of 4)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

int f1(); /* Function declaration */

f1(); /* Function call */

Consider the following declaration:

double atof();

The previous example declares a function returning double .
Y ou can then use the identifier atof in afunction call as
follows:

result = atof(c);

Y ou can use the identifier atof in other contexts without the
parentheses as follows:

dispatch(atof);

Theidentifier atof converts to the address of that function,
and the address is passed to the function dispatch.
Functions can also be called by means of a pointer to a
function. Consider the following pointer declaration and
assignment:

double (*pfd)();

pfd = atof;

To call the function, you can specify the following form:
result = (*pfd)(c);

PDP-11 C also accepts a pointer to afunction as shownin
the following example:

result = pfd (c);

4.3.3 Array References

Use the bracket operators ([]) to refer to elements of arrays.
In an array defined as having three dimensions, you can
refer to a specific element within the array, asin the
following example:

int *x; /* Pointer to integer */

int sample_array[10][5][2]; /* Array declaration */
inti=10;

sample_array[9][4][1] =1i; /* Assign value to element */
This example assigns a value of 10 to element sample
array[9][4][1].

If an array referenceis not fully qualified, it refersto the
address of the first element in the dimension that is not

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p75.decw$book (2 of 4)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

specified.
Consider the following different assignments:
x = sample_array[9][4]; /* Assignsthe address of */
[* sample_array[9][4][0] to x. */
x = 10; / Assigns avalue of ten to */
* the element sample_array[9][4][0] */
/* which x now pointsto. */
A reference to an array name with no bracket operatorsis
often used to pass the array's address to afunction, asin the
following statement:
funct(sample_array);
Y ou can also use the bracket operators to perform general
pointer arithmetic as follows:
addr[intexp]
In this example, addr is the address of some previously
declared object (pointer-valued) and intexp is an integer-
valued expression. The result of the expression is scaled or
multiplied by the size in bytes of the addressed object. If
intexp is a positive integer, the result is a subsequent object of
thissize; if intexp is O, the result is the same object; if intexp

IS negative, the result is a previous object. The expressions
*

(addr + intexp) and addr[intexp] are equivalent because

both expressions reference the same memory location;
*

(addr + intexp) points to the same element as addr[intexp].

4.3.4 Structure and Union References

A member of a structure or union can be referenced with
either of two operators: the dot (.) or the arrow (->).

A primary expression followed by a period followed by an
identifier refers to a member of a structure or union and
Isitself aprimary expression. The first expression must be
an lvalue naming a structure or union. The identifier must
name a member of that structure or union. Theresultisa
reference (if the member isascaar) to the named member
of the structure or union. The name of the desired member
must be preceded by a period-separated list of the names of
al higher level members. For more information concerning
structures and unions, refer to Chapter 5.

A primary expression followed by an arrow (specified with a

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p75.decw$book (3 of 4)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

hyphen (-) and a greater-than symbol (>)) followed by an
identifier refers to amember of a structure or union. The
first expression must be a pointer to a structure or a union.
The identifier following the arrow operator must name a
declared member of that structure or union. Theresultisa
reference to the named member.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p75.decw$book (4 of 4)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

4.4 Unary Operators

Y ou can form expressions by combining a unary operator
with asingle operand. All unary operators are of equal
precedence and group from right to left. They perform the
following operations:

Negate avariable arithmetically (-) or logically (!)
Increment (++) and decrement (- -) variables

Find addresses (&) and dereference pointers (
*

Calculate aone's complement (~)

Force the conversion of data from one type to another
(the cast operator)

Calculate the sizes of specific variables or of types (sizeof)

Forceintegral promotions (+)

4.4.1 Negating Arithmetic and L ogical Expressions
Consider the syntax of the following expression:

- expression

Thisisthe arithmetic negative of expression. The compiler
performs the arithmetic conversions. The negative of an
unsigned short int is computed by subtracting its value
from 2

16
. The negative of an unsigned long int is computed
by subtracting its value from 2

32

Consider the following expression:

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p76.decw$book (1 of 5)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

lexpression

Theresult isthe logical (Boolean) negative of the expression.
If the result of the expression is O, the negated result is 1; if
the result of the expression is not O, the negated result is 0.
The type of theresult isint . The expression can be a pointer
(or another address-valued expression) or an expression of
any arithmetic type.

4.4.2 Incrementing and Decrementing Variables
Consider the syntax of the following expression:

++lvalue

The object that the Ivalue refersto in the expression is
incremented before its value is used. After evaluating this
expression, the result is the incremented rvalue, not the
corresponding lvalue. For this reason, expressions that use
the increment and decrement operators in this manner

cannot appear by themselves on the left side of an assignment
expression where an lvalue is needed.

Consider the syntax of the following expression:

lvaluet+

The object that the Ivalue refersto in the expression
increments after its value is used. The expression evaluates
to the value of the object before the increment, not the
incremented variable's [value.

If the operand is a pointer, the address is incremented by the
length of the addressed object, not by the value 1. If declared
as an integer or floating point, the variable increases by the
value 1.

If the Ivalue points to another variable:

- -lvalue

lvalue- -

then these expressions decrement not by 1, but by the size of
the addressed object. The data type of the variable determines
the amount of the increment or decrement. If declared asa
pointer, the variable increments or decrements by the size of
the addressed object's data type. For example, if declared asa
pointer to integer, the variable increments or decrements by
the value 2. For example:

int *ip;

char *cp;

ip--; /* decremented by 2 */

--cp; /* decremented by 1 */

When using the increment and decrement operators, do not

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p76.decw$book (2 of 5)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

depend on the order of evaluation of expressions. Consider
the following ambiguous expression:

k=X[] +]j++;

Isthe value of variable | in x[j] evaluated before or after the
increment occurs? Do not assume which expressions the
compiler will evaluate first. To avoid ambiguity, increment
the variable in a separate statement.

4.4.3 Computing Addresses and Der eferencing Pointers

(&
*
)
Consider the syntax of the following expression:
& identifier

The expression results in the Ivalue (address) of the identifier.
The ampersand operator (&) may not be applied to register
variables or to bit fields in structures or unions.

When an expression evaluates to an address, asin the
following example, the addressis used to indirectly access
the object to which the address refers:

* pointer

An expression using the indirection operator (

*

) evaluates
to the object pointed to by a pointer or by an address-valued
expression.

4.4.4 Calculating a One's Complement (~)

Consider the syntax of the following expression:

~ expression

The result is the one's complement of the evaluated
expression; it converts each 1-bit into a 0-bit and vice versa.
The expression must be integral (an integer or character).
The compiler performs necessary arithmetic conversions.

4.4.5 Forcing Conversionsto a Specific Type (Cast
Operator)

The cast operator forces the conversion of its operand to a

void type, qualified scalar type, or unqualified scalar type.

Y ou can also cast to atypedef if it represents a scalar type.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p76.decw$book (3 of 5)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

Structures and unions may not appear in a cast operator;
however, pointers to structures or unions may. The operator
consists of a data type name, in parentheses, preceding the
operand expression, as follows:
(type-name) expression
The resulting value of the expression converts to the named
datatype, asif the expression were assigned to a variable of
that type. If the operand is avariable or constant, its value
converts to the named type. The variable's contents do not
change. The type name has the following formal syntax:
type-name ;.= type-specifier abstract-declarator
abstract-declarator ::=

empty

(abstract-declarator)

*

abstract-declarator

abstract-declarator ()

abstract-declarator [constant-expression |
Abstract declarators may include the brackets and paren-
theses that indicate arrays and function calls. However, cast
operations cannot force the conversion of any expression to
an array, function, structure, or union. The brackets and
parentheses are used in operations such as the following
example, which castsidentifier P1 to " pointer to array of
int."
(int (*)[1) P1
Thiskind of cast operation does not change the contents of
P1; it only causes the compiler to treat the value of P1 asa
pointer to such an array.

4.4.6 Calculating Sizes of Variables and Data Types
(sizeof)

Consider the syntax of the following expressions:

sizeof expression

sizeof (type-name)

The result isthe size, in bytes, of the operand. In the first

case, the result of sizeof isthe size determined by the type

of the expression. In the second case, the result isthe size,

in bytes, of an object of the named type. The syntax of type-

name is the same as that for the cast operator. While you

may take the size of unions and structures, you cannot cast

them. For example:

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p76.decw$book (4 of 5)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11C

inti;

char a[10];

| = sizeof a; /*value 10*/

| = sizeof (short int); /*value 2%/

See Section 4.4.5 for more information concerning the cast
operator.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p76.decw$book (5 of 5)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

4.5 Binary Operators
The binary operators are categorized as follows:

Additive operators: addition (+) and subtraction (-)

Multiplication operators. multiplication (
*

), modulo (%),
and division (/)

Equality operators: equality (= =) and inequality (!=)

Relational operators: lessthan (<), lessthan or equal to
(<=), greater than (>), and greater than or equal to (>=)

Bitwise operators: AND (&), OR(|), and XOR (")
Logical operators: AND (& &) and OR (k)

Shift operators: left shift (<<) and right shift (>>)
The following sections describe these binary operators.

4.5.1 Additive Operators (+ -)

The additive operators (+) and (-) perform addition and
subtraction. Their operands are converted, if necessary,
following the usual arithmetic conversions described in
Section 4.9.1.

Y ou can increment an array pointer by adding an integral
variable to the address of an array element. The compiler
calculates the size of one array element, multiplies that by
the integer to obtain the offset value, and then adds the offset
value to the address of the designated element. For example:
int arr[10];

int*p = arr;

p=p+3;/* Increments by 2*3*/

Y ou may subtract avalue of any integral type from a pointer
or address; in that case, the same conversions apply as for
addition.

If you subtract two addresses of objects of the same type, the

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p77.decw$book (1 of 5)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

result converts (divides by the length of the object) to anint

representing the number of objects separating the addressed

objects. The result of this conversion is unpredictable unless
the two objects are in the same array.

Note

The size of objects of typeint vary among
implementations of the C language. In PDP-11

C, the datatypesint and short are of the same size,
16 hits.

4.5.2 Multiplication Operators (

*

/ %)
The multiplication operators (

*

), (1), and (%) perform
arithmetic conversions, if necessary. The binary operator (

*

)

performs multiplication. The binary operator (/) performs
division. When integers are divided, truncation is toward
zero.

The binary modulo operator (%) divides the first operand
by the second and yields the remainder. Both operands must
be integral. The sign of the result is the same as the sign of
the quotient. If variable bis not O, the following statement is
awaystrue:

a= (alb)*b + a%ob;

4.5.3 Equality Operators (==1=)

The equality operators equal to (= =) and not equal to (!=)
perform the necessary arithmetic conversions on their two
operands. These operators produce aresult of typeint . In the
following statement, the result is the value 1 if both relational

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p77.decw$book (2 of 5)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

expressions have the same truth value , and O if they do not.
a<b == c<d

Two pointers or addresses are equal if they identify the same
storage location. Y ou can compare a pointer or address with
an integer, but the result is not portable unless the integer is
0. A null pointer is considered equal to O.

Although different symbols are used for assignment and
equality, (=) and (= =) respectively, PDP-11 C allows either
operator in some contexts, so you must be careful not to
confuse them. For example, consider the following:

if (x=1) statement-1,

else statement-2;

In the previous example, statement-1 always executes, since
the result of assignment x=1 delimited by parenthesesis
equivalent to the value of x, which isequal to 1, true.

Note

The following example shows a common error in
programming comparisons:

int X;

If (x=1) /* Common error in programming comparisons */
If (1==x) /* This syntax does the comparison */

If (1=x) /* This syntax causes acompiler error */

To avoid this error, use the syntax if (1= =x) for
comparisons because omitting the second equal sign
causes acompiler error.

4.5.4 Relational Operators (< > <=>=)

The relational operators compare two operands and produce
aresult of typeint . Theresult isthe value O if the relation
isfalse, and 1if itistrue. The operators are lessthan (<),
greater than (>), less than or equal to (<=), and greater than
or equal to (>=). The compiler performs necessary arithmetic
conversions.

If you compare two pointers or addresses, the result depends
on the relative locations of the two addressed objects. Pointers
to objects at lower addresses are |ess than pointers to objects
at higher addresses. If two addresses indicate elementsin the

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p77.decw$book (3 of 5)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

same array, the address of an element with alower subscript
Is less than the address of an element with a higher subscript.
The relational operators group from left to right. However,
note that in the following example, the first statement
compares the variable c with 0 or 1 (possible results of a<b);

it does not mean "if bisbetweenaandc. . .". The second
statement shows the proper way to perform this test.
If (a<b<c)...

if (a<b && b<q)...

4.5.5 Bitwise Operators (& |)

The bitwise operators may be used only with integral
operands: with variables of types char and with int of

all sizes. The compiler performs the necessary arithmetic
conversions. The result of the expression is the bitwise AND
(&), XOR-exclusive OR (), or OR (|) of the two operands.
The compiler aways evaluates all operands. Figure 4-1

shows the effects of Boolean algebra when using the bitwise
operators.

In Boolean algebra, PDP-11 C compares values bit by bit.

If you are using the bitwise AND, and are comparing a bit
value 1 and a bit value O, the result is 0. When using the
bitwise AND, both compared bits must be 1, for the result to
be 1. When using the bitwise OR, either bit value can be 1 for
the result to be 1. When using the bitwise EXCLUSIVE-OR,
either value, but not both, must be 1 for the result to be 1.

4.5.6 Logical Operators(&& ||)

Thelogical operators are AND (& &) and OR (| |). These
operators guarantee left-to-right evaluation. The result of
the expression (of typeint) iseither O (false) or 1 (true). If
the compiler can make an evaluation by examining only the
left operand, it does not eval uate the right operand. Consider
the following expression:

El&& E2

Theresultis 1 if both its operands are nonzero, or O if one
operand is 0. If expression E1is 0, expression E2 is not
evaluated. Similarly, the following expressionis 1 if either
operand is nonzero, and O otherwise. If expression E1 is
nonzero, expression E2 is not evaluated.

E1l| E2

The operands of logical operators need not have the same
type, but each must be one of the fundamental types or must

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p77.decw$book (4 of 5)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

be a pointer or other address-valued expression.

4.5.7 Shift Operators (<< >>)

The shift operators (<<) and (>>) take two operands, both

of which must be integral. The compiler performs necessary
arithmetic conversions on both operands if they are not
integers. The right operand is then converted to int , and the
type of the result is the type of the left operand. Consider the
following expression:

El<<E2

The result isthe value of expression E1 shifted to the left

by E2 bits. The compiler clears vacated bits. Consider the
following expression:

El>>E2

The result isthe value of expression E1 shifted to the right by
E2 bits. The compiler clears vacated bitsif E1 isunsigned ;
otherwise, the bits are filled with a copy of E1's sign hit.
The result of the shift operation is undefined if the right
operand (E2 in the previous example) is negative or if the
value of E2 is greater than 16.

Figure 4-2 illustrates the shift operators.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p77.decw$book (5 of 5)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

4.6 Conditional Operator (?:)

The conditional operator (?:) takes three operands. It tests the

result of the first operand and then evaluates one of the other

two operands based on the result of the first. For example,
consider the following:

E1?E2: E3

If expression E1 is nonzero (true), then E2 is evaluated. If

E1lisO (false), E3 isevaluated. Conditional expressions group

from right to left. The compiler makes conversionsin the

following order:

1. If possible, the arithmetic conversions are performed on
expressions E2 and E3, so that they will result in the same
type.

2. If expressions E2 and E3 are address expressions
indicating objects of the same type, the result has that
type.

3. One of the E2 and E3 operands may be an address
expression, and the other, the constant 0. The result has
the type of the addressed object.

http://www.sysworks.com.au/di sk$vaxdocsep953/decwSbook/d33vaall.p80.decw$book 1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

4.7 Assignment Expressions and Operators

PDP-11 C has severa assignment operators. An assignment

Is not only an operation but is also an expression. Assignments
result in the value of the target variable after the assignment.
They can be used as subexpressionsin larger expressions.

The set of assignment operators consists of the equal sign

(=) aone and in combination with binary operators. An
assignment expression has two operands (an Ivalue and an
expression separated by one of these operators). Consider the
following assignment expression:

El+=E2;
Thisis equivaent to the following expression:
El1=El+E2;

The expression E1 is evaluated once and must result in an
lvalue. The type of the assignment expression is the type
of E1, and the result is the value of E1 after the operation.
Y ou must delimit some expressions in parentheses if the
expressions possibly contain other operators of alower
precedence. Consider the following expression:

a*=b+1,
Thisisthe same as the following expression:
a=a* (b+1);

In the following simple assignment expression, the value of
expression E2 replaces the previous object of EL.

El1=E2
The following expression adds 100 to the contents of a_
number[1].

a_number[1] += 100;

The result of this expression is the result of the addition and
has the same type asa_number[1].

If both assignment operands are arithmetic, the right operand
Is converted to the type of the left before the assignment (see
Section 4.9.1).

Y ou can use the assignment operator (=) to assign valuesto
structure and union members. Y ou can assign one structure
value to another as long as you define the structures to be
the same type. With all other assignment operators, all right
operands and all left operands must either be pointers or
evaluate to arithmetic values. If the operator is (-=) or (+=),
the left operand may be a pointer, and the right operand

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p8l.decw$book (1 of 2)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

(which must be integral) is converted in the same manner
asthe right operand in the binary plus (+) and minus (-)
operations.

Using a cast, you can assign an address to an integer, an
integer to a pointer, and the address of an object of one type
to a pointer of another type. Such assignments are simple
copy operations, with no conversions. This usage may cause
addressing exceptions when you use the resulting pointers.
However, if the constant O is assigned to a pointer, the result
isanull pointer. The equality operators distinguish a null
pointer from a pointer that points to any object.

Note

Assigning an integer to a pointer, or a pointer to an
integer, is nonportable and not recommended.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p8l.decw$book (2 of 2)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

4.8 Comma Expression and Operator (,)
When two expressions are separated by the comma operator,
they evaluate from left to right, and the compiler discards the
result of the left expression. If you separate many expressions
with commas, the compiler discards all but the result of
the rightmost expression, yet the side effect of the other
expressions remains.
The following example shows the use of the comma operator
in both the initialization and incrementation segments of a
for loop. Using the comma operator, multiple operations may
be executed as one.
During the initialization, the variable x is assigned the value
0, the variabley is assigned the value 1, and the variable
zisassigned the value 0. Each time the loop executes, the
expression given as the incrementation expression is executed.
Using the comma operator, this expression increments x ,
adds 2 to the variable y , and adds 10 to the value of z.
#include <stdio.h>
int main ()
{
int X,y,z;

for (x=0, y=1, z=0; x < 3; x++, y+=2, z+=10)

{

printf("x: %dy: %d z: %d \n", X, vy, 2);

}
}
The output is as follows:
x:0y:1z0
x:1y:3z 10
X:2y:5z:20
The type and value of the result of acomma expression are
the type and value of the rightmost operand. The operator
evaluates operands from left to right.
Y ou must delimit comma expressions with parentheses if
they appear where commas have some other meaning, as
in argument and initializing lists. Consider the following
expression:
f(a, (t=3,t+2), C)
This example calls the function f with the arguments a, 5,
and c. In addition, variablet is assigned the value 3.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p82.decw$book 1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

4.9 Data Type Conversions
PDP-11 C performs data type conversionsin four situations:

When two or more operands of different types appear in
an expression (including an assignment).

When arguments other than long integers, addresses, or
double-precision floating-point numbers are passed to a
function.

When arguments that do not conform exactly to the
parameters declared in a function prototype are passed to
afunction.

When the data type of an operand is deliberately
converted by the cast operator. See Section 4.4.5 for

more information on the cast operator.

4.9.1 Converting Operands
The following rules (referred to as the usual arithmetic
conversions) govern the conversion of operands in arithmetic
expressions. Although they do not specify explicit conversions
at the machine-language level, the rules govern in the
following order:
1. First, if either operand has type long double, it will

convert the other operand to type long double.
2. Otherwise, if either operand hastype double, it will

convert the other operand to type double .

3. Otherwisg, if either operand has type float , it will convert

the other operand to type float .

4. Otherwise, the integral promotions are performed on both
operands. Then the following rules are applied:

a. If either operand has type unsigned long int , the
other operand is converted to unsigned long int .

b. Otherwise, if one operand has type long int and the
other hastype unsigned int , the operand of type
unsigned int isconverted to long int .

c. Otherwisg, if either operand has type long int , the
other operand is converted to long int .

d. Otherwise, if either operand has type unsigned int ,

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p83.decw$book (1 of 3)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

the other operand is converted to unsigned int .
e. Otherwise, both operands have typeint .

Note

The values of floating operands and of the results of
floating expressions may be represented in greater
precision and range than required by the type; the
types are not changed thereby.

The arithmetic conversions are performed on all arithmetic
operands. Some operators, such as the shift operators (>>)
and (<<), require integers as operands. If one operand is of
type float or double, you cannot meet this requirement.
PDP-11 C attempts to perform arithmetic in single precision.
If an operand of type float appearsin an expression, it is
treated as a single-precision object unless the expression also
involves an object of type double, in which case the usua
arithmetic conversion applies.

When an operand of type double is converted to float (for
example, by an assignment), the compiler rounds the operand
before truncating it to float .

The compiler may convert afloat or double value operand
to an integer by assignment to an integral variable. In PDP-
11 C, thetruncation of the float or double value is aways
toward zero.

Conversions al so take place between the various kinds

of integers. In PDP-11 C, variables of type char are

bytes treated as signed integers. When alonger integer is
converted to a shorter integer or to char , it istruncated on
the left; excess bits are discarded. For example:

inti;

char c;

| = OxFF41,

cC=1i;

Thiscode assignshex 41 (' A ") to variable ¢ . The compiler
converts shorter signed integersto longer ones by sign
extension.

Whenever the compiler combines an unsigned integer and
asigned integer, the signed integer converts to unsigned

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p83.decw$book (2 of 3)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

and the result isunsigned . All conversions from signed

to unsigned perform an intermediate conversion to int .

For example, the compiler converts a char operand to an
unsigned version by first converting it to asigned int and
then by truncating it to form the unsigned version. All
conversions from unsigned to signed (such as conversions
done with the cast operator) involve an intermediate
conversion to unsigned int .

Y ou can also add integers to pointers, in which case the
integer is scaled (multiplied) by afactor that depends on the
type of the object to which the pointer points. See Section 4.5.1

for more information concerning scaling pointers.

4.9.2 Converting Function Arguments

The data types of function arguments are assumed to

match the types of the formal parameters unless a function
prototype declaration is present. In the presence of afunction
prototype, all argumentsin the function invocation are
compared for assignment compatibility to all parameters
declared in the function prototype declaration. If the type of
the argument does not match the type of the parameter but is
assignment compatible, PDP-11 C converts the argument to
the type of the parameter (see Section 4.9.1). If an argument

in the function invocation is not assignment compatible to

a parameter declared in the function prototype declaration,
PDP-11 C generates an error message.

Unless afunction prototype is present, all arguments of type
float convert to double; all variables of type char convert to
int ; all variables of type unsigned char convert to unsigned
int ; and an array or function name convertsto the address
of the named array or function. The compiler performs no
other conversions automatically, and any mismatches after
these conversions are programming errors.

Use the cast operator to pass arguments to parameters of
different types. See Section 4.4.5 for more information on

the cast operator. For more information concerning the
manipulation of argument lists, refer to Chapter 2.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p83.decw$book (3 of 3)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

5. Data Types and Declarations
The values of both constants and variables have data types.
This chapter discusses the following topics with respect to
datatypes.

Constants

Variables

Integers

Characters

Floating-point values

Pointers

Enumerated types

Arrays

Structures and unions

The void keyword

The typedef keyword

Interpreting variable declarations

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p84.decw$book 1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

5.1 Constants

Y ou can represent datain PDP-11 C using constants. A
constant is a primary expression with a defined value

that does not change. Y ou may represent a constant in a
literal form, which contains the explicit numbers, |etters,

and operators that comprise the constant, or you may

define a symbol to represent the constant value. (For more
information concerning symbolic representation of constants,
refer to the section on token definitions in Chapter 7.)
Constants have data types, as does all datain PDP-11 C.
The data type determines the amount of storage needed and
determines how to interpret the stored object or constant
value. The compiler determines the data type of constants by
the way in which their values are represented in the source
code.

http://www.sysworks.com.au/di sk$vaxdocsep953/decwSbook/d33vaal l.p85.decw$book 1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

5.2 Variables

Y ou can also represent datain PDP-11 C using variables
whose values can change throughout the execution of the
program. All variables used in a program must be declared.
When you declare a variable, you specify the data type

of the stored object. An object , in PDP-11 C, isavaue
requiring storage. Declarations determine the size of storage
allocated, whereas definitions force the allocation of storage.
See Section 5.2.1 for more information concerning data types

of variables.

Unlike constants, variables can be declared and defined. Most
variable declarations are also definitions because storage is
allocated at that point in the program. To declare avariable,
specify the datatype. To define a variable, assign the proper
storage class to the variable and place the variable declaration
within the program structure. If you initialize avariable in
the declaration, the variable is defined. For more information
concerning variable definitions, scope, and storage allocation,
refer to Chapter 6.

5.2.1 Classification of Variables

There are two kinds of variables: scalar and aggr egate .
Scalar variables have objects that can be manipul ated
arithmetically in their entirety. These objects are single
characters, individual numbers, and pointers. Aggregate
variables are data structures (arrays, structures, and unions)
that are comprised of distinct elements (members) that you
can declare to be of either a scalar or aggregate data type.

5.2.1.1 Data Type Keywords
To declare or define variables, you need to know the PDP-
11 C keywords associated with each data type. Table 5-1

lists the PDP-11 C data type keywords according to
classification.

In the sections that follow, the keywords and operators used

to declare variables of given datatypes are listed in the section
header for ease of reference.

PDP-11 C also supports the type qualifiers const and

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p86.decw$book (1 of 3)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

volatile . For information concerning these type qualifiers,
refer to Chapter 6.

5.2.1.2 Format of a Variable Declaration
A variable declaration can be composed of the following items:

Data type specifiers, such as adata type or data type
gualifier keyword, one structure, union, or enum tag, and
If necessary, atypedef name.

Any of these gives the data type of the declared object.

An optional storage class keyword.

A storage class keyword affects the lifetime of avariable
and determines how it is stored. If you omit the storage
class keyword, there is a default storage class that
depends upon the location of the declaration within the
program. The positions of the storage class keywords and
the data type keywords are interchangeable.

Declarators, which list the identifiers of the declared
objects and which may contain operators that declare a
pointer, function, or array of objects of the declared type.

Initializers for each declared object or aggregate element
giving theinitial value of a scalar variable or the initial
values of structure members or array elements.
Aninitializer consists of an equal sign (=) followed by
either asingle expression or acommea:list of one or more
expressionsin braces.
For example, the following declaration both declares and
defines the integer variable, var_number , which has an initia
value of 10.
int var_number = 10;
The keyword int specifies the amount of storage needed on
aPDP-11 system for an integer. The identifier var_number
follows. The equality operator (=) initializes the variable with
the literal constant 10; for the initialization to take place,
storage is allocated and the variable is defined. Declarations
must end in asemicolon (;).
The variable declaration in the previous example was not
difficult to interpret, but even experienced C programmers
have difficulty interpreting complex variable declarations.
See Section 5.13 for more information concerning the

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p86.decw$book (2 of 3)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

interpretation of PDP-11 C variable declarations.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p86.decw$book (3 of 3)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

5.3 Integers (int, long, short, char, signed, unsigned)
Integer variables are declared with the keywords int , long,
short , char , signed , and unsigned . The following is an
example of an integer declaration:

int X;

Character variables are declared with the keyword char . An
example of acharacter declaration with the initialization of a
character variable is as follows:

char ch ="a;

Table 5-2 specifies the sizes and ranges of integers.

In PDP-11 C, values of the int datatype require 16 bits of
storage. (Thisisdifferent from VAX C wheretheint sizeis
32 bits.) Therefore, note that values of the int and short data
types require an identical amount of storage.

The following sections describe the constants that you can
assign to the integer variables.

5.3.1 Integer Constants

There are three types of integer constants: decimal,
hexadecimal, and octal. These integer constants consist of
the following:

Decimals: 0to 9
An integer constant is assumed to be decimal unlessit
beginswith 0, Ox, or 0X.

Hexadecimals: 0to 9, atof, AtoF
Use the prefix Ox or OX to specify hexadecimal numbers.

Octals: 0to 7

Use prefix 0 to specify octal numbers.
To specify an unsigned constant, use the suffix u or U.
To specify along integer constant (4 bytes, 1 longword), use
the suffix | or L, or specify a constant value which istoo large
for anint . Integer constants that exceed alongword are
treated as programming errors.
Integer constants must not include adecimal point; constants
with adecimal point are floating point constants.
Character constants, suchas'a'and'$', areaso valid

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p88.decw$book (1 of 3)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

integer constants. Their integer valuesin PDP-11 C are the
values of the corresponding ASCII codes.
Some examples of valid integer constants could include:
133L /* Long decimal integer */
1234U /* Unsigned integer constant */
Ox17A /* Hexadecimal integer */
056 /* Octal integer */
‘a I* Decimal 97 */
'$' /* Decimal 36 */
Examples of invalid integer constants include:
143. /* Includes adecimal point; *
* |safloating constant */
4444444444 [* Out of range for int */
77af [* Hexadecimal constants must be *
* prefixed with "0x" */

5.3.2 Character Constants
A character constant is an integer value, requiring 16 bits (1
word) of memory, that is enclosed in apostrophes. Character
constants can be asingle ASCII character, asin the following
example:
char ch ="d; /* Lowercase letter 'a is a constant *

* assigned to ch. */
The character constant ' a' has the ASCII value of 97. If
the value isthat of a single character constant, the compiler
stores the character in the low order byte and pads the
remaining byte with a NUL character ('\0").
Character constants do not have to be single characters, as
shown in the following example:
int two_bytes ='ab’; /* This constant contains 2 characters */
printf("%c\n", two_bytes);
printf("%.2s", &two_bytes); /* String with maximum 2 characters */
Sample output from the program follows:
$run example
a
ab
$
If you print variable two_bytes as a character, the printf
function prints only the character located in the low order
byte of the integer alocation. To print both of the characters
in the word allocated to the variable, you have to print the
variable as a string and pass the address of the integer
variable as an argument. If you print the integer variable

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p88.decw$book (2 of 3)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

as astring, be sure to specify a precision of at most 2 since
you can never be sure if the next bytein the stringisa
terminating NUL character.

The apostrophe (') and quotation mark (") are significantly
different punctuation marksin PDP-11 C, indicating a
character constant and a string constant, respectively.

One context in which the differenceisimportant isin an
argument list. If you specify afunction argument as a string,
and wish to pass a character constant, you must enclose the
character in quotation marks, not apostrophes, even if the
stringisonly 1 to 2 charactersin length. See Section 5.8 for

more information concerning character-string constants.

5.3.3 Escape Sequences

In PDP-11 C, escape sequences are character strings that
represent a single printing or nonprinting character. The

term escape sequences does not designate a string beginning
with the ASCII character ESC, asin VT100 escape sequences.
Table 5-3 presents the escape sequences that specify the

nonprinting characters, the apostrophe, and the backslash
(V).

An escape sequence, such as'\n', denotes a single character.
Theform '\ddd ' is used to specify any byte value (usually

an ASCII code), where the digits ddd are one to three octal
digits. The octal digitsare limitedto Oto 7. A common useis
to specify the ASCII NUL character, as follows:

\O

Similarly, the form ' \xddd ' is used to specify any byte value
(usualy an ASCII code), where the digits ddd are used to
specify one or more hexadecimal digits.

The following are examples of valid escape sequences of the
form'\ddd ' and ' \xddd ' . Both of these escape sequences
are used to specify an a-umlaut (4) on aVT2xx terminal in
octal and hexadecimal digits, respectively.

\344'

"xed'

If the character following the backslash in an escape sequence
isillegal, the backslash isignored; that is, the value of the
character constant is the same asif the backslash were not
present.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p88.decw$book (3 of 3)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

5.5 Pointers

Pointersin PDP-11 C are variables that contain 16-bit
addresses of other objects. A pointer is declared with the
asterisk notation and the data type of the object to which it
points. For example:

int *px;

Identifier px is declared as a pointer to a variable of type

int . The expression
*

px yields the object to which px points,
therefore

*

pxisanint .

Static and extern pointers are initialized to NULL unless
initialized otherwise. A NULL pointer is apointer variable
that has been assigned the integer constant 0. An auto
pointer that is not initialized will initially contain an
undefined value.
An attempt to access data by means of aNULL or an
uninitialized pointer may result in a hardware error or
other, undefined behavior.
The valid pointer operators are assignments of pointers of the
same type, adding or subtracting a pointer and an integer,
subtracting or comparing two pointers to members of the
same array, and assigning or comparing to zero.
For example, if p isapointer to some element of an array,
then p++ increments p to point to the next element. p+=i
increments p to point i elements beyond where it currently
points.
The unary asterisk (

*

) isalso the indirection operator in
PDP-11 C. The unary asterisk operates as follows:
X =*pX;
This statement assigns the value of the object pointed to by
px to variable x . Since the asterisk can be used in any sort of
declarator, you can have pointersto scalars, to functions, to

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p92.decw$book (1 of 2)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

other pointers, to structures, and so forth.

The ampersand (&) operator is used to take the address of
an object. For example, consider the following:

pX = &X;

This statement assigns the address of variable x to pointer px .

After an assignment such asthis, areference to
*

px yields the
value of x.
Itisillegal to apply the ampersand operator to bit-fields or
register variables. In both cases an error will be issued.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p92.decw$book (2 of 2)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

5.6 Enumerated Types (enum)

An enumerated type is a user-defined data type that is
not derived from other fundamental types. Each listed
enumerator is associated with an incremented integer
constant starting with zero, unless the enumerators are
explicitly assigned. The following example illustrates the
declaration of avariable and an enumeration type or tag:
enum shades

{
out, verydim, dim, prettybright, bright

} light;
This declaration defines the variable light to be of an
enumerated type shades . The variable can assume any
of the enumerated values.
The tag shades becomes the enumeration tag of the new type;
out, verydim, .. ., bright are the enumeration constants with
values 0 to 4. These enumerators are the constant val ues of
the type shades and can be used wherever integer constants
arevalid.
If the tag has already been declared, you can use the tag
as areference to that enumerated type, asin the following
declaration:
enum shades light1;
The variable lightl is an object of the enumerated data type,
shades.
An enum tag can have the same spelling as other identifiers
in the same program, including variable identifiers and
member names in structures and unions, but excluding other
tag identifiers. However, enum constant names may not be
the same as variables, functions, and typedef names. They
can be the same as labels and tags. PDP-11 C alows forward
reference to enum tags that have not yet been declared in
the source code, but are declared further on in the program.
Internally, each enumerator is associated with an integer
constant; the compiler gives the first enumerator the value 0
by default, and the remaining enumerators are incremented
by the value 1, asthey are read from left to right. Any
enumerator can be set to a specific integer constant value.
The enumeratorsto the right of such a construct (unless they
are also set to specific values) then receive values that are 1

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p93.decw$book (1 of 2)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

greater than the previous value. For example, consider the
following:
enum spectrum

{
red, yellow=4, green, blue, indigo, violet

} color2;
Thisdeclaration givesred , yellow, green, blue, . . ., the values
0456,
Examining the value of a variable like color2 displays an
integer, not a string such asred or yellow. Although they are
stored internally as integers, regard enumerated data types
as distinct from the fundamental types.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p93.decw$book (2 of 2)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

57Arrays([])

Arrays are declared using the square bracket notation ([]), as
in the following declaration of a 10-element array of integers
called table one:

int table_one[10];

The type specifier int gives the data type of the elements.
The elements of an array can be of any scalar or aggregate
datatype. The identifier table_one specifies the name of the
array. The constant expression gives the number of elements
in asingle dimension. Array subscriptsin PDP-11 C begin
with the integer O (not 1); they must be integral. In the
previous example, the first element istable one[0] and the
last element istable one[9] . Unpredictable results may occur
if you specify a subscript larger than or equal to the declared
dimension bound; you would then be accessing objects outside
the memory allocated to the array. PDP-11 C, like many
other C implementations, does not perform automatic bounds
checking.

PDP-11 C supports multidimensional arrays. arrays

declared as an array of arrays. Consider the following:

int table_one[10][2];

Here, variable table oneisatwo-dimensional array
containing 20 integers. Y ou can use PDP-11 C operators

in forming expressions with specific elements of an array, as
follows:

++table_one[0][0]; /* Increment first element */

In C, arrays are stored in row-mgjor order. The element

table ong[0][0] immediately precedes table one[0][1] , which
in turn immediately precedestable one[1][0] .

When you declare an array, either single- or multidimen-
sional, the integer constant is optional in thefirst pair of
brackets. Omission of the constant expression is useful in the
following cases:

If the array is external, its storage is allocated by a
remote definition. Therefore, the constant expression
can be omitted for convenience when the array nameis
declared, asin the following example:

externint arrayl[];

void first_function(void)

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p94.decw$book (1 of 5)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

{

}

In a separate compilation:
int array1[10];

void second_function(void)

{

}
For more information concerning external data
declarations, refer to Chapter 6.

If the declaration of the array includesinitializers, the
size of the array can be omitted.

char array_ong[] = "Shemps"

char array_two[] ={ 'S, 'h','€,'m’,'p,'s, \0'};

The two definitions initialize variables with identical
elements. These arrays have seven elements: six
characters and the NUL character (\0), which
terminates all character strings. PDP-11 C determines
the size of the array from the number of charactersin
theinitializing character-string constant or initialization
list.

If the array is used as afunction parameter, it is defined
in the calling function. The declaration of the parameter
in the called function can omit the constant expression.
The address of the beginning of the array is passed and
subscripted references in the called function can modify
elements of the array.
The following example shows how a character array is
used in this manner:
#include <stdio.h>
int adder()
int main(void)
{
[* Initialize array */
static char arg_str[] = "Thomas";
int sum;

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p94.decw$book (2 of 5)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

sum = adder(arg_str); /* Pass address of array */
printf("The sum is %d\n",sum);

}
[* Function adds ASCII values of lettersin array */
int adder(char param_string [])
{

int i, sum=0; /* Incrementor and sum */

* Loop until NUL char */
for (1i=0; param_string[i] !="0'; i++)
sum += param_string[i];

return sum;
}
When the function adder is called, parameter param _
string receives the address of the first character of
argument arg_str , which can then be manipulated in
adder. The declaration of param _string servesto give
the type of the parameter (in this case, effectively pointer
to array of char) not to reserve storage for the array.
Note that the function adder relies on a NUL -terminated
string.

5.7.1 Initialization of Arrays

When initializing array elements, separate the values with
acommaand delimit the comma-list with braces ({ }). The
rules for specifying acomma-list are as follows:

If the initializer for an array begins with aleft brace ({),
then the following comma-list providesinitial values for
the array elements. The list of initializers can end with
acomma, which isignored. The number of initializers
cannot be greater than the number of elements.

If the initializer for a subarray does not begin with aleft
brace, then only enough elements are taken from the
initializer list to supply values to the array's elements. In
this case, there can be more initializers than there are
elements, and any remaining valuesin the list are left to
initialize the next aggregate.

Initialize asingle-dimension array as follows:

int ex_array[5] ={ 1, 22, 333, 4444, 55555 } ;

Initialize amultidimensional array as follows:

int ex_array[2][5] =

{

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p94.decw$book (3 of 5)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

{ 1, 22, 333, 4444, 55555 },
{54,321}
|3
The element ex_array[0][0] hasavalue of 1, ex_array[0][1]
hasavaueof 22, ..., ex array[1][0] hasavaueof 5, ex_
array[1][1] hasavaueof 4, . .., and so forth.
Another method of initializing the same array is as follows:
int ex_array[2][5] ={ 1, 22, 333, 4444, 55555, 5, 4, 3,2, 1};
PDP-11 Cinitializes the elements in row-major order.
The leftmost brace determines the row number of a
multidimensional array. Elementsin row O areinitialized
before elementsin row 1.
Y ou may omit elementsin an initialization, as follows:
int ex_array[2][5] =
{

|3
The element ex_array[0][0] hasthevalue 1, ex_array[0][1]
has the value 22, ex_array[0][2] hasthe value 333, and
ex_array[0][3] hasthe value 4444. Because ex_array
IS an aggregate type, the last element in the first row is
initialized to 0. All the elementsin the second row that were
not specified in the initialization are initialized to 0.

{ 1,22, 333, 4444}

Note

Y ou cannot initialize array elements without
initializing al preceding elements. The following
initialization is not valid:

examplel3] ={ 1,,3};

In the previous example, you have to initialize the
first and second element before initializing the third.

As aspecial case, acharacter array may beinitialized by
astring literal; successive characters of the string initialize
members of the array. The trailing null is placed when the
array is declared without bounds, or when there isroom for
it.
For example,

char g] = "abc";

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p94.decw$book (4 of 5)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

char b[3] ="abc";
char c[4] ="abc";
Isidentical to:

char] ={'a,'b",'c',\0};

char b[] ={'a,'b','c’};

char c[] ={'a,'b",'c,\0%};
The array a contains the null because it was declared without
bounds. The array b does not contain the trailing null
because there was no room for it. The array ¢ contains
the null because thereisroom for it.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p94.decw$book (5 of 5)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

5.8 Character-String Variables and Constants (char
*

char[])

PDP-11 C treats character strings as arrays; they are treated
as the address in memory of the first character in the string.
There are several ways to declare character-string variables.
Y ou can declare a character string by designating a pointer
to the first character of that string, asin the following:
char *ex_string = "thomasina’;
This expression copies an address, not a string, to variable
ex_string . The object to which ex_string points, a character-
string constant, ends with the NUL character ('\0").
Y ou can declare character-string variables as you would
declare an array. For example:
char string_one[] = "thomasina’;
char string_2[10] = "thomasina;
See Section 5.7.1 for more information concerning declaration
and initialization of character-string variables.
To copy one string to another, use the strcpy or the strncpy
PDP-11 C Run-Time Library (RTL) functions, as follows:
#include <stdio.h>
#include <string.h>
int main(void)
{

char ex_string[26];

[* Copy string into array */
strepy(ex_string, " Character-string constant”);
printf("%s\n", ex_string);

}

For more information concerning the PDP-11 C RTL
functions for copying strings, refer to the PDP-11 C Run-
Time Library Reference Manual .

A character-string constant is a series of characters enclosed
in quotation marks (" "). Consider the following:
"Thisisastring constant *** "

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p95.decw$book (1 of 2)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

It has data type of an array of char . The string isinitialized
with the given characters. The compiler terminates the
string with aNUL character ('\0'). Thereisno formal
limit to the length of a string constant. The actual limit to a
string constant's length in PDP-11 C is 65,535 characters.
This limit is subject to further PDP-11 hardware-specific
constraints at the time the object file is created. All strings,
even when written identically, are distinct objects.

The apostrophe (') and quotation mark (") are significantly
different punctuation marksin PDP-11 C. See Section 5.3.2
for more information.

The following rules apply to the characters used in
character-string constants:

All characters, including the escape sequences, can be
used in strings.

A guotation mark within a string must be preceded by a
backslash (\).

A backslash followed immediately by a newline isignored,

allowing long strings to be continued in the first column
of the next line.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p95.decw$book (2 of 2)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

5.9 Structures and Unions (struct, union)
Structures and unions share the following characteristics:

Their members can be variables of any type, including
other structures and unions or arrays. A member can
also consist of a specified number of bits, called a bit-field.

The only operators that are valid with structures and
unions are the simple assignment (=), sizeof , dot (.),
and arrow (->) operators. In particular, structures and
unions may not appear as operands of the equality (= =),
inequality (!=), or cast operator.

They can be assigned to other structures and unions
with the assignment operator (=). The two structures or
unions in the assignment must have the same type.

They can be passed to and returned by functions. The
argument must have the same type as the function
parameter. A structure or union is passed by value, just
like ascalar variable; that is, the entire structure or union
is copied into the corresponding parameter.
The difference between structures and unionslies in the way
their members are stored.

The members of astructure all begin at different offsets
from the base of the structure. The offset of a particular
member corresponds to the order of its declaration; the
first member is at offset 0. Each successive member of
a structure begins at the next nonbit-field byte or word
boundary depending on the alignment requirement of
the type of the member. An unnamed bit-field of width
zero causes the next member (generally another bit-field)
to be aligned on the required boundary. This alignment
of structure membersisaPDP-11 C convention and is
also followed by all other PDP-11 languages. Other C
implementations may align members differently.

In aunion, every member begins at offset 0 from the
address of the union. The size of the union in memory is

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p96.decwdbook (1 of 11)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

the size of itslargest member. When the single storage
space alocated to the union contains a smaller member,
the extra space between the end of the smaller member
and the end of the allocated memory remains unaltered.
Y ou can initialize only the member of a union that
appearsfirst in the list of union members.

5.9.1 Declaring a Structureor Union

Structures and unions are declared with the struct or union

keywords. Y ou can follow the keywords struct or union by

atag, which gives a name to the structure or union typein
much the same way that an enum tag gives a name to the
enumerated type. Y ou can then use the tag with the struct

or union keywords to declare variables of that type without

specifying individual member declarations again.

Two structures, two unions, or enumerators cannot have the

same tag, but the tags can be the same as the identifiers used

for variables and function names and member names. The
compiler distinguishes them by context. The scope of atagis
the same as the scope of the declaration in which it appears.

Thetagisfollowed by braces ({ }) that enclose alist of

member declarations. Each declaration in the list gives

the data type and name of one or more members. The names

of structure or union members can be the same as other

variables, function names, or membersin other structures

or unions. The compiler distinguishes them by context. In

addition, the scope of the member name is the same as the

scope of the declaration in which it appears.

The list of member declarations can be followed by declarators

which declare structure or union objects.

Structure or union declarations can take one of five forms, as

follows:

1. If adeclaration includes only atag and alist of member
declarations, then the list of member declarations defines
the tag to be a data type by which other objects can be
declared. For example:
struct person

{
char first[20];
char middle[3];
char last[30];
&

2. When a declaration includes atag, alist of member

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p96.decwdbook (2 of 11)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

declarations, and alist of identifiers, the identifiers become
objects of the structure type and the tag is considered to
be a shorthand notation, or mnemonic, for the structure
type. Consider the following example:
struct person
{
char first[20];
char middle[3];
char last[30];
} george, mary ;

3. If the tag is omitted, the structure or union definition
applies only to the variable identifiers that follow in the
declaration. Consider the following example:
struct

{
char first[20];
char middle[3];
char last[30];

} george, mary;

4. The fourth form uses the tag to refer to a structure or
union defined in another declaration. The definition is
then applied to the variable identifiers that follow the tag
name in the declaration.
struct person george,mary;

5. Thefifth form uses only the struct or union keyword
and the tag to override other identical tagsin scope, and
to reserve the tag for alater definition within anew
scope. A definition within a new scope overrides any
previous tag definition appearing in an outer scope. This
use of declaring tagsis called vacuous structure tag
declaration. The declaration does not require the size of
the structure as determined by the structure member
list. Using such declarations, you can eliminate ambiguity
when forward referencing tag identifiers. The following
exampleillustrates such a case:
struct ambiguous{ ...} ;

{
struct ambiguous; /* Vacuous structure tag declaration. */
[* 1gnore previous tag currently in scope. */
struct inner
{
struct ambiguous * pointer; /* Declare a structure pointer by */
. I* forward referencing. */

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p96.decwdbook (3 of 11)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

H
struct ambiguous /* Complete the definition of "ambiguous' */
{..}; I* at thisscope. */
}
In the example, the pointer to the structure defined
using tag ambiguous points to the second declaration of
ambiguous, not to the first.
Structures and unions can contain other structures and
unions. For example:
struct person
{
char first[20];
char middi€[3];
char last[30];
struct
{
int day;
int month;
int year;
} birth_date;
} george, mary;

5.9.2 Referencing Member s of Structuresor Unions

A reference to amember of a structure must be afully
qualified or a pointer-qualified reference. For example, the
fully qualified references to the members last and year from
the example in the previous section are as follows:
strcpy(george.last, "Harrison");

george.birth_date.year = 1944;

A member name denotes the member's data type and its
offset from the base of the structure. There are no restrictions
on the reuse (as a member name) or redeclaration of a
particular name, except that the same name cannot be used
for more than one member in the same structure.

In PDP-11 C, and in other modern C compilers, a structure
or union reference must be completely qualified; that is, you
must prefix a member name in areference either with a
pointer qualifier (pointer-name ->) or with the name of the
structure or union and the names of all intervening members.
For example, consider the following structure declaration:
int main()

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p96.decwdbook (4 of 11)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

{

struct
{
struct { int al,a2,a3; } mema;
struct { int al,a2,a3; } memb;
} *pointer, structure;
pointer = & structure;
structure.mema.al = 1; /* Unambiguous */
pointer->memb.al = 2;
structure.al = 3; /* Ambiguous: which "al"?*/
pointer->al = 4;
}
Member al must be uniquely qualified as being a member
of structure mema or structure memb . In fact, structure
members that are themselves structures must be given
variable identifiers (mema and memb) to make it possible to
construct fully qualified references.
A member nameis unique if it conformsto either of the
following requirements:

It isused only once.

If it is used more than once (in different structures),

every use denotes a member of the same data type and at

the same offset from the base of its structure.
If you use member names that refer to different structures
than those in which they were declared (a programming
practice not recommended), the compiler issues diagnostic
messages. The following checks apply to the use of member
names for references to structures and unions in which they
are not declared:

If a member name is unique, you can use it in areference
to astructure of which it is not a member, since the
address and size of the referenced data can be determined
without ambiguity. However, the compiler issues a
nonfatal warning message. This usage is maintained for
compatibility with other C implementations.

If a member name is not unique (ambiguous), itsusein
such areference causes afatal error message.

5.9.3 Initialization of Structuresand Unions

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p96.decwdbook (5 of 11)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

In structure and union declarations, initializers follow the
structure or union variables, not the members. Separate
initializing values with commas; delimit them with braces
({ }). See Section 5.7.1 for more information concerning

commealists.

An example of theinitialization of two structure variables
follows:

struct

{

inti;
float c;
}a={1,30e10},b={ 2, 1.5e5};
The initialization of aunion assignsthe initializing value to
the first member in the list of unions. Y ou cannot assign an
initializer to any other member of the union but the first. In
the following example, you can only initiaizei .
union
{ . .
inti;
float f;
yu={7};
The compiler assigns structure initializersin increasing
member order. If there are fewer initializers than members,
the structure is padded with zeros. For more information
concerning storage classes, refer to Chapter 6.

Note

There is no way to specify iterations of an initializer
or to initialize a member in the middle of a structure
without also initializing the previous members.

Example 5-1 shows these initialization rules applied to an
array of structures.

Key to Example 5-1:
1 You must delimit the initialization of each of the array
rows with braces.
2 Y ou must delimit a structure initialization with braces.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p96.decwdbook (6 of 11)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

3 You must delimit an array initialization with braces.
This program writes the following output to stdout :
row/col chic
[0][0]: a1 3.000000e+10
[0][1]: b 2 4.000000e+10
[0][2]: ¢ 3 5.000000e+10
[1][0]: O 0.000000e+00
[1][1]: O 0.000000e+00
[1][2]: 0 0.000000e+00

5.9.4 Variant Structuresand Unions

Variant structure and union declarations alow you to
reference members of nested aggregates without having
to reference intermediate structure or union identifiers,

Note

PDP-11 C recognizes and implements variant
structures and unions for compatibility with

VAX C, but they are not in the ANS| standard.

When compiling PDP-11 C programs, the default
ISINOSTANDARD, which allows the keywords
variant_struct and variant_union to be recognized.
If you specify /ISTANDARD or /STANDARD=ANSI,
these keywords will not be available.

When you nest a variant structure or union declaration
within another structure or union declaration, the enclosed
variant aggregate ceases to exist as a separate aggregate,
and PDP-11 C propagates its members to the enclosing
aggregate.

Y ou declare variant structures and unions using the
keywords variant_struct and variant_union . The format
of these declarationsis the same as regular structures or
unions except for the following:

Variant aggregates must be nested within other valid
structure or union declarations.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p96.decwdbook (7 of 11)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

Y ou cannot use atag in a variant aggregate declaration.

Y ou must provide a variable identifier in the variant
aggregate declaration.
To illustrate the use of variant aggregates, consider
the following code example, which does not use variant
aggregates.
/* The numbersto the right of the code represent the byte offset *
* from the enclosing structure or union declaration. */
struct TAG 1
{
int & /* O-byte enclosing_struct offset */
char *b; /* 2-byte enclosing_struct offset */
union TAG_2 /* 4-byte enclosing_struct offset */
{
int c; /* O-byte nested union offset */
struct TAG_3 /* 0-byte nested _union offset */
{
int d; /* 0-byte nested_struct offset */
int g /* 2-byte nested struct offset */
} nested_struct;
} nested_union;
} enclosing_struct;
If you want to access nested member d , then you need to
specify all of the intermediate aggregate identifiers, as follows:
enclosing_struct.nested _union.nested_struct.d
If you attempted to access member d without specifying the
intermediate identifiers, then you would be accessing the
incorrect offset from the incorrect structure. For instance, if
you specified the following:
enclosing_struct.d
PDP-11 C uses the address of the original structure
(enclosing_struct), and adds to it the assigned offset value
for member d (0 bytes), even though PDP-11 C calculated
the offset value for d according to the nested structure
(nested_struct). Consequently, PDP-11 C accesses member a
(O byte offset from enclosing_struct) instead of member d .
The following code example illustrates the same code using
variant aggregates.
[* The numbersto the right of the code present the byte offset *
* from enclosing_struct. */
struct TAG 1

{

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p96.decwdbook (8 of 11)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

int & /* O-byte enclosing_struct offset */
char *b; /* 2-byte enclosing_struct offset */
variant_union
{
int c; /* 4-byte enclosing_struct offset */
variant_struct
{
int d; /* 4-byte enclosing_struct offset */
int e /* 6-byte enclosing_struct offset */
} nested_struct;
} nested_union;
} enclosing_struct;
The members of variant aggregates nested _union and
nested_struct are propagated to the immediately enclosing
aggregate (enclosing_struct). The variant aggregates cease to
exist asindividual aggregates.
Since variant aggregates nested_union and nested_struct
do not exist asindividual aggregates, you cannot use tags
in their declarations and you cannot use their identifiers
(nested_union, nested_struct) in any reference to their
members. However, you are free to use the identifiersin
other declarations and definitions within your program.
If you need to access member d , you use the following
notation:
enclosing_struct.d
If you use the following notation, unpredictable results occur:
enclosing_struct.nested union.nested_struct.d
If you use regular structure or union declarations within
avariant aggregate declaration, PDP-11 C propagates
the structure or union to the enclosing aggregate, but
the members remain a part of the nested aggregate. For
instance, if the nested structure in the last example was of
type struct , the following offsets would be in effect:
struct TAG 1
{
int a; /* 0-byte enclosing_struct offset */
char *b; /* 2-byte enclosing_struct offset */
variant_union
{
int c; /* 4-byte enclosing_struct offset */
struct TAG_2 /* 4-byte enclosing-struct offset */

{
int d; /* O-byte nested_struct offset */

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p96.decwdbook (9 of 11)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

int e; /* 2-byte nested_struct offset */
} nested_struct;
} nested _union;
} enclosing_struct;

5.9.5 Bit-Fields

A structure member may consist of a specified number of bits,
called a bit-field, which may be named or unnamed. A colon
Is used to separate the member's declarator (if any) from a
constant-expression that gives the field width in bits. No field
may be longer than 16 bits (1 word) in PDP-11 C.

If no field name precedes the field-width expression, it
indicates an unnamed field of the specified width. Since
bit-field structure members are not aligned on byte or

word boundaries, this form can create unnamed gapsin

the structure's storage. As a special case, an unnamed field

of width zero causes the next member (generally another
bit-field) to be aligned on the next word boundary.

Bit-fields must be of datatypesint , unsigned int , unsigned ,
signed int , or signed . Bit-fields can also have a type that
isaqualified or unqualified version of int , unsigned int , or
signed int . The use of other datatypesisan error. In PDP-
11 C, bit-fields of type int are unsigned. Thisisincompatible
with VAX C, in which bit-fields of typeint are signed.

The following restrictions apply to the use of fields:

Y ou cannot declare arrays of bit-fields.

The address-of operator (&) cannot be applied to bit-
fields, and consequently there cannot be pointersto bit-
fields.

Y ou cannot use the sizeof operator on bit-fields
Constructs of all data types except bit-fields are aligned
on the next byte or word boundary. Sequences of bit-fields
are packed astightly as possible. In PDP-11 C, fields are
assigned from low bit offset to high bit offset. If necessary, a
bit-field will cross word boundaries (for example, it will wrap
to the next word).
Figure 5-1 illustrates the alignments resulting from the
following code:
static struct

{

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p96.decw$book (10 of 11)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

char c; /* offset 0*/

shortinti; /* offset 2*/

unsigned fld1 : 3; /* offset 4, bit 0 */

unsigned fld2 : 4; /* offset 4, bit 3 */

unsigned : 0;

unsigned fld3 : 4; /* offset 6, bit 0 */
} a={"'A’, 1024, 06, 012, 014} ;

In Figure 5-1, member a.i is aligned on the second word
because the int type requires word alignment. Notice that
fieldsa.fldl and a.fld2 are packed as tightly as possible in the
low-order byte of the third word. The unnamed, zero-length
field causes a.fld3 to be aligned on the next word boundary.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p96.decw$book (11 of 11)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

5.10 Aggregates

The variables used in the examplesin Section 2.6 were single
objects that could be manipulated, in their entirety, in an
arithmetic expression. These types of variables are called
scalar variables. The PDP-11 C data structures-arrays,
structures, and unions-are called aggr egates . Aggregates
are comprised of segments called members, or in the case

of arrays, they are called elements . Members are sections

of the structure that you can declare to be of a scalar or an

aggregate data type.

5.10.1 Arraysand Character Strings

An array is an aggregate whose elements are of the same
type. Elements of an array can be any one of the scalar or
aggregate data types.

In PDP-11 C, character strings are represented internally

as arrays of type char . You may declare and initialize a

character string using the indirection notation (

*

), asan
array of a specified number of members, or as an array of an
unspecified number of members, as follows:
char *str = "Hello";
char string[6] = "Hello";
char strng[] = "Hello";
Character strings end with the NUL character (\0). In
the previous example, the NUL character is appended to
“"Hello" making the string 6 characters in length. For more
information concerning string-handling functions, refer
to the PDP-11 C Run-Time Library Reference Manual .
Example 5-2 shows the use of character strings and arrays.

The output for Example 5-2 follows:
$run example8

Guess which letter I'm thinking of!
B

Y ou're wrong.

You'll haveto try again!

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p99.decw$book (1 of 4)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

5.10.2 Structuresand Unions
Structures and unions are aggregates whose members can be
of different types. Structures and unions are declared using
the keywords struct and union , respectively, an optional tag
name, and a list of member declarations delimited by braces ({
}). A member of astructure or aunion is a declared segment
of the data structure. The syntax for declaring a member
Isthe same as for declaring any variable. The structure
or union tag is a name that can be used when declaring
structure or union variables of the same type elsewherein
the program. Members of structures and unions may be
referenced as follows:
int main(void)
{
struct foo_tag /* optional tag isfoo_tag */
{

char letter 1;

char letter _2;

int number;

} characters={'d, 'b', 59} ; /* initidlize variable */
characters.letter 1 = characters.letter 2;

}
Y ou may reference members using the structure or union
variable name, directly followed by a period (.), directly
followed by the member name. Asin the previous example,
structures are initialized using a variable name and
an assignment operator (=) immediately following the
declaration of the members. The values of the members
are delimited by braces and separated by commas (,). The
address of the first member of a structure begins, in memory,
at the base of the data structure, which isreferred to as
offset zero . The address of the second begins after the first,
and so on.
Unions are declared in the same way as structures, but al
membersin aunion begin at offset zero. This means that
all members of aunion share the same memory. Only the
first member of a union may be initialized. The size of the
union in memory is as large asits largest member. When the
single storage space allocated to the union contains a smaller
member, the extra space between the end of the smaller
member and the end of the allocated memory remains
unaltered. Example 5-3 illustrates the nature of unions.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p99.decw$book (2 of 4)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

The output for Example 5-3 follows:

$ run example9.sav

Lincoln

Jackson

M

Mackson

The RTL function strcpy copies the second string argument
into the first array argument. To use the RTL function
strcpy , you must include the header file string.h as shown
in Example 5-3. When assigning values to smaller union
members, the compiler does not fill the remaining space with
NUL characters ('\0'); whatever was in memory at the
time remains. For more information concerning structures
and unions, refer to Chapter 5.

Example 5-4 shows a structure definition and its usage.

Key to Example 5-4.

1 In the example, the structure declaration with the tag
storage has four members. The first three members are
of type char . The last member is of typeint .

2 Thevariable letter is declared using the tag storage
and individual members of the structure are initialized.
The equal sign initializes the members of the structure
variable with constants. The constants are separated
by acomma and are delimited by braces. The number
of initializing constants cannot exceed the number of
members. However, as in this example, you may omit
constants; the compiler pads the uninitialized member
(in the example, member num_guesses) with zeros. Y ou
cannot initialize a member in the middle of any aggregate
without initializing the previous members.

3 Return finishes program execution.

Sample interaction for Example 5-4 follows:
$ run examplelO

Guess which letter I'm thinking of!

Y ou've 3 guesses. Make them count!

B

Y ou're wrong.

You'll haveto try again!

C

Y ou're wrong.

You'll haveto try again!

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p99.decw$book (3 of 4)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

U

Y ou're wrong.

Sorry, you've run out of guesses!

After executing these program examples, you are well on
your way to programming in PDP-11 C.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p99.decw$book (4 of 4)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

5.11 Thevoid Keyword

The void keyword is a special datatype specifier that you
use in function definitions and declarations for the following
pUrposes.

To specify afunction that does not return avalue

To specify afunction prototype which declares a function
with no arguments
For instance, the following example shows how to use void to
specify afunction that does not return avalue:

void message()
{
printf (" Stop making sense!");
return;
}
The following example shows how to use void to specify a
function prototype definition that takes no arguments:
char function_name(void)
For more information concerning the void data type and
function prototypes, refer to Chapter 2.

http://www.sysworks.com.au/di sk$vaxdocsep953/decwSbook/d33vaal l.p103.decw$book 1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

5.12 The typedef Keyword

The keyword typedef is used to define an abbreviated name,
or synonym, for atype definition. In such adeclaration, the
identifiers name types instead of variables. For example:
typedef char CH, * CP, STRING[10], CF(void);

In the scope of this declaration, CH is a synonym for
character, CP for pointer to character, STRING for 10-
element array of characters, and CF for function returning
acharacter. Each of the type definitions can be used in that
scope to declare variables, asin:

CF c; /* "c": Function returning a character */

STRING s, /* "'s": 10-character string */

http://www.sysworks.com.au/di sk$vaxdocsep953/decwSbook/d33vaall.p104.decw$book 1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

5.13 Interpreting Declar ations
The PDP-11 C programming language syntax for declaring
objects is unlike the declaration syntax of other languages.
Because the exact meaning of a complicated PDP-11 C
declaration is not always immediately apparent, even to an
experienced C programmer, this section gives guidelines for
interpreting and constructing PDP-11 C declarations.
PDP-11 C uses the same set of operators and symbols for
declarators as for identifiersin an expression. For example,
the following example declares integer x and pointer px .
int X;
int *px;
Declarator

*

px has the same form as that used to yield an
integer in an expression, such as the following:
X =*pX;
In the case of simple declarators, this symmetry makes it
fairly easy to determine the type of an expression or the
meaning of a declarator. Expression

*

px results in the integer
object to which px points.

More complicated declarators can be more difficult to

interpret without some additional guidelines. The important

one to remember is that the symbols used in declarators are

PDP-11 C operators, subject to the usual rules of precedence

and grouping (associative nature). In order of precedence,

the operators used in declarators are:

1. The primary-expression operators (()) for = function
returning ... " and ([]) for "array of ... ", where the
ellipsis indicates the type specified in the declaration.
These operators group from left to right.

2. The unary asterisk (

), for indirection or " pointer
to...", which groups from right to left.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p105.decw$book (1 of 4)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

Consider the following, for example:

int *x[];

Even this brief declaration may be confusing. Does it declare
an array of pointersto integers, or apointer to an array

of integers? Since the brackets are of higher precedence, it
follows that:

1.

X[] isan integer.
2. X[] isapointer to an integer.
3. x isan array of pointersto integers.
Most complicated declarators and expressions can be
interpreted fairly quickly by such a sequential breakdown.
Note that the asterisk was removed before the brackets
becauseit is of lower precedence.
Also note that this interpretation process has the desirable
property of enumerating all the possible usage constructs
involving a declarator and giving the semantic interpretation.
When constructing or interpreting declarations or
expressions, use the following scheme

1

for trandati ng
operators to English and vice versa:

AN

*

== ""pointer to"
()" == "function returning”

[]" == "array of"
For amore interesting example, consider the following:
char *x()[[;
The breakdown is:
1.

X()[]ischar .
2. X()[] is(pointer to) char .

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p105.decw$book (2 of 4)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

3. x() is(array of) (pointer to) char .

4. x is (function returning) (array of) (pointer to) char .

In step 3, the brackets operator is removed first because

primary-expression operators have equal precedence and

group from left toright. That is, " ()[]" means " function

returning array of," not ““array of function returning.”

As ageneral rule, when breaking down a declaration this

way, remove the operators with the lowest precedence first.

Then, if operators are of equal precedence and group from

left to right, remove the rightmost operator first; if they group

from right to left, remove the leftmost operator first.

In the previous example, the declaration shown is

semantically invalid; PDP-11 C allows functions returning

addresses of arrays, but not functions returning arrays.

Perhaps the intention of the programmer was a function

returning the address of an array of pointersto characters.

The declaration can be made valid by starting at the bottom

of a breakdown and working back to avalid declaration:

1. x is (function returning) (pointer to) (array of) (pointer
to) char .

2. X() is (pointer to) (array of) (pointer to) char .

3.

*

X() is (array of) (pointer to) char .
4. (

*

X())[] is (pointer to) char .

X())[]ischar .
6. char

*

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p105.decw$book (3 of 4)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

X()[1; isthefinal declaration.
In the final declaration, the first asterisk (since it groups right
to left) appliesto char .
Parentheses, in addition to the function parameter-list
operator (()), are used in declarations to change the binding
of operators. For example, the outer parentheses introduced
in step 4 prevent the brackets from binding to the inner set of
parentheses.
Asalast case, consider the following:
char (* (*x()) [1) 0;
This means:
1.(

*

x() [()ischar .

2.
(
X()) []is (function returning) char .
3. (
X()) []is (pointer to) (function returning) char .
4,

*

X() is (array of) (pointer to) (function returning) char .
5. x() is (pointer to) (array of) (pointer to) (function

returning) char .
6. Theidentifier x isa (function returning) a (pointer to) an

(array of) (pointersto) (functions returning) characters.
Spaces were used in the exampl e to separate the declarator
into its component parts. Since spaces, tabs, and newlines
are ignored by the parser, they should be used in actual
declarations for clarity.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p105.decw$book (4 of 4)1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

6. Scope, Storage Classes, and Allocation

The PDP-11 C language defines a number of storage-

class keywords that specify the location of storage and the
lifetime of the storage allocation. Storage-class qualifiers
are keywords you can use with the storage-class and data
type keywords that restrict access to and determine the
lifetime of variables. The order of the storage-class keyword,
the storage-class qualifier, the data type qualifier, and the
data type keyword within the variable declaration does

not matter. Each declaration, by virtue of its position in the
program source code, has a default storage class, but you may
override the default by specifying a storage-class specifier or
a storage-class qualifier.

This chapter describes the following:

Scope of an identifier

L ocation of storage

Lifetime of storage allocation
Internal storage class

Static storage class

Global storage class
Datatype qualifiers
globalvalue specifier
Explicit psect control

Storage-class qualifiers

http://www.sysworks.com.au/di sk$vaxdocsep953/decwSbook/d33vaall.p107.decw$book 1/25/06 3:42 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

6.1 The Scope of an Identifier

The scope of an identifier is the portion of the program in
which the identifier has meaning. An identifier has meaning
if it is recognized by the compiler, or at the time of task
building, by the Task Builder on RSX and RSTS/E systems,
or by the Linker on RT-11 systems. The following sections
explain the rules to follow for your program identifiersto
have meaning to both the compiler and the Task Builder or
Linker, in all desired portions of your program.

All tags are subject to the same scope rules as other
identifiers. A member of a structure or union may have the
same name as a member of another structure or union; the
scope of the member names can exist concurrently. However,
when referencing one of the members in a section of the
program where the scopes of both members are concurrent,
take care to specify to which structure or union the member
belongs. For more information concerning the scope of
structure and union members, refer to Chapter 5.

6.1.1 The Compilation and Linking Process

To understand scope, you must understand how PDP-11 C
uses functions, compilation units, object files, object modules,
and programs.

When you write PDP-11 C source programs, you can use
several methods to compile a program. Y ou can compile
asingle sourcefile, or agroup of sourcefiles, into asingle
object file. The group of source files compiled to create
asingle object fileis called the compilation unit . When
documentation to other implementations refers to the source
file, the PDP-11 equivaent is the compilation unit, not
necessarily asingle sourcefile. The single, resultant object file
has afile extension of OBJ by defaullt.

The Task Builder or Linker accepts the object file as input
and then resolves all external references, such as references
to PDP-11 C Run-Time Library (RTL) functions. Internally,
segments of object code, such as the object file and the RTL
object code, are known to the Task Builder or Linker as
object modules . The object module has the same name
(without an extension) as the object file, by default. For
information on how to override the default module name,

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p108.decw$book (1 of 5)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

refer to Chapter 7.

The second way to build programsisto compile severa
compilation units into separate object files. The Task Builder
or Linker can take more than one object file as input; then,
the Task Builder or Linker resolves references between these
individual modules aswell asto external references. For
more information concerning compiling and linking, refer to

Chapter 1.

6.1.2 Position of the Declaration

In determining the scope of afunction or variable identifier,
you must consider the position of a declaration within the
program. A declaration often determines the size of a storage
allocation, whereas a definition initiates the allocation of
storage. Since declarations often are definitions, this section
refers to definitions and declarations as declarations. Y ou
may wish to review Chapter 5 before reading the rest of this
section.

The location of a declaration establishes the scope of an
identifier. If adeclaration islocated inside of a block that
isdelimited by braces ({ }), the compiler recognizes the
identifier from the point of the declaration to the end of

the block. If a declaration islocated outside of all functions,
the compiler recognizes the identifier from the point of the
declaration to the end of the compilation unit.

Y ou can specify a storage-class specifier or qualifier within
an identifier's declaration. A storage-class specifier indicates
a storage class, but a qualifier modifies access to that storage.
The order of the storage-class specifier, storage-class
gualifier, and the data type keyword within the declaration
does not matter. Consider the following example:

auto int x; /* And, equivaently ... */

int auto x;

Y ou can declare identifiers with no storage class; the compiler
recognizes these identifiers from the point of the declaration
to the end of the enclosing block or function body. Y ou can
declare identifiers that are static; if the declaration is outside
al function bodies, the compiler recognizes these identifiers
from the point of the declaration to the end of the compilation
unit.

Y ou can also declare identifiers that are of the storage class
global. If the declaration is outside all function bodies, the
compiler recognizes these identifiers from the point of the

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p108.decw$book (2 of 5)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

declaration to the end of the compilation unit. The global
storage class differs from the static storage class in that the
Task Builder and Linker can recognize a global variable. The
global storage class establishes a scope that can span object
modul es.

Table 6-1 lists the storage classes, the storage-class specifiers
used to establish scope and the section in this manual that
discusses each storage classin more detail.

Y ou can use the data type qualifiers (const and volatile)
or the storage-class qualifier (readonly and noshare) to
restrict access to data or to specify storage requirements.

Note

The storage-class qualifier readonly and noshare
are provided for compatibility with VAX C, but offer
no functionality.

See Section 6.9 for more information concerning the data type
qualifiers. See Section 6.10 for more information concerning
the storage-class qualifiers.

6.1.3 Lexical Scope and Link-Time Scope

In using the storage-class specifiers and qualifiers, aswell as
positioning the definitions and declarations of your identifiers,
keep the following two goals in mind:

Compile the program so that the compiler recognizes all
identifiersin the compilation unit, thus avoiding error

messages.

Link the program so that the Task Builder or RT-11
Linker resolves all references to global data definitions,
thus avoiding error messages.
Y ou must make a distinction between the following types of
Scope:

Lexical scope The region of a compilation unit within which

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p108.decw$book (3 of 5)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

an identifier is known to the compiler. When this
guide uses the term scope, lexical scopeisimplied.

Link-time scope The regions of an entire program within which
aglobal identifier is known to the Linker. Only
theidentifiersin the global storage class have a
significant link-time scope.

Table 6-2 liststhe PDP-11 C storage-class specifiers and

shows both the link-time scope and lexical scope implied by

each specifier when used inside and outside of functions.

In Table 6-2, (none) signifies the absence of a storage-class
specifier from the declaration. The compiler treats a (none)
inside afunction or block as an identifier declared with

the auto keyword. The compiler treats a (none) outside

al functions as aglobal definition, a (none) storage-class
specifier of the global storage class.

6.1.4 Program Example
Example 6-1 illustrates how the placement of variable

identifiers determines the scope of these identifiers.

The following list specifies the variable identifiersin the
previous example, and from which functions they can be
accessed without compile-time errors:

I dentifier Scope

EXT 1 Thisvariableis declared outside all functionsin
Compilation Unit 1. This declaration is areference to
the definition of the same variable in the Compilation
Unit 2. In Compilation Unit 1, you can access EXT_1
in the function f2 (from the point of the declaration
to the end of the compilation unit). EXT_1 will have
link-time scope.

In Compilation Unit 2, the definition of this variable
isoutside all functions; you can access EXT_1in
the functions 3, f4, and f5 (from the point of the
declaration to the end of the compilation unit).

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p108.decw$book (4 of 5)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

EXT_2 Thisvariableis defined outside all functionsin
Compilation Unit 1. You can access EXT_1inthe
functions f1 and f2 (from the point of the declaration to
the end of the compilation unit).

In Compilation Unit 2, the declaration of this variable
islocated inside the function f3; you can access EXT _
1 from the location of this declaration to the end of
function f3. EXT_2 will have link-time scope.

STAT There are two variables with the same name but with
different permanent storage locations. These are two
different variables. Thisis because they do not have
link-time scope.

In Compilation Unit 1, the variable is defined outside
all functions. Y ou can access STAT, in Compilation
Unit 1, in the functions f1 and f2 (from the point of the
declaration to the end of the compilation unit).

In Compilation Unit 2, the separate variable is defined
inside the function f5; you can access STAT from this
declaration to the end of the function 5.

Another way to determine scopeisto consider the placement
of the declaration as a matter of privacy. In Compilation
Unit 2, identifier EXT_2 is made private to function 3 by
placing the declaration inside the function body. If you want
to keep avariable private to Compilation Unit 1, declare the
variable using the storage-class specifier static . Using the
storage-class specifiers auto and register assures privacy

to the function, since these specifiers cannot be used outside
afunction body, and storage is deallocated at the end of
execution of the containing function body. Thereis no way to
access a variable declared with auto or register in another
function or compilation unit.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal 1l.p108.decw$book (5 of 5)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

6.2 Storage Allocation

When you define avariable, the storage class determines its
location and lifetime. The lifetime of avariableisthe length
of time for which storage is allocated. Storage for avariable
can be allocated in the following locations:

On the run-time stack
In amachine register

In a program section (psect)
Variables that are placed on the stack or in aregister are
temporary. For example, the variables of storage class
auto and register are temporary. Their lifetimes are
limited to the execution of asingle block or function. All
declarations with no storage class are also definitions; the
compiler generates code to establish storage at this point in
the program.
Program sections, or psects, are used for permanent
variables; the lifetime of the storage associated with the
identifiers extends through the course of the entire program.
A psect represents an area of memory that has a name, a
Size, and a series of attributes that describe the intended or
permitted usage of that portion of memory. For example,
the compiler places variables of the static and global storage
classesin psects; you have some control as to which psects
contain which identifiers (see Section 6.8).

Table 6-3 shows the location and lifetime of a variable when
you use each of the storage-class keywords:

In Table 6-3, the notation exter n signifiesidentifiers of the

global storage class. A single definition must exist for each
identifier having the global storage class; other declarations,
which use the extern specifier, may exist that refer to that
definition. This notation is used throughout this chapter.
See Section 6.5 for more information concerning the global

storage class.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaall.p112.decw$book1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

6.3 Internal Storage Class

Internal storage class refersto a storage class that permits
identifiers declared outside a function body to be recognized
only from the declaration to the end of the immediately
enclosing block. Y ou can assign the internal storage class

to identifiers using the auto and register storage-class
specifiers. The following sections describe these specifiers.

6.3.1 Defining a Variable for Automatic Storage Allocation
(auto)
Use the auto storage-class specifier to define avariable
whose storage is alocated automatically upon entry into the
function containing the block in which the variable is declared
and is automatically deallocated upon exit from the function.
The code generated by the compiler contains instructions to
allocate and deall ocate the storage by using machine registers
and the run-time stack. Y ou can have more than one auto
variable with the same name as long as you declare them in
separate blocks or functions. Y ou cannot use auto outside a
function.
If you explicitly initialize an auto variable, the program code
initializes the variable to that value each time the declaring
block is entered normally. This initialization cannot occur
if control passesinto ablock by some other means, such
as agoto statement or if the block isthe body of a switch
statement. For more information concerning the switch and
goto statements, refer to Chapter 3.
Within afunction, auto is the default storage class. That is,
any variable (other than afunction name) declared within a
function without a storage-class specifier is given the auto
storage class. Functions are of the extern storage class by
default.

Note

The compiler can assign auto variables to machine
registers, if possible. Otherwise, they are placed on the

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl14.decwdbook (1 of 3)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

run-time stack.

Example 6-2 shows how to reinitialize two auto variables
with the same name.

Key to Example 6-2:

1 This definition of variable x extends through the entire
function.

2 This definition of variable x islimited to the for statement
and supersedes the value of variable x in the surrounding
function.

The output for Example 6-2 follows:

$ run example.exe

main: 2

for loop: 3

main: 2

In this program, the variable x is defined twice within the
main function, but the two variables do not conflict. While
the for loop is executing, the variable x declared inside the
block supersedes the variable x declared outside the block.

6.3.2 Defining a Variable for Placement in a Machine
Register (register)

Variables declared with the register storage class are similar

to auto variables. You can use theregister internal storage

class only inside functions, blocks, and function parameter

declarations.

Note

Theregister storage-class specifier isthe only
specifier that you can use in a parameter declaration.

A register variable differsfrom avariable of storage class
auto in the way that compiler-generated program code
allocates storage. Theregister storage-class keyword
suggests that the compiler flag the variable for placement in a
machine register. This does not guarantee that the program

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl14.decwdbook (2 of 3)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

code will place the variable in aregister. The compiler
checks the following conditions to determine whether or not a

variable is flagged to be placed in aregister:

If the variable is not used, the optimizer may remove it
entirely.

If the program contains too many register candidates, not

all of them are assigned to registers.
For more information, see the On-Line Release Notes.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl14.decw$book (3 of 3)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

6.4 Static Storage Class

The static storage class allows you to create permanent
storage for avariable using the static storage-class specifier
in the variable declaration. If declared inside of ablock, its
scope begins at the declaration and spans the remainder

of the block. If declared outside of all functions, its scope

is limited to the rest of the compilation unit; you can not
access a variable of the static storage class from another
compilation unit. If astatic identifier with the same name

Is declared in another module, the Task Builder or Linker
knows nothing of the other variable; the other variable has a
separate allocation.

If noinitialization is present in the declaration of avariable
of the static storage class, the Task Builder or RT-11 Linker
initializes the variable to 0. However, unlike auto variables,
the compiler-generated program code does not reinitialize
storage for astatic variable every time control reenters a
function containing the definition of a static variable. For
example, if you exit afunction when a static integer variable
has the value of 4, the variable retains that value even if
control reenters the defining function.

A function can also be defined with the static storage class.
A static function is not known to the Task Builder or Linker
and can be referenced only from within its defining module.
For more information concerning the possible combinations
of specifiers and qualifiers and the effects of the storage-class
gualifiers on program section attributes, refer to Chapter 7.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaall.p116.decw$book 1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

6.5 Global Storage Class
Y ou can declare identifiers of the global storage classin the
following manner:

A definition not using another storage-class keyword,
located outside all function bodies, declares a global
variable whose scope extends from the point of the
definition to the end of the compilation unit.

A declaration using the exter n keyword, usually located
in another compilation unit, is areference to the original
definition. This declaration extends the lexical scope of
the variable into the second compilation unit. If this
declaration isinside a block, it extends the lexical scope
from the point of the declaration to the end of the block.
If this declaration is outside a block, it extends the lexical
scope from the point of the declaration to the end of the
compilation unit.

The global storage classis the default storage class for
variables having file scope. Y ou can use more than one
extern declaration to reference the global definition.
Use the following rules when deciding whether or not to use
the extern specifier:

If the variable is defined before it is referenced, and the
definition isin the same compilation unit, you do not need
to declare the variable with the exter n specifier.

If the variable is defined after it is referenced, you need to
first declare it with the exter n specifier.

If the variable is defined in a separate compilation unit,
you must always declare it with the exter n specifier.
Consider the following example:
double D = 2.37,
int main(void)
{
externint A;
printf("a\t%d\n", A);

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl17.decwdbook (1 of 3)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

printf("d:\t%g\n", D);
}
intA =5;
The main function in this program references two global
variables, A and D . Since the variable D is defined before it
isreferenced, it does not have to be declared in the main
function. Since the variable A isreferenced beforeit is
defined, it must be declared with the exter n storage-class
specifier.
In many implementations of the C language, you cannot use
the extern specifier in adeclaration that does not refer to
aglobal definition elsewhere in the program. Whenever the
compiler encounters the first declaration of an identifier
of the global storage classin aPDP-11 C program, it
creates aglobal symbol to represent the location of that
variable. Therefore, in PDP-11 C, you can use the extern
specifier in adeclaration that does not refer to a global
definition elsewhere in the program. However, thisis not
good programming practice and your programs may not be
portable to other systems.

6.5.1 Global Names on PDP-11 Systems

All global names input to the RSX Task Builder or RT-

11 Linker must be 6 characters or less and must be of the
Radix-50 character set. Although the PDP-11 C compiler
does not place any restrictions on the names of global
variables in a source program, these names will be translated
by the compiler. When creating the output files, the PDP-11
C compiler trandates all global symbolsto Radix-50 using
these rules:

L owercase characters translate to uppercase characters

Underscores tranglate to periods (.)

Global symbols truncate to 6 characters

Dollar signs ($) remain the same
The compiler will issue awarning if more than one global
name maps to the same Radix-50 trandation. The user
should be aware that different global namesin different

compilation unit may map to the same Radix-50 name
without warning.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pll7.decwdbook (2 of 3)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

6.5.2 Global Definitions
The following rules apply when using global definitionsin
PDP-11 C:

Definitions of aglobal identifier may occur not more than
once in acompilation unit, or the compiler will return an
error.

The same global variable cannot be defined in two
modules that will be linked together or the Linker will
return an error.

All variables declared with the extern storage-class
specifier must be defined in a module that will be linked
in the final program, or the Linker will return an error.

Note

The global definition ruleslisted in this section are
different than VAX C.

Linking the following modules would produce two Linker
errors. Thefirst error would be a multiple definition of the
global variable A . The second error would be the missing
declaration of the global variable B . Either program compiled
alone would not produce any errors.

X.Cy.C

intA;intA;

externint B; externint B;

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl17.decwdbook (3 of 3)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

6.6 Defining Global Definitions (globaldef) and References
(globalr ef)
For compatibility with VAX C, PDP-11 C supports the
storage-class specifiers globaldef and globalref when
compiled using the/NOSTANDARD quadlifier. PDP-11 C
implements variables of the global storage class using link-
time global names and not psects. Therefore, PDP-11 C has
no need for globaldef and globalr ef storage-class specifiers.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaall.p118.decw$book 1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

6.7 Defining Global Values (globalvalue)

To define aglobal value, you use the globalvalue specifier.

A global valueis declared outside any functions. Y ou can use
the globalvalue specifier only with variables of type enum ,
int , or with pointer variables. All global values have the same
name restrictions as the variables with the global storage
class.

Global values are useful because they allow many
programmers in the same environment to refer to values

by identifier, without regard to the actual value associated
with the identifier. The actual values can change, as dictated
by general system requirements, without requiring changes

in al the programs that refer to them. If you make changes

to the global value, you have to recompile only the defining
compilation unit (unlessit is defined in an object library), not
al the compilation unitsin the program that refer to those
definitions.

Note

The globalvalue specifier is provided for compatibil-
ity with VAX C. Usethe/NOSTANDARD switch to
enable access to this specifier.

A variable declared with globalvalue does not require
storage. Instead, the RSX Task Builder or RT-11 Linker
resolves all referencesto the value. If an initializer appears
with globalvalue, the name defines a global symbol for the
giveninitial value. If no initializer appears, the globalvalue
construct is considered a reference to some previously defined
global value.

Predefined global values serve many purposesin system
programming, such as defining status values. It is customary
in system programming to avoid explicit references to such
values as those returned by system services, and to instead
use the global names for those values. Example 6-3 shows

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p119.decwdbook (1 of 2)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

how to use the globalvalue storage-class specifier.

In Example 6-3, FAIL is defined in the first module: the
value is placed into the program stream. In the second
module, FAIL is declared so that its values may be accessed.
Asit doesfor global variables, the RSX Task Builder or
RT-11 Linker recognizes the global symbol as uppercase
letters. Express global symbols as not more than 6 Radix-50
characters.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p119.decw$book (2 of 2)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

6.8 Explicit psect Control

A program section (psect) refersto an area of memory that
has a name, size, and a series of attributes that describe

the intended or permitted usage of that permanent storage.
When the compiler allocates storage for objects of static or
global storage class, storage is alocated into one of two psects:
static_ro or static_rw. If the object declaration contains the
const qualifier, storageis allocated in the current static ro
psect. If the object declaration does not contain the const
gualifier, storageis allocated in the current static_rw psect.
PDP-11 C alows the programmer to control the name and
attributes of psects. For more information, see Section 7.7.2.

By modifying the attributes of the static ro and static_rw
psects, the user can control the final link-time allocation of

the objects.

For example, the following program will alocate the variables
a and b to psect P2, variable d to psect P3, and variables c

and e to psect P1.

#pragma psect static ro P1

#pragma psect static_rw P2

staticint a;

int b;

static const int c;

#pragma psect static_rw P3

static int d;

static const int €;

The two sections that follow give two typical examples of how
to use explicit psect control.

6.8.1 Reducing Stor age Requirementsin Overlaid Tasks
The C language requires that objects of static and global
storage classes maintain values throughout program
execution. Therefore, the compiler must allocate permanent,
unique storage for variables of static and global classes by
assigning the following default attributes for static_ro and
static_rw psects. sav, gbl, and con.

Allocating permanent, unique storage, adversely affects
overlaid tasks. All storage for static and global variablesis
allocated into the root of the task even for variables declared
in modules placed in an overlay.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p121.decwdbook (1 of 2)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

Many user programs require that static variables only
maintain values while the module in which they are declared
Is active. Thus, the storage could be alocated in the same
overlay as the module that declaresit. This can be done
using the #pragma psect directive and by specifying the
following attributes: Icl, rel, and nosav. See Section 7.7.2 for
more information.

6.8.2 Data Sharing Using psects

The most common method for sharing data between two
modulesis by using variables of global storage class. This
requires that variables be defined exactly oncein one
module and declared using the extern qualifier in all other
modules. Further, the names of global variables are subject to
trandlation by the PDP-11 C compiler.

An aternate method of sharing data can be accomplished by
using explicit psect control. If several modules declare the
static_rw psect with the same name and attributes gbl and
ovr, they will be declaring the same area of storage.

Linking the following two modules will assign the same
storage location to A and C and the same storage location to
BandD.

X.C

#pragma psect static_ rw SHARE, gbl, ovr

staticint A;

static int B;

y.C

#pragma psect static_ rw SHARE, gbl, ovr

staticint C,

staticint D;

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p121.decw$book (2 of 2)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

6.9 Data Type Qualifiers

Data type qualifiers affect the allocation or access of data
storage. The data type qualifiersinclude the const and the
volatile qualifiers. Each is described in detail in the following
sections.

6.9.1 The const Qualifier

The const data type qualifier restricts access to stored data.
If you declare an object to be of type const , you cannot
modify that object.

The following rules apply to the use of the const datatype
qualifier:

Y ou can specify const with any of the other datatype
keywords in a declaration.

If you specify const when declaring an aggregate, all the
aggregate members are treated as objects of type const .

Y ou can specify const with volatile or with any of the
storage-class specifiers or qualifiers.

The address of a const object can be assigned to a pointer
to anon- const object, but if you use that pointer to alter
the value of the object, the result is undefined.
The following example declares the variable x to be a constant
integer:
int const x;
When declaring pointers, depending upon the placement
of the const qualifier in the declaration, PDP-11 C either
interprets the pointer or the object to which it points as
the constant variable. For instance, the following example
declares the variable y to be a constant pointer to an integer
because the const qualifier appears after the asterisk:
int* const y;
In the following example, the variable zis declared asa
pointer to a constant integer because the asterisk appears
after the const qualifier:
int const * z;
If avariable has static or global storage class and is declared

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p122.decw$book (1 of 2)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

with the const qualifier, it will be placed in a default read
only static psect. Using const on automatic variables does
not affect their storage allocation.

6.9.2 Thevolatile Qualifier

The volatile data type qualifier prevents an object from
being stored in a machine register, forcing it to be allocated
in memory. This datatype qualifier isuseful for declaring
datathat isto be accessed asynchronously. A device driver
application often uses volatile data storage.

The following rules apply to the use of the volatile qualifier:

Y ou can specify volatile with any of the other data type
keywords in a declaration.

If you specify volatile when declaring an aggregate, all
the aggregate members are treated as objects of type
volatile.

Y ou can specify volatile with const or with any of the
storage-class specifiers or qualifiers.

The address of an object of some other type can be
assigned to avolatile pointer, but the rules of the volatile
data type qualifier must be followed if you refer to the
object using that pointer.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p122.decw$book (2 of 2)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

6.10 Stor age-Class Specifiers
Storage-class specifiers are provided for compatibility with
VAX C, but do not have any functionality. The storage-class
specifiersinclude noshare, readonly , and _align .
The PDP-11 C compiler can accept a storage-class specifier
and a storage-class qualifier in any order; usually, the
qualifier is placed after the specifier in the source code.
For example:
extern noshareint Xx;

[* Or, equivalently... */
int noshare extern x;

Note

These storage-class specifiers are provided for
compatibility with VAX C. Use the/NOSTANDARD
switch to enable access to these specifiers.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaall.p123.decw$book 1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

7. Preprocessor Directives

Preprocessor directives are linesin the source file that direct
the compiler to alter its normal processing of PDP-11 C
source code. PDP-11 C preprocessor directives, except
#pragma and #module, are defined formally by the ANSI C
Language Standard. Therefore, ANSI preprocessor directives
do not vary from one compiler to another.

If you plan to port programsto and from other C
implementations, you should take care in choosing which
preprocessor directives to use within your programs. See
Section 7.2 for more information concerning conditional
compilation. For a complete discussion of portability concerns,
refer to the appendix on compatibility concernsin the PDP-
11 C Run-Time Library Reference Manual .

This chapter discusses the following preprocessor operations
and directives:

Token replacements (including preprocessor macro
substitution)-(#define , #undef)

Controls under which conditional segments of code are
to be compiled or not-(#if , #ifdef , #ifndef , #else, #dif ,
#endif , and the defined operator)

A diagnostic message that includes the specified sequence
of preprocessing tokens-(#error)

Include source text from an external file-(#include)

A new line number and file name specification for
diagnostics- (#line)

A Task Builder or RT-11 Linker modul e-title
specification- (#module)

Perform a specific PDP-11 C task, as described later in
this chapter-(#pragma)
This chapter also discusses the predefined macros defined by
the ANSI C Language Standard, as well as macros that are
provided for compatibility with VAX C macros.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p124.decw$book (1 of 2)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

Preprocessor directives are independent of the usual scope
rules; they remain in effect from their occurrence until the
end of the compilation unit, or until overridden by another
preprocessor directive. For more information concerning
compilation units, refer to Chapter 1.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p124.decw$book (2 of 2)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

7.1 Token Definitions (#define, #undef)

The # define directive specifies atoken string and an
identifier with optional arguments. The token string is
substituted for every subsequent occurrence of that identifier
in the program text, unless it occurs inside a character
constant, acomment, or a quoted string. Y ou use the #undef
directive to cancel a definition for atoken.

The syntax of the # define directive follows:

#define identifier token-string

#define identifier(identifier, . . .) token-string

If you omit the token string, every subsequent occurrence of
that identifier in the program text is deleted from the text to
be processed by the compiler.

After atoken string is substituted in the sourcefile, the
compiler rescans the source line from the beginning of the
substituted text to determine whether the previously inserted
text contains identifiers defined by other # define directives.
If so, the identifiers are replaced by their currently specified
token strings. Example 7-1 illustrates nested #define

directives.

Note

/DEFINE and /JUNDEFINE perform the same
functions from the command line as #define and
#undef . For more information, refer to Chapter 1.

Compile Example 7-1 with the following command:

$ cc/list/show=inter mediate example
The following listing results:
1 /* Show multiple substitutions and listing format */
2
3 #define AUTHOR james + LAST
4
5int main()
6{

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p125.decwdbook (1 of 7)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

7 int writer,james,michener,joyce;
8
9 #define LAST michener
10 writer = AUTHOR,
1 writer = james+ LAST ;
2 writer = james + michener ;
11 #undef LAST
12 #define LAST joyce
13 writer = AUTHOR,
1 writer = james+ LAST ;
2 writer = james + joyce;

}

1
On thefirst pass, the compiler replaces the identifier
AUTHOR with the token string james + LAST. On the
second pass, the compiler replaces the identifier LAST with
its currently defined token string value. At line 9, the token
string value for LAST istheidentifier michener, so michener
Is substituted at line 10. At line 12, the token string value
for LAST isredefined to be the identifier joyce, so joyceis
substituted at line 13. The following lineisthe final text that
the compiler processes:
writer = james + joyce;
Comments within the definition line can be continued without
the backslash/newline.

14

7.1.1 Object-Like Macros

Thefirst form of the #define directive definesasimple
substitution, usually of a constant for amnemonic identifier.
The identifier can be up to 31 characters. A common use of
the directive is to define a replacement for an identifier as
follows:

#definelen (5 + 4)

total =5* len + 45

The substitution text in the preceding example is delimited
with parentheses to avoid ambiguities when the text is
substituted in the program. If the parentheses were omitted,
then the expression that results from the substitution would
not be evaluated as expected. For example:

#definelen5+ 4

total =5* len+ 45

will be substituted with:

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p125.decwdbook (2 of 7)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

total =5*5+4+45

Thus, since the precedence of the
*

operator is higher than
that of the + operator (refer to Table 4-2), the variable total

Is assigned the value 74 rather than 90.

7.1.2 Canceling Definitions (#undef)

The following directive cancels a previous definition of the
identifier by #define:

#undef identifier

7.1.3 Function-Like Macros

Macros are text substitutions that include alist of parameters.
A macro substitution looks like afunction call. If you call a
function, control passes from the program to the function
object code at run time; if you reference a macro, source code
Isinserted into the program at compile time. The parameters
are replaced by the corresponding arguments and the text
Isinserted into the program stream. The syntax of a macro
definition follows:

#define name([parml[,parm2,...]]) [token-string]

In the previous syntax definition, name, parml , parm2 , and
so forth are identifiers, and token-string is arbitrary text. No
gpace is alowed between name and the |eft parenthesis.
After the macro definition, all macro references in the source
code with the following form are replaced by the token string
from the directive.

name([argl[,arg2,...]])

Any formal parameters that appear in the token string are
replaced by the corresponding arguments from the reference.
For example, argument argl replaces parameter parml , and
so forth.

As shown in the syntax of the macro definition, the token
string is optional. If the token string is omitted from the
macro definition, every subsequent occurrence of the macro
reference (including actual arguments) is deleted from the
text to be processed by the compiler.

The token string in the macro definition, as well as actual
arguments in a macro reference, may contain other macro
references. If amacro definition either directly or transitively
references itself, the recursive reference is not substituted.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p125.decwdbook (3 of 7)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

Thefollowing is an example of macro substitution:
#define COMPLAIN(message) \
(fprintf \
(stderr, \
"%sat line %d in file %s", \
message, \
__LINE__,\
__FILE)
[* . %/
if (i >LIMIT)
COMPLAIN ("Variablei exceeds LIMIT");
The #define preprocessing statement above defines the
COMPLAIN macro. The subsequent reference to the
COMPLAIN macro is replaced with the following:
if (i >LIMIT)
(fprintf
(stderr,
"Os at line %d in file %s",
"Variablei exceeds LIMIT",
__LINE__,
__FILE));
Preprocessor directive and macro reference syntax is
independent of the PDP-11 C language. The following
list gives the rules for specifying macro definitions:

The macro name and the formal parameters are
identifiers and are specified according to the rules for
identifiersin the PDP-11 C language.

Spaces, tabs, and comments may be used freely within
a# definedirective. In particular, they may appear
anywhere that the delta symbol (j) appearsin the
following example:

i define j name(j parmlj ,<
MATH_CHAR>(uppercase _delta)parm2j) j \

i token-string j

White space cannot appear between the name and the
left parenthesis that introduces the parameter list. White
space may appear inside the token string and in the
parameter list. Also, at least one space, tab, or comment
must separate name from define . Comments may
appear within the token string, but they do not become

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p125.decwdbook (4 of 7)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

part of the macro definition.
Thefollowing list gives the rules for specifying macro
references:

Comments and white space characters (spaces, horizontal
and vertical tabs, carriage returns, newlines, and form
feeds) may be used freely within amacro reference. In
particular, they may appear anywhere that the delta
symbol (i) appearsin the following example:

i namei (jaglj,

i arg2i)

Arguments consist of arbitrary text. Syntacticaly, they
are not restricted to PDP-11 C expressions. They may
contain embedded comments and white space. Comments
are ignored, but white space is preserved during the
substitution.

The number of arguments in the reference must match
the number of parametersin the macro definition, but
individual arguments may be null.

Commas separate arguments except where they occur

inside string literals or character constants, comments,

or parentheses. Y ou must balance parentheses within

arguments.
Y ou must be careful when specifying macro arguments that
use the increment (++), decrement (- -), and assignment
(such as +=) operators or other arguments that may cause
side effects. Function calls are another source of possible side
effects. For example, you can define a macro called upcase
asfollows:
#define upcase(c) ((c) >='a &&(c) <='Z' ?(c) &0X5F: (¢))
If the argument p++ is given to this macro, the effect within
the program stream may not be as desired. At run time,
these expressions may not be evaluated in left-to-right order.
For this reason, specifying macro arguments that may cause
side effectsis not good programming practice. Even if you
are aware of possible side effects, the token strings within
macro definitions may be changed, which changes the side
effects without warning.

7.1.3.1 Stringizing Preprocessing Operator (#)

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p125.decwdbook (5 of 7)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

Unlike some previous implementations of C, the ANS|
C Language Standard does not allow the substitution
of macro arguments within string literals or character
constants. Instead, the # stringizing preprocessing operator
(possibly in combination with string literal concatenation;
see Section 2.15) is used for asimilar function. The number
sign (#) operator may be specified before a parameter in
the replacement text to enclose the actual argument within
guotations, as follows:
#define DISPLAY _SHUTDOWN(min) \

puts (" System shutting down in " # min "minutes")
/* .. %
DISPLAY_SHUTDOWN (5);
The # min above is replaced with “*5" during macro
substitution.
For example,
DISPLAY_SHUTDOWN (5)
is replaced with
puts (" System shutting down in " "5" "minutes")
and after string literal concatenation becomes:
puts (" System shutting down in 5 minutes")

Note

The number sign (#) operator can be used only for
macros with arguments.

7.1.3.2 Token Concatenation Preprocessing Operator (#4)
The ## token concatenation preprocessing operator can
be used to concatenate two preprocessing tokens in macro
replacement text into a single token. Thisfeature isuseful in
forming token spellings based on actual arguments in macro
substitutions. After actual argument substitution and before
rescanning for nested macro invocations, the preprocessing
tokens occurring to the left and right of the ## operator are
concatenated to form a single token as follows:
#define INITIALIZE _LIST(list_name) \
((list_name## head = NULL), (list_ name## tail = NULL))
[* .. %

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p125.decwdbook (6 of 7)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

INITIALIZE LIST (students);
INITIALIZE LIST (instructors);

The previous two invocations of the INITIALIZE _LIST
macro will be expanded as follows:

(students_head = NULL, students tail = NULL);
(instructors_head = NULL, instructors _tail = NULL);

7.1.4 Listing Substituted Lines

The /SHOW command line qualifier has two optiona values
that enable the listing of all lines that have been modified
by macro substitutions. The values are EXPANSION and
INTERMEDIATE.

Consider the following qualifiers:
/LIST/SHOW=EXPANSION

The listing produced by the compiler with the previous
gualifiers shows both the original line and the final form

of the substituted line. Substituted lines are flagged in

the margin with numbers designating the nesting level of
substitution.

Consider the following qualifiers:
/LIST/SHOW=INTERMEDIATE

The compiler lists all intermediate substitutions with one
substitution per line.

Without one of these two qualifiers or /SHOW=ALL, the
compiler lists only the original form of an error-freeline.
When amessage is cited against aline, the final form of the
substituted line is always shown.

Example 7-1 in Section 7.1 shows the effect of the
/ISHOW=INTERMEDIATE qualifier. For more information
concerning the format of PDP-11 C compiler listings, refer

to Chapter 1.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p125.decwdbook (7 of 7)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

7.2 Conditional Compilation (#f, #ifdef, #ifndef, #else,
#elif, #endif)

Six directives are available to control conditional compilation.

They delimit blocks of statements that are compiled if a

certain condition istrue. You can nest these directives. The

beginning of the block of statements is marked by one of

three directives: #if , #ifdef , or #ifndef . Optionally, an

alternative block of statements can be set aside with the

#else or the #lif directives. The end of the block is marked

by an #endif directive.

If the condition checked by #if , #ifdef , or #ifndef istrue,

then PDP-11 C ignores all lines between an #else or #elif

and an #endif directive.

If the condition isfalse, then the lines between the #f , #ifdef ,

or #ifndef and an #else, or #elif or #endif directive are

ignored. The compiler flags ignored lines with the letter X in

the compiler listing margin.

The #if directive has the following form:

#if constant-expression

This directive checks whether the constant expression is

nonzero (true). The operands must be integer constants. The

increment (++), decrement (- -), sizeof , pointer (
*

), address
(&), and cast operators are not allowed in the constant
expression.
The constant expression in an #if directive is subject to text
replacement and can contain references to identifiers defined
in previous #define directives. The replacement occurs
before the expression is eval uated.
If an identifier used in the expression is not currently defined
and is not an operand of the defined operator, the compiler
issues an informational message and treats the identifier as
though it were the constant zero.
The #ifdef directive has the following form:
#ifdef identifier
This directive checks whether the identifier is currently
defined by a#define directive.
The #ifndef directive has the following form:

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p127.decwdbook (1 of 3)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

#ifndef identifier

This directive checksto seeif the identifier is not defined or if
it has been undefined by the #undef directive.

The #else directive has the following form:

#Helse

This directive delimits alternative source lines to be compiled
if the condition tested for in the corresponding #f , #ifdef ,
#ifndef , or #elif directiveisfalse. An#else directiveis
optional.

The #elif directive has the following form:

#elif constant-expression

The #elif line performs atask similar to the combined use

of the #else and #if statementsin PDP-11 C. Thisdirective
delimits alternative source lines to be compiled if the condition
in the corresponding #f , #ifdef , #fndef , or previous #elif
directiveisfase and if the additional constant expression
presented in the #elif directive istrue. An #elif directiveis
optional.

The #endif directive has the following form:

#Hendif

This directive ends the scope of the most recent #if , #ifdef ,
or #ifndef directives.

The number of #endif statements must correspond exactly

to the number of #if , #ifdef , or #ifndef statements. The
#endif statement must occur in the same source file asthe
corresponding #if , #ifdef , or #ifndef statement. Y ou must
not specify an #endif statement to correspond with an #elif
Statement.

7.2.1 The defined Oper ator

If you need to check to see if many tokens are defined, you
may use the preprocessing defined operator in asingle use
of the #if directive. In thisway, you can check for token
definitions in one concise line without having to use many
#ifdef or #ifndef directives.

For example, the following three #ifdef ... #endif sequences
check three tokens:

ifdef tokenl

printf("Oh, Mary!\n")

endif

ifndef token2

printf("Oh, Mary!\n")

endif

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl27.decwdbook (2 of 3)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

ifdef token3

printf("Oh, Mary\n")

endif

Y ou can use the defined operator in asingle use of the #if
preprocessor directive, as follows:

#if defined (tokenl) || 'defined (token2) || defined (token3)
printf("Oh, Mary\n")

endif

Y ou can only use the defined operator in the evaluated
expression of an #if or #elif preprocessor directive.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl127.decwdbook (3 of 3)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

7.3 The#error Directive

The #error directive has the following form:

#error tokens

This directive produces a diagnostic message that includes the
specified sequence of preprocessing tokens. For example:

#if ARRAY_SIZE!'=5

#error "ARRAY _SIZE" is assumed to be 5, but is not

#Hendif

The following message would be displayed:
%PDP11C-W-LEX_USER_ERROR, User declared error: "ARRAY _SIZE" is assumed
to be 5, but is not

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1l.p128.decw$book 1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

7.4 FileInclusion (#include)

The #include directive inserts external text into the token
stream delivered to the compiler. Often, global definitions for
use with PDP-11 C functions and macros are included in

the program stream with the #include directive. PDP-11 C
supports nesting of #includefilesto at least eight levels. In
agiven compilation, PDP-11 C may support higher levels of
#include file nesting depending on available resources.

Note

Unlike VAX C, PDP-11 C does not support text
modules and text libraries with the #include
directive.

7.4.1 Inclusion Using Angle Brackets (<>)

The first form of the directive follows:

#include <file-spec>

Thisform of fileinclusion delimits the file specification with

angle brackets (<>). It is generally used with header files

supplied with PDP-11 C.

The identifier file-spec isavalid file specification or alogical

name. The compiler first trandlates the specified file name to

seeif itisavalid file specification. If the specification isnot a

valid file specification, an error occurs.

For the bracketed form, the order of search follows:

1. The directories specified in the /INCLUDE_DIRECTORY
qualifier (if any).

2. The directory or search list of directories specified in the
logical name PDP11C$INCLUDE on VMS, RSX-11M-
PLUS, Micro /RSX, and RSTS/E systems (if any).

3. The directory specified in the logical name CLB on RSX-
11M/M-PLUS, Micro /RSX, RSTS/E, and RT-11 systems
(if any).

4. The directory or search list of directories specified by
LB:[1,1] (on VMS and RSX-11M/M-PLUS systems),

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p129.decw$book (1 of 4)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

CC$: (on RSTYE systems), and SY: (on RT-11 systems).
PDP-11 C uses the first occurrence of the specified file that
it finds according to the search order for the bracketed form.
If the specified file cannot be found in any of the previously
described locations, an error is reported.

Y ou cannot define PDP11C$INCLUDE to be arooted
directory or subdirectory of the following form:
DBAO:[dir-name.]

When defining PDP11C$INCLUDE, use complete directory
specifications.

For more information concerning search lists, refer to the
DCL command DEFINE in the VMSDCL Dictionary .
Table 7-1 lists the logical names for the PDP-11 C host

environments and their correspondenceto VAX C logica
names (if any).

7.4.2 Inclusion Using Quotation Marks (" ")

The second form of the #include preprocessor directive

follows:

#include "file-spec"

Thisform of fileinclusion delimits the file specification with

guotation marks (" "). It is generally used with user-defined

header files.

For the quoted form, the order of search follows:

1. The directory containing the top-level sourcefile

2. The directories specified in the /INCLUDE_DIRECTORY
qualifier (if any)

3. The directory or search list of directories (if any) specified
in the logical name C$INCLUDE on VMS, RSX-11M-
PLUS, and Micro /RSX systems

4. The current default directory (DK: on RT-11)

5. If al the previous searches fail, the search order for the
bracketed form is used as shown in Section 7.4.1.

PDP-11 C usesthefirst occurrence of the specified file that

it finds according to the search order for the quoted form.

If the specified file cannot be found in any of the previously
described locations, an error is reported.

Note that the compiler first searches the directory containing
the compiled source file for the included file, not the current
default directory. With PDP-11 C, the sourcefileisthefirst
top-level sourcefile, the .C file.

For example, given the current directory, DBAO:[CURRENT],
and the following CC command line, the compiler first

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p129.decw$book (2 of 4)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

searches DBAO:]OTHERDIR] for any included files delimited
by quotation marks, even though the current RM S default is
the directory, DBAO:]CURRENT]:

$ cc dba0:[otherdir]example.c

InVMS and RSX-11M-PLUS environments, you have the
flexibility of defining C$INCLUDE to be any valid directory
or list of directories you choose before each compilation of
your program. At the DCL or PDP-11 C command level,

you may use the/INCLUDE_DIRECTORY qualifier to
provide an additional search level for includefiles.

Aswith the PDP11C$INCLUDE, do not define CSINCLUDE
to be arooted directory or subdirectory. Use complete
directory specifications when defining CSINCLUDE.

For more information concerning search lists, refer to the
DCL command DEFINE in the VMSDCL Dictionary . For a
correspondence of logical names used by PDP-11 C on each
host system and by VAX C, refer to Table 7-1.

Note

If you include afile from LB:[1,1] by using angle
brackets and the included file contains a second
#include line that delimits the file specification with
quotation marks, the compiler first searches the
directory containing the top-level source file for the
specified file, not LB:[1,1].

7.4.3 Token Substitution in #include Directives

PDP-11 C alows macro substitution within the #include
preprocessor directive.

For instance, if you want to include afile name, you can use
the following two directives:

define tokenl "file.ext"

include tokenl

If you use defined tokens in #include directives, the

tokens must evaluate to one of the two following acceptable
#include file specifications, or PDP-11 C generates an error
message;

<file-spec>

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p129.decw$book (3 of 4)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

"file-spec”

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p129.decw$book (4 of 4)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

7.5 Specification of Line Numbers (#line, #)

The PDP-11 C compiler keeps track of information about
relative line numbers in each file involved in the compilation.
It uses the number when it delivers diagnostic messages to
the terminal and listing, and when it expandsthe _ LINE
and __FILE _ macros. The compiler increments the

line counter for the subsequent lines from the line number
specified by the #line directive. The directive can also specify
anew file specification for the program source file. The
#line directive will not change the line numbersin the left
margin of your compilation listing, only the line numbers
given in messages (for example, error messages) and in
theexpansionof the _ LINE _and __FILE _ predefine
macros.

The formats of the #line directive follow:

#line constant identifier

#line constant string

constant identifier

constant string

The compiler givesthe line following a#line directive the
number specified by the parameter constant. The second
parameter can be specified as either a PDP-11 C identifier or
astring literal. It suppliesavalid PDP-11 file specification.
The character string must not exceed 255 characters.

Note

Omission of the #line keyword is provided for
compatibility with VAX C and is not defined by the
ANSI standard.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaall.p131.decw$book1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

7.6 Specification of Module Name and I dentification
(#module)

The #module directive is provided as an alternate syntax

of the #pragma module directive for compatibility with

VAX C. For more information, refer to Section 7.7.3.

Note

The #module directive is provided for compatibility
with VAX C. To enable access to this directive,
compile using the /NOSTANDARD switch.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal l.p132.decw$book 1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

7.7 Implementation-Specific Preprocessor Directive
(#pragma)

This section describes the implementation-specific

preprocessor directives, or pragmas, that are available in the

PDP-11 C compiler. The #pragma directive is a standard

method for implementing features that vary from one C

compiler to the next.

The following rules apply to the use of PDP-11 C pragmas:

No pragmas have any effect between different
compilation units of the same compilation.

Unless otherwise noted, the use of upper- and lowercase
alphabetic charactersis significant.

The preprocessing tokens following the #pragma
keyword, up to the terminating newline, are subject to
macro replacement unless in single or double quotes.

Using pragmas that PDP-11 C does not recognize results
in an informational message.

7.7.1 #pragma char set
The charset pragmas specify the source, message, list, and
execution character sets respectively. The charset pragmas
that you can specify in PDP-11 C are asfollows:

pragma charset

2

6

4
source
message
list
execution

3
7

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p133.decwdbook (1 of 9)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

<charset_name>
The source, message, list, and execution character sets are
initially set to iso-latin-1. Y ou can change any of these
character sets from theinitial iso-latin-1 default. Once you
have changed a character set from iso-latin-1, you may
specify the same new character set any number of timesin
the compilation unit.
For the message, list, and execution character sets, you
cannot specify a second character set change for the same
pragmain the same compilation unit. For example, if you
change the list character set to french, you can specify
french any number of times for the list character set in this
compilation unit, but you cannot specify german for the list
character set in the same compilation unit. This restriction
does not apply to the source character set. Y ou can change
the source character set to a new character set any number
of times in the same compilation unit.
The source charset specifies the character set of the source
file. If you issue the source charset pragmain a sourcefile
that is cited in the command line (but not in an included
file), the specified character set becomes the new default and
current character set.
Source files that you specify in the command line are
presumed to be in the default source character set unless
a source charset pragma is encountered. Files that you
include with the #include directive are presumed to bein
the character set of the including file unless a source charset
pragmais encountered. When the end of an included file
Is reached, the source character set revertsto that of the
including file.
PDP-11 C processes source filesinternaly in the iso-latin-1
character set. Compilation time increases when the source
character set is other than iso-latin-1.
The charset message pragma specifies the character set of
the user terminal, if interactive, or thelog file, if batch.
This pragma should be the first item in the sourcefile.
Any messages that are displayed before this pragmais
encountered will be displayed in the iso-latin-1 character set.
The list charset pragma specifies the character set of the
device on which the listing file is to be displayed.
The execution charset pragma specifies the character set

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p133.decwdbook (2 of 9)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

of the environment in which the compiled user program

will execute. String literals and character set constants

are tranglated to the execution character set. Y ou must
specify this pragma before the first string literal or character
constant, or an error is signaled.

Each of the source, message, list, and execution character sets
may be specified independently of each other. Alternatively,
all four character sets may be set to the same valuein a
single directive by not specifying a source, message, list, or
execution keyword in the #pragma charset directive.
Thefollowing is an example of the #pragma charset
directive. In this example, the french_canadian character

set is specified for the device on which the listing fileisto be
displayed:

#pragma charset list french_canadian

The following example shows how to set the source, message,
list, and execution character sets to the finnish character set
inasingle directive:

#pragma charset finnish

PDP-11 C supports the character sets shown in Table 7-2.

When using the #pragma charset source directive, use
trigraphs to represent those characters that are not available
in the specified source character set. For example:
#pragma charset source british
/* Note effect of British source - trigraphs required */
??=pragmacharset list iso_latin_1
int printf();
main ()
{
printf("#\n"); /* Script-L will print */
printf("??=\n); /* ‘# will print */
}
Another exampleis:
#pragma charset source italian
/* Note effect of Italian source - trigraphs required */
??=pragmacharset listiso_latin_1
int printf();
main ()
7<
printf("??=?2/n"); [* "# will print */
7>
Digital recommends that you do not specify Swissasa

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p133.decw$book (3 of 9)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

source character set, becausethe” " character has a Swiss
replacement for which there is no corresponding trigraph.
However, using the Swiss character set as a message,
execution, or listing character set poses no problems.

7.7.2 #pragma psect

The psect pragmas specify the program sections where
generated code and data are allocated. The psect pragmas
that you can specify in PDP-11 C are asfollows:

#pragma psect const [<psect _name>[,<attributes>,...]]
#pragma psect static_ro [<psect_name>[,<attributes>,...]]
#pragma psect static_rw [<psect_name>[,<attributes>,...]]
#pragma psect code i [<psect_name>[,<attributes>,...]]
#pragma psect code_d [<psect_name>[,<attributes>,...]]
The psect_name has the form of any other C identifier;
however, the compiler will trandlate this identifier to a 6-
character, Radix-50 name using the same rules as used

for global storage variables. For more information on global
storage variables, see Section 6.5.1.

The psect name is optionally followed by alist of psect
attributes. Valid attributes are: ro, rw, i, d, Icl, gbl, rel, abs,
con, ovr, sav, nosav. These attributes are identical to those
which follow the MACRO-11 .PSECT directive, except that
they must be specified in lowercase. For more information,
see the PDP-11 C Run-Time Library Reference Manual .
Table 7-3 lists the types of code or data associated with each

psect type.

The scope of the psect pragmas ranges from just after the
psect pragma until the next psect pragma of the same type,

or the end of the compilation unit, whichever comesfirst.

If you specify a psect pragma with no psect name and
attributes, the default PDP-11 psect of the type you specified
IS assumed.

When you specify a psect for the first time, the default psect
attributes are assumed for any unspecified attributes. When
you subsequently specify a psect, you can specify only the
same attributes or leave them unspecified. Once you establish
attributes for a psect, you cannot change them. The attributes
of the PDP-11 C default psects cannot be changed.

In addition, note the following:

The pragma psect const can only be issued once for each

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p133.decwdbook (4 of 9)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

compilation unit.

The pragma psect code i and code d can only be issued
outside a function body.

For more information on the pragma psect static_ro and
pragmastatic_rw, see Section 6.8.

7.7.3 #pragma module

When you compile source files to create an object file, the

compiler assigns to the object file the last file name (from

left to right) of those specified in the compilation unit. Files

separated in the command line with the " +" concatenation

operator form a compilation unit. By default, this same name

(truncated to 6 characters) is used as the module title that

is carried internally to the object file and that appearsin

compiler and object-librarian listings and load maps. By

default, the compiler also gives the module aV 1.0 version

identification.

For example, the following command line will create an

object file named MY PROGRAM.OBJ, which isinternally

identified as MY PROG V 1.0:

$ cc myheader .h + myprogram.c

To change the internal modul e title and version, use the

#pragma module directive or the #module directive.

The syntax of the #pragma module directive follows:
#[pragma] module

8

<

identifier
string

N

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p133.decwdbook (5 of 9)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

[,] identifier
[,] string

3

5
Thefirst identifier or string in the #pragma module
directive refers to the module title and contains up to 6
Radix-50 characters not including a space. The optional
second identifier or string refers to the version and isa string
of up to 6 Radix-50 characters. Radix-50 characters are the
uppercase letters A through Z, the digits O through 9, space
(™), period (.), and dollar sign ($). Lowercase |etters are
converted to uppercase.

Note

The #module directive (without the pragma

keyword) is provided for compatibility with VAX C.
Use of the #module directive (without the pragma
keyword) causes awarning if /NOSTANDARD=ANS
Is specified on the command line.

Y ou may specify this directive only once for each compilation
unit.

7.7.4 #pragmalist

The list pragmas enable or disable the listing and control the
running title and subtitle fields at the head of every pagein
the listing. The list pragmas that you can specify in PDP-11
C areasfollows:

#pragmalist on

#pragmallist off

#pragmallist title "string"”

#pragmallist subtitle "string"

Thelist on and list off pragmas enable or disable thelisting
respectively. PDP-11 C implements a listing-enabled counter
similar to that of MACRO-11. Initially, the counter is0O. A
#pragma list off directive decrements the counter. A
#pragma list on directive increments the counter. The

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p133.decw$book (6 of 9)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

listing is enabled whenever the value of the counter is greater
than or equal to O; otherwise the listing is disabled.

Y ou must specify the /LIST qualifier for the list pragmas to
have an effect. If you do not specify the /LIST qualifier or if
you specify the /NOLIST qualifier, the list pragmas have no
effect. The list pragmas aso have no effect on the listing of
machine code if you specify the /SHOW=MACHINE qudlifier.
The list title pragma specifies atitle that appears at the top of
every page of the listing. Y ou may specify this pragmaonly
once for each compilation unit. Y ou may specify up to 44
arbitrary characters.

The list subtitle pragma specifies a subtitle to appear at the
top of every page of thelisting. Y ou may specify this pragma
any number of times for each compilation unit. Y ou may
specify up to 44 arbitrary characters. The use of upper- and
lowercase for aphabetic charactersis significant.

7.7.5 #pragma linkage
The linkage pragmas are used to define the exact calling
mechanism for functions. The pragma defines the function's
linkage so that later in the compilation unit when the
function is either defined or referenced, the function will
be called with the previously defined linkage.
The syntax for the linkage pragma follows:
#pragma linkage linkage-specifier [function [,function]...]
The linkage specifier can be one of six specifiers: ¢, pascal,
fortran, rsx_ast, rsx_sst, rsx_csm. The linkage specifier is
optionally followed by alist of function names.
If function names follow the linkage specifiers, those functions
will be given that linkage. If no function names follow the
linkage specifier, the #pragma sets the default linkage for al
functions that follow. That is, all functions whose linkage has
not been explicitly specified using another #pragma linkage
will take on that linkage. This default linkage remainsin
effect for the rest of the compilation unit or until another
#pragma linkage occurs without function specifiers. If no
linkage is specified, the function will be called with the C
linkage.
In the following example, functl and funct2 are assigned the
Pascal linkage, funct3 is assigned the FORTRAN linkage,
and funct4 is assigned the C linkage.
#pragma linkage fortran /* Assigns fortran linkage

to any function not

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p133.decwdbook (7 of 9)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

specifically assigned
alinkage until another
genera linkage is defined.*/
#pragma linkage pascal functl,funct2 /* Assigns pascal linkage
int functl(); to functl and funct2.*/
int funct2();
int funct3();
#pragma linkage c /* Assigns c linkage to
int funct4(); any function not specifically
assigned a linkage from
this point on.*/
Note that you should not specify alinkage without function
names in a header file or you may inadvertently redefine
your calling mechanism for the rest of your compilation unit.
For more specific information on the effect of the linkages
pragma, see the chapter on using PDP-11 C with other
PDP-11 languages in the PDP-11 C Run-Time Library
Reference Manual .

7.7.6 #pragma [no]standard

Use #pragma nostandard to tell PDP-11 C to ignore

the current setting of the command line qualifier
ISTANDARD=ANSI until further notice. It has no effect

If the qualifier was not specified.

The #pragma nostandar d directive has the following
format:

#pragma [no]standard

The nostandar d and standar d pragmas are used together
to define regions of source code where portability diagnostics
are never to beissued. The following example demonstrates
the use of these pragmas:

#pragma nostandard

globalvalueint MAXERR = 10;

#pragma standard

In this example, nostandar d prevents the issuance of a
diagnostic against the globalvalue storage class qualifier,
which is not defined by the ANSI C language standard.

If the compiler detects more occurrences of the nostandard
pragmathan it does the standar d pragma, the following
informational message is issued:

LEX MISPRAGMASTAND, Mismatched #pragma standard preprocessor directive (S)
When this message appears, check that each nostandard
pragma has a matching standar d pragma, both in the main

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p133.decwdbook (8 of 9)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

source file and in any included files.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p133.decwdbook (9 of 9)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

7.8 Predefined Macros

The following sections describe the predefined macros defined
by the ANSI C Language Standard and the PDP-11 C
predefined macros that you can use in your programs.

7.8.1 PDP-11 C Predefined Macros

The PDP-11 C compiler defines the following preprocessor
substitutions; these symbols are defined as if the following
text fragment were included by the compiler before

every compilation unit. These macros have two leading
underscores, which conformsto the ANSI C Language
Standard.

#define pdpll 1

#define pdpllc1

#define__dec c1

#define__vms host 1 /* Only on VAX/VMS hosts */
#define __rsx_host 1 /* Only on RSX hosts */

#define _ rsts host 1 /* Only on RSTS/E hosts */

#define _ rt11l host 1 /* Only on RT-11 hosts */

#define_ PDP11 1

#define _ PDP11C 1

#define_ DEC C1

#define_ VMS HOST 1/* Only on VAX/VMS hosts */
#define_ RSX_HOST 1 /* Only on RSX hosts */
#define_ RSTS HOST 1 /* Only on RSTS/E hosts */
#define_ RT11 HOST 1 /* Only on RT-11 hosts */

Y ou can use these definitions to separate portable and
nonportable code in any of your PDP-11 C programs.

The symbols can be used by a PDP-11 C programmer to
conditionally compile PDP-11 C programs used on more
than one operating system to take advantage of system-
specific features. See Section 7.2 for more information
concerning the use of the preprocessor conditional compilation
directives.

7.8.2 Digital Extension Macros

The CC$gfloat and PDP11 macros are Digital extensions.
Because these two macro names do not begin with two
leading underscores, they are not ANSI conformant and
are not defined when the/STANDARD=ANSI qualifier is

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p136.decwdbook (1 of 4)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

specified (even after a#pragma nostandard directive). The
CCs%gfloat macro is defined for compatibility with VAX C:
#define CC$gfloat O

Under VAX C, the CC$gfloat macro expandsto 1 if

you specify the/G_FLOAT qualifier; otherwise, the
CCs%gfloat macro is 0. The CC$gfloat macro enables VAX C
programmers to conditionally compile sections of code that
depend on the representation of double objects. Because PDP-
11 systems and PDP-11 C do not support the G-float format,
PDP-11 C defines CC$gfloat as O, indicatingtoaVAX C
program that is ported to PDP-11 C that the G-float format
Is not being used for double objects.

The PDP11 macro is defined for compatibility with other C
language processors on PDP-11 systems:

#define PDP11 1

7.83The DATE__ Macro

The DATE__ macro evaluates to a string specifying the
date on which the compilation started. The string presents
the date in the following format:

Mmm-dd-yyyy

Thefirst d isaspaceif dd islessthan 10.

Thefollowing is an example of how to usethe _ DATE
macro:

printf("%s',_ DATE);

7.84The__TIME__Macro

The __TIME__ macro evaluates to a string specifying the
time when the compilation started. The string presents the
time in the following format:

hh:mm:ss

Thefollowing isan example of how tousethe TIME
macro:

printf("%s"', TIME);

7.85The_ _FILE__Macro

The _FILE __ macro evaluatesto a string specifying the

file specification of the current source file. The string presents
filein the following format:
disk:[directory]filename.extension;n

Thefollowing is an example of how tousethe FILE
macro:

printf("file %s', FILE);

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p136.decwdbook (2 of 4)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

The expansion of the _ FILE __ macro can be altered with
the #line directive (see Section 7.5).

7.8.6The__LINE__ Macro

The __LINE__ macro evaluatesto an integer specifying the
number of the line in the source file containing the macro
reference. The number presents the line in the following
format:

n

Thefollowing is an example of how tousethe LINE
macro:

printf("Atline%d infile%s"', LINE , FILE);
Theexpansion of the LINE__ macro can be altered with
the #line directive (see Section 7.5).

7.87The__STDC__ Macro

The _STDC __ macro evaluates to the decimal constant 1.
Thefollowing is an example of how tousethe STDC_
macro:

#ifdef _ PDP11C

#define PASTE(a,b) att#b

#elif STDC
#define PASTE(a,b) atttb
H#else

#error cannot define the PASTE macro in this environment
#endif

The _STDC__ macroisdefined only if 'STANDARD=ANSI
is specified on the command line. The __STDC___ macro

can be used to determine at compile time if the compilation
environment supports the ANSI C Language Standard.

7.88The_ RAD50and __RADS50L Macros

PDP-11 C provides two macros for specification of radix-
50 constant values. The _ RAD50 macro takes a one- to
three-character string literal argument and convertsit to a
short-word radix-50 value. The RAD50L macro takes a
one- to six-character string literal argument and converts it
to along-word radix-50 value. In both cases, the radix-50
value is shown in the listing represented as an octal constant
if /LIST is selected and either /[SHOW=EXPANSION or
/ISHOW=INTERMEDIATE is selected on the command line.
The Example 7-2 illustrates using both of these macros.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p136.decwdbook (3 of 4)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

Key to Example 7-2:

1 The RAD50 macro expansion is shown in the listing as
a short-word octal constant representing the argument
in radix-50.

2 The _RADS50L macro expansion is shown in thelisting
as along-word octal constant representing the argument
in radix-50.

Notethat the RAD50and _RADS50L macros are
PDP-11 C extensions and may not be portable to other C
environments.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p136.decwdbook (4 of 4)1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

8. PDP-11 C Implementation Notes

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.p138.decw$book 1/25/06 3:43 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

8.1 Use of Memory Management Functions

The PDP-11 C Runtime system maintains alist of free

space which can be allocated by callsto the malloc, calloc,
or realloc functions. On programs linked with the RSX
taskbuilder on RSX or RSTS/E systems, this spaceisinitially
the space between the end of the program code and the end

of the task's window 0. On programs linked with the RT-11
Linker on RT-11 or RSTSE, theinitial free space is obtained
by doing a.SETTOP #-2 during initialization of the job which
obtains all of the free space possible for the job.

When memory is returned by use of the realloc or free
functions, the returned memory is linked to the head of a
circularly linked list of free memory.

When memory is requested, the freelist is searched for a
block of memory large enough to accommodate the request.
When the first such areais found, that block of free spaceis
reduced by the amount of memory requested, the requested
memory is alocated, and a pointer to it returned.

If no single block of free space large enough to accommodate
the request is found after searching the entirefreelist, a
consolidation operation takes place. During this consolidation
operation, any adjacent blocks of free memory are merged
into asingle block. Also the freelist isre-ordered from low
memory to high memory. After the consolidation operation,
the freelist is searched again to seeif the request can now be
accommodated.

For programs linked with the RT-11 Linker, if the request
still cannot be accommodated after consolidation of free space,
the function returns indicating that the request cannot be
fulfilled.

For programs linked with the RSX taskbuilder, an attempt

to extend the task is made, and the space obtained is added

to the free list. The amount of the task extension will be the
amount of memory requested, rounded up to the next highest
256 word increment. If thistask extension request fails, the
maximum available task extension will be performed.

After extending the task, the free list is again searched for a
block large enough to accommodate the request. If thisfails,
a second consolidation operation is performed, and the list

Is searched again. Finaly, if thisfails, the function returns

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p139.decwdbook (1 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

indicating that the request cannot be fulfilled.

Programs linked with the RSX taskbuilder can increase the
size of theinitial area of free space at taskbuild time by using
the EXTTSK taskbuilder option. At installation time the area
can be increased by the use of the /INC qualifier to the RSX
MCR INS command or the/EXTENSION qualifier to the
RSX DCL command INSTALL. At run-time, the area can be
increased by the use of the /INC qualifier to the RSX MCR
RUN command or the/EXTENSION qualifier to the RSX
DCL RUN command.

By knowing how much your task will grow, you can pre-
extend theinitial allocation of free space using one of the
above commands and save some or all task extensions from
being done. Alternately, you could extend the task at run-
time to its maximum possible size by invoking the malloc
function with a size of 65535U. Although this returns avalue
of zero, it does extend the task to the maximum size.

On RSX, in order for atask extension to be done, the task
must be checkpointable. One way to do thisis by linking

the task using the /CP taskbuilder option. Alternatively, you
could either use the /CHECKPOINT qualifier to the RSX
DCL INSTALL or RUN commands, or the /CKP qualifier

to the RSX MCR INS or RUN command. If the task is not
checkpointable, only the free spaceinitially available to the
task will be available.

The RSTS/E taskbuilder accepts the /CP switch but ignoresiit.

8.1.1 Providing Alter native Space for Memory

M anagement
PDP-11 C programs which use memory resident overlays,
or are linked using the /PR:n switch cannot use memory
management functions. Programs that mix PDP-11 C
routines with routines written in other languages that use
similar methods for memory management, could have
problems when each language tries to manage memory in
the same place.
The above problems can be overcome by providing the PDP-
11 C RTL with afixed area of memory to be used. The space
provided must reside in the root of overlaid programs. The
size of this space is fixed and cannot be changed at program
run-time. Tasks that provide memory in this manner do not
need to be checkpointable, and the /CP switch is not required
when taskbuilding on RSX systems.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p139.decwdbook (2 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

To provide this aternative space for memory management,
declare an array of the desired size. The size of the space
provided should be a multiple of 4.
Fill in the global symbol CSMEMU with the starting address
of the array. The location following CSMEMU should be
filled in with the starting address of the array, plus the size of
the array.
The following example provides an area of 4096 bytes for
memory management:
static char memspace[4096];
const char *CSMEMU(2] =
{
memspace,
memspace+si zeof (memspace)

};

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p139.decwdbook (3 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

8.2 Compilation Performance and Capacity on PDP-11
Host Systems

The following sections describe how data caching, as well

as placement and size of the work file, effect compilation

performance.

8.2.1 Data Caching

On PDP-11 hosts, PDP-11 C uses a disk-based work file
with one or two levels of data caching. Thefirst level of
caching, or primary cache, is done in mapped memory
(within the 32K -word virtual address space of the PDP-11

C compiler task). The primary cacheis part of the PDP-11
C compiler task image; it is always present in memory when
PDP-11 Cisrunning and is not present in memory when
PDP-11 Cisnot in memory. PDP-11 C uses a primary
cache on all PDP-11 host systems.

The second level of caching, or secondary cache, isdonein
unmapped memory (beyond the 32K -word virtual address
space of the PDP-11 C compiler task). Thisfeatureis
optional and is not available on host systems that do not
support the I/D space feature. If selected through the
/IMEMORY command line qualifier, PDP-11 C attempts

to obtain additional, physical memory from the host operating
system. If available, this additional memory isused asa
secondary cache. Whenever data overflows the primary
cache, aregion of the secondary cache is mapped and the
datais stored in the secondary cache. Similarly, when

data cannot be found in the primary cache, aregion of

the secondary cache is mapped and searched for the desired
data. While a secondary cache access is somewhat slower
than a primary cache access, it is significantly faster than a
disk access.

The larger the value specified with the/MEMORY qudlifier,
the greater the performance and capacity of PDP-11 C. Only
when PDP-11 C processes sufficient data that it overflows
the primary and secondary caches does it begin to use the
disk file, and even then the caches continue to be used to
maximize performance. If the secondary cache obtained
from the host operating system is larger than the disk file
specified or defaulted with the /WORK _FILE_SIZE qudlifier,

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p140.decwdbook (1 of 2)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

the disk fileisnot used at all. Note that while each 4K-word
region specified with the/ MEMORY qualifier is equivalent
to 15 disk blocks specified with the/ WORK_FILE _SIZE
qualifier, the requested number of secondary cache regions
may not be available, resulting in a smaller or no secondary
cache. Also note that the additional memory used by PDP-
11 Cisunavailableto other tasks, applications, and other
simultaneous invocations of PDP-11 C while the invocation
of PDP-11 C that obtained the extended memory is running.

8.2.2 PDP-11 C Work File

Performance can also be enhanced by placing the PDP-11 C
work file on afast, random access device. For instance, on
RT-11 host systems, performance can be made comparable
to that obtained through the extended memory feature on
RSX and RSTS/E systems by using the VM virtual device
for the PDP-11 C work file. On all PDP-11 host systems,
PDP-11 C attempts to open the file on device WF-.. If this
fails, PDP-11 C then opens the work file in a host-specific
location. Assigning afast, random access device to WF: can
significantly improve performance.

Performance of PDP-11 C can be impaired when large
values are specified with the/WORK_FILE_SIZE qudlifier.
When alarge value is specified, PDP-11 C must use
additional virtual memory to extend its bitmap of used/unused
disk blocks. Disk blocks are managed in sets of eight. Thus,
a 1-word bitmap can keep track of 128 blocks. PDP-11 C
maintains a minimum bitmap of 64 words, which is sufficient
for up to 8192 blocks. If the value specified with the /WORK _
FILE_SIZE quadlifier is between 8193 and 40960, a block
buffer is removed from the primary cache and is used to
extend the bitmap, thereby decreasing the primary cache hit
rate and negatively impacting performance. Furthermore, if
the value is specified between 40961 and 65535, two 1-block
buffers are required to extend the bitmap, further impairing
performance. Therefore, values greater then 8192 should
only be specified with very large compilations that require it,
or when performance is not a consideration. Naturally, the
number of blocks specified must be available on the work file
device; these blocks remain unavailable to other tasks and
applications while PDP-11 C is running.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal 1l.p140.decw$book (2 of 2)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

8.3 PDP-11 C Run-Time Psects
This section describes the psects used by the PDP-11 Run-
Time Library. Table 8-1 lists each of the run-time library

psects and their use.

http://www.sysworks.com.au/di sk$vaxdocsep953/decwSbook/d33vaall.pl41.decw$book 1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

8.4 Overlaying Tasks
Some PDP-11 C tasks that work when not overlaid may
fail during program startup when they are overlaid. This
can happen because of the way task startup informationis
included into the root of the task.
The PDP-11 C OTS work areawhich islocated in the psect
$$C includes a vector of initialization functions which may
be required by standard library functions used in the task.
Programs which use only some functions do not need to
include all the overhead of initialization, nor do they need
space for functions which the task does not use.
Modules which require startup routines cause the linker to
pull the initialization function only as far toward the root as
IS necessary to resolve names. In a non-overlaid program,
all routines are properly included in the root. However, in an
overlaid program, theinitialization may not make it into the
root. When the program runs, it islikely to fail.
For example, atask might consist of aroot and two segments
(A and B). If, in thisexample, malloc is only referenced in
segment A and printf isonly referenced in segment B and
the root segment requires no initialization for either memory
management or 1/O functions, then the initialization will fail.
Each segment indicates the initialization it needs, but this will
not make it into the root initialization psect $$C.
Therefore, when PDP-11 C code is used in overlaid tasks, you
must explicitly build a segment into the root that references
all modules which contribute to the $$C psect.
To determine which modules are needed, examine the
task map and look at the contents of the $$C psect (in any
segment).
The following program uses asimple overlay structure. The
root segment calls the branch, which calls assert .
ROQOT.C:
extern void funcl ();
int main () {

funcl ();
}

BRANCH.C:

#include <assert.h>
void funcl () {

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p143.decwdbook (1 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

inti =1;

assert (i == 1);
}
TEST.CMD
test/cp,test/-sp=test/mp
TEST.ODL

.root root-libr-tree
libr: .fctr [b:[1,1]cfpursx/lb
tree: .fctr * (branch-libr)
.end
When this program is taskbuilt and run, it will fail during
initialization (before main() is called). The following example
shows fragments of TEST.MAP:
TEST.MAP:
TEST.EXE;1 Overlay description:
Base Top Length
000000 002673 002674 01468. ROOT
002674 043175 040302 16578. BRANCH
*** Root segment: ROOT
Memory allocation synopsis:
Section Title Ident File

. BLK.:(RW,I,LCL,REL,CON) 001260 000000 00000.

$$C :(RW,D,GBL,REL,OVR,SAV) 001670 000076 00062.
001670 000000 00000. VEXTA 06.07 CFPURSX.OLB;9
001670 000076 00062. C$INIT V01.09 CFPURSX.OLB;9

*** Segment: BRANCH
Memory allocation synopsis:
Section Title Ident File

. BLK.:(RW,I,LCL,REL,CON) 002674 000202 00130.

$$C :(RW,D,GBL,REL,OVR,SAV) 001670 000076 00062.
001670 000074 00060. C$SIGD V01.03 CFPURSX.OLB;9
001670 000060 00048. C$EXID V01.04 CFPURSX.OLB;9
001670 000070 00056. C$SIOD V01.09 CFPURSX.OLB;9
001670 000066 00054. C$MLLD V01.03 CFPURSX.OLB;9

Asyou can see, $3C in BRANCH is made up of contributions
from modules C$SIGD, C$EXID, C$SIOD, and C$MLLD

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p143.decwdbook (2 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

which are not mentioned in $$C of ROOT. To fix the problem,
explicitly include them into the root:
MODIFIED TEST.ODL.:
.root root-init-libr-tree
libr: .fctr [b:[1,1]cfpursx/lb
init: .fctr Ib:[1,1] cfpursx/Ib:c$exid:cmlld:c$sigd:c$siod
tree: .fctr * (branch-libr)
.end
When the task islinked in thisway, it will work correctly.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p143.decwdbook (3 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

8.5 RT-11 User Service Routine (USR) Load Area

Under RT-11, if the USR is not resident, the PDP-11 C RTL
will attempt to set the USR to swap at the location of the

root C$STDI and C3OT S| psects. During program startup,
the PDP-11 C RTL checksto seeif the size of these psectsis
large enough to accommodate USR. If it is, location 46 in the
job is set to the address of the C$OTSI psect. By doing this,
USR will not take up any additional address space.

It isunlikely that ajob that uses the PDP-11 C memory
management routines will have less than 2K words of space
in the C$STDI and C$OTSI psects. However, if less than

2K words of spaceis present and USR is not resident, the
memory management initialization routine will set USR to
swap at the high 2K of memory obtained by doing a.SETTOP
#-2.

http://www.sysworks.com.au/di sk$vaxdocsep953/decwSbook/d33vaal l.pl44.decw$book 1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

8.6 Event Flags

Under RSX, PDP-11 C uses event flag 24 when performing

Standard Library 1/0O functions using the RSX native I/O or
FCS 1/0 Packages.

http://www.sysworks.com.au/di sk$vaxdocsep953/decwSbook/d33vaal l.pl145.decw$book 1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

8.7 Argument Passing Using Linkages

Linkages are used in PDP-11 C to define the exact interna
calling mechanism used for function calls. A function may
be assigned a linkage using the #pragma linkage directive
as shown in Chapter 7. PDP-11 C supports the following

linkages:
PDP-11C
PDP-11 FORTRAN-77
PDP-11 Pascal
RSX AST
RSX CSM
RSX SST
For more information on the internal calling mechanisms,

including stack and register usage of the six linkages, refer to
the PDP-11 C Run-Time Library Reference Manual .

http://www.sysworks.com.au/di sk$vaxdocsep953/decwSbook/d33vaal l.pl146.decw$book 1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

8.8 Defining Your Own L ocales

PDP-11 C offers severa pre-defined locales such as Danish,
French, English, and C. In addition to these pre-defined
locales, PDP-11 C allows users to define local es specific to
their needs, and include these locales for use with PDP-11 C
RTL functions such as setlocale and localeconv , aswell as
the character testing and mapping functions.

The information needed to define alocaleis stored in a
number of tables. The following sections describe the contents
of these tables. After the tables have been created, they must
be placed into the appropriate psects where they can be found
by the setlocale and localeconv functions. The header file,
<defloc.h>, is provided which defines several macros to assist
in this. Please note that you are not required to use these
macros, but they will make defining alocale easier.

The names of the locale macros in the <defloc.h> header file
are:

To define collating locale:

DEFINE _LC _COLL(locale-name,
4-char-gbl-nam,
_order_table,
_upcase_table,
_downcase table)

To define character-testing locale:

DEFINE_LC_CTY PE(locale-name,
4-char-gbl-nam,
_tab_table)

To define monetary formatting data locale:

DEFINE_LC_MONETARY (locae-name,
4-char-gbl-nam,
&MFT_TABLE)

To define non-monetary formatting data locale:

DEFINE_LC NUMERIC(locale-name,
4-char-gbl-nam,
&MFT_TABLE)

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl47.decwdbook (1 of 5)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

To define the time formatting data locale:
DEFINE_LC _TIME(locale-name,
4-char-gbl-nam,
&TIM_STR TABLE)
The format of the macro parameters found in the <defloc.h>
header file are:

locale-name The pointer to the locale name, or string literal of
the locale name (such as"C").
Thisisthe string name that is used as an ar-
gument to the setlocale function to identify the
locale.

4-char-gbl-nam A maximum of 4 characters which will serve as
the global entry pointsinto the appropriate locale
psects. The macros will append a different two-
character number onto each globa name created
to form the complete global name entry for each
item placed into the appropriate PDP-11 C psects.

table,.. The address of the user-defined locale table.

An example of amacro is:

DEFINE_LC_NUMERIC("user locale name",user,& MFT_TABLE)

This macro will place the address of the locale name and

table address into the required PDP-11 C psect. It will also

create global entry-point names to point to the placed items.

The first names created will be USERQO::, and USERO1.::. The

global name USERQO will point to the locale name address

found in the non-monetary formatting time psect used by

PDP-11 C. The global name USERO1 will point to the user's

table address found within the non-monetary formatting

time psect used by PDP-11 C . Thus, these symbols give the

user direct access to the required psect fields used by PDP-11

C.

Because global names are created, the four-character names

must be different for each macro call issued by the user.

Otherwise, duplicate global symbol names will be created

causing compilation or link time errors.

The format of each macro is defined in more detail within

<defloc.h> header file. Y ou should read the comments placed

above each locale macro definition before attempting to use

the macro in your C modules.

Although locales can have information in five categories,

your defined locale need not provide information for all five

categories. For example, if you only want a different collation

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl47.decwdbook (2 of 5)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

table, just provide that table; the other tables will remain the
same.
Refer to Example 8-1 for some ideas on how to define your

own locale tables.

Key to Example 8-1.

1 Defines three structures for future use.

2 The character set testing table contains one entry for each
member of the character set. At the offset in the table
egual to a particular character's value, an entry is made
which determines whether that character tests TRUE or
FALSE for the various character testing functions. This
tableis set when the setlocale category LC_CTYPE or
LC_ALL isspecified.

The following values are defined by <defloc.h>:

_U Character is uppercase

_L Character islowercase

_D Character isadigit

_S Character is whitespace

_P Character is punctuation

_C Character isacontrol character

_X Character is a hexadecimal digit

_V Character is a printing character

These values can be or 'd together. In fact, the <defloc.h>
header file defines the logical or for several of these:

XD Xor D

XU Xor U

XL Xor L

~SC Sor C

For example, if the character 'a has the value of 97 and
it should test TRUE for theisalnum , isalpha , isgraph ,
islower , isprint , and isxdigit functions, then the 97th
entry of the table would have the value XL.

3 The character set collation table contains one entry for
each member of the character set. At the offset in the
table equal to a particular character's value, an entry is
made which determines the position of that character in
the collation sequence. Thistable is set when the setlocale
category LC_COLLATE or LC_ALL is specified.

For example, if the character 'a has the value of 97

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl47.decwdbook (3 of 5)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

and you want it to be the first character in the collation
sequence, the 97th entry of the table would have the value
1.

4 The character set mapping tables contain one entry for
each member of the character set. At the offset in the
table equal to a particular character's value, an entry is
made which determines the mapping of that character
for the various character mapping functions. These
tables are set when the setlocale category LC_CTY PE or
LC_ALL isspecified. Thereis an uppercasetable and a
lowercase table.

For example, if the character 'a’ has the value of 97 and
it should return 97 for the tolower function and 65 for
the toupper function, the 97th entry of the lowercase
table would have the value 97, and the 97th entry in the
uppercase table would have the value 65.

5 The time table defines the values returned by the
strftime function. Thelc_time_strings contain:

7-character string constants corresponding to the
abbreviated names to be used for the seven days of the
week

7-character string constants corresponding to the full
names to be used for the seven days of the week

12-character string constants corresponding to the
abbreviated names to be used for the twelve months of
the year

12-character string constants corresponding to the
full names to be used for the twelve months of the
year

2-character string constants corresponding to identify
AM and PM

24-character string constants corresponding to the
24 time zones beginning with GMT and proceeding
west.
6 The non-monetary formatting data table defines the
values returned by the localeconv function. Thelc
nmformat structureisfilled in with the desired contents

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl47.decwdbook (4 of 5)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

of the Iconv structure to be returned by localeconv for
thislocale. Thistableis set when the setlocale category
LC NUMERIC or LC_ALL is specified.

7 The monetary formatting data table defines the values
returned by the localeconv function. The lc_mformat
structureisfilled in with the desired contents of the
Iconv structure to be returned by localeconv for this
locale. Thistableis set when the setlocale category LC
MONETARY or LC_ALL is specified.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl47.decwdbook (5 of 5)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

8.9 Excluding printf Format Support Code

The RTL support code for the printf family of functions
(printf, fprintf , sprintf , viprintf , vprintf , vsprintf) is
sizable. Often, a program does not need all of the formatting
flexibility provided by these functions.

Thisimplementation of PDP-11 C allows you to exclude
the support code for some of the conversion specifiers for
formatted output from atask. Excluding the support code
could save up to 3000 bytes of space. (See PDP-11 C Run-
Time Library Reference Manual for more information about
conversion specifications for PDP-11 C standard output.

By default, support for all formatsis provided. Support for
the ¢, s, and n formats cannot be excluded. Support for the
d,i,o,p,ux, X,f,e E, g, and G formats can be optionally
excluded.

To exclude the support routines for a particular format,
include in one module of the program a globalvalue
statement which defines the global symbol for that format
with the value 0. See Section 6.7 for more information on

globalvalue . Table 8-2 lists the symbols for each format.

For example, for a program that does not havef, e, E, g or
G format output, the following two globalvalue statements
should appear in the program:

globalvalue $PFLOA = 0;

globalvalue $PFLOE = 0;

The following program simply prints a constant literal string.
It excludes al of the unnecessary support:

#include <stdio.h>

globavaue $PULON = 0;

globavaue $PLONG = 0;

globavalue $POLON = 0;

globalvalue $PHLON = 0;

globalvalue $PFLOA = 0;

globalvalue $PFLOE = 0;

main ()

{
}

If an attempt is made to use an excluded format, no

printf ("hello, world\n");

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p149.decwdbook (1 of 2)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

characters for that value will be printed. If the value specified
in the globalvalue statement is not 0, the behavior is
undefined.

If you link to the supervisor mode PDP-11 C Run-time
library, support for al formatsis alwaysincluded. The
support resides in the supervisor mode library.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p149.decw$book (2 of 2)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

A. PDP-11 C Compiler M essages
This appendix lists the PDP-11 C compiler diagnostic

Messages.

http://www.sysworks.com.au/di sk$vaxdocsep953/decwSbook/d33vaall.pl151.decw$book 1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

A.lIntroduction

For each message, the appendix gives the mnemonic, the
message text, an explanation of the message, and suggested
actions to be taken to avoid the message.

Some messages substitute information from the program

In the message text. In this appendix, the portion of the

text to be substituted is shown as ™"
* k%%

"or

kk%x

. If quotes
appear around the asterisks, quotes appear in the substituted
message.

There are four types of compiler messages. informational,
warning, error, and fatal. Each type affects the compiler in a
different way as follows:

Informational -does not affect compiler; compiler still
produces object, macro, and listing files (if selected).

Warning-compiler still produces object, macro, and listing
files; check your code to ensure accuracy.

Error-compiler continues through current phase and
produces object and listing files (if selected); no macro or
object files are produced; if 30 or more error messages are
Issued, the current phase is aborted and alisting file (if
selected) is generated; the default error limit of 30 can be
changed with the/ERROR_LIMIT qualifier.

Fatal-compiler aborts; no object or macro files are

produced; only if possible, alisting file is produced.
Y ou can suppress the warning and informational messages
with the /[NO]WARNINGS qualifier on the PDPCC
command line. Y ou may want to do this so that the compiler
broadcasts only the most severe messages to the terminal.
For more information concerning the [NOJWARNINGS
qualifier, refer to Chapter 1.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p152.decw$book (1 of 2)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

The messages used by the PDP-11 C compiler arein a
separate file. The compiler searches for the messagefilein
the following locations and in following order:

V AXIVMS:

1. PDP11C$MESSAGES (logical),

2. PDP11C$MESSAGE_DIRECTORY :PDP11C$ENGLISH
MSG.MSG,

3. SY SSCOMMON:[SY SMSG]PDP11C$ENGLISH_
MSG.MSG.

RSX-11M-PLUS:

1. SY:PDP11C.MSG,

2. PDP11C$MESSAGES (logical),

3. PDP11C$MESSAGE_DIRECTORY :PDP11C.MSG,
4. LB:[1,2]PDP11C.MSG.

RSX-11M:
1. SY:PDP11C.MSG,
2. LB:[1,2]PDP11C.MSG.

RSTS/E:

1. SY:PDP11C.MSG,
2. CC:PDP11C.MSG,
3. CC$:PDP11C.MSG.

RT-11/XM:

1. DK:PDP11C.MSG,
2. CC:PDP11C.MSG,
3. SY:PDP11C.MSG.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p152.decwdbook (2 of 2)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

A.2 Compiler Messages

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p153.decw$book 1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

ALC TEMPOVERFLOW, Your program requires more
temporariesthan the compiler can handle
Fatal: The expressions you used in your program require
more temporaries than the compiler can handle.
User Action: Rewrite your program to use less
complicated expressions.

CD_CANT_OPEN_TERMINAL, Cannot open console
1/O device
Fatal: The console device (for example, terminal or batch
log file) could not be opened for output.
User Action: Determine the error with the console
device.

CD_UNSUPVERS, Unsupported operating system
version
Fatal: PDP-11 C V1.0 supportsV AX/VMS V5.0 and
later.
User Action: Upgrade your V AX/VMS system to
V AXIVMS V5.0 or later.

CLP_AMBIG_QUAL, Ambiguous qualifier or keyword
name
Error: Too few characters were used to truncate a
keyword or qualifier name to make it unique.
User Action: Reenter the command; specify at least
enough characters of the keyword or qualifier name to
make it unique.

CLP_BAD DELEM, Missing comma, or plusbeforefile
name
Error: You have entered the wrong command line
syntax.
User Action: Correct the syntax and reenter.

CLP_BAD OPFILE_ATTRIB, File hasbad attributes
Error: The specified command file to open had bad
attributes.

User Action: Check the attributes of the file and reenter.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p154.decwdbook (1 of 2)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

CLP_CLFILE_ERROR, Unexpected filecloseerror
Error: During afile close operation, an error was
encountered while closing the specified file.

User Action: Check the characteristic for the specified
fileto see why the file could not be closed and reenter.

CLP_FINPUT_ERROR, Unexpected fileinput error
Error: Input from the specified file could not be obtained.
User Action: Check the file attribute and protection for
the specified file and reenter.

CLP_FINPUT_LINE_LONG, Fileinput lineistoo long
Error: Therecord line length of the input file exceeded
the maximum number of characters.

User Action: Shorten the record line length in the input
file or verify that the file record attributes are correct.

CLP_INCONSIST, CLP internal inconsistency in
module; submit SPR
Error: The Command Line Processor has detected an
internal inconsistency.
User Action: Gather as much information as you can
about the conditions in effect when the error occurred
and submit a Software Performance Report (SPR).

CLP_INPUT_ERROR, Unexpected input error
Error: Input from the terminal could not be obtained.
User Action: Check the terminal attributes and reenter.

CLP_INPUT_LINE_LONG, Input lineistoo long
Error: The command line length exceeded the maximum
number of characters.
User Action: Shorten the line length.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p154.decw$book (2 of 2)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

CLP_INV_FILENAME, Invalid file name
Error: Thefile name string for afile specification
containsillegal charactersor istoo long.
User Action: Check for a programming error. Verify
that the file name string isavalid file name.

CLP_INV_INPUT, Invalid input
Error: The specified user input was not avalid literal
string or character string.
User Action: Check the user input for illegal characters
and reenter.

CLP_INV_INTEGER, Invalid integer value
Error: The specified user input was not alegal integer
value.
User Action: Check the specified user integer for
characters which are not 0 to 9.

CLP_INV_NOKWD, NO prefix on keyword name not
allowed
Error: An attempt was made to negate a qualifier
keyword that cannot be negated.
User Action: Remove the negate prefix.

CLP_INV_NOQUAL, NO prefix on qualifier name not
allowed
Error: An attempt was made to negate a qualifier that
cannot be negated.
User Action: Remove the negate prefix.

CLP_INV_NOQUAL_ VAL, Valuenot allowed on NO
qualifier
Error: An attempt was made to give value to a negated
qualifier.
User Action: Remove the value reference.

CLP_INV_QUAL, Invalid qualifier name

Error: The user-specified qualifier name was not
recognizable.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p155.decwdbook (1 of 2)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

User Action: Check for invalid string and reenter.

CLP_INV_QUAL_VAL, Valuenot allowed for qualifier
Error: An attempt was made to give avalueto aqualifier
that does not take a value.

User Action: Remove the value reference.

CLP_MAX_ OPFILE, CLP maximum number of open
files exceeded
Error: The maximum number of nested indirect
command files has been exceeded.
User Action: Remove the reference to the indirect
command file that causes the maximum nesting limit to
be exceeded and reenter.

CLP_MISS GRPVAL, Missing keyword, or qualifier
value when valueisrequired
Error: A qualifier was specified with group values, and
no keyword list or value list was supplied.
User Action: Supply the appropriate value reference.

CLP_MISS PAREN, INVALID DELIMITER, Please
supply ending parenthesis
Error: A group value list was specified which contains
an invalid value separator or does not contain an ending
parenthesis.
User Action: Correct the group value syntax and
reenter.

CLP_MISS VALUE, Invalid switch keyword or
qgualifier value when valueisrequired
Error: A quaifier was specified that requires a user
keyword or value, and no value was supplied.
User Action: Supply the appropriate value reference.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p155.decwdbook (2 of 2)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

CLP_MODE_INCONSIST, Unexpected CLP file mode;
submit SPR
Error: The Command Line Processor has detected an
internal file mode inconsistency.
User Action: Gather as much information as you can
about the conditions in effect when the error occurred
and submit an SPR.

CLP_MODQUAL _INCONSIST, Only two string values
allowed for the module qualifier
Error: The user specified more than two string values
for the module qualifier.
User Action: Supply the appropriate number of values
and reenter.

CLP_NO_GRPVAL, Qualifier does not allow group
values
Error: A qualifier was specified that does not allow a
group list of values but contains a group list of values.
User Action: Supply the appropriate value reference

type.

CLP_NO_OPFILE, Filenot found
Error: The user-specified file was not found.
User Action: Specify afile that exists and reenter.

CLP_NOCL_QUOTE, No closing" on literal
Error: You did not use matching quotation marks for a
literal string.
User Action: Reenter the command using the correct
guotation syntax.

CLP_OPFILE_ERROR, Unexpected file open error
Error: An error was encountered while opening the
specified file.

User Action: Check the attributes for the specified file
and reenter.

CLP_QUAL VAL _REQ, Valuerequired for qualifier

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p156.decwdbook (1 of 2)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

Error: A qualifier was specified that requires a user value
and no value was supplied.
User Action: Supply the appropriate value reference.

CLP_UNK_KWD, Unknown keyword name
Error: The user-specified keyword was not recognizable.
User Action: Remove the unknown keyword reference
and reenter.

CLP_UNK_QUAL, Unknown qualifier name
Error: The user-specified qualifier was not recognizable.
User Action: Remove the unknown qualifier reference
and reenter.

INCONSISTENCY, Internal inconsistency or stack
overflow
Fatal: Aninternal error or stack overflow has occurred
within PDP-11 C,
User Action: Examine your program for complex
expressions or declarations and simplify as necessary; if
this does not resolve the problem, submit SPR.

LEX BADSTRINGSIZE, The# preprocessing oper ator
must be followed by a parameter
Warning: The # preprocessor operator was encountered
in amacro definition but was not followed by a parameter.
User Action: Remove the # operator or specify a
parameter after the # operator.

LEX _CLOSE_FAILED, Error closing sourcefile
Fatal: An unexpected error occurred when closing a
sourcefile.

User Action: Determine the cause of the error and
correct.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p156.decwdbook (2 of 2)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

LEX CMT_UNCLOSED, Unterminated comment
Warning: The end of file was reached before encounter-
ing the

*

/ comment terminating delimiter.
User Action: Terminate the comment.

LEX_CONSTTOOLONG, Numeric constant istoo long;
truncated to "

*

Warning: Too many digits were encountered in a
numeric constant.

User Action: Reduce the number of digitsin the
numeric constant.

LEX_DEFTOOLONG, Text in a#define preprocessor
directiveistoo long; directive ignored
Warning: The length of the token-string in the #define
directive exceeded the implementation's limit.
User Action: Simplify the directive.

LEX DUPPARAMETER, Duplicate parameter ignor ed
Warning: Theidentifier for amacro parameter was
encountered more than once in the formal parameter list.
User Action: Remove or change the duplicate
parameter identifier.

LEX _EXECHARSETDEF, The execution file character
set cannot be defined twice in a compilation unit;
directiveignored
Warning: Y ou cannot specify the #pragma char set
execution directive more than once in a compilation
unit.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl57.decwdbook (1 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

User Action: Remove the redundant directive.

LEX _EXECHARSETREF, The execution file character
set has already been used; directiveignored
Warning: You have specified a#pragma char set
execution directive after astring literal or character
constant has already been processed.

User Action: Place the directive before any string
literals or character constants.

LEX EXPECTEDEOL, End of line expected
War ning: Unexpected text was encountered in a
preprocessing directive.
User Action: Remove or place the extraneoustext in a
comment.

LEX _EXTRAMODULE, Redundant #module prepro-
cessor directiveignored
Warning: Y ou specified more than one #module
directive in a single compilation; the excess directive
or directives were ignored.
User Action: Make sure that only one #module
directive exists in the source file, and that it is placed
before any PDP-11 C source code.

LEX _EXTRATITLE, Redundant #pragma list title
preprocessor directiveignored
Warning: You cannot specify the #pragmal list title
directive more than once in a compilation unit.
User Action: Remove the redundant directive.

LEX FLOAT_E_NODIGITS, Illegal floating point
constant
Warning: No digits were specified to the right of the E in
a floating-point constant.
User Action: Specify an exponent value to the right of
the E in the floating-point constant.

LEX_IFEVALDIVZ, Division by zero while evaluating
#if or #elif expression; “"true" expression assumed
Warning: The specified expression contains adivision by
zZexro.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl57.decwdbook (2 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

User Action: Modify the expression to avoid adivision
by zero.

LEX _IFEVALSTACK, Stack overflow while evaluating
#if or #elif expression; ""true'" expression assumed
Explanation: The specified expression istoo complex.

User Action: Simplify the expression using fewer levels
of parentheses, and so on.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl57.decwdbook (3 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

LEX _IFSYNTAX, Syntax error in #f or #elif
expression; ‘true'’ expression assumed
Warning: A preprocessor token was encountered in a
context where it was not expected.
User Action: Remove or correct the preprocessor token.

LEX ILL89 OCT, Thedigits8 and 9 are not octal
digits
Warning: Thedigit 8 or 9 was encountered in an octal
constant.
User Action: Use only the digits O to 7 in the octal
constant.

LEX_ILL_BSC, Illegal backslash sequencein string or
character constant
Warning: An unrecognized escape sequence was
encountered in astring literal or character constant.
User Action: Reference the list of recognized escape
sequences in Table 5-3 and use only recognized escape
sequences. Alternatively, use an octal or hexadecimal
escape sequence.

LEX_ILLDBLCON, Illegal double constant
Warning: The specified floating-point value cannot be
represented as a double precision floating-point constant.
User Action: Correct the floating-point constant.

LEX ILLDECCON, Illegal decimal constant
Warning: The specified decimal value cannot be
represented as an integer constant of the specified or
defaulted type.

User Action: Specify adifferent type suffix or correct
the constant.

LEX ILLFLTCON, Illegal float constant
Warning: The specified floating-point value cannot be
represented as a single precision floating-point constant.
User Action: Correct the floating-point constant.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p158.decwdbook (1 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

LEX _ILL_HEX, lllegal hexadecimal sequencein
string or character constant
Warning: A nonhexadecimal digit was encountered
in a hexadecimal escape sequencein astring literal or
character constant.
User Action: Use only hexadecimal digitsina
hexadecimal escape sequence.

LEX_ILLHEXCON, Illegal hexadecimal constant
Warning: The specified hexadecimal value cannot be
represented in an integer constant of the specified or
defaulted type.

User Action: Specify adifferent type suffix or correct
the constant.

LEX ILLINCLDIR, Illegal device/directory specifica-
tion with
/INCLUDE_DIRECTORY qualifier
Explanation: Anillegal directory specification was
encountered in a/INCLUDE_DIRECTORY qudlifier.
User Action: Specify alegal directory specification with
the/INCLUDE_DIRECTORY quadlifier.

LEX_ILLNUMCONST, Illegal numeric constant;
trailing charactersignored
Warning: Additional characters were encountered at the
end of a numeric constant.
User Action: Remove the additional characters or
separate the numeric constant from the next token with
a space.

LEX _ILLOCTCON, lllegal octal constant
Warning: The specified hexadecimal octal cannot be
represented in an integer constant of the specified or
defaulted type.
User Action: Specify adifferent type suffix or correct
the constant.

LEX_INVALIDIF, Invalid constant or operator in #if
or #elif expression; true" expression assumed
Warning: You used an invalid construction in an #f or
#elif expression, which is assumed to be true.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p158.decwdbook (2 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

User Action: Correct the expression.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p158.decwdbook (3 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

LEX_INVDEFNAME, Missing or invalid namein
#define preprocessor directive; directive ignor ed
Warning: The indicated directive was missing a required
name. For example:

define
The entire directive was ignored.
User Action: Correct or remove the directive.

LEX_INVFILESPEC, Missing or invalid file specifica-
tion in #include preprocessing directive; directive
ignored
Error: A #include preprocessor directive was
encountered with aform other than one of the following:

#include <FILESPEC>

#include "filespec”

#include macro id
The specification macro_id is amacro that expands to
one of the preceding two forms.
User Action: Specify the #include directive using one of
the forms shown above.

LEX_INVHEXCHAR, Invalid hexadecimal character
value; high-order bitstruncated
Warning: An escape character specified in hexadecimal
exceeded the limit of a 1-byte character.
User Action: Correct the hexadecimal constant to
represent a valid escape character.

LEX_INVLINEFILE, Invalid file specification in #line
preprocessor directive; directiveignored
Warning: The file specification was syntactically invalid,
and the directive was ignored.
User Action: Correct the directive.

LEX_INVLINELINE, Missing or invalid line number in
#line preprocessor directive; directiveignored
Warning: The line number was missing or was
syntactically invalid, and the directive was ignored.
User Action: Correct the directive.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p159.decwdbook (1 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

LEX_ INVLISTTITLE, Missing or invalid title
specification in #pragma title/subtitle preprocessor
directive; directiveignored
Warning: A preprocessor token other than a string literal
was encountered in a#pragmal list title or #pragma
list subtitle preprocessor directive.

User Action: Specify thelisting title or subtitle asa
string literal.

LEX_INVMODIDENT, Missing or invalid ident
specification in # [pragma] module preprocessor
directive; directiveignored
Warning: The ident specification in the directive either
was not avalid identifier or was not avalid character-
string constant.

User Action: Correct the directive.

LEX_INVMODTITLE, Missing or invalid title
specification in # [pragma] module preprocessor
directive; directiveignored
Warning: Therequired title in the directive either was
missing or was not avalid identifier.

User Action: Correct the directive.

LEX_INVOCTALCHAR, Invalid octal character value,
high-order bitstruncated
Warning: The octal value in an escape sequence was too
large, asin ' \477" . Its high-order bits were truncated.
User Action: Correct the value.

LEX_INVPPKEYWORD, Missing or invalid keyword in
preprocessor directive; directiveignored
Warning: Y ou wrote adirective with no keyword. For
example:
#ABC
The directive isignored.
User Action: Correct or remove the directive.

LEX IOBADATTR, lllegal fileattributes
Error: PDP-11 C does not support the attributes of the
specified file.
User Action: On VM S and RSX host systems, convert

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p159.decwdbook (2 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

the file to sequential organization, variable length records,
carriage return carriage control format, and maximum
record length no greater than 510. On RSTS/E host
systems, convert the file to RSTSE native format, and
maximum record length no greater than 510.

LEX_IOEXISTS, File exists

Error: PDP-11 C has attempted to open a new file that
should not already exist.
User Action: Delete or renamethefile.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p159.decwdbook (3 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

LEX _IOFNF, Error opening sourcefile- file not
found
Error: The specified source file could not be found.
User Action: Check the spelling of the filespec, the
assignment of the CSINCLUDE and PDP11C$INCLUDE
logical names, and the directories specified with the
/INCLUDE_DIRECTORY quadlifier.

LEX IOLINETOOLONG, Linetoolong
Error: PDP-11 C does not support source file input with
lines greater than 510 characters.
User Action: Shorten the line length of lines that exceed
510 characters; use the ""\" lexical continuation operator
If necessary.

LEX_IONOROOM, No room on device
Error: PDP-11 C attempted to open anew fileon a
device that had insufficient room available.
User Action: Delete or purge files on the device to make
additional room or specify another device.

LEX_IOUNEXPECTED, Unexpected |I/O error
Error: PDP-11 C encountered an unexpected 1/O error
on the specified file.
User Action: Determine the cause of the error and
correct.

LEX_IOUNEXPEOF, Unexpected end of file
Error: PDP-11 C encountered the end of an input filein
a context where this was not expected.
User Action: Determine the cause of the error and
correct.

LEX LISCHARSETDEF, Thelisting file character set
cannot be defined twice in a compilation unit;
directiveignored
Warning: Y ou cannot specify the #pragma char set list
directive more than once in a compilation unit.

User Action: Remove the redundant directive.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p160.decwdbook (1 of 2)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

LEX _LISCHARSETREF, Thelisting file character set
has already been used; directive ignored
Warning: This message should not occur.
User Action: Submit an SPR.

LEX_ MACNORPAREN, Missing')' in macro invocation;
)" assumed
Warning: A functionlike macro invocation was
encountered without a closing right parenthesis.
User Action: Complete the macro invocation with a
closing right parenthesis.

LEX_ MACSYNTAX, Syntax error in macro definition;
directiveignored
Warning: The syntax of the parameter list in amacro
definition was invalid. (You must enclose the parameter
list in parentheses and delimit individual parameters with
commeas.)
User Action: Correct the syntax.

LEX_MACUNEXPEOF, Unexpected end-of-file
encountered in a macr o reference; macro not
substituted
Error: The end-of-file was encountered during a macro
reference; the reference was deleted.

User Action: Check whether you have misplaced the
closing parenthesis in the macro argument list.

LEX_ MAXMACNEST, Maximum text replacement
nesting level exceeded; macr o invocation not
substituted
Error: You have specified a macro reference that causes
substitutions to a depth greater than the implementation
limit of 100.

User Action: Simplify the macro definitions.

LEX MESCHARSETDEF, The message character set
cannot be defined twice in a compilation unit
Warning: Y ou cannot specify the #pragma char set
message directive more than once in a compilation unit.
User Action: Remove the redundant directive.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p160.decwdbook (2 of 2)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

LEX MESCHARSETREF, The message character set
has already been used; directiveignored
Warning: You have specified a#pragma char set
message directive after a message has already been
processed (possibly during command line parsing).
User Action: Correct any command line errorsto avoid
command line messages.

LEX_ MISPARENS, Mismatched parenthesesin #if or
#elif expression; “"true" expression assumed
Warning: The expression in a#if or #elif preprocessor
directive contained unbalanced parentheses.

User Action: Make sure that you balanced the
parentheses in the expression.

LEX_MISSENDIF, Missing #endif preprocessor
directive(s)
Error: The compiler did not encounter an #endif line for
the most recent #f , #ifdef , or #fndef .
User Action: Be surethat all directives are properly
structured, and, if appropriate, add the missing #endif
preprocessor directives.

LEX_MODULENOTANSI, The#moduledirectiveis
not in conformance with ANSI C; use #pragma
module
Warning: The#module directiveis provided for VAX C
compatibility and is not a portable construct.
User Action: Usethe #pragma module directive for
identical processing or specify /INOSTANDARD on the
command line.

LEX_NAMETOOLONG, Identifier name exceeds 31
characters, truncated to "

k%%

Warning: PDP-11 C identifiers are limited to alength of
31 recognized characters.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl61.decwdbook (1 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

User Action: Shorten the indicated identifier.

LEX_NOLINEKWNOTANSI, Omitting the" line"
keyword from the #linedirectiveisnot in
conformance with ANSI C; use#line
Warning: Theimplicit #line directive (# followed by a
line number) is provided for compatibility with VAX C
and is not a portable construct.

User Action: Use the #line directive for identical
processing or specify /INOSTANDARD on the command
line.

LEX_NONTERMCHAR, Nonterminated character
constant
Warning: The compiler encountered the end of the
source line before the end of a character constant. The
compiler assumed the indicated value.
User Action: Correct the constant.

LEX_NOTRADS0, The specified value cannot be
represented in a RADIX-50 long word; directive
ignored "

k%%

Warning: The specified value must be composed of 1-to-
6 alphanumeric characters, the dollar sign (T$"), or the
period (".").

User Action: Correct the value.

LEX_NOWIDELIT, A wide character string literal is
not allowed in this context
Warning: A wide-character string literal was
encountered in a context where anormal string literal is
expected.
User Action: Removethe L prefix from the string
literal.

LEX_NULCHARCON, Character constant contains no
characters, '\0 ' assumed
Warning: The compiler detected a single apostrophe (')
at the end of the sourceline.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl61.decwdbook (2 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

User Action: Check whether the apostropheis
extraneous; otherwise correct the constant.

LEX_NULHEXCON, Hexadecimal constant contains
no digits; 0x0 assumed
Warning: A hexadecimal escape constant was
encountered that did not include any hexadecimal digits.
User Action: Correct the hexadecimal constant.

LEX_PASTEATEND, The ## operator may not occur
at the end of a macro definition
Warning: The ANSI C Language Standard stipulates
that the ## token-paste operator may not occur at the
end of amacro definition.
User Action: Remove the ## token-paste operator from
the end of the macro replacement text.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl61.decwdbook (3 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

LEX PASTEUPFRONT, The## operator may not
occur at the beginning of a macr o definition
Warning: The ANSI C Language Standard stipulates
that the ## token-paste operator may not occur at the
beginning of a macro definition.

User Action: Remove the ## token-paste operator from
the beginning of the macro replacement text.

LEX _READ _FAILED, Error reading sourcefile
Fatal: An unexpected error occurred while reading a
source input file.

User Action: Determine the cause of the error and
correct.

LEX_REDEFINE, Macro redefinition with different
replacement text than a previous definition
Warning: A previously defined macro was redefined
In a subsequent #define preprocessor directive with a
different value.

User Action: Use adifferent macro identifier or
undefine the macro with the #undef preprocessor
directive before redefining.

LEX_REOPEN_FAILED, Error reopening sourcefile
Fatal: A sourceinput file that had previously been
successfully opened, read, and closed, could not be
reopened by PDP-11 C.

User Action: Determine cause of the problem and
correct.

LEX REPOVERFLOW, Length of macro expansion
exceeds maximum buffer capacity; macro
invocation not substituted
Error: The length of the replacement text for amacro
reference or the length of the text plus the rest of the line
exceeded the implementation's limit.
User Action: Shorten the replacement text or use
multiple substitutions to achieve the desired resullt.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl62.decwdbook (1 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

LEX_RESERVED, "

*k*k*%x

"isareserved identifier;
directiveignored
Warning: You have specified areserved identifier name
in a#define or #undef preprocessor directive. Such
reserved names may not be redefined or undefined. They
are asfollows:

_ DATE__
_ FILE__

" defined

. TIME__
_ LINE__
__RADS0
_ RADSO0L

__SIDC_ _
User Action: Choose adifferent spelling for the
identifier.

LEX _STR_UNCLOSED, Unterminated string literal
War ning: End-of-line was encountered before the end of
astring literal.

User Action: Terminate the string literal with aclosing
quote (") character or continue the string literal using
lexical continuation.

LEX_TOOFEWMACARGS, Argument list containstoo
few arguments;, missing arguments assumed to be
null
Warning: You wrote areference to the indicated
macro with fewer arguments than were specified in
its definition.

User Action: Make sure that the number of arguments
in the macro reference is the same as the number of

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p162.decwdbook (2 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

parameters in the definition.

LEX_TOOMANYCHAR, Character constant contains
too many characters; long int constant assumed
and high-order bitstruncated
Warning: Too many characters were specifiedin a
character constant to fit withinalongint .

User Action: Specify no more than 4 characters.

LEX_TOOMANYCHARINT, Character constant
contains too many charactersfor an int constant;
long int constant assumed
I nformational: Too many characters were specified in
acharacter constant to fit withinanint .

User Action: Specify no more than 2 characters.

LEX_TOOMANYMACARGS, Argument list contains
too many arguments; excess argumentsignored
Warning: You wrote areference to the indicated macro
with more arguments than were specified in its definition.
User Action: Make sure that the number of arguments
in the macro reference is the same as the number of
parameters in the definition.

LEX_ TOOMANYMACPARM, Parameter list for macro
containstoo many parameters; excess parameters
ignored
Warning: The number of macro parametersin
a#define preprocessor directive exceeded the
implementation limit of 64.

User Action: Rewrite the macro definition so that it uses
64 or fewer parameters.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p162.decwdbook (3 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

LEX_UNDEFIFMAC, Identifier isnot currently a
macr o; constant zer o assumed
Informational: Theidentifier in a constant expression
in an #f or #elif preprocessor directive was not currently
defined as a macro. The expression was evaluated as if
the identifier were a constant zero.
User Action: Define the identifier as a macro or remove
the referenceto it.

LEX _UNEXPELIF, Unexpected #elif preprocessor
dir ective encounter ed; directive ignor ed
Warning: The #elif preprocessor directive occurred out
of place and was ignored.
User Action: Check thelogic of all directivesin the
program to be sure that it isvalid.

LEX_UNEXPEL SE, Unexpected #else preprocessor
directive encountered; directiveignored
Warning: The #else preprocessor directive occurred out
of place and was ignored.
User Action: Check thelogic of all directivesin the
program to be sure that it is valid.

LEX_UNEXPENDIF, Unexpected #endif preprocessor
dir ective encounter ed; directive ignor ed
Warning: The #endif preprocessor directive occurred
out of place and was ignored.
User Action: Check thelogic of all directivesin the
program to be sure that it is valid.

LEX_UNIMPLEMENTED, Thisfeatureisnot
implemented in this configuration of PDP-11 C
Warning: Refersto a#pragma x where x is not
supported under PDP-11 C.

User Action: Removetheline in your code that refersto
the unsupported #pragma .

LEX_UNKNOWN_CHAR, Unrecognized character
Warning: The line contained either an entirely

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p163.decwdbook (1 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

meaningless character or one that appears out of its
proper context; for example, a number sign (#) that was
not the first character on aline.

User Action: Move or remove the character.

LEX_UNRECPRAGMA, Unrecognized pragma;
directiveignored
Informational: Y ou have specified a#pragma
preprocessor directive that is not recognized by PDP-11
C.
User Action: Correct the syntactic or semantic error
that rendered the directive unrecognizable. Common
errors include misspelled parameters and ambiguous
abbreviations.

LEX USER _ERROR, User declared error: "

kk%x

Warning: A #error directive was encountered.

User Action: Determine the conditions that cause the
#error directive to be processed and correct or remove
the #error directive.

LEX WCHARCONST, PDP-11 C supports minimal
ANSI conformance for wide character constants;
subsequent messages for this constant may be
misleading
I nformational: A wide-character constant was
encountered. PDP-11 C implements only minimal ANS|
conformance for wide-character constants. Subsequent
messages may be misleading.

User Action: Use aregular character constant.

LEX WCHARLITCONCAT, A wide character string
literal cannot be concatenated with aregular
string literal
Warning: A wide-character string literal was
encountered immediately after aregular string literal,
or viceversa
User Action: Within astring literal concatenation, use
only wide-character string literals or regular string

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p163.decwdbook (2 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

literals, but not both.

MIO FLOATOVERFLOW, Float overflow; value not
representable asa float; try double
Error: The specified value could not be represented as a
float.
User Action: Try to place the number into a double.

MIO_STACKOVERFLOW, Stack overflow during
machine-independent optimization; simplify
expression
Fatal: Machine-independent optimization has detected
an internal stack overflow while optimizing an expression.
User Action: Simplify the expression; if the problem
persists, submit an SPR.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p163.decwdbook (3 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

MRF_CLOSE, Unableto closethe PDP-11 C message
file
Error: The compiler cannot close the message file.
User Action: Submit an SPR.

MRF _FORMAT, Format error inthe PDP-11 C
message file
Error: The compiler cannot understand the message file.
User Action: Ensure that the message fileisin its proper
location. If the file exists, but may have become corrupted
by adisk failure, etc., then re-installing PDP-11 C should
fix the problem. If the problem persists, submit an SPR.

MRF _INTERN, Internal error accessing messagefile,
please SPR
Error: The compiler cannot find the message file.
User Action: Submit an SPR.

MRF_OPEN, Unableto open the PDP-11 C message
file
Error: The compiler cannot find the message file.
User Action: Ensure that the messagefileisinits
proper location.

MRF_READ, Cannot read the PDP-11 C messagefile
Error: The compiler cannot understand the message file.
User Action: Submit an SPR.

MRF_SYNCH, PDP-11 C message fileisincompatible
with compiler image
Error: The message fileis not the same version as the
compiler.
User Action: Ensure that the messagefileisinits
proper location.

OGN_FILE_EXISTS, Listing file already exists
Fatal: The specified output listing file already exists. This
error will only occur onaVMS or RSX system when
an explicit version number is specified in the output file

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p164.decwdbook (1 of 2)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

specification.

User Action: Remove or change the explicit version
number in the output file specification or delete the
existing file.

OGN_MAC FILE_EXISTS, Macrofilealready exists
Fatal: The specified output macro file already exists.
This error will only occur onaVMS or RSX system
when an explicit version number is specified in the output
file specification.

User Action: Remove or change the explicit version
number in the output file specification or delete the
existing file.

OGN_MAC NO_ROOM, Noroom for macro file on
device
Fatal: Occurred because either the user directory was
full and the output macro file could not be created, or the
required disk space could not be allocated when writing to
thefile.
User Action: Delete existing filesto provide room for
New ones.

OGN_MAC_UNEXPECTED_ IO, Unexpected 1/0 error
on macro file
Fatal: An unexpected error occurred during creation of
the output macro file.
User Action: Ensure the output file specification isvalid,
and the access exists to the output directory. See system
manager.

OGN_NO MACRO_PRODUCED, No macrofile
produced
Informational: Any error-level message prevents
creation of the output macro file.
User Action: Correct al error-level messages.

OGN_NO_0OBJ PRODUCED, No object file produced
Informational: Any error-level message prevents
creation of the output object file.

User Action: Correct al error-level messages.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p164.decw$book (2 of 2)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

OGN_NO_ROOM_FOR_FILE, Noroom for listing file
on device
Fatal: Occurred because either the user directory was
full and the output listing file could not be created, or the
required disk space could not be allocated when writing to
thefile.
User Action: Delete existing filesto provide room for
New ones.

OGN_OBJ FILE_EXISTS, Object file already exists
Fatal: The specified output object file already exists. This
error will only occur onaVMS or RSX system when
an explicit version number is specified in the output file
specification.

User Action: Remove or change the explicit version
number in the output file specification or delete the
existing file.

OGN_OBJ NO_ROOM, Noroom for object fileon
device
Fatal: Occurred because either the user directory was
full and the output object file could not be created, or the
required disk space could not be allocated when writing to
thefile.
User Action: Delete existing filesto provide room for
new ones.

OGN_OBJ UNEXPECTED_10, Unexpected 1/O error
on object file
Fatal: An unexpected error occurred during creation of
the output object file.
User Action: Ensure the output file specification is valid,
and the access exists to the output directory. See system
manager.

OGN_UNEXPECTED 10, Unexpected I/O error on
listing file
Fatal: An unexpected error occurred during creation of
the output listing file.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl65.decwdbook (1 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

User Action: Ensure the output file specification is valid,
and the access exists to the output directory. See system
manager.

OVL_ASYNCH, Asynchronous overlays not supported
Fatal: The PDP-11 C compiler save image on your
RT-11 system may be corrupted.

User Action: Reinstall the CC.SAV compiler save image.

OVL_BIGROOT, Imageroot istoo large
Fatal: The PDP-11 C compiler save image on your RT-
11 system may be corrupted or the device may have gone
off-line.
User Action: Ensure that the device is on-line or
reinstall the CC.SAV compiler save image as appropriate.

OVL_HEADER, Error reading image header
Fatal: The PDP-11 C compiler save image on your RT-
11 system may be corrupted or the device may have gone
off-line.
User Action: Ensure that the deviceis on-line or
reinstall the CC.SAV compiler save image as appropriate.

OVL_LABEL, Error reading save label
Fatal: The PDP-11 C compiler save image on your RT-
11 system may be corrupted or the device may have gone
off-line.
User Action: Ensure that the deviceis on-line or
reinstall the CC.SAV compiler save image as appropriate.

OVL_NOMEM, Insufficient memory
Fatal: Thereis not sufficient extended memory (i.e.,
memory obtained viathe virtual .SETTOP programmed
request) available on your RT-11 system to load the
PDP-11 C compiler image.
User Action: PDP-11 C uses 4K words (8K bytes) of
low-core memory and 28K words (56K bytes) of extended
memory, or atotal of 32K words (64K bytes). Make sure
that sufficient memory is availableto PDP-11 C.

OVL_READ, Overlay read error
Fatal: The PDP-11 C compiler save image on your RT-

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.pl65.decwdbook (2 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

11 system may be corrupted or the device may have gone
off-line.

User Action: Ensure that the device is on-line or

reinstall the CC.SAV compiler save image as appropriate.

OVL_ROQOT, Error loading image r oot
Fatal: The PDP-11 C compiler save image on your RT-
11 system may be corrupted or the device may have gone
off-line.
User Action: Ensure that the device is on-line or
reinstall the CC.SAV compiler save image as appropriate.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.pl65.decwdbook (3 of 3)1/25/06 3:44 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

OVL_ROOQOTZ2, Error loading latter part of image r oot
Fatal: The PDP-11 C compiler save image on your RT-
11 system may be corrupted or the device may have gone
off-line.
User Action: Ensure that the device is on-line or
reinstall the CC.SAV compiler save image as appropriate.

OVL_SPAN, Image overlay cannot span address
Fatal: The PDP-11 C compiler save image on your
RT-11 system may be corrupted.
User Action: Reinstall the CC.SAV compiler save image.

OVL_SHORT, Short word count loading image r oot
Fatal: The PDP-11 C compiler save image on your RT-
11 system may be corrupted or the device may have gone
off-line.
User Action: Ensure that the deviceis on-line or
reinstall the CC.SAV compiler save image as appropriate.

OVL_SHORT?2, Short word count loading latter part
of image root
Fatal: The PDP-11 C compiler save image on your RT-
11 system may be corrupted or the device may have gone
off-line.
User Action: Ensure that the deviceis on-line or
reinstall the CC.SAV compiler save image as appropriate.

OVL_VIRTOV, Virtual overlay error
Fatal: An error occurred while processing a virtual
overlay in the RT-11 hosted PDP-11 C compiler. The
PDP-11 C compiler save image on your RT-11 system
may be corrupted or the device may have gone off-line.
User Action: Ensure that the device is on-line or
reinstall the CC.SAV compiler save image as appropriate.

SYN_ARGEXTRA, Too many arguments
Warning: The number of actual argumentsis more
than the number specified in the function's prototype or
declaration.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p166.decwdbook (1 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

User Action: Ensure that the number of arguments
matches the number specified in the function's prototype
or declaration.

SYN_ARGINCOMPAT, Argument incompatible for
assignment
Warning: The actual argument passed to a function
has a type incompatibility with the type specified in the
function's prototype or declaration.
User Action: Correct the type of the argument, perhaps
using a cast.

SYN_ARG_LIST TOO _LONG, Function reference
specifies an argument list whose length exceeds
the PDP-11 ar chitecture limit
Error: The size of your argument list in the function call
exceeded 255 arguments.
User Action: Rewrite the function definition and
function call using fewer arguments.

SYN_ARGMISSING, Missing arguments
Warning: The number of actual argumentsisless
than the number specified in the function's prototype or
declaration.
User Action: Ensure that the number of arguments
matches the arguments specified in the function's
prototype or declaration.

SYN_ARGSCALDEF, Can't perform default promo-
tion on argument number "

kk%x

"asitisnot a
scalar
Error: The default promotion rules (used when a
function has no prototype in scope) do not allow for
passing nonscalar (for example, structure or union) types.
User Action: If the function allows nonscalar
arguments, ensure that this call is preceded by its
prototype; otherwise, correct the types of the actual
arguments.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p166.decwdbook (2 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

SYN_ASNMLVALREQ, Theleft operand of an
assignment operator must be an lvalue
Error: The left operand of your assignment operator was
not an Ivalue.
User Action: Rewrite your expression so that you enable
alocation where the operand can be assigned. The rvalue
(right-hand side) will be loaded into atemporary register
and then placed into the storage of the lvalue (left-hand
side).

SYN_BADPSECT, The program section (psect)
specified by this statement has conflicting
‘nowrite' attributeswith another definition of
the same program section
Warning: The psect shown was previously defined as
read-only, and cannot be re-defined as read-write.
User Action: Make the psect definitions agree.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal 1l.p166.decwdbook (3 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

SYN_BITWINTREQ, Both operands of a bitwise
operator must have integral type
Error: Both operands of your bitwise operator did not
have integral type.
User Action: Change both your operands to have

integral type.

SYN_CASECONST, The" case" clauserequiresa
constant
Error: You specified avalue in acase label that was not
aconstant.

User Action: Replace the case value with avalid
constant expression.

SYN_CASEDUP, Duplicate" case" clause value
Error: The same |label for a case statement appeared
twice.
User Action: Rewrite to eliminate identical case clauses.

SYN_CASTTYPE, A cast must be either a cast to void
or acast between scalar types
Error: A cast cannot involve casting to a struct, union, or
other nonscalar type.
User Action: Change the type of the cast.

SYN_CONDI1SCALREQ, Thefirst operand of a" ?: "
operator must be a scalar
Error: Your first operand of a™ " ?." operator was not a
scalar.
User Action: Change your first operand of a ™~ 2"
operator to ascalar.

SYN_CONFLICTDECL, Thisdeclaration of "

*k*k*

conflictswith a previous declar ation of the same
name
Warning: Identical declarations conflict with each other.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl67.decwdbook (1 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

User Action: Change one of the declarations so that they
are not identical to each other.

SYN_CONPSECTATTR, This psect has attributes
conflicting with those previously specified
Warning: The psect shown has attributes conflicting with
those previously specified.
User Action: Make the psect attributes agree.

SYN_DEFDUP, A " switch " statement may have only
one" default " clause
Error: Your switch statement has more than one
default clause.
User Action: Rewrite your switch statement to have
only one default clause.

SYN_DUPDEFINITION, Duplicate definition of "

k%%

War ning: The named definition appeared more than
once in the program.

The two definitions are essentially the same. Both
definitions specify the same data types and organizations,
but there may be differencesin the values, initializers, or
array bounds. If the name is afunction, there may be a
difference in the number or types of parameters or in the
contents of the function body.

User Action: The purpose of thismessageisto call a
possible programming error to your attention.

SYN_DUPGLOBALNAME , Duplicate global name

kk%

Warning: This declaration of a global object conflicts with
another global object declared previously. Since PDP-11

C truncates global names after the first 6 characters and
converts them to uppercase, you need to ensure that the
first 6 characters of your global names are unique.

User Action: Remove duplicate global name references.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl67.decwdbook (2 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

SYN_DUPLABEL, Duplicate label: "

k%%

Error: You specified duplicates of the indicated label in
the same function. (Label identifiers must be unique
within afunction definition.)

User Action: Rewrite the labels (and goto statements
that refer to them) to eliminate the duplicates.

SYN_DUPMAINFUNC, Duplicate main function
Error: You defined two or more main functionsin a
single compilation unit.

A main function is afunction with the name “~"main”.
If the compilation unit contains more than one main
function, the compiler recognizes only thefirst asthe
main function.

User Action: Make sure that there is only one main
function defined in the compilation unit.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl67.decwdbook (3 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

SYN_DUPMEMBER, Duplicate declar ation of member

*k*k*%x

Warning: You declared two members with the same
name in the same structure.

User Action: Rename one of the members or remove
one of the member declarations.

SYN_DUPPARAMETER, Duplicate parameter "

*k k%

Warning: The stated function parameter occurred more
than once in the function's formal parameter list. For
example:

funct(a,b,c,a) { }
All occurrences of the parameter after thefirst are
ignored.

User Action: Remove or change the duplicate
parameter identifier.

SYN_ENUMOVERFLOW, Overflow detected in
evaluating enumer ated item "

k%%

Warning: The value of your enumerated item exceeds
32767.

User Action: Define your enumerated item value to be
within the accepted boundaries.

SYN_EXTRAFORMALS, Extraneous formal parame-
ter (s) ignored in declaration of "

*k*k*%x

Warning: You included afunction'sformal parameters

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p168.decwdbook (1 of 4)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

in afunction declaration or definition.
For example, the following function declaration is not
allowed because it names the function's parameters:
int funct(a,b,c);
The parameters a, b, and ¢ are ignored.
Similarly, the following example defines afunction
returning a pointer to afunction returning an integer.
The names of the parameters of the function returning
an integer are not allowed.
(*f(p1,p2))(q1,92)
int pl, p2;
{...}
The compiler ignores the parameters g1 and g2.
User Action: Check the syntax of the function
declaration and, if appropriate, remove the extraneous
identifiers.

SYN_FATALSYNTAX , Fatal syntax error
Fatal: The compiler could not continue due to syntax
errors.
User Action: Correct the error in the indicated line, or
errors, or both reported in previous compiler messages.

SYN_FUNCNOTDEF, Static function "

kk%x

"Isnot
defined in this compilation
Error: You did not define the static function within the
compilation that referencesit.
User Action: Define the static function in the
compilation that referencesit.

SYN_FUNCOBJ, Function return type must be void or
a completed object type
Error: A function cannot return an incompl ete object
type.
User Action: Ensure that the return typeisfully
specified before the function declaration.

SYN_IFSCALREQ, The controlling expression of an if
statement must have scalar type

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p168.decwdbook (2 of 4)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

Error: Occurswhen an if statement has an incorrect
type (such as struct as the controlling expression.

User Action: Make sure that the controlling expression
of an if statement has scalar type.

SYN_ILLCONDEXPR, The second and third operands
of the" ?: " operator are of incompatibletype
Error: You specified an invalid combination of operands
in a conditional expression.
This can occur if the operands are pointers to objects of
adifferent size or type, or if the operands are different
structures.
User Action: Make sure that both operands are of
compatible sizes and data types.

SYN_ILLFUNCCALL, Functionswith RSX AST or
RSX SST linkage can not be invoked directly
Error: You invoked afunction declared with RSX AST
or RSX SST linkage. Functions with these linkages can
not be invoked directly. They may be declared, have
their address taken, and be passed as arguments to other
routines. These functions gain control through the AST or
SST respectively.
User Action: Do not invoke the function with RSX AST
or RSX SST linkage.

SYN_ILLFUNCRET, Functionswith RSX AST or RSX
SST linkage must be of type void
Error: You declared afunction with RSX AST or RSX
SST linkage to be other than type void.
User Action: Declare the function with RSX AST or
RSX SST linkage to be of type void.

SYN_ILLFUNCPARAM, Illegal parameter for a
function with RSX AST or RSX SST linkage
Error: You have declared afunction with RSX AST or
RSX SST linkage, which hasanillegal parameter. A
parameter to afunction with RSX AST or RSX SST
linkage must be of word size. In addition, functions with
RSX AST linkage must have at least four parameters,
and functions with RSX SST linkage must have at |east
two parameters. If any of the above conditions are not
met, you will get this error.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p168.decwdbook (3 of 4)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

User Action: Correct the parameter.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p168.decwdbook (4 of 4)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

SYN_ILLFUNCTY PE, Function-valued expression not
found
Error: A cal with afunction designator must have type
function or a pointer to function.
User Action: Rewrite your expression to include either
type function or a pointer to function.

SYN_ILLTYPEASN, Incompatibletypesfor assign-
ment
Error: Your assignment contains incompatible types.
User Action: Rewrite your assignment keeping in mind
that the rules for type compatibility in assignment also
apply to argument compatibility between actual argument
expressions and their corresponding argument typesin a
function prototype.

SYN_ILLTYPEINIT, Incompatibletypesfor initializa-
tion. Initializer ignored
Warning: Initializing values must be of compatible type.
User Action: Check the type of the object being declared
and theinitializer and ensure that they have the same

type.

SYN_INCOBJTYPE, Type of object "

k%%

" must be
complete
Error: Auto, register , and globaldef objects must have
acomplete type.
User Action: Ensure that the type is completed before
the object is declared.

SYN_INCOMPATRET, Type of returned expression is
iIncompatible with function'stype
Error: Theresult of return must be of acompatible type
of the declared function.
User Action: Ensure that your return has atype
compatible with the declared function.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p169.decwdbook (1 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

SYN_INCSTRUCTARG, A function argument may not
have incomplete type
Error: Occurs when a structure or union argument has
incomplete type.
User Action: Make sure that al function arguments
have object type.

SYN_INTVALERROR, Integer value not used where
required
Warning: You used anoninteger value as an initializer
for an enum constant, or to specify the size of abit field.
Y ou must specify these values as integer constants.
User Action: Specify an integer constant.

SYN_INVALINIT, Theinitialization of "

k%%

"isnot
valid
Warning: The indicated object cannot beinitialized as
specified. Some objects may not beinitialized at all, such
as functions, unions, and extern or globalref objects.
In other cases, the initializer may not be appropriate,
for example, a static pointer cannot be initialized with
the address of an automatic variable. This and any
subsequent initializers for the same object have been
ignored.
User Action: Eliminate or correct the initializer, or
correct the type or storage class of the target object, or
initialize the object with an explicit assignment.

SYN_INVARRAYBOUND, The declaration of "

kk

Error: Inadeclaration of an array, you omitted a
required dimension bound value or specified an invalid
value for a bound.

For multidimensional arrays, you must specify bounds for
dimensions other than the first. Y ou also must specify a
bound for thefirst (or only) dimension if this declaration
iIsadefinition. Valid bound values are integer constant

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p169.decwdbook (2 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

expressions greater than 0.
User Action: Make sure that all required bounds are
present and valid.

SYN_INVARRAYDECL, "

*k k%

" isan improperly
declared array
Error: You improperly declared an array, such as an
array of functions.
User Action: Make sure that the syntax of the
declarator correctly describes the object. (The declared
object may not be what you want.)

SYN_INVARROW, The"->" operator may only be
applied to a pointer object
Error: You used the "->" operator with something other
than a pointer type.
User Action: Check your code for use of the " ->"
operator applied to something other than pointer type.

SYN_INVBREAK, Invalid use of the" break" statement
Error: You used break outside aloop or switch
Statement.

User Action: Remove the break statement or check
that any bracesin recent loops or switch statements are
properly balanced.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p169.decwdbook (3 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

SYN_INVCASEEXPR, Thevaluein a" case" clause
must have integral type
Error: You used values within the case clause that did
not have integral type.
User Action: Check your use of values within the case
clause; the values must be of integral type.

SYN _INVCASENEST, The" case" clause must appear
within a" switch " statement
Error: The case clause did not appear within a switch
statement.
User Action: Rewrite your statement to include the
case clause within the switch statement.

SYN_INVCODEIPSECT, Code-i psect must be
declared at file scope
Warning: Code-i psect is declared inside a block.
User Action: Remove code-i psect pragmafrom the
block.

SYN_INVCONSTPSECT, Constant psect can not be
declared morethan once
Warning: There may be only one declaration of the
const psect for each compilation unit.
User Action: Remove the extraneous psect definition.

SYN_INVCONTINUE, Invalid use of the " continue"
statement
Error: You used the continue statement outside the
body of afor , while, or do statement.
User Action: Remove the continue statement or check
that any braces in recent loops are properly balanced.

SYN_INVDEFNEST, The" default " clause must
appear within a" switch " statement
Error: The default clause did not appear within a
switch statement.
User Action: Rewrite your statement to include the
default clause within the switch statement.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl70.decwdbook (1 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

SYN_INVDEREF, Address-valued expression not
found
Error: Attempted to dereference a nonpointer object.
User Action: Remove the dereference operator; ensure
that the correct operand is being used.

SYN_INVDOTLVAL, Theleft sideof a™." operator
must be an lvalue
Error: The "." operator requires aleft operand, which is
aname for storage.
User Action: Ensure that the left operand is an Ivalue; if
it isapointer to storage, then ""->" should be used.

SYN_INVEQ, Invalid operand of an equality operator
Error: You used an operand that is not compatible with
the equality operator.

User Action: Correct the operand.

SYN_INVFIELDSIZE, Thedeclaration of "

*k*k*%x

specifiesan invalid field size; size of 16 bits

assumed

Warning: Theindicated field declaration was invalid
because it specified too large asize.

User Action: Correct the declaration to specify either a
single, smaller field or several contiguous fields.

SYN_INVFIELDTYPE, Thedeclaration of "

kk%k

" spec-
ifiesan invalid field data type; type" unsigned "
assumed

Warning: You declared afield with an invalid data type.
Fields must be declared (and manipulated) as integers or
enumerated types.

User Action: Correct the declaration to specify avalid
datatype.

SYN_INVFUNCCLASS, The declaration of an

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl70.decwdbook (2 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

identifier "

*k*k*

" for afunction that hasa block
scope shall have no explicit storage-class other
than extern
Warning: You declared afunction with the wrong
storage class.
User Action: Change the storage class of your function
to external.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl70.decwdbook (3 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

SYN_INVFUNCDECL, "

*k k%

" isan improperly declared
function
Error: You improperly declared afunction. For example,
you may have omitted the parameter list or a semicolon
between the function and a previous declaration.
User Action: Correct the syntax of the declaration.

SYN_INVGLOBALNAME, Invalid global name™

*k k%

Warning: The ASCII name specified cannot be converted
into avalid Radix-50 name.
User Action: Rename the global name.

SYN_INVLINKAGE, Linkage for function "

k%%

must be specified beforeit iseither defined or
referenced

Warning: Function linkage is specified after it is
referenced or defined.

User Action: Define the linkage before any referencesto
the function.

SYN_INVMEMNAME, Theright operand of " . " or " ->"
Isnot a declared namein thisstructure or union
Error: Theright operand of your ~"." or ~*->" was not
properly declared.

User Action: Declare the right operand in the
expression.

SYN_INVOBJDEREF, The operand of "
*

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl71.decwdbook (1 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

" (derefer-
ence) must be a pointer to an object
Error: The expression to which ™

*

"isappliedisnot a
pointer to an object.
User Action: Ensure that the operand is of the proper

type.

SYN_INVPARELLIPSIS, Theuseof élipsisin a
function prototype conflictswith the function
definition
Error: Both function prototype and function definition
must specify avariable parameter list.

User Action: Make the function prototype consistent
with the function definition.

SYN_INVPRAGMA, Invalid pragma definition
Warning: Syntax error detected in a pragma statement.

User Action: Correct the syntax to one of the forms
shown in Section 7.7.

SYN_INVPROTODEF, The parameter list for a
function prototype definition must associate
identifier for each typein the parameter list
Error: The function definition uses the prototype format
but does not contain an identifier for each typein the
parameter list.

User Action: Place an identifier name in the appropriate
type declaration.

SYN_INVPSECTNAME, Invalid psect name specified
Warning: A psect name must consist of 6 or fewer
Radix-50 characters.

User Action: Ensure that the name meets the
requirements.

SYN_INVPTRMATH, Invalid pointer arithmetic
Error: You attempted to perform an invalid arithmetic
operation on a pointer or pointers. The only valid
arithmetic operations allowed with pointers are addition

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl71.decwdbook (2 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

and subtraction.
For addition, the only allowable forms are as follows:
pointer + integer
pointer += integer
For subtraction, the only allowable forms are as follows:
pointer - integer
pointer -= integer
pointer - pointer
In the last form, both pointers must point to objects of
compatible type.
User Action: Make sure that the expression conformsto
one of the previous formslisted. If necessary, cast one or
both operands to a compatible type.

SYN_INVPTRSUBTYPE, Pointer subtraction must be

between compatible pointer types
Warning: You used incompatible pointer typesin a
pointer subtraction.
User Action: Check to make sure your pointers are of
compatible subtracting type. For subtraction, the only
allowable forms are as follows:

pointer - integer

pointer -= integer

pointer - pointer

SYN_INVREL, Invalid operand of arelational
oper ator
Error: You used an operand that was not compatible
with the relational operator you used.
User Action: Correct the operand.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl71.decwdbook (3 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

SYN_INVSTORCLASS, The" auto " storage classis

invalid for the declaration of "
* k%%

Warning: Y ou made one of the following programming
errors.

Y ou specified a storage classthat isinvalid in the
context in which the declaration appears; for example,
specifying auto in a declaration located outside of a
function.

Y ou specified a storage class that isincompatible with
another storage class specifier; for example, specifying
both static and extern .

Y ou specified a storage class that isincompatible with
the data type of the indicated declarator; for example,
specifying globalvalue for an array.

In all cases, the compiler ignores the storage class

specifier.

User Action: Correct the declaration.

SYN_INVSUBSCRIPT, Invalid subscript; " []* must be
applied toan array or a pointer to an object, and
an integer
Error: You specified a subscript in reference to a bit-field.
User Action: Correct the syntax. If the structure
containing the bit-field is an array, you must specify
the subscripts with the qualifier rather than with the
member name.

SYN_INVSUTYPE, Theleft operandof " ." or " ->"
must be a (pointer to) a structure or union
Error: Theleft operand of ~"." or "->" was not a (pointer
to) a structure or union.
User Action: Correct the operand.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl72.decwdbook (1 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

SYN_INVSWITCHEXPR, The control expression in a
"switch" statement must haveintegral type
Error: The expression is not of integral type.
User Action: Ensure that the expression is of integral

type.

SYN_INVTAGUSE, Invalid use of "

*k*k*%x

" tag

Error: You used a previously defined tag namein a
declaration of a different type. For example:

enum color { red, green, blue};

struct color *cp;
Y ou may only use a given tag with one of the types
enum , struct , or union . Any identifiers declared with
the mismatched type will be undefined.
User Action: Either make sure that each use of the tag
name specifies the same type, or use different tag names
with each type.

SYN_INVUADDR, Theoperand of "&" must be an
Ivalue or function, and may not be a register or
bitfield
Warning: The "&" (address-of) operator must be applied
to an object that has storage associated with it or to a
function name.
User Action: If "&" has been applied to aregister
value, theregister keyword can be removed from the
declaration; otherwise, ensure that the specified object has
storage.

SYN_INVVARIANT, Invalid declaration of variant
aggregate "

k%%

Warning: You attempted an invalid variant structure or
union declaration such as an array of variants, a pointer
to avariant, or alist of variant names.

User Action: Either remove the variant keywords from
the declaration or make sure that the keywords are used

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl72.decwdbook (2 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

in avalid structure or union declaration.

SYN_INVVOIDUSE, " void " isonly valid in a
parameter list when it appearsalone; itsuseis
ignored
Warning: void has been used in afunction prototype
parameter list but is not the only itemin thelist.

User Action: Either eliminate void or eliminate the
extra parameter types in the parameter list.

SYN_ITERSCALREQ, The controlling expression of
an iteration statement must have scalar type
Error: Occurswhen for , while, or do statements have
an incorrect type (such as struct) as the controlling
expression.
User Action: Use ascalar asthe controlling expression
when writing an iteration statement.

SYN_LMUL_ARITH, Theleft operand of a"
*

or"/"
operator must have arithmetic type

Error: You did not specify arithmetic type for the left
operand of your operator.

User Action: Correct the operand.

SYN_LOGSCALREQ, Both operands of alogical
operator must have integral type
Error: You declared the operands in your logical operator
as having atype other than integral.
User Action: Correct the operand.

SYN_LREM INT, Theleft operand of a" % " operator
must have integral type
Error: You declared the |eft operand as having atype
other than integral.
User Action: Correct the operand.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl72.decwdbook (3 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

SYN_MAINO2PARAMS, The" main" routine should
have O or 2 parameters
Warning: The "main" routine should either specify no
parameters or exactly two, like this:
int main ()
int main (int argc, char *argv [])
User Action: Correct the declaration of ~"main.”

SYN_MAINRETTYPE, The"main" routine should
specify areturn type of " int"
Warning: The "main"” routine should be of typeint, asin
either of these declarations:
int main ()
int main (int argc, char *argv [])
User Action: Correct the declaration of “"main."

SYN_MISPARAMNUMBER, The number of parame-
tersdeclared does not match the number declared
in a previous function prototype
Error: A function prototype for this function, which
appeared earlier in the source file, contains a different
number of parameters than this declaration.
User Action: Determine which declarator is correct and
modify the other declarator to match it.

SYN_MISPARAMTYPE, Thetype of parameter
number 1 doesnot match thetypedeclared in
a previous function prototype
Warning: The type of aparameter in afunction
definition does not match the type specified for that
parameter in the previous prototype.
User Action: Determine which typeis correct for that
parameter and correct either the function definition or
the prototype.

SYN_NODECL, Your program doesn't declare any
data or routines
I nformational: A compilation unit should define at |east
one data item or routine. This might not happen, for

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl73.decwdbook (1 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

example, if the module were commented out.
User Action: Ensure that the module contains a
definition.

SYN_NOTFUNC, Function-valued expression not
found
Error: You used an expression in the context of a
function call, but the expression does not evaluate to a
function.
User Action: Make sure that the expression properly
evaluates to a function; also make sure that you properly
dereference any pointer to a function.

SYN_NOTPARAMETER, "

*k k%

"isnot listed in the
function'sformal parameter list; itsdeclaration is
ignored
Warning: You declared the specified identifier asa
function parameter, but the identifier does not appear in
the parameter list. For example:

f@intab; {...}
The identifier b does not appear in the formal parameter
list of function f. Its declaration is not portableand is
probably a coding error. The compiler treats b asif it
were declared inside the function definition; in thiscase, b
becomes an automatic variable.
User Action: Correct the declaration or the parameter
list.

SYN_PARSTK_ OVRFLW, Parse stack overflow
Fatal: The source code in your program was too
complex, containing statements nested too deeply.
User Action: Simplify the program.

SYN_REDEFPROTO, "

k%%

" conflictswith either the
function definition or with a function prototype
that appearsearlier in thefile

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl73.decwdbook (2 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

Warning: The prototype conflicts with a previous
declaration of this function, either in number, type of
arguments, or in the return type of the function.

User Action: Determine what attribute does not match
and what the correct attribute should be. Correct the
invalid definition.

SYN_RMUL_ARITH, Theright operand of a"
*

“or"/"
operator must have arithmetic type
Error: You declared the right operand as having atype
other than arithmetic.
User Action: Correct the operand.

SYN_RREM_INT, Theright operandof a" % "
operator must have integral type
Error: You declared the right operand as having atype
other than integral.
User Action: Correct the operand.

SYN_SHIFTINTREQ, Both operands of a shift
operator must have integral type
Error: You did not declare both operands of the shift
operator to have integral type.
User Action: Rewrite both operandsto have integral

type.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl73.decwdbook (3 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

SYN_SIZEOFOBJ, The" sizeof" operator must be
applied to a complete object type
Warning: Anincomplete object has no defined size.
User Action: Complete the type before using " sizeof."

SYN_SYNTAXERROR, "

*k k%

"found "

kk%x

when
expecting "

kk%x

Error: Syntax error detected.
User Action: Check your syntax.

SYN_TENTDEFINC, Tentative definition of "

*k*k*

has
internal linkage, but itstypeisincomplete

Error: Thereturn type of a static function must be fully
specified before the function can be used.

User Action: Ensure that the type is completed.

SYN_TOOMANYINITS, Theinitializer list for "

*k k%

specifiestoo many initializers; excessinitializers
ignor ed

Warning: Y ou specified too many initializers for the
indicated variable. (If theindicated item isan array or
structure, it may be only partially initialized.)

User Action: Make sure that all braces near the

initializer sublists are balanced; if the item being initialized

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl74.decwdbook (1 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

Isor contains an array, make sure that you accounted for
al dimensions.

SYN_TYPECONFLICT, "

*kk*x

" conflictswith a previous
data typein thisdeclaration; previous data type
ignored
Warning: You specified more than one data type specifier
in this declaration, and the indicated specifier conflicted
with a previous one.
User Action: Check for amissing semicolon in the
previous declaration; otherwise, make sure that all
specifiers are compatible.

SYN_UCOMPINTREQ, The operand of aunary
complement operator must haveintegral type
Error: You declared the operand as having a type other
than integral.

User Action: Correct the operand.

SYN_UIDSCALREQ, The operand of unary " ++ " or
" "must beascalar
Error: You declared the operand as having a type other
than scalar.
User Action: Correct the operand.

SYN_UMINARIREQ, The operand of a unary minus
operator must have arithmetic type
Error: You declared the operand as having a type other
than arithmetic.
User Action: Correct the operand.

SYN_UNDECLFUN, Function "

*k*k*

" not declared;
assumed of type" extern int ()"
I nformational: Y ou did not declare afunction to be a
specific type. The default type that will be assumed will
be externint .

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl74.decwdbook (2 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

User Action: Check to make sure that extern int isthe

function type you need; if not, redeclare the function to
the necessary type.

SYN_UNDECLNAME, Identifier "

*k k%

" isnot declared
within the scope of thisusage

Error: You referenced a variable that was never properly
declared.

User Action: Check that the identifier is declared, and
that its case and spelling are consistent in all uses.

SYN_UNDEFLABEL, Labd "

k%%

" referenced but not
defined in thisfunction
Error: Youwrote " goto label-name" for an undefined
label. The scope of alabel name isrestricted to the
function in which it is used as a label; goto statements
cannot branch to labels inside other functions.
User Action: Check the spelling of the label name or
make other corrections as appropriate.

SYN_UNDEFSTRUCT, Structureor union member

kk%

" hasatypethat isnot fully defined at this
point in the compilation
Error: A member of either your structure or union has
an incompl ete data type.

User Action: Correct the type of your structure or union
member.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl74.decwdbook (3 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

SYN_UNOTSCALREQ, Theoperand of aunary not
operator must have scalar type
Error: You declared the operand as having atype other
than scalar.
User Action: Correct the operand.

SYN_UPLSCALREQ, The operand of aunary plus
operator must have scalar type
Error: You declared the operand as having atype other
than scalar.
User Action: Correct the operand.

SYN_VARNOTMEMBER, A variant aggregate must be
amember of astruct or union
Error: You attempted to specify avariant_struct or a
variant_union outside of an aggregate declaration.
User Action: If you intend to use the structure or union
as declared, and if the structure or union is the outermost
aggregate in a group of nested aggregates, replace the
variant keywords with struct or union . If you intend to
use the structure or union as a variant aggregate, and
if the structure or union is otherwise properly declared,
nest the declaration within avalid structure or union
declaration. If you use the variant_struct or variant_
union keywords in declarations other than structure or
union declarations, remove the variant keywords.

SYN_VOIDNOTFUNC, "

kk%x

" isnot declared to bea
function; only functions may be declared " void "
Error: You declared an object other than a function to be
void .

User Action: Check the syntax of the declarator.

TOO _MANY_ERRORS, Encountered morethan "

kk%x

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl75.decwdbook (1 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

errors, compilation terminated

Fatal: More errors were encountered than the
installation-defined default error limit, or the limit
specified with the/ERROR_LIMIT qualifier.

User Action: Correct the errors or use the /ERROR _
LIMIT qualifier to increase the error limit or the
/INOERROR_LIMIT qualifier to eliminate the error
limit.

WF _DSOVERFLOW, Data set overflow in work file;
increasethework file sizewith the/ WORK _FILE
SIZE qualifier
Fatal: The capacity of one of the PDP-11 C data sets
has been exceeded. The PDP-11 C work fileisinternally
divided into a number of data sets. The amount of storage
consumed by data sets varies dynamically according to
need. The maximum capacity of a data set is determined
when PDP-11 C starts up and is based upon how the
data set isinternally defined and upon the size of the
work file. For each 1K blocks of work file size, PDP-11 C
doubles the capacity of its data sets at the expense of less
efficient data packing in the work file.

User Action: Increase the value specified with the
/WORK_FILE SIZE qualifier in 1K-block increments
until the error no longer occurs.

WF_FILEORDEV, Fileor deviceerror on work file
Fatal: An error occurred while opening, reading, or
writing the PDP-11 C work file.

User Action: Determine the cause of the error and
correct.

WF_INSUFFICIENTWEF, Work filetoo small; increase
thework filesizewith the/ WORK_FILE_SIZE
qualifier
Fatal: PDP-11 C hasrun out of work file storage on a
PDP-11 host.

User Action: Increase the work file size with the
/WORK_FILE_SIZE qualifier; increase the amount of
extended (unmapped) memory availableto PDP-11 C
with the/MEMORY qualifier; or ssmplify the compilation
unit.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl75.decwdbook (2 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

WF_INSUFFICIENT_MEMORY, Insufficient memory
Fatal: Memory requirements exceeded available
resources.

User Action: OnV AX/VMS host systems, decrease the
size of the compilation unit or increase system quotas. On
PDP-11 host systems, this error occurs when parsing
complex command lines and indirect command linefiles;
simplify the command lines or indirect command line
files.

WF_NOROOM, No room on device for work file
Fatal: There was no room to open the PDP-11 C work
file on the work file device.
User Action: Purge or delete files on the work file device
to make room for the PDP-11 C work file.

WF _TOOMUCHMEM, The value specified with the
IMEMORY qualifier istoo large; specify a value of
511 or smaller
Fatal: The number of 8K-byte extended memory regions
specified with the/MEMORY qualifier exceeds the 4M-
byte physical memory limit of the PDP-11.

User Action: Specify 511 or asmaller value.

WF_UNEXPECTED, Unexpected |/O error on work
file
Fatal: An unexpected error occurred while opening,
reading, or writing the PDP-11 C work file.
User Action: Determine the cause of the error and
correct.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl75.decwdbook (3 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

B. PDP-11 C Header Files
This appendix lists the library header filesfor PDP-11 C. File
location is system dependent:

On RSX and VMS, the header files are in the directory
LB:[1,1].

On RSTE/E, the header files are in the directory CC$..

On RT-11, the header filesarein either the SY: or CLB:
directory.
In general, each header file declares functions, types, or
macros used in the area of the Run-Time Library (RTL)
indicated in the ""Description” column in each of thetablesin
this appendix. Y ou can print or type individua files, or you
can issue the following command to print all files with their
file names appearing at the top of each page:
$print Ib:[1,1]*.h
Table B-1 describes each of the Standard Library header
files.

Table B-2 describes each of the File Control Services (FCS)
Extension Library header files.

Table B-3 describes each of the Record Management Services
(RMS) Extension Library header files.

Table B-4 describes each of the system interface header files.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal l.p176.decw$book 1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

C. PDP-11 C Internationalization

This appendix addresses the two major areas of PDP-
11 Cinternationalization: compiler and run-time
internationalization.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaall.p181.decw$book1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

C.1 Compiler Internationalization

In PDP-11 C, you can assign specific compiler character sets
to four areas. source files, the message environment, listing
files, and the execution environment. To specify character
sets for character constants and strings, use the following
charset pragmas, respectively:

#pragma charset source <charset_name>

#pragma charset message <charset_name>

#pragma charset list <charset_name>

#pragma charset execution <charset_name>

PDP-11 C uses the the ISO-Latin-1 character set by default
for the source files, messages, listing files, and execution
environment. Y ou can change to any of the character sets
listed in Table 7-2, using the guidelines found in Section 7.7.1.

The following is an example of the #pragma char set
directive. In this example, the swiss character set is specified
for the device on which the source file isto be displayed.
#pragma charset source swiss

When writing source files to be displayed on non-Digital
devices (terminals, printers, and display devices), the use
of trigraphs may be required. Trigraphs are 3-character
sequences that represent specific characters that may

not exist on some terminals. All occurrences of trigraph
sequences (listed in Table 2-3) are replaced with the
corresponding single character. See Section 2.16 for more
information on trigraphs.

As an example, the following source line;
printf("Eh???/n");

becomes (after replacing the trigraph sequence):
printf("EhAn");

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal l.p182.decw$book 1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

C.2 Run-Time Internationalization

Y ou can use the #pragma char set to specify the character
set for character constants and character strings in your
source program. In addition, PDP-11 C provides support

for run-time internationalization in the locale.h header file
that defines a structure and two functions used in supporting
alternate character sets and other international support.

The two functions that are provided are setlocale and
localeconv .

C.2.1 Set Locale Function (setlocale)

The setlocale function is used to specify aternate character
sets, collating sequences, and various formats (for example,
money and time). The setlocale function takes two
arguments:

The first argument specifies the category of the locae
that you want to change.

The second argument specifies the locale you want to set
the category to.
The category argument which names the program's entire
localeisLC_ALL. The other values for category name only a
portion of the program'slocale (LC_COLLATE, LC _CTYPE,
LC_NUMERIC, LC_MONETARY, LC_TIME).

Note

For more information on the setlocal e function,
refer to the PDP-11 C Run-Time Library Reference
Manual .

In the following example, the setlocal e function specifies a
program's locale for al five categories:
#include <locale.n> /*Include locale.h

**header file.*/

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p183.decwdbook (1 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

setlocale (LC_ALL,"french,danish,,french"); /*Name the locale
**for all categories.*/

The first argument in this example (LC_ALL) specifies

that the locale of all categories will be changed. The second

argument is a character string that specifies the locale for

each of the five categories, separated by a comma. Omitting

a category (by using two consecutive commas or by not

specifying trailing arguments) yields the default locale for

those categories. As you can see in the example, the following

IS set:

LC COLLATE isset to french.

LC CTYPE is set to danish.

LC_NUMERIC retains the default C locale.
LC MONETARY isset to french.

LC_TIME retains the default C locale.

The second example shows an alternate way to specify the
program's locale by specifying one category at atime.
#include <locale.h> /*Include locale.h

**header file*/
setlocale (LC_ALL,"™); /*Reset al categories

**to standard C locale*/
setlocale (LC_COLLATE,"french"); /* Name the locale*/
setlocale (LC_CTYPE,"danish"); /*for specific*/
setlocale (LC_MONETARY ,"french"); /* categories*/
The first argument of each invocation of setlocale indicates
that we will change only the locale of the category indicated.
The second argument specifies to which local e that category
is set. Note that in the previous example, only three
categories were changed. The remaining categories will
keep the C locale defaults. Both programs yield the same
results.

C.2.2 Defining a L ocale Structur e (localeconv)

The localeconv function sets the components of an object of
type struct lconv to values appropriate for the formatting

of numeric quantities (monetary and otherwise) according
to the rules of the current locale. If you have not specified
any locale changes using setlocale , the default for al the

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p183.decw$book (2 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

categoriesisthe Clocale, whichis ASCII.

The localeconv function returns a pointer to the filled-in
object.

Example C-1 shows typical source code using localeconv .
It sets the current locale for character functions and
conversion to the french locale. The LC_TIME category
retains the default locale. Localeconv() is called to access the
monetary formatting data, and a number is converted from
afloating-point value to a monetarily formatted quantity.
The datain the Iconv structure is used to format a positive
monetary value.

C.2.3 Character Handling Functions

The function versions of the character handling functions
defined in the ctype.h header file return the values from the
selected locale based on the locale set by setlocale . Note that
the macro versions support only the ASCI I locale.

The program in Example C-2 computes the number of
alphanumeric charactersin thelocale ""C" (the ASCII locale)
in three different ways. First, the program uses the macro
isalnum . Then, it takes the address of the function isalnum
and invokes the function through its address. Finally, the
program undefines the macro isalnum and leaves only the
function definition in scope.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p183.decwdbook (3 of 3)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

D. Language Summary
This appendix briefly describes the following C language
features:

Data type keywords

Precedence of operators

Statements

Conversion rules

Escape sequences

Preprocessor directives

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1l.p186.decw$book 1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

D.1 Data Type Keywords
Table D-1 shows data type keywords.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1l.p187.decw$book 1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

D.2 Precedence of Operators
Table D-2 lists the operators from highest precedence to

lowest. In the binary operator category, operators appear in
descending order of precedence, line by line.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1l.p189.decw$book 1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

D.3 Statements

Syntax:

[expression] ;

identifier : statement

{ [declaration-list] [statement-list] }

If (expression) statement [else statement |
while (expression) statement

do statement while (expression)

for ([expression] ; [expression] ; [expression]) statement
switch (expression) statement

case constant-expression statement
default: statement

break ;

continue;

return [expression] ;

goto identifier ;

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaall.p191.decw$book1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

D.4 Conversion Rules

Arithmetic Conversion

Any operand of type: |s converted to:

char int
unsigned char unsigned int
float double

If operand typeis:

Theresult and the other operands
are

double double
unsigned unsigned

Otherwise, both operandsare: And theresult is:

int int

Function Argument Conversion

Any argument of type:

If not within the scope
of a function prototype,
Isconverted to type:

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaall.p192.decw$book (1 of 2)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

float double

char int

array pointer to array
function pointer to function

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p192.decw$book (2 of 2)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

D.5 PDP-11 C Escape Sequences

Character Mnemonic Escape Sequence

bell BEL \a
guestion mark ?\?
newline NL \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
apostrophe '\
guotes™ \ "

bit pattern ddd \ddd or \xddd

Use the form ""\ddd" to specify any byte value (usually an
ASCII code), where the digits ddd are one to three octal digits.
The octal digitsare limitedto 0to 7.

Similarly, use the form ~"\xddd" to specify any byte value
(usually an ASCII code), where the digits are used to specify
one or more hexadecimal digits.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1l.p193.decw$book 1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

D.6 Preprocessor Directives

Syntax:
define identifier [([paraml , . . . param2])] token-string
undef identifier
#error tokens
#include < file-spec >
#include" file-spec”
#if constant-expression

#ifdef identifier

#ifndef identifier

#else

elif constant-expression
endif

#[line] constant "string"

#[line] constant identifier

moduleidentifier identifier
moduleidentifier "string"
pragma charset

2
4

source

message
list
execution

3
5

V VANV V V V 0®

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p194.decw$book (1 of 5)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

iso latin 1
french_canadian
dec_mcs
german
ascii

italian
british
norwegian
danish
portuguese
dutch
Spanish
finnish
swedish
french
Swiss

v v Vv Vv ©

V V V V

pragma psect

const
static_ro
static_rw
code |
code d

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p194.decw$book (2 of 5)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

P OOODOOOOOOOONDN

VVVAVYV VO

con
ovr

nosav

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p194.decw$book (3 of 5)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

vV V.V IIl V V V

ON~NNNNNN~NW

pragma module identifier identifier
pragma module identifier "string"
pragma list

8
<

on
off

title "string"
subtitle "string"

9

pragma linkage

8
>

<

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p194.decw$book (4 of 5)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

>

C

pascal
fortran
rsx_ast
rex_sst
rsx_csm

9
>

VAT

[identifier,...]

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p194.decw$book (5 of 5)1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Glossary

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p195.decw$book1/25/06 3:45 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 1-1. Default Compiler Listing
Example 1-1 DUAO:[CIEXAMPL.C; PDP-11 CV1.2-015 Page 1 1
000001 6 February 1992 3:03 PM 2
31#ifdef _ PDP11C
2 4 # pragmalist title "Example 1-1"
3 5 # pragma module EXAMPL "000001"
4 # endif
5
6 /* Thismodule is used as an example to demonstrate the
various listing options that are available with PDP-
11 C. In particular, this comment shows how line wrap
of long source lines appearsin thelisting. */
7
8 # include <setjmp.h>
28 [* Use 6 character, extern names on the PDP-11 */
29 #ifdef _ PDP11C
30 # define recovery _context RECCTX
31 # define error_recovery ERRCVY
32 # define process PROCES
33 # endif
34
35 # define TRUE 1
36 # define FALSE O
37
38 jmp_buf recovery context;
39 int error_recovery (void);
40 int process (void);
41
42 #ifdef __ PDP11C
43 4 # pragmallist subtitle "main() - Main Entry Point"
44 # endif
45 int main (void)
46 {
47
48 #if ERROR_RECOVERY
61
1: %PDPC-I-LEX_UNDEFIFMAC, Identifier is not currently a macro; constant zero
assumed
At line 27 in file SY S3SY SUSER:[RAITTO.C.LEX]EXAMPL.C;
7 49 X if (setjmp(recovery_context) !=0)

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p18.decw$book (1 of 2)1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

50 X return error_recovery();

51 X else

52 X return process();

53#6ese

54 return process();

55 # endif

56

57}
Message summary: Informational 1 Warning O Error 0 8
Compiler Command

EXAMPL/LIST

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p18.decw$book (2 of 2)1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 1-2: Compiler Listing Options
EXAMPL Example 1-2 DUAO:[CIEXAMPL.C; PDP-11 C V1.2-015 Page 1
000001 6 February 1992 3:03 PM
1#ifdef __ PDP11C
2 # pragmallist title "Example 1-2"
3 # pragma module EXAMPL "000001"
4 # endif
5
6 /* Thismodule is used as an example to demonstrate the
various listing options that are available with PDP-
11 C. In particular, this comment shows how line wrap
of long source lines appearsin thelisting. */
7
8 # include <setjmp.h>
191/
10 1 ** setjmp.h
111*/
12 1 /* used by: setimp() & longjmp() functions */
131
14 1 #ifndef _ SETIMP_H
15 1 #define__ SETIMP_H
161
17 1 # define IMPBUF_STATE _SZ 8
181
19 1 typedef int jmp_buf[IMPBUF_STATE SZ];
2 1 typedef int jmp_buf[8];
201
21 1 # define setjmp c$stjp
22 1 # define longjmp cSlgjp
23 1int setjmp (jmp_buf env);
1int c$stjp (jmp_buf env);
24 1 void longimp (jmp_buf env, int val);
1 void cSlgjp (jmp_buf env, int val);
251
26 1 # endif
271
28 [* Use 6 character external names on the PDP-11 */
29 #ifdef _ PDP11C
30 # define recovery _context RECCTX
31 # define error_recovery ERRCVY

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl9.decw$book (1 of 3)1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

32 # define process PROCES
33 # endif
34
35 # define TRUE 1
36 # define FALSE O
37
38 jmp_buf recovery context;
1 jmp_buf RECCTX;
39 int error_recovery (void);
1int ERRCVY (void);
40 int process (void);
1 int PROCES (void);
41
42 #ifdef _ PDP11C
43 # pragmallist subtitle "main() - Main Entry Point"
44 # endif
45 int main (void)
46 {
EXAMPL Example 1-2 DUAOQ:[CI[EXAMPL.C; PDP-11 C V1.2-015 Page 2
000001 main() - Main Entry Point 6 February 1992 3:03 PM
47
48 # if ERROR_RECOVERY
1#if TRUE
32#if 1
49 if (setjmp(recovery_context) !=0)
1if (cSstjp(recovery context) !=0)
1if (cPstjp(RECCTX) I=0)
50 return error_recovery();
1 return ERRCVY ();
51 else
52 return process();
1 return PROCES();
53#else
54 X return process();
55 # endif
56
57}
4 TITLE EXAMPL
IDENT /000001/
PSECT $READW,RW,D,GBL,REL,CON,SAV
$READW:
000000 RECCTX::.BLKB 16. ; RECCTX
.GLOBL C$STJP,ERRCVY ,PROCES,C$MAI

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl9.decw$book (2 of 3)1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

.PSECT $CODEI
567
000000 MAIN:: ; main
000000 010546 MOV R5,-(SP) ; 45
000002 016746 000000G MOV RECCTX,-(SP) ; 49 RECCTX,
000006 005746 TST -(SP)
000010 004767 000000G CALL C$STJIP; c$stjp
000014 012605 MOV (SP)+,R5
000016 005726 TST (SP)+
000020 001410 BEQ 1%
000022 005746 TST -(SP) ; 50
000024 004767 000000G CALL ERRCVY ; ERRCVY
000030 012666 000004 MQV (SP)+,4(SP)
000034 012605 MOV (SP)+,R5
EXAMPL Example 1-2 DUAO:[CIEXAMPL.C; PDP-11 C V1.2-015 Page 3
000001 main() - Main Entry Point 6 February 1992 3:03 PM
000036 000207 RETURN
000040 000407 BR 2%
000042 005746 1$: TST -(SP) ; 52
000044 004767 000000G CALL PROCES; PROCES
000050 012605 000004 MQV (SP)+,4(SP)
000054 012605 MOV (SP)+,R5
000056 000207 RETURN

.END

Compiler Command

EXAMPL/LIST=EXAMPL_ALL/SHOW=ALL/DEFINE="ERROR_RECOVERY TRUE" 8

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl9.decw$book (3 of 3)1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 2-1. Simple Addition in PDP-11C
[* This program adds two numbers and placesthesumin* 1
* the variable total. */
int main(void) 2 /* The function name "main” */
{ I* Begins function body */
3int total; /* Variable of type "int" */
/* Blank lines are allowed */

4 total =2 + 2; [* Answer placed in "total" */

} I* Endsthe function body */

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.p30.decw$book1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 2-2: Output of Information
[* This program adds two numbers, assigns the value 4 to *
* variable total, and then prints the answer on the *
* terminal screen. */
#include <stdio.h> 1
int main(void)
{
int total;
total =2 + 2;
[* Print intro string */
2 printf("Here is the answer: ");
printf("%d.", total); /* Print the answer */

}

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.p32.decw$book1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 2-3: Output Using the Newline Char acter
[* This program adds two numbers, stores the sum in the *
* variable total, and then prints the answer on two *
* separate lines on the terminal screen. */
#include <stdio.h>
int main(void)
{
int total;
total =2 + 2;
[* Print intro string */
printf("Here isthe answer...\n");
[* Print the answer */
printf("%d.", total);

}

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.p33.decw$book1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 2-5: Conditional Execution Using the switch Statement
[* This program plays the same guessing game as the *
* previous example except that it uses the switch *
* statement. */
#include <stdio.h>
#include <ctype.h> 1 /* Include required module */
int main(void)
{
int ch;
printf("Guess what letter I'm thinking of'\n");
ch = getchar();
2 ch = tolower(ch); /* Convert "ch": lowercase */
switch(ch) /* Examine "ch" */
{ I* Body of switch statement */
case'da :
printf("You're right!");
break;
default : /* Any other answer */
printf("Y ou're wrong.\n");
printf("Y ou'll have to try again!™);

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.p36.decw$book1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 2-6: L ooping Using the do Statement
[* This program plays the same guessing game as the *
* other examples except that the user must guess until *
* the answer is correct. Thisis accomplished using a*
* do statement. */
#include <stdio.h>
#include <ctype.h>
int main(void)
{
int ch;
printf("Guess what letter I'm thinking of'\n");
printf("Keep guessing until you get it'\n");
do /* Do thefollowing ... */
{ I* Beginning of loop body */
ch = getchar();
ch = tolower(ch);
switch(ch)
{
case'da :
printf("You're right!");
break;
/* 1gnore RETURN (newline) ch */
1 case'\n":
break;
default :
printf("Y ou're wrong.\n");
printf("You'll have to try again!\n");
} I* End of switch statement */
} I* End of do loop body */
[* Condition to be tested */
2 while(ch !'="a);
}

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.p37.decw$book1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 2-7: Looping Using thefor Statement
[* This program plays the same guessing game as the *
* previous examples except that the user is limited to *
* three guesses. Thisis accomplished using afor *
* statement. */
#include <stdio.h>
#include <ctype.h>
int main(void)
{
int ch;
inti; /* Anincrementor for loop */
printf("Guess what letter I'm thinking of'\n");
printf("Y ou have three guesses. Make them count!\n");
/* Do the following 3 times */
lfor(i=1;i<=3;i+t+)
{ I* Beginning of loop body */
ch = getchar();
ch = tolower(ch);
switch(ch)
{
case'da :
printf("You're right!");
return;
case'\n'".
2 --i;
break;
default :
printf("Y ou're wrong.\n");
if (11=3)
printf("Y ou'll have to try again!\n");
} I* End of switch statement */
} I* End of for loop body */
printf(" Sorry, you ran out of guesses!");

}

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.p38.decw$book1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 2-8: Case Conversion Program
[* This program convertsits input to lowercase. The *
* first function passes control to the second function *
* to convert aletter. Comments are located to the *
* right of the code. */
#include <stdio.h> /* To use I/O definitions */
int lower (int c_up); /* Prototype for lower */
* function */
int main(void)
{1
FILE *infile, *outfile; /* Declarefiles*/
inti, c, c_out;
[* Open "infile" for input */
infile = fopen("ex113.in", "r");
/* Open "ouitfile" for output */
outfile = fopen("ex113.out", "w");
/* While not end of file... */
[* Get achar from thefile*/
while ((c = getc(infile)) '= EOF)
{
c_out = lower(c); /* Send char to "lower" */
/* Output the char to file */
putc(c_out, outfile);

}
return; /* Optional return statement */
}
/~k ___ *
* Beginning of the next function definition: *
K o o */

/* Function and parameter *
/* type and name */
int lower (int c_up) 2
{ I* Beginning function body */
[* If capital, convert */
if (c up>="A"&& c up<='2)
returnc_up-'A'+'gq;
else/* Else, return asis*/
return c_up;
} I* End of function body */
/* End function definition */

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.p43.decw$book1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 2-9: Including <stdarg.h>in a Parameter List
#include <stdarg.h>
#include <stdio.h>
static void argprint (char *type, ...)
{
va list ap; /* Argument pointer */
char p;
va start (ap, type); /* Initialize ap to point to first *
* unnamed argument. Last named *
* argument is used by va start to *
* get started */
while ((p = *typet+) 1="\0") {
switch (p) { /* Each call to va _arg returns one *
* arg and steps ap to the next */
case'i": printf ("\t%d", va_arg (ap, int)); break;
case 'd" printf ("\t%f", va_arg (ap, double)); break;
case's: printf ("\t%s", va_arg (ap, char *)); break;
default: printf ("\nOnly know how to print one of [ids]\n"); break;
}
}
printf ("\n");
va_end (ap); /* call when done*/
}
int main () {
argprint ("iis", 3, 4, "stringl");
argprint ("dsi", 3.0, "string2", 4);
}

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.p44.decw$book1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 2-10: Declaring Functions

#include <stdio.h>

char lower(int); 1 /* The function declaration */
int main(void)

{

while (¢ = getc(infile)) 1= EOF)

{
/* The function call */
c_out = lower(c);
putc(c_out, outfile);

}
}
char lower(int c_up) /* The function definition */
{
}

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.p46.decw$book1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 2-11: Declaring Functions Passed as Arguments
int x(void) { return 25; }
1 /* Defined beforeitis*
* used */
int z[10];
int main(void)
{

2 int y(void); /* Function declaration */

3 funct(x, y, z); /* Passed as addresses */

}
y(void) { return 30; } /* Function definition */

void funct(int (*f1)(), int(*f2)(), int* a) 4
/* Function definition *
* Declare arguments as *
* pointers to functions *
* returning an integer */
{
(*f1)(); /* A call to afunction */

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.p48.decw$book1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 2-12: Echo Program Using Command-L ine Arguments
[* This program echoes the command-line arguments. */
#include <stdio.h>
int main(int argc, char *argv[])
{ . .

inti;

[* argv[Q] is program name */
printf("program: %s\n",argv[0]);
for (i =1;i<argc; i++)
printf("argument %d: %s\n", i, argv[i]);

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.p49.decw$book1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 2-13: Scope of Variable Declarationsin Nested Blocks
[* This program shows how variables with the same *

* identifier can be of different datatypesif located *

* in different blocks. */
#include <stdio.h>
int main(void)
{ I* Outer block of "main" */
linti;

=1,

if 1==1)
{ I* Aninner block */
2 float i;

i = 3el0;
printf("Inner-block variable i:%f\n",i);

}
printf (" Outer-block variable i:%d\n",i);

}

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.p55.decw$book1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 3-1: Counting Blanks, Tabs, and Newlines Using the switch
Statement
[* This program counts blanks, tabs, and newlinesin text *
* entered from the keyboard. */

#include <stdio.h>
int main()
{

int number_tabs = 0, number_lines = 0, number_blanks = 0;

int ch;

while ((ch = getchar()) '= EOF)

switch (ch)
{
1 case '\t": ++number_tabs;
2 break;
case '\n". ++number_lines,
break;
case'': ++number_blanks,

}
printf("Blanks\tTabs\tNewlines\n");

printf (" %6d\t%6d\t%6d\n", number_blanks,
number_tabs,number_lines);

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal l.p67.decw$book1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 5-1: Initializing an Array of Structures
#include <stdio.h>
int main()
{
intl, m;
static struct
{
char ch;
inti;
float c;
} arf2][3] =
1{
2{
3{'d,1,3el0},
{'b, 2, 410},
{'c,3,5el0},
}
&
printf("row/col\t ch\t i\t c\n");

for (I =0;1<2; 1++)
for (m=0; m< 3; m++)
{
printf("[%d][%d]:", I, m);
printf("\t %c \t %d \t %e \n",
ar[l][m].ch, ar[I][m].i, ar[l][m].c);

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.p97.decw$book1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 5-2: Character String Constantsand Arrays
[* This program plays the same guessing games as the *

* previous examples except that it uses character *

* string constants and arrays. */
#include <stdio.h>
int main(void)
{

int ch; /* Declare a character */

[* Initialize messages */
char *greeting = "Guess which letter I'm thinking of!";
char *messagel ="You'reright!";
char *message2 = "You're wrong.";
char *message3 = "You'll haveto try again!";
char correct[2];
correct[O] ='da; /* Store correct letters*/
correct[1] ="A’;
printf("%s\n", greeting); /* %s = char string */
ch = getchar();
if (ch == correct[0] || ch == correct[1])

printf("%s', messagel);
else
{
printf("%s\n", message?);
printf("%s\n", message3l);
}

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.p100.decw$book 1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 5-3: Single Storage Allocation of Unions
[* This example illustrates the storage maintenance of *
* unions with different size members. */
#include <stdio.h>
#include <string.h>
int main(void)
{
union /* Declare the union */
{
char lastname[8]; /* Array for alast name */
char firstinit; /* Char. for first initial */
} overlap ="Lincoln";

[* Copy and print members */
printf("%s\n", overlap.lastname);
strcpy(overlap.lastname, " Jackson™);
printf("%s\n", overlap.lastname);
overlap.firstinit ='M’;
printf("%c\n", overlap.firstinit);
printf("%s\n", overlap.lastname);

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaall.p101.decw$book 1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 5-4. Structures
[* This program plays the same guessing game as the *
* previous examples except that it uses a structure. */
#include <stdio.h>
int main(void)
{
int ch;
char *greetingl = "Guess which letter I'm thinking of!";
char *greeting2 = "Y ou've 3 guesses. Make them count!";
char *messagel ="You'reright!";
char *message2 = "You're wrong.";
char *message3 = "You'll haveto try again!";
char * message4 = "Sorry, you've run out of guesses!”;
inti;
[* Store information */
1 struct storage /* Structure tag = storage */
{
char small_a; /* One correct letter */
char capital_a; /* Another correct letter */
char newline _ch; /* newline character */
int num_guesses; /* Number of guesses */
&
[* Declare "letter" *
* using tag "storage" */
2 struct storage letter = {'a, ‘A", \n'};
letter.num_guesses = 3;
printf("%s\n", greetingl);
printf("%s\n", greeting?);
for (i = 1; i <= letter.num_guesses; i++)
{
ch = getchar();
if (ch ==letter.small_a || ch == letter.capital_a)
{
printf("%s", messagel);

}

else
if (ch == letter.newline_ch)
--1; *Don't count carriage return*/
else

3return;

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p102.decw$book (1 of 2)1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

{
printf("%s\n", message?);
if (i 1= 3)
printf ("%s\n", message3);
}

} I* End of for loop body */
printf("%s', messaged);

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p102.decw$book (2 of 2)1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 6-1. Scope and Externally Defined Variables
Compilation Unit 1 Compilation Unit 2
int EXT_2; int EXT_1;
static int STAT;
f1() £3()

{{
.externint EXT_2;

)
externint EXT_1,;
f2() f4()
{{
\ .. :
}
f5()
{
static int STAT;
\ :

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaall.p111.decw$book1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 6-2: Reinitializing Two auto Variables
[* This example prints the values of two distinct auto *
* variables that have the same identifier. */
#include <stdio.h>
int main(void)
{
linti,x=2;
printf("main: %d\n",x);
for (1=0;i<1;i++)

{
2intx =3;
printf("for loop: %d\n",x);
}
printf("main: %d\n", x);

}

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaall.p115.decw$book 1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 6-3. Using the globalvalue Specifier
[* This program illustrates references to previously defined *
* globalvalue symbols. */

#include <stdio.h>
int test();
globalvalue FAIL = 0;
int main(void)
{

char c;

[* Get achar from stdin */
while ((c = getchar()) = EOF)
test(c);

* The following code is contained in a separate compilation *
* unit. *

#include <stdio.h>

#include <ctype.h> /* Include proper module */

globalvalue FAIL; /* Declare globa symbols*/

test(param_c)

char param_c; /* Declare parameter */

{
[* Testto seeif anumistrue*/
if ((isalnum(param_c)) != FAIL)
printf("%c\n", param_c);
return;

}

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1l.p120.decw$book 1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 7-1. Nested Substitution Directives
[* Show multiple substitutions and listing format */
#define AUTHOR james + LAST
int main()
{
Int writer,james,michener,joyce;
#define LAST michener
writer = AUTHOR,;
#undef LAST
#define LAST joyce
writer = AUTHOR,;

}

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal l.p126.decw$book 1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 7-2: Using _ _RAD50and _ RADS50L Macros
1 struct FILE_SPEC
2{
3 short device;
4 long file_name;
5 short file_type;
6};
7
8 struct FILE_SPEC myfile=
9
10 RADS0 ("DL1"),
110015377u,
11 RADS0OL ("MYFILE"),
2 1 0007211252456ul
12 RADS0 ("DAT"),
1 0014474u ,
13};

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal l.p137.decw$book 1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 8-1. Setting Up Your Own Locale Tables
#pragmallist title "tmlc - Define a user's own strange locale.”
#pragma module "tmic", "V 01.00"
/~k
* INCLUDE FILES:
*/
#include <defloc.h>
#include <stdio.h>
#include <locale.h>
/~k
* GLOBAL STORAGE or STRUCTURE DEFINITIONS:
*/
/* Non-monetary formatting table */ 1
typedef struct {
char *decimal_point; /* "." */
char *thousands_sep; /* "" */
char *grouping; /* "" */
} lc_nmformat;
[* Monetary formatting table */
typedef struct {
char *decimal_point; /* "" */
char *thousands_sep; /* "" */
char *grouping; /* "" */
char *int_curr_symbol; /* """ */
char *currency_symbol; /* "" */
char *mon_decimal_point; /* "" */
char *mon_thousands _sep; /* "" */
char *mon_grouping; /* """ */
char *positive_sign; /* " */
char *negative sign; /* "" */
char int_frac_digits, /* CHAR_MAX */
char frac_digits; /* CHAR_MAX */
char p_cs precedes; /* CHAR_MAX */
char p_sep by space; /* CHAR_MAX */
char n_cs precedes; /* CHAR_MAX */
char n_sep by space; /* CHAR_MAX */
char p_sign posn; /* CHAR_MAX */
char n_sign _posn; /* CHAR_MAX */
} lc_mformat;
typedef struct {

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p148.decwdbook (1 of 7)1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

char *abbrev_weekday nameq7];

char *full_weekday nameg[7];

char *abbrev_month_nameg[12];

char *full_month_nameg[12];

char *am_pm[2];

char *time_zoneg[24];
} lc_time_strings;
/*
kkhkkhkkhkkkkkhkkhkkhkkhkkkhkkhkhkkhkhkhkhkkhkhkkhkkhkkkkkhkkhkkkkkkkkx*x

**

** Test Strange Character Set Types:

*/

I* Define table used for support of the character-testing functions 2
which are affected by setting the locale LC_CTY PE.
The affected functions are found in Locale Control section of
the ANSI C standard.

*/

#define _tab (_type + 1) /* Allow EOF asan argument in CTY PE

functions. */
static const char _type []={
0, /* Octa Ascii */

_C,_C,_C,_C, _C, _C,_C,_C,/*000-007*/
_C,_SC, _SC,_SC,_SC,_SC, _C, _C, /* 010-017 \b\n\t\f\r */
_C,_C,_C,_C _C, _C,_C,_C,[*020-027 */
_C,_C,_C, _C _C, _C,_C,_C,/*030-037*/
S, P, PV, V, V, V, P /*040-047 "#$%&" */
P, P, _V, V, P _P, P, _V,/*050-057 ()*+,-./ */
XD, _XD,_XD, XD, _XD,_ XD, _ XD, XD, /* 060-067 01234567 */
XD, XD, P, P,_V, V, V, P, /*070-077 89:;<=>?*/
_V, XL, XL, XL, XL, XL, XL, _L,/*100-107 @ABCDEFG */
L, L, L, L, L, /*110-127 HIKLMNO */
L, L, L, L, L, L, L, /*120-127 PQRSTUVW */
L, L, L, PV, P _V, V,/*130-137 XYZ[\|*_*/
_V, XU, XU, XU, XU, XU, XU, U, /* 140-147 "abcdefg */
U, U, U, U, U, U, U, U,/* 150-157 hijkimno */
U, U, U, U, U, U, U, U,/*160-167 pgrstuvw */
U, U, U, PV, PV, C,*170-177 xyz{[} ~ */
[* Eight bit characters. */
0,0,0,0,_C,_C,_C,_C,/*200-207 */
_C, _C, _C,_C _C _C,_C _C [*210-217*/
_C,_C,_C,_C _C, _C,_C,_C,[*220-227*/
0,0,0,_C,_C,_C,_C,_C,/*230-237*/
0, P,_V, V,0,_V,0,_V,/[* 240-247 {¢C£ ¥ §*/

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p148.decw$book (2 of 7)1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

V, V,_ V, V,0,0,0,0,/* 250-257 "©*<*/

"V, V, V, V,0, V, V, P, *260-267 °+% pf*/
0, V, V, V,0, V, V, P *270-277 YA :*|
L, b, b, b, L, L, L, L, /* 300-307 AAAAAECE*/
L, L, L, L, L, L, L, L,/ 310-317 EEEEI(Ti*/
o L, L, L, L, L, L, L,/ 320-327 NOOOOOx*/
L, L, L, L, L, L,0, V,/*330-337 gUUUUY R/
U, U, U, U, U, U, U, U,/* 340-347 atdas8e*/
U, U, U, U, U, U, U, U,/* 350-357 ecésiiti*/
0, U, U, U, U, U, U, U,/* 360-367 i066066+*/
U, U, U, U, U, U,0,0/* 370-377 gldiy */

b

I* Define atable used for support of the character collating 3
functions which are affected by setting the locale portion
for LC_COLLATE. The affected functions are found in Locale
Control section of the ANSI C standard.
*/
[* Use Standard DEC MULT. Character Collating Sequence */
static const unsigned char _order [] ={
0,123,4,5,6,7,

8,9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24,25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71,
72,73, 74,75,76, 77,78, 79,

80, 81, 82, 83, 84, 85, 86, 87,

88, 89, 90, 91, 92, 93, 94, 95,

96, 97, 98, 99,100,101,102,103,
104,105,105,107,108,109,110,111,
112,113,114,115,116,117/,118,119,
120,121,122,123,124,125,126,127,

128,129,130,131,132,133,134,135, /* 200-207 */
136,137,138,139,140,141,142,143, [* 210-217 */
144,145,146,147,148,149,150,151, /* 220-227 */
152,153,154,155,156,157,158,159, /* 230-237 */
160,161,162,163,164,165,166,167, /* 240-247 iCE ¥ §*/
168,169,170,171,172,173,174,175, [* 250-257 "©& */
176,177,178,179,180,181,182,183, /* 260-267 °+2 py-*/

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p148.decw$book (3 of 7)1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

184,185,186,187,188,189,190,191, /* 270-277 °»Yis o*/
192,193,194,195,196,197,198,199, /* 300-307 AAAAAACE*/
200,201,202,203,204,205,206,207, /* 310-317 EEEEI(11*/

~ N s A A s

N s A e s

216,217,218,219,220,221,222,223, /* 330-337 JUUUUY 3%/
224,225,226,227,228,229,230,231, /* 340-347 addssde*/
232,233,234,235,236,237,238,239, /* 350-357 eéédiiii*/
240,241,242,243,244,245,246,247, [* 360-367 00606~/
248,249,250,251,252,253,254,255 /* 370-377 guidiy */
&
/*
4 Strange character mapping table for toupper;
uppercase characters are mapped to lowercase,
lowercase characters are mapped to upper.
*/
static const unsigned char _upcase [] =1
0,123,4,5,6,7,
8,9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39,

40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63,
64,

97, 98, 99,100,101,102,103, /* A...toa... */
104,105,106,107,108,109,110,111,
112,113,114,115,116,117,118,119,

120,121,122, /* ..Zto ...z */
91, 92, 93, 94, 95,
96,
65, 66, 67, 68, 69, 70, 71, /* abcdefg */
72,73,74,75, 76, 77, 78, 79, I* hijklmno */
80, 81, 82, 83, 84, 85, 86, 87, /* pgrstuvw */
88, 89, 90, /* xyz*/
123,124,125,126,127,
128,129,130,131,132,133,134,135, /* 200-207 */
136,137,138,139,140,141,142,143, /* 210-217 */
144,145,146,147,148,149,150,151, /* 220-227 */
152,153,154,155,156,157,158,159, /* 230-237 */
160,161,162,163,164,165,166,167, /* 240-247 {CE ¥ §*/
168,169,170,171,172,173,174,175, [* 250-257 "©%«< */
176,177,178,179,180,181,182,183, /* 260-267 °+= ui-*/

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p148.decwdbook (4 of 7)1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

184,185,186,187,188,189,190,191, /* 270-277 °»Yis o*/
192,193,194,195,196,197,198,199, /* 300-307 AAAAAACE*/
200,201,202,203,204,205,205,207, /* 310-317 EEEEI(11*/

~ N s A A s

N s A e s

216,217,218,219,220,221, /* 330-335 JUUUUY */
222,223, * 336-337 3/
192,193,194,195,196,197,198,199, /* 300-307 adaddaece*/
200,201,202,203,204,205,205,207, /* 310-317 ecégliir*/
208,209,210,211,212,213,214,215, /* 320-327 A06606+*/
216,217,218,219,220,221,254,255 /* 330-335 guudiy */
&
/*
Make a strange character mapping table for tolower;
lowercase characters are mapped to upper, uppercase
characters are mapped to lower.
*/
static const unsigned char _downcase [] ={
0,123,45,6,7,
8,9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39,

40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63,
64,

97, 98, 99,100,101,102,103, /* A...toa... */
104,105,106,107,108,109,110,111,
112,113,114,115,116,117,118,119,

120,121,122, /* ..Zto ...z */
91, 92, 93, 94, 95,
96,
65, 66, 67, 68, 69, 70, 71, /* abcdefg */

72,73,74,75, 76, 77, 78, 79, I* hijklmno */

80, 81, 82, 83, 84, 85, 86, 87, /* pgrstuvw */

88, 89, 90, /* xyz*/

123,124,125,126,127,

128,129,130,131,132,133,134,135, /* 200-207 */
136,137,138,139,140,141,142,143, /* 210-217 */
144,145,146,147,148,149,150,151, /* 220-227 */
152,153,154,155,156,157,158,159, /* 230-237 */
160,161,162,163,164,165,166,167, /* 240-247 CE ¥ §*/
168,169,170,171,172,173,174,175, [* 250-257 "©%«< */

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p148.decwdbook (5 of 7)1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

176,177,178,179,180,181,182,183, /* 260-267 °+2 pf-*/
184,185,186,187,188,189,190,191, /* 270-277 Y4/ ¢*/

s A A~ s

~ N s A A s

N s A e s

248,249,250,251,252,253, /* 330-335 JUUUUY */
222,223, [* 356-357 3¢/

224,225,226,227,228,229,230,231, /* 340-347 addstde/
232,233,234,235,236,237,238,239, /* 350-357 ecégliir*/
240,241,242,243,244,245,246,247, [* 360-367 A00606+*/
248,249,250,251,252,253,254,255 /* 370-377 guidiy */
&
[* Monetary formatting data -- for strange Locale */
static Ic_mformat const MFT_TM =5

{

", ¥ *decimal _point */
""", I* *thousands_sep */

"\3", I* *grouping */
"TMM", /* *int_curr_symbol */
"Mr.", [* *currency_symbol */
", ¥ *mon_decimal_point*/
""", I* *mon_thousands_sep*/

"\3", /* *mon_grouping */

", [* *positive_sign */

"t [F *negative sign */

2, * int_frac_digits*/

0, /* frac_digits*/

1, /* p_cs precedes*/

0, /* p_sep by space*/

1, /* n_cs precedes*/

0, /* n_sep by space*/

1, /* p_sign_posn */

1/* n_sign_posn*/
&

static lc_nmformat const NFT_TM =6

{
", [* *decimal_point; */
", I* *thousands_sep; */
"\3" /* *grouping; */
&
[* Timetable -- for strange Locale*/ 7
static const Ic_time_strings TIM_STR ={

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p148.decw$book (6 of 7)1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

{ I* abbreviated name weekday name table for strange locale */
"Sun”, "Mon", "Tom",
"Wed", "Tomm", "Fri",

|3

{ I* Full name weekday name table for C locale */
"Sunday", "Monday", "Tomday",
"Wednesday", "Thomasday", "Friday",
" Saturday"

|3

{ I* Abbreviated month name table */
"Jan", "Feb", "Mar",
"Apr, "play”, "Jun",
"Jul", "Aug", "Sep",
"Octy", "Nov", "Dec"

|3

{ I* Full month name table */
“January", "February", "March",
"April", "Play-day", "June",
"July", "August”, " September”,
"Octopus’, "November"”, "December"

}s

{ I* AM, PM */
II%MII’IISPAMII

}s

{ I* Time zone table std time zone names for strftime */
"UTC"’"”’""’""’"TAS-I-"’"TES-I-"’"TCS-I-"’"TMS-I-"’"TPS-I-"’"”’""’""’

}

&

[* Define collating -- strange locale */

DEFINE _LC_COLL("tom_m",tmcl, order_ , upcase , downcase)
I* Define collating type -- strange locale */

DEFINE LC CTYPE("tom_m",tmty, tab)

[* Monetary formatting data -- strange Locale */

DEFINE_LC MONETARY ("tom_m",tmmn,&MFT_TM)

/* Non Monetary formatting data -- strange Locale */

DEFINE_LC NUMERIC("tom_m",tmnc,& NFT_TM)

[* Time formatting data -- strange Locale */

DEFINE LC TIME("tom _m",tmtm,&TIM_STR)

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p148.decwdbook (7 of 7)1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example C-1: Sample Program Using localeconv
#include <stdio.h>

#include <math.h>

#include <string.h>

#include <locale.h>

#include <stdlib.h>

int main()

{

struct lconv *formatp; /* Pointer to conversion table. */
double frval; /* Fraction value. */
char str[20]; /* Formats. */
char *clocale; /* Displaysthe current locale. */
char *ovalue;
double value = 2.5;
if (setlocale(LC_ALL,"french,french,french,french") == NULL)
return;
[* Setsthefirst 4 categoriesto french: */
/* LC_COLLATE: Used by strcoll() and strxfrm() */
[* LC_CTYPE: Used by the character testing FUNCTIONS */
/* LC_NUMERIC: Numeric formatting (returned by localeconv()) */
[* LC_MONETARY: Monetary formatting (returned by localeconv()) */
[* LC_TIME is set to the default ("C") locale */
clocale = setlocale(LC_ALL, NULL);
printf("The current locales are: %s\n",clocale);
/* Inquires. This should return */
* "french,french,french,french,C" */
formatp = localeconv(); /* Gets the current monetary */
[* conversion format. */
frval = modf(value,&value); /* Splitsinto fraction and whole */
/* number, places the whole number */
* back into value. */
strcpy(oval ue,formatp->currency _symbol);
/* Copies the currency symbol to */
/[* output. */
if (formatp->p_sep by space) /* If a space should precede the */
strcat(ovalue,"); /* number, insert it here. */
sprintf(str,"%g",value); /* Converts the whole number. */
strcat(ovalue,str); /* Copiesto output. */
if (formatp->frac_digits) { /* If fractional digits are allowed */
/* scale by fractional digits, and */

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p184.decwdbook (1 of 2)1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[* usefrac_digits asthe precision */
[* parameter for %*.0g conversion */
[* specification. */
sprintf(str,"%*.0g",
formatp->frac_digits, /* Precision, replaces (*). */
frval * (formatp->frac_digits* 10)); /* Scales up. */
strcat(ovalue,formatp->mon_decimal_point);
[* Copiesthe locale's version of */
* the decimal point. */
strcat(ovalue,str); /* Copiesthe fractional digits. */
}

printf("%s\n",ovalue); /* Returns pointer to output string. */

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p184.decw$book (2 of 2)1/25/06 3:46 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example C-2: Using the Macro and Function Versions of isalnum
#include <ctype.h>
#include <locale.h>
#include <stdio.h>
int main (void)
{
short c0,n0=0,n1=0,n2=0;
setlocae(LC_CTYPE, "C");
for (c0=0; c0 < 128; cO++)
{
If (isalnum(c0)) nO++; /* invoke the macro version of isalnum */
If ((&isalnum)(c0)) n1++; /* force the call the function isalnum */
#undef isalnum /* undef the macro version of isalnum */
if (isalnum(c0)) n2++; /* invoke the function version of isalnum */

}

printf (" The number of alphanumeric charactersis %d, %d, and %d.", n0, n1, n2);

}

http://www.sysworks.com.au/di sk$vaxdocsep953/decwSbook/d33vaal 1l.p185.decw$book 1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Figure 1-1: DCL Commandsfor Developing Programs

Commands

Action

Input/Qutput Files

% EDIT &AVE.C

ze file type C toin-
clicate the file contains
a FDP-11 C program.

Create a

SOUFCE prograrm

% CC AVE

The CC command
assumes the input file
typeis C. (If you use
the F/LIST qualifier the
compiler creates a
lizting file.)

% LINE AVE
The LIMK command
assumes the input file
type is OBJ. Use the
LINKSCC command
on RSTSIE.

% RUN AVE

The RUN command
assumes the file type
of an image is TSK

ion RSw and RSTSIE),

a0 (on AT-11 and
RSTS/E), or EXE (on
Wi =11 RS A,

—h- AVEC

Comgile the
SOUFCE [rogram

Link the
object mocule

Rurn the
executable

imagge

AVE DB
(AME.LIS)

e
—
{ } Likraries

AVE. TSK (on RSH and
RSTSIE), AWE.SAL {on
RT-11 and RSTS/E, or
AVE EXE {on WS

MU -21204 - Rd4

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl5.decw$book 1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Figure 2-1: rvalues, lvalues, and Assigning Pointers

Ivalues rvalues Variable
(addresses) (objects) Identifiers
1000 — —
1002 paintr
1002 — —
110 #
1004 — —
0 W
MU-21214-RA

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p40.decw$book 1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Figure 2-2: Thelndirection Operator in Assignments

Ivalues rvalues Variable
(addresses) (objects) Identifiers
1000 — —
1002 paintr
1002 — —
110 #
1004 — —
10 Y
MU -2 1224 -RA

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p4l.decw$book 1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Figure 4-1: Boolean Algebra and the Bitwise Operators
Boolean Algebra

AMD (&) OF ([EACLUSIVE-OR ()
10 10 10
110 111 1[0[1
olofo af1]o ofifo
Operator Bitwise Operation Decimal Yalue
AMD (& 1T o 1 1 1 1 1 55
1 1+ 0 o0 o0 o0 A 87
1 0o 0o o0 o0 o0 A B5
aF [1T o 1 1 1 1 1 85
1 1+ 0 0 0 o1 87
T 1 1 1 1 1 1 127
A—OF (4 1T o 1 1 1 1 1 85
1 1+ 0 o0 o0 o0 A 87
a1 1 1 1 1 0 52

MU-21234 -Rh

http://www.sysworks.com.au/di sk$vaxdocsep953/decwSbook/d33vaall.p78.decw$book 1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Figure 4-2: Shift Operators

Bits Expression Value
IRRRRRRRRR AR =7 -7
1111111111001000 (=703]
aoooaooooao0t 11 7 7
Dao00aao0oi 11000 Foed SE
aoooaaooaao0t 11 7 7
aoooaoooaa00011 Trrl 3
IRRERRRERRRRRIUEY Q0=FFFaL O=FFFaL
otti111111111100 {0 FFFAL =1 O=7FFCU

MU -2 1245 -FA

http://www.sysworks.com.au/di sk$vaxdocsep953/decwSbook/d33vaall.p79.decw$book 1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Figure5-1: Alignment of Structure Members

word 1
15 1]
gooooooo ofooooot
1
. A
bl
ac
word 2
15 1]
Qooooi100 oooooooo
L J
by
Al
word 3
15 1]
gooooooo oiot1o110
L | 1
k—w"Lv—"
a.fld2 a.fldi
word 4
15 1]
gooooQooo ooooi100
|
l,_y_,l
a.fld3
MU =212 58 - R

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p98.decw$book 1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Table 1-1: Copying Files Among Operating Systems

To media for mat:

From:

RSX Format
Disk
RT-11 For mat
Disk
DOS Format
Tape

Backup Format
Tape

RSTS<NA> FIT PIPBACKUP
RSX COPY (DCL)
PIP (MCR)

FLX FLX <NA>
RT-11 <NA> COPY <NA> <NA>
VMS COPY EXCHANGE EXCHANGE BACKUP

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p21.decw$book 1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Table2-1: PDP-11 C Keywords

Keyword M eaning

Type specifiers:

int Integer

long 32-bit integer

signed Signed integer

unsigned Unsigned integer

short 16-bit integer

char 8-bit integer

float Single-precision, floating-point number
double Double-precision, floating-point number
struct Structure (aggregate of other types)
union Union (aggregate of other types)
variant_struct

1
Structure (aggregate of other types)
variant_union

1
Union (aggregate of other types)
enum Enumerated scalar type
void Function return type
const Type qualifier
volatile Type qualifier

Stor age-class specifiers:

auto Allocated at function block activation
static Allocated at compile time

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p52.decw$book (1 of 3)1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

register Allocated at function block activation
extern Allocated at compile time

globaldef
1

Definition of global variable

globalr ef
1

Reference to global variable

globalvalue
1

Definition or declaration of global value

1

Type specifier or storage class qualifier provided for compatibility with VAX C. Is akeyword when
compiled using the
INOSTANDARD qudlifier. Is not akeyword when compiled using the /STANDARD=ANSI qualifier

Keyword M eaning

Stor age-class specifiers:

typedef Tagged set of type specifiers

readonly
1
L ocation may only be read
noshare
1
Isignored by PDP-11 C
Statements:

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p52.decw$book (2 of 3)1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

goto Transfers control unconditionally

return Terminates a function and optionally returns avalue to the caller

continue Causes next iteration of containing loop

break Terminates its corresponding switch or loop

if Executes following statement conditionally

else Provides an alternative for the if statement

for Iterates the next statement (zero or more times) under control of three expressions
do Iterates the next statement (one or more times) while a given condition istrue
while Iterates the next statement (zero or more times) while a given expression is true
switch Executes one or more of the specified cases (multiway branch)

case Begins one case for switch

default Provides default case for switch

Operator:

sizeof Computes size of operand in bytes

1
Type specifier or storage class qualifier provided for compatibility with VAX C. Is akeyword when
compiled using the
INOSTANDARD qudlifier. Is not a keyword when compiled using the /STANDARD=ANSI qualifier

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p52.decw$book (3 of 3)1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Table 2-2: VAX C Keywords

Keyword M eaning

Type specifiers:

int Integer (On aVAX, 32 bits)

long 32-bit integer

unsigned Unsigned integer

short 16-bit integer

char 8-bit integer

float Single-precision floating-point number
double Double-precision floating-point number
struct Structure (aggregate of other types)
union Union (aggregate of other types)
variant_struct Structure (aggregate of other types)
variant_union Union (aggregate of other types)
enum Enumerated scalar type

void Function return type

const Type qualifier

volatile Type qualifier

Stor age-class specifiers:

auto Allocated at every block activation

static Allocated at compile time

register Allocated at every block activation

extern Allocated by an external data definition (at compile time)
globaldef Definition of global variable

globalref Reference to global variable

globalvalue Definition or declaration of global value

Keyword M eaning

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p53.decw$book (1 of 2)1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

Stor age-class specifiers:

readonly Allocated in read-only program section
noshar e Assigned NOSHR program section attribute
typedef Tagged set of type specifiers

Statements:

goto Transfers control unconditionally

return Terminates afunction and optionally returns avalue to the caller

continue Causes next iteration of containing loop

break Terminates its corresponding switch or loop

If Executes following statement conditionally

else Provides an alternative for the if statement

for Iterates the next statement (zero or more times) under control of three expressions
do Iterates the next statement (one or more times) until a given condition isfalse
while Iterates the next statement (zero or more times) while a given expression is true
switch Executes one or more of the specified cases (multiway branch)

case Begins one case for switch

default Provides default case for switch

entry None (reserved for future use)

Operator:

sizeof Computes size of operand in bytes

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p53.decw$book (2 of 2)1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Table 2-3: Trigraph Sequences and Equivalence Characters

Trigraph
Sequence

Equivalence
Character

=#
Al
72\
7)1
??/\
72<{
72 |
77>}
-~

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaall.p60.decw$Sbook 1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Table4-1. PDP-11 C Operators

Operator Example Result

[] di] Accessto array members

-> ptr->memb Access to members of structure and union objects
. struct.memb A ccess to members of structure and union objects
+ [unary] + aVaueof a

- [unary] - aNegative of a

*

[unary]

a Reference to object at address a
& [unary] &aAddressof a
~ ~a One's complement of a
++ [prefix] ++a a after increment
++ [postfix] a++ abefore increment
[prefix] aaafter decrement
[postfix] a abefore decrement
Sizeof sizeof(tl)
sizeof e

Sizein bytes of typetl

Size in bytes of expression e
(type-name) (t1)e Expression e, converted (cast) to typetl
+a+baplusb
- [binary] ab aminusb

*

[binary] a

batimesb
/ al badivided by b
% a % b Remainder of a/b (amodulo b)

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p73.decw$book (1 of 2)1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

>>a>> D a, right-shifted b bits
<< a<< b a, left-shifted b bits
<a<blif a<b; Ootherwise
>a<blif a>Db; 0otherwise
<=a<=b1lif a<=b; 0otherwise
>=a>=Db1lif a>=Db; 0otherwise

Operator Example Result

==a==Db1lif aequal tob; O otherwise

I=al!=Db1lif anot equal to b; O otherwise

& [binary] a& b Bitwise AND of aand b

| a| b Bitwise OR of aand b

Na” b Bitwise XOR (exclusive OR) of aand b

&& a&& bLogical AND of aand b (yieldsO or 1)

kakb Logical OR of aand b (yields 0 or 1)

I'laLogical NOT of a(yields O or 1)

?.a?el:e2 Expression el if ais nonzero,
Expression e2 if ais zero

=a=Dbb (assigned to a

+=a+=baplusb (assigned to a)

-=a-=baminusb (assigned to a)

*

=batimesb (assigned to a)
/=al=Dbadivided by b (assigned to a)
%= a %= b Remainder of a/b (assigned to a)
>>= a>>= b g, right-shifted b bits (assigned to @)
<<= a<<=b g, left-shifted b bits (assigned to a)
&=a&=Db BitwisesaAND b (assigned to a)
| =a|=DbBitwiseaOR b (assigned to a)
A= a”= b Bitwisea XOR b (assigned to a)
, €l,e2 e2 (el evaluated first)

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p73.decw$book (2 of 2)1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Table 4-2: Precedence of PDP-11 C Operators

Category Operator Associativity

Primary () [] ->. Left toright
Unary + -1 ~++ (type)

& sizeof Right to left
Binary (mult.)

*

/ % Left to right
Binary (add.) + - Left to right
Binary (shift) << >> Left to right
Binary (relat.) < <= > >= Left toright
Binary (equal.) = = I= Left to right
Binary (bitand) & Left to right
Binary (bitxor) ~ Left to right
Binary (bitor) | Left to right
Binary (AND) & & Left to right
Binary (OR) k Left to right
Conditional ?: Right to left
Assignment = += -=

*

=/=%=>>=<<=§=
A:l:

Right to left
Comma, Left to right

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p74.decw$book 1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Table5-1: PDP-11 C Data Type Keywords

Scalar Aggregate Other Type

char struct void
double union

enum variant_struct
float variant_union
int

long

short

signed

unsigned

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaall. p87.decw$Sbook 1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Table 5-2: Size and Range of PDP-11 C Integers

Keyword Size Range

long

long int
signed long
signed long int

32 bits-2,147,483,648 to
2,147,483,647
unsigned long
unsigned long
int

32 bits 0 to 4,294,967,295
int
short
short int
signed
signed int
signed short
signed short int

16 hits-32,768 to 32,767
unsigned
unsigned short
unsigned short
int

16 bits 0 to 65,535
char
signed char

8 bits-128 to 127
unsigned char 8 bits 0 to 255

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p89.decw$book (1 of 2)1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaall.p89.decw$book (2 of 2)1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Table 5-3: PDP-11 C Escape Sequences

Character Mnemonic Escape Sequence

newline NL \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
apostrophe '\
guotes™ \ "

bit pattern ddd \ddd or \xddd
bell BEL \a
guestion mark ?\?

http://www.sysworks.com.au/di sk$vaxdocsep953/decwSbook/d33vaall.p90.decw$book 1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Table 6-1: PDP-11 C Storage Classes and Storage-Class Specifiers

Storage
Class Specifiers Refer ence Section

Internal auto, register ,
absence of specifier inside ablock or function
1

Section 6.3
Static static Section 6.4

Global extern ,
absence of specifier outside of all functions

Section 6.5

1
Functions declared without a storage-class specifier are of the global storage class, by default.

http://www.sysworks.com.au/di sk$vaxdocsep953/decwSbook/d33vaal 1l.p109.decw$book 1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Table 6-2: Scope and the Storage-Class Specifiers

Inside a Function

Outside a Function

Storage Class

L exical
Scope
Link-Time
Scope
L exical
Scope
Link-Time
Scope
auto enclosing
block
Noillegal illegal
register enclosing
block
Noillegal illegal
static enclosing
block

No CU

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p110.decw$book (1 of 2)1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

1
No
extern enclosing
block
YesCU
1
Yes
globalvalue enclosing
block
YesCU
1
Yes
(none) enclosing
block
No CU
1
Yes

1
Compilation Unit still must be declared before used.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p110.decw$book (2 of 2)1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Table 6-3: Location, Lifetime, and the Storage-Class K eywor ds

Storage Class L ocation Lifetime

(none) Psect, stack, or
register

Temporary or permanent
auto Stack or register Temporary
register Stack or register Temporary
static Psect Permanent
extern Psect Permanent
globalvalue No storage allocated Permanent

http://www.sysworks.com.au/di sk$vaxdocsep953/decwSbook/d33vaall.pl113.decw$book 1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Table 7-1: Logical Namesfor PDP-11 C Include Files

Host System Quoted Form

Bracketed Form
(Logical Name 1)

Bracketed Form
(Logical Name
2) Bracketed Form (Standard Installation L ocation)

PDP-11C

VMS C$INCLUDE: PDP11C$INCLUDE: <NA> LB:[1,1]
RSX-11M-

PLUS

and

Micro /RSX

CSINCLUDE: PDP11C$INCLUDE: CLB: LB:[1,1]
RSX-11M <NA><NA> CLB: LB:[1,1]
RSTS'E <NA> PDP11$INCLUDE: CLB: CC$:
RT-11 <NA> <NA> CLB: SY:

VAX C

VMS C$INCLUDE: VAXCS$INCLUDE: <NA> SY S$LIBRARY:

http://www.sysworks.com.au/di sk$vaxdocsep953/decwSbook/d33vaall.p130.decw$book 1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Table 7-2: PDP-11 Char acter Sets

iso_latin 1 french canadian
dec_mcs german

ascii italian

british norwegian

danish

1
portuguese
dutch spanish
finnish swedish
french swiss

1
The ““danish" and " "norwegian” character sets are synonymous.

http://www.sysworks.com.au/di sk$vaxdocsep953/decwSbook/d33vaall.pl134.decw$book 1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Table 7-3: Psect Typesand Associated Data Types

Psect Type Types of Data

const String literals, character constants, numeric constants. The default attributes for psects
of thistype are con, d, Icl, nosav, ro, and rel. The default name is SCONST.

static_ro Objects declared with the const attribute. The default attributes for psects of thistype are
con, d, ghl, sav, ro, and rel. The default name is SREADO.

static_rw Objects declared with the static or exter n attribute, but not with the const attribute.
The default attributes for psects of thistype are con, d, ghl, sav, rw, and rel. The default
nameis $READW.

code i Function code. The default attributes for psects of thistype are con, i, Icl, nosav, ro, and
rel. The default name is $CODEL.

code d Data generated as part of the function code. The default attributes for psects of thistype
arecon, d, Icl, nosav, ro, and rel. The default name is SCODED.

http://www.sysworks.com.au/di sk$vaxdocsep953/decwSbook/d33vaal l.p135.decw$book 1/25/06 3:47 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Table 8-1: PDP-11 RTL Psects

Name Use

CC$ALL RMSdefault ALL block.
CC$FAB RMS default FAB block.
CC$DAT RMS default DAT block.
CC$KEY RMS default KEY block.
CC$NAM RMS default NAM block.
CC$PRO RMS default PRO block.
CC$RAB RMS default RAB block.
CC$SUM RMS default SUM block.

C$CCTO
C$CCT2

C$CMTO
C$CMT2

C$CTTO
C$CTT2

C$ENDO
C$END1
C$END2
C$END3

Character collating table. Used for local e-specific routines to determine the collating
sequence of each character set.

Character mapping table. Used for locale-specific routines to determine the results of
character mapping functions for each character set.

Character testing table. Used for |ocale-specific routines to determine the results of
character testing functions for each character set.

The CSENDX psects are used for end of task processing. The addresses of functionsto
be called by the PDP-11 C RTL at task-exit time are placed in the psect CSEND1. For
instance, the address of the routine that ensures all files are closed is placed in CSEND1.
Thisis separate from the atexit system function. The psects CSENDO, C$END1, and
C$END3 are reserved for use by the PDP11-C RTL. The addresses of routines to be

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl42.decwdbook (1 of 4)1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

caled

at task exit can be placed in the psect CSEND2. Modules that define this psect may not
residein aresident library.

C3$FCSI Instructions for PDP-11 C FCS Extension Library routines. These routines provide
support for calling FCS routines.

C$INIO

C3$INI1

C$INI2

C$INI3

Similar to the CBENDXx psects, the C$INIx psects are used to provide the addresses of
routines to be called at task startup. The psects C$INIO, C$INI1, and C$INI3 arere-
served for use by the PDP-11 C RTL. The psect C$INI2 is available to place the addresses
of routinesto be called at task startup. Modules that define this psect may not residein a
resident library.

C$INIR Code for initialization routines.

C$MFTO

C$MFT2
Monetary formatting table. Used for locale-specific routines to determine the results of
monetary formatting functions for each character set.

Name Use

C3NFTO

CINFT2

Numeric formatting table. Used for locale-specific routines to determine the results of
numeric formatting functions for each character set.

C3OTSC Constant data for PDP-11 C Object Time System (OTS) routines.

C3$0OTSD Read data for the PDP-11 C OTS routines.

C$OTSH RT-11 only. Used to determine size of C$OTSI and C$STDI psects.

C3OTSI Instructions for PDP-11 C OTS routines. These routines handle most of the math and
conversion functions.

C$0OTSIRT-11 only. Used to determine size of C$OTSI and C$STDI psects.

C3OTSR Constant datafor PDP-11 C OTS routines.

C3OTSW Writeable storage for PDP-11 C OTS routines. Modules that contain this psect may not
residein aresident library.

C$RMSI Instructions for PDP-11 C RMS Extension Library routines. These routines provide

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaal l.p142.decwdbook (2 of 4)1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

support for calling RM S routines.
C3$STDC Constant data for the Standard Library routines.
C$STDD Read data for the Standard Library routines.
C$STDI Instructions for the Standard Library routines.
C$STDR Constant data for the Standard Library routines.
C$TIMO
C$TIM2

Time formatting table. Used for locale-specific routines to determine the results of time
formatting functions for each character set.

$PFCXT FCS Transfer Vector. Standard /0O callsto FCS go through this vector. Routines con-
taining this psect may not reside in aresident library because the psect contains ref-
erences to FCS routines. However, this does allow severa other routinesto residein a
resident library.

$PIOXT 1/0O Transfer Vector. Thisis used to allow PDP-11 C to access severa low-level 1/0
systems easily. $PIOXT contains two addresses for each low-level 1/0 action used by
PDP-11 C. One addressis for support for native I/O for that action, the other isfor
support for either RMS or FCS I/O for that action. Modules that define this psect may not
residein aresident library.

$PRLUN Bit mask used for reserving LUNSs. The first word indicates the number of words that
follow. These make up the mask. Modules that define this psect may not residein a
resident library.

Name Use

$PRMXT RMS Transfer Vector. All Standard 1/0 callsto RM S go through this vector. Routines
containing this psect may not reside in aresident library, because the psect contains
references to several RM S routines. However, this allows a number of other routinesto
livein resident libraries.

$$C The PDP-11 C OTSwork area. Thisis read/write data space used by the RTL. Modules
that define this psect may not reside in aresident library.

$SCAST OTS work area psect containing structure required by asctime () function.

1
$SCCLK OTSwork area psect containing storage required for correct use of the clock function.

1
$SCEXI OTSwork area psect containing storage required to register the addresses of the functions
to be called during the execution of the atexit () routine.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p142.decwdbook (3 of 4)1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

1
$$CGEN OTS work area psect containing storage required to support the getenv (') function.

1
$$CLOC OTS work area psect containing storage required to support the locale functions.

1
$SCMLL OTSwork area psect containing storage required to support memory allocation
functions.
1

$$CSIG OTS work area psect containing storage required to support the signal functions.

1
$$CSIO OTS work area psect containing storage required to support standard 1/0 operations.

1
$$CTIM OTSwork area psect containing storage for the required struct tm.

1

1
This read/write psect will only appear in the user task if the related functions are referenced in the

user's program.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p142.decwdbook (4 of 4)1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Table 8-2: Global Symbols

For mat to Exclude

Symbol

d, i, uSPULON, $PLONG

0, p $POLON

X, X $PHLON

f, e E, g, G$PFLOA, $PFLOE

1
Where two symbols are shown, a globalvalue statement for both symbols must appear in the program.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p150.decw$book1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

TableB-1: PDP-11 C Standard Library Header Files

Module Description

assert.h Definition of the assert macro

ctype.h Character type and macro definitions for character classification and mapping functions

errno.h Error number definitions

float.h Macro definitions that provide implementation-specific floating-point limits

limits.h Macro definitions that provide implementation-specific constraints

locale.h Localization and formatting of dates and times

math.h Math functions

setjmp.h Mechanism for bypassing normal function call and return protocol

signal.h Signal and condition handling value definitions

stdarg.h Accessto variable length argument lists specified through the ellipsis notation in a
function prototype

stddef.h Common definitions

stdio.h Standard I/O definitions

stdlib.h General utility functions

string.h String-handling function definitions

time.h Time manipulation functions

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaall.p177.decw$book 1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Table B-2: PDP-11 C FCS Extension Library Header Files

Module Description

fcs.h FCS values, offsets, and data structures
fcsfhb.h FCS file header block
fcaff.h FCSindex file format

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.pl78.decw$book1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Table B-3: PDP-11 C RM S Extension Library Header Files

Module Description

fab.h File access block definitions

nam.h Name block definitions

rab.h Record access block definitions

rms.h All RMS structures and return status values

rmsdef.h RMS return status values

rmsops.h RMS Extension Library operations

rmsor g.h Replacement for RM S Extension Library ORG macro
rmspoo.h RMS Extension Library pool space

xab.h Extended attribute block definitions

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal l.p179.decw$book 1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Table B-4: PDP-11 C System Interface Header Files

Module Description

rstsys.h Defines an interface to RSTS/E system-provided routines
rsxsys.h Defines an interface to RSX system-provided routines
rtsys.h Defines an interface to RT-11 system-provided routines
nam.h Name block definitions

rab.h Record access block definitions

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.p180.decw$book 1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Table D-1: Data Type Keywords

Keyword M eaning

Type specifiers:

int Integer

long 32-bit integer

signed Signed integer

unsigned Unsigned integer

short 16-bit integer

char 8-bit integer

float Single-precision, floating-point number
double Double-precision, floating-point number
struct Structure (aggregate of other types)
union Union (aggregate of other types)
variant_struct

1
Structure (aggregate of other types)
variant_union

1
Union (aggregate of other types)
enum Enumerated scalar type
void Function return type
const Type qualifier
volatile Type qualifier

Stor age-class specifiers:

auto Allocated at function block activation
static Allocated at compile time

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p188.decwdbook (1 of 3)1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

register Allocated at function block activation
extern Allocated at compile time

globaldef
1
Definition of global variable
globalr ef
1
Reference to global variable
globalvalue
1
Definition or declaration of global value
1
Type specifier or storage class specifier provided for compatibility with VAX C. Only available when
compiling
/INOSTANDARD.

Keyword M eaning

Stor age-class specifiers:

typedef Tagged set of type specifiers

Storage-class qualifier:

readonly
1

L ocation may only be read
noshare

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p188.decwdbook (2 of 3)1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

Isignored by PDP-11 C

1
Type specifier or storage class specifier provided for compatibility with VAX C. Only available when
compiling
/INOSTANDARD.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p188.decw$book (3 of 3)1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Table D-2: Precedence of Operators

Category Association Operator

Primary Lefttoright () []->.
Unary Right to left ! ~ ++ - (type) + -

& sizeof
Binary Left to right

| %
+ -
<< >>
<<=>>=
===
&
N
|
&&
|l
Conditional Right to left 2.
Assignment Right to left = += -=
*
= /= %= >>=
<<=&="=|=

Commaleft toright,

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.p190.decw$book 1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

5.4 Floating-Point Number s (float, double)
When declaring floating-point variables, you determine the
amount of precision needed for the stored object. In PDP-11
C, you can have either single-precision or double-precision
variables. The representation of the datatypefloat isa
32-bit (single precision) floating point object.
The representation of the data type doubleis a 64-bit
(double precision) floating point object.
The sizes and supported ranges of PDP-11 C floating-point
numbers are as follows:
float
Float is a 32-bit keyword with a range of:

FLT MAXtoFLT_MAX
FLT _MAX isapproximately equal to:

1:7£10

38
The minimum positive floating number isFLT_MIN, which
Is approximately equal to:
2:9£10

39
Float values are precise to 6 decimal digits.
double
Doubleis a 64-bit keyword with arange of:
DBL_MAX to DBL_MAX
DBL_MAX is approximately equal to:
1:7£10

38
The minimum positive floating number is DBL_MIN, which
Is approximately equal to:
2:9£10

39
Double values are precise to 16 decimal digits.
The exact valuesof FLT_MAX, FLT_MIN, DBL_MAX, and
DBL_MIN may be found in float.h .
A floating-point constant has an integral part, a decimal

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p91.decw$book (1 of 2)1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

point, afractional part, the letter e or E, and an optionally
signed integer exponent. The integral and fractional parts
consist of decimal digits; you may omit either the integral or
fractional part. Y ou may omit either the decimal point with
the following digits or the exponent (e,E), but not both.

By default, floating-point constants are of type double .
However, using the suffix (F,f) will yield type float and the
suffix (L,I) will yield long double . Note that in PDP-11 C,
long doubleisthe same as double.

The following are examples of floating-point constants:
3.0e10

3.0E-10

3.0e+10

3E10F

3.0L

.120e2

120

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p91.decw$book (2 of 2)1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

1
Brian W. Kernighan and Dennis M. Ritchie, The C
Programming Language, Second Edition (Englewood Cliffs,
New Jersey: Prentice-Hall, 1988).

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaall.p12.decw$book1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

1
Brian W. Kernighan and Dennis M. Ritchie, The C
Programming Language, Second Edition (Englewood Cliffs,
New Jersey: Prentice-Hall, 1988), p.1.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.p27.decw$book1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

Example 2-4. Conditional Execution Using the if Statement
[* This program asks the user to guess a letter. The *
* program tells whether the answer is correct or *
* incorrect. The program is hard coded to accept 'a or *
* 'A' asthe correct letter. */
#include <stdio.h>
int main(void)
{
int ch; /* Declare a character */
[* Ask the user to guess */
printf("Guess which letter I'm thinking of'\n");
1 ch = getchar(); /* Get the character */
[* Correct ="a" or "A" */
2if (ch=="d||ch=="A")
/* If correct guess */
printf("You'reright!");
else /* If incorrect guess */
{
printf("You're wrong.\n");
printf("You'll haveto try again!");
}

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1.p35.decw$book1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

1
Bruce Anderson, " Type Syntax in the Language C: An
Object Lesson in Syntactic Innovation," S GPLAN Notices
15, No. 2 (March 1980).

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaal 1l.p106.decw$book 1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

additive operator

An operator that performs addition (+) or subtraction (-).
These operators perform arithmetic conversion on each of the
operands, if necessary. See also arithmetic conversion rules.

aggregate

A data structure (array, structure, or union) composed of
segments called members. Y ou declare the members to be of
either a scalar or aggregate data type. Members of an array
are called elements and must be of the same datatype. A
structure has named members that can be of different data
types. A union isastructure that is as long as its longest
declared member and that contains the value of only one
member at atime,

ampersand (&)

As aunary operator, computes the address of its operand. As
abinary operator, performs a bitwise AND on two operands,
both must be of integral type. As an assignment operator
(&=), performs a bitwise AND on two expressions and
assigns the result to the left object. The double ampersand
(&&), abinary operator, performs alogical AND on two
operands. See also binary operator, bitwise operator, logical
operator, and unary operator.

argument

An expression that appears within the parentheses of a
function call. The expression is evaluated and the result
Is copied into the corresponding parameter of the called
function. See also argument passing and parameter.

argument passing

The mechanism by which the value of the argument in a
function call is copied to a parameter in the called function.
In PDP-11 C, al arguments are passed by value; that is,
the parameter receives a copy of the argument's value.
Therefore, afunction called in PDP-11 C cannot modify
the value of an argument except by using its address. In
general, addresses are passed using the ampersand operator

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p196.decwdbook (1 of 3)1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

(see ampersand (&)) in the function call or by passing a
pointer variable. In addition, using an array or function
name (an array with no brackets or function identifier with
no parentheses) as an argument results in the passing of the
address of the array or function.

arithmetic conversion rules

The set of rules that govern the changing of avalue of

an operand from one data type to another in arithmetic
expressions. Conversions take place in assignments by
changing the type of the right operand's result to that of
the object referred to by the left operand; the resultant type
also appliesto the assignment expression. Conversions are
also performed when arguments are passed to functions.

arithmetic operator

A PDP-11 C operator that performs a mathematical
operation. In an expression, certain operations take
precedence (are performed first) over other operations.
The unary minus operator (-) isat the highest level of
precedence. At the next level are the binary operators for
multiplication (

*

), division (/), and mod (%). At the next
level are addition (+) and subtraction (-). Thereisno
exponentiation operator. If necessary, all the binary operators
perform the arithmetic conversions on their operands. See
also arithmetic conversion rules and binary operator.

arithmetic type
One of the integral data types, enumerated types, single- or
double-precision floating-point (float or double) types.

array
An aggregate data type consisting of subscripted members,
called elements, al of the same type. Elements of an array
can be one of the fundamental types or can be structures,
unions, or other arrays (to form multidimensional arrays).

assignment expression
An expression that has the following form:

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p196.decwdbook (2 of 3)1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

E1 asgnop E2

Expression E1 must evaluate to an lvalue, the operator
asgnop is an assignment operator, and E2 is an expression.
The type of an assignment expression is that of its |eft
operand. The value of an assignment expression is that of

the left operand after the assignment takes place. If the
operator is of the form op=, then the operation E1 op (E2) is
performed, and the result is assigned to the object referenced
by E1; E1 isevaluated once.

assignment oper ator

The combination of an arithmetic or bitwise operator with the
assignment symbol (=); also, the assignment symbol by itself.
See also assignment expression.

asterisk (

)

Asaunary operator, treats its operand as an address

and resultsin the contents of that address. As abinary
operator, multiplies two operands, performing the arithmetic
conversions, if necessary. As an assignment operator (

*

=)’
multiplies an expression by the value of the object referenced
by the left operand, and assigns the product to that object. See
also unary operator and binary operator.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p196.decwdbook (3 of 3)1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

auto storage class

A storage class that defines a variable whose storageis
allocated automatically upon entry into afunction or block,
and is automatically deallocated upon exit from afunction or
block. See also block.

binary operator

An operator that is placed between two operands. The binary
operators include arithmetic operators, shift operators,
relational operators, equality operators, bitwise operators
(AND, OR, and XOR), logical operators (logical AND, logical
OR), and the comma operator, in that order of precedence.

All binary operators group from left to right. PDP-11 C has
no exponentiation operator. The Run-Time Library function
exp must be used instead.

bit field

A structure member that may consist of a specified number
of bits, which may be named or unnamed. A colon is used to
separate the member's declarator (if any) from a constant-
expression that gives the field width in bits. No field may be
longer than 16 bits (1 word) in PDP-11 C.

bitwise operator

An operator that performs Boolean algebra on the binary
values of two operands, which must be integral. If necessary,
the operators perform the arithmetic conversions. Both
operands are evaluated. All bitwise operators are associative,
and expressions using them may be rearranged. The
operators include, in order of precedence, the single
ampersand (&) (bitwise AND), the circumflex () (bitwise
exclusive OR), and the single bar (|) (bitwiseinclusive OR).

block
A compound statement when it is not the body of a function.
See also compound statement.

block activation
The run-time activation of ablock or function, in which local

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p197.decwdbook (1 of 3)1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

auto and register variables are allocated storage and, if they
are declared with initializers, giveninitial values. Variables
of storage class static, extern , globaldef , and globalvalue
are allocated and initialized at link time. The block activation
precedes the execution of any executable statementsin the
function or block. Functions are activated when they are
called. Internal blocks (compound statements) are activated
when the program control flows into them. Internal blocks
are not activated if they are entered by a goto statement,
unless the goto target is the label of the block rather than
the label of some statement within the block. If ablock is
entered by a goto statement, references to auto and register
variables declared in the block are still valid references, but
the variables may not be properly initialized. Blocks that
make up the body of a switch statement are not activated;
auto or register variables declared in the block are not
initialized.

cast

An expression preceded by a cast operator of the form
type_name . The cast operator forces the conversion of the
evaluated expression to the given type. The expressionis
assigned to a variable of the specified type, which is then used
in place of the whole construction. The cast operator has the
same precedence as the other unary operators.

character
Character refersto:

A member of a supported character set.

An object of the PDP-11 C datatype char , whichis
stored in asingle byte of memory. An object of type char
always represents a single character, not a string.

A constant consisting of up to four ASCII characters for
alongint , two ASCII charactersfor ashort int , and
one ASCII character for achar size object. The ASCII
characters must be enclosed in apostrophes ('), not
quotation marks (" ").

See also string.

comma oper ator (,)

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p197.decwdbook (2 of 3)1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

A PDP-11 C operator used to separate two expressions as
follows:

El, E2

The expressions E1 and E2 are evaluated |eft to right, and the
value of E1 isdiscarded. The type and value of the comma
expression are those of E2.

comment
A sequence of charactersintroduced by the pair (/

*

and terminated by (

/). Comments are ignored during
compilation. They may not be nested.

compilation unit

All of the source files compiled to form a single object
module. Declarations and definitions within a compilation
unit determine the lexical scope of functions and variables.

compound statement

Valid PDP-11 C statements enclosed in braces ({ }).
Compound statements can also include declarations. The
scope of these variablesislocal to the compound statement. A
compound statement, when it is not the body of afunction, is
called ablock.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p197.decwdbook (3 of 3)1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

conditional operator (?:)

The PDP-11 C operator (?:), which isused in conditional
expressions of the following form:

E1?E2: E3

El, E2, and E3 are valid PDP-11 C expressions. E1 is
evaluated, and if it is nonzero, the result is the value of E2;
otherwise, the result isthe value of E3. Either E2 or E3 is
evaluated, but not both.

constant
A primary expression whose value does not change. A
constant may be literal or symboalic.

constant expression

An expression involving only constants. Constant expressions
are evaluated at compile time so they may be used wherever
aconstant isvalid.

conversion

The changing of avalue from one data type to another.
Conversions take place in assignments by changing the type
of the right operand's result to that of the object referred

to by the left operand; the resultant type also applies to the
assignment expression. Conversions are also performed when
arguments are passed to functions char and short become
int and float becomes double . If no function prototype

Isin scope, unsigned char and unsigned short become
unsigned int . Conversions can also be forced by means of a
cast. Conversions are performed on operands in arithmetic
expressions by the arithmetic conversions. See also cast.

conversion characters

A character used with the PDP-11 C Standard Library
Standard 1/0O functions that is preceded by a percent sign
(%) and specifies an input or output format. For example,
letter d instructs the function to input/output the valuein a
decimal format.

data cache

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p198.decw$book (1 of 2)1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

The area of the extended buffer pool that stores information
relating to RSTS/E read operations. Using the data cache
reduces the number of data transfers from the disk.

data definition

The syntax that both declares the data type of an object and
reserves its storage. For variables that are internal to a
function, the data definition is the same as the declaration.
For external variables, the data definition is externa to any
function (an external data definition).

datatype qualifier
Keywords which affect the allocation or access of data
storage. The two datatype qualifiers are const and volatile .

declaration
A statement that gives the data type and possibly the storage
class of one or more variables.

declarator

The part of the declaration that lists the identifiers of the
declared objects and may contain operators that declare a
pointer, function, or array of objects of the declared type.

directives
See preprocessor directives.

elements

Members of an array, structure, or union. See also
aggregate.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p198.decw$book (2 of 2)1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

[next] [previous] [contents]

enumer ated type

A type defined (with the enum keyword) to have an ordered
set of integer values. The integer values are associated with
constant identifiers named in the declaration. Although
enum variables are stored internally as integers, use them in
programs as if they have adistinct data type named in the
enum declaration.

equality operator (==1=)

One of the operators, equal to (==), or not equal to (!=).
They are analogous to the relational operators, but at the next
lower level of precedence.

exponentiation operator
The C language does not have an exponentiation operator.
Usethe PDP-11 C Run-Time Library function exp .

expression

A series of tokens that the compiler can use to produce a
value. Expressions have one or more operands and, usually,
one or more operators. An identifier with no operator is an
expression that yields a value directly. Operands are either
identifiers (such as variable names) or other expressions,
which are sometimes called subexpressions. See also operator
and tokens.

extension libraries

Libraries that contain extensions beyond ANSI standards.
PDP-11 C provides these extensions to support file control
services (FCS) and record management services (RMYS) file
operations as well as providing support for RSX, RSTS/E, and
RT-11 system directories.

external storage class

A storage class that permits identifiersto have alink-time
scope that can possibly span object modules. Identifiers of
this storage class are defined outside of functions using

no storage class specifier, and are declared, optionaly,
throughout the program using the exter n specifier. External

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p199.decw$book (1 of 3)1/25/06 3:48 PM

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p200.decw$book

PDP-11 C Guideto PDP-11 C

variables provide a means other than argument passing
for exchanging data between the functions that comprise a
PDP-11 C program. See also link-time scope.

file control services (FCS) library
An extension library containing a set of routines supplied with
PDP-11 C that supports the FCS facility.

file specification
Anidentifier that specifies an existing file.

floating type

One of the datatypesfloat or double, representing a single-
or double-precision floating-point number. The range of
values for the double variables is the same as for that of
float variables, but the precision is 16 decimal digits, as
opposed to 7.

function

The primary unit from which PDP-11 C programs are
constructed. A function definition begins with a name and
parameter list, followed by the declarations of the parameters
(if any) and the body of the function enclosed in braces ({ }).
The function body consists of the declarations of any local
variables and the set of statements that perform its action.
Functions do not have to return avalueto the caller. C
functions cannot be nested, that is, a function may not contain
another function. See also function call.

function call

A primary expression, usually afunction identifier followed
by parentheses, that is used to invoke the function. The
parentheses contain a (possibly empty) comma-separated
list of expressions that are the arguments to the function.
Any previously undeclared identifier followed immediately
by parentheses is declared as a function returning int . A
function may call itself recursively.

function prototype

A function prototype is afunction declaration that specifies
the data types of its argumentsin the identifier list. PDP-11
C uses the prototype to ensure that any function definition,

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p199.decw$book (2 of 3)1/25/06 3:48 PM

PDP-11 C Guideto PDP-11 C

and all declarations and calls within the scope of the
prototype, contain the correct number of arguments or
parameters, and that each argument or parameter is of
the correct datatype.

http://www.sysworks.com.au/di sk$vaxdocsep953/decw$book/d33vaall.p199.decw$book (3 of 3)1/25/06 3:48 PM

	www.sysworks.com.au
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C

