Pascal-2/RSX-11 Version 2.1E for PDP-11

Installation Guide/Release Notes

October 31, 1886

This document describes the Pascal-2 Software Development System for PDP-11 computers with RSX-11.

SUPERSESSION INFORMATION:

OPERATING SYSTEM AND VERSION:

ADDITIONAL SYSTEM REQUIREMENTS:

Oregon
Software

Supersedes V2.1D.

RSX-11,
RSX-11M-PLUS, mRSX-11M-PLUS, P/0S.

NOANSILIB for Micro-RSX

6915 S.W. Macadam Avenue Portland, Oregon 97219-9987

The software described by this publication is preliminary in nature and is subject to change without notice.
Oregon Software assumes no responsibility for the use or reliability of any of its software that is modified
without the prior written consent of Oregon Software.

Oregon Software holds right, title, and interest in the software described herein. The goftware, or any
copies thereof, may not be made available to or distributed to any person or installation without the written
approval of Oregon Software.

This publication, or parts of it, may be copied for use with the licensed software described herein, provided
that all copies include this notice and all copyright notices.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in sub-division
(b)(3)(ii) of the Rights in Technical Data and Computer Software clause at 52.227-7013 of the Federal
Acquisitions Regulations (FARs).

Name of Contractor and Address:
Oregon Software, Inc.
6915 S.W. Macadam Avenue
Portland, Oregon 97219
Phone: 503-245-2202

© 1986 Oregon Software, Inc. All Rights Reserved. Printed in USA, October 1986.
Pascal-1, Pascal-2 and Oregon Software are trademarks of Oregon Software, Inc.

DEC, VAX, VMS, PDP, RSX, RSTS/E and RT-11 are trademarks of Digital Equipment Corporation.

Introduction .

System Reqmrements

Distribution Files .

Installation

Installation Proceu .

Copying Modules io Dmk
Note to VAX Users .

Building the Compiler and Support L:bmry
Building the Utility Programs

Verifying the Installation: The VERIFY Utxhty .
Running VERIFY . e e .
Typical Verification Session

A Sample Installation

Utilities Installation Control Fnle (UTLBLD CMD)

Release Notes .
Problems We've Fxxcd .
Known Problems
DCL Command-Line Interprctet
Documentation Notes and User Manual Emt&
Miscellaneous Notes .

Pascal Certification Report .

pt g e
[LI

¢

]

R B B G DY B B D B B3
[]]

4

L
2 D DD G B et et e 0D D CR G o B B b s fd pumd o

»uu(‘»uwu

Introduction

These notes describe V2.1E of the Pascal-2 Software Development System hosted on PDP-11/RSX-11 com-
-puters. These notes are organized into four sections.

e The “Introduction” describes system requirements and provides s list of the files to be found on the
distribution media.

e The “Installation” section provides step-by-step instructions for installing the compiler, support libeary,
and utilities from the distribution media.

@ The “Release Notes” provide information on the software and documentation that is specific to this
release.

¢ The “Pascal Certification Report” provides a brief explanation of the British Standards Institution's
certification program and a copy of the test results for this product.

The entire Installation section should be read before attempting to install the compiler and atilities on your
system.

This document follows these style conventions:

Text: Pascal reserved words, predefined symbols, operating system commands, options and directories
and user-program names are in boldface typewriter type: forward, read, link, test. Names of
utility programs or system names are in upper case: PASMAT, MACRO.

Examples: All commands assume & carriage return at the end. Commands that you should erter are in
anderlined boldface typewriter: pas2/list.

Program Listings: The Pascal-2 compiler accepts any combination of upper-case and lower-case charac-
ters. Examples in this manual have Pascal words in lower case and have user-defined words with
capitalization as needed for readability, as shown in this program fragment:

procedure Show;
begin
SemaUserhction;
vriteln(Ragult);
end ;

Terminology: We use standard terms as they are used in documents describing the RSX-11 operating
system.

System Requirements

To execute programs compiled by Pascal-2, the PDP-11 computer must be running one of the following op-
erating systems: RSX-11M, RSX-11M-PLUS (see “Release Notes” for specific limitations), IAS, VAX/VMS
(RSX-11M Compatibility Mode), RSX emulator on RSTS/E.

On a MICRO/PDP-11 under Micro-RSX, you must use Version 1 with the Advanced Programmer's Kit,

which supplies a replacement system Library (NOANSLIB) containing FCS object modules required to sup-
port Pascal tasks. The compiler cannot be installed or run without this library.

1-1

Distribution Files

The distribution media contains the following files.

1-2

Contents of the Release Media

Component File Name Description of Contents
Compiler PASA.OLB Compiler library, part A
PASB.OLB Compiler library, part B
Command Files PASCAL.CMD TKB commands for building the compiler
PASBLD.CMD Commands for installing the compiler
UTLBLD.CMD Commands for installing the atilities
PASRES.CMD Commands for creating Pascal resident libraries
Object Libraries PASFPP.OLB FPP support Library
PASFIS.OLB FIS support library
PASEIS.OLB EIS support library
PASSIM.OLB SIM support library
Command String CSICON.PAS CSI constant definitions
Interpreters (CSI) CSITYP.PAS CSI type definitions
CSIPRO.PAS CSI procedure definitons
FIXARG.PAS CSI argument parser
FIXINC.PAS CSI {inciude file handler
FIXOUT.PAS CSI temporary output manager
GETCS.PAS CSI command parser
CNVNUM.PAS CSI command-line number converter
Utility Programs PROSE.PAS Document formatter
PASMAC.MAC MACRO-11 interface package
XREF.PAS Concordance generator for Pascal programs
PROCRE.PAS Procedural cross-referencer
STRING.PAS Dynamic string package
PASMAT.PAS Pascal source text formatter
LIBDEF.PAS Library definitions
OPERRO.PAS Support library error routine
UERROR.PAS User error routine
VERIFY.PAS Instaliation verifier
SAYERR.PAS System error routine
CONVRS.PAS Conversion of Pascal-1 to Pascal-2
Overlay Descriptions PASCAL.ODL Overlay directives for the compiler
PAS.ODL Overlay directives for Pascal programs

Installation

This guide describes the way to load the RSX Pascal-2 software on your system. The procedure for building
the Pascal software is similar for all RSX-based systems, but you may have to perform some steps manually
on systems that do not emulate RSX indirect command files.

This guide contains & sample use of the PASBLD.CMD installstion command file and the text of UTL-
BLD.CMD, which builds the Pascal-2 utilities.

Installation Process
Follow these steps to build the Pascal-2 system:

1. Load all modules in the distribution kit onto your system disk.
2. Task-build the Pascal-2 compiler.

3. Configure the support library to match the hardware.

4. Build the utilities {optional).

The four steps are explained in detail below. (Steps 2 and 3 are performed automstically by the PAS-
BLD.CMD installation command file.)

Copying Modules to Disk

We recommend that you set aside a special User File Directory (UFD) to collect all the Pascal-2 modules
and utilities in one place. Then log in to that account and load all of the Pascal-2 modules onto the disk.
VAX users should copy the distribution kit into its own directory, for example, [PASCAL2.V21E].

Because Pascal-2 runs on all of the eystems previously described, we chose a tape and disk format that was
compatible among all of the systems. The tapes are in DOS format, and the disks are in RT-11 format. You
must use the FLI conversion utility to load the files onto your system. Note that on RSX-11M PLUS, DOS
and RT-11 volumes must be mounted with foreign characteristics. Sample FLI commands are given below
for the most common media on which Pascal-2 is available:

Command Line Medium Device
FLI>SY:/RS=MTO0:[1,1]*.*/DO Magnetic Tape TS04
FLEI>SY:/RS=DX0:*.*/RT Floppy Disks RX01
FLI>SY:/RS=DKO0:* */RT Disk Pack RKO05

Enter Control-Z to exit any RSX utility, such as FLI or PIP.

When the distribution media are floppy disks, you must load the contents of each disk onto the system.
About 3000 blocks are read in. Enocugh free space must be left over to task-build the Pascal-2 compiler.
The task requires about 450 contiguous blocks. Much of this space can be reclaimed after the build process
finishes. On multidisk systems (such as RLO1-based systems) you may want to load the Pascal-2 system on
an empty disk, which can then serve as a backup disk.

2-1

Note to VAX Users

The PASBLD.CMD command file, described in the next section, contains MCR-style commands, which
cannot be executed from DCL. Before executing PASBLD indirectly, you must enable the MCR at login so
the PASBLD commands can be properly execated.

Assuming you have just loaded the distribution kit onto your disk, log out and log back in using the /CLI and
/HOCOHBABD switches along with your user name. The /CLISHCR switch specifies the MCR as your command
line interpreter, enabling the processing of MCR command files (such as PASBLD.CMD). The /B0CONNAD
switch prevents the automatic execution of your LOGIN.COM file, which probably contains DCL commands
not recognized by the MCR.

For ezample:

Usernsme: STEVE/EOCOMEABD/CLI=HCE
Passvozrd: enter password normally

The MCR then prompts for a command. Set your default directory to the Pascal-2 release directory.

»SEY DEFAULT [PASCAL2.Y21E]

Now you can execute PASBLD, as shown below.

Building the Compiler and Support Library

After loading the Pascal-2 modules, you can use the PASBLD.CMD command file, supplied with the release,
to select only those modules that match the hardware on your particular PDP-11 and to configare the
compiler and support library for your system. Execute PASBLD as an indirect command file, as shown:

>@PASBLD

This command file guides you through the rest of the build process. On systems that do not fully emulate
RSX command files, you must examine the PASBLD.CMD file and duplicate the actions it performs. {See
Appendix B.)

The PASBLD command file installs the compiler in three steps:

e It confignres the compiler and support library.

¢ If you wish, it deletes Pascal-1 modules from the sapport library (Pascal-1 and Pascal-2 use the same
library—see “Installing Pascal-2 With Pascal-1").

¢ [t purges any unnecessary files left over from the installation.

At each step PASBLD asks you a question or a series of questions, to which you respond with either ‘Y’ for
yes or ‘N’ for no.

The first question PASBLD.CMD asks you is “Use automatic configuration for compiler and Library?” Answer
“yes” to this question and PASBLD automatically configures the support library for your bard ware.

However, if you answer “no” to this question or if the sutomatic configuration fails, PASBLD then asks you
8 series of questions to identify the hardware on which you wish to run Pascal-2 programs.

First, you are asked whether your machine has FPP floating-point instructions. These floating-point instruc-
tions, available on many machines, are often implemented with a floating-point processor hardware option.

2-2

FPP instructions include the ADDF, DIVFP, and HODF instructions. If your machine supports such instructions,
you should answer “yes” to the FPP question; otherwise, answer “no.”

Your pfoccssor may instead support the Floating Instruction Set (FIS). The FIS imstructione are stack-
oriented instructions providing thege fowr basic functions: FADD, FSUB, FHUL, and FDIV. If your processor
supports FIS instructions, you should answer “yes” (o the FIS question; otherwise, answer “no.”

If you answered “no” to the first two questions, you are then asked if your processor supports the Extended
Instruction Set (EIS). Most PDP-11s now sapport EIS instructions, which inclede UL, DIV, I0E, and $0B.
Note that the Pascal-2 compiler requires EIS to run (the FPP and FIS options support EIS). If your processor
sapports EIS, then answer “yes” to thie question; otherwise, answer “no.”

Answering “no” to the first three questions caunses & software floating-point simulator to be included in the
Pascal-2 support library. This simulator permite you to write programs that use real numbers.

The answers o the above questions determine the module your hardware requires for the Pascal support
library. The modules of choice are as follows:

Module Description

PASFPP.OLB FPP bLbrary modules
PASFIS.OLB FIS library modules
PASEIS.OLB EIS library modules
PASSIM.OLB _ SIM library modules

Depending on the processor option for your system, the PASBLD command file renames one of these modules
to PASLIB.OLB and deletes the libraries that are not used.

After the questions have been asked but before the libraries are actunally renamed, PASBLD.CMD uses the
Task Builder to build the Pascal-2 compiler task image. The compiler is supplied as two object module
libraries, PASA.OLB and PASB.OLB. The Task Builder command file, PASCAL.CMD, is used in this step,
along with PASCAL.ODL (because the compiler is overlaid).

The task-build procedure also requires the library PASEIS.OLB to build the Pascal-2 compiler because the
compiler itself is a Pascal program.

After building the compiler and the Libraries, the PASBLD command file asks whether you wish to delete
the Pascal-1 modules from the support library. Doing so reduces the size of PASLIB.OLB. PASBLD.CMD
then asks a series of questions relating to the copying and deleting of new and old compiler and library files.
These questions assist in post-installation disk cleanup.

2-3

When PASBLD completes, the following modules are created:

PiS.TSE This is the Pascal-2 compiler. It should be copied to your system account so that others may
have access to it. If you nse the I8S command to install the compiler, you are able to invoke
the compiler with the PAS command. You may also run the compiler by typing BUE P4S. VAX
users should copy PAS.EXE to SYS§SYSTEE:. The command to install the compiler from your

system account using I8S is simply:

>IES ¢PAS
PASLIB.OLB This is the Pascal support library. You should copy this file into [1,1] on your library device.

This library contains modules required by all compiled Pascal-2 programs, mcluding modules
for the Pascal-2 Debugger and Profiler. The command you may use is:

>PIP LB:[1,1]=PASLIE.OLB

VAX users should log out and log back in as 8 DCL user before copying the previously mentioned modules
to the system accounts.

After copying the above modules to the system accounts, you are able to compile, debug, profile and rup
Pascal-2 programs. After also copying any of the utilities, you may remove the disk on which you loaded
the distribution kit.

Building the Utility Programs

The Pascal-2 distribution kit contains other utility and demonstration programs. After building the compiler
and configuring the libraries, you can also build the Pascal-2 utility programs with the UTLBLD.CMD
command file. Simply type the command:

>@UTLBLD
On systems that do not emulate RSX indirect command files, you must examine UTLBLD.CMD and execute
the commands manually. (See Appendix C.) Also note that task-building commands in UTLBLD.CMD

invoke the /FP switch. On systems that do not have floating-point hardware, you must edit UTLBLD.CMD
so that you task build the utilities without the floating point option.

The utilities that UTLBLD.CMD builds are:

PASMAT: Reformats Pascal source code to improve readability. Does syntax checking.

PROCRE: Generates & cross-reference listing of procedure names.

PROSE: Formats documentation and text files.

XREF: (;:lcncmtea a cross-reference listing of your program. Also gives a concordance of any text
e.

These atilities are described in the Utilities Guide of the Pascal-2 User Manual

Verifying the Installation: The VERIFY Utility

After you have task-built the compiler and configared the support library, you should verify that yow have
installed the compiler correctly. The program VERIFY.PAS, supplied in the distribution kit, verifies the

installation for you. Although it is designed specifically to verify the installation process, this program can
be executed any time after the compiler is installed, to learn about your system’s configuration.

You may decide to run the verification program for the lollowing reasons:

e To determine the cause of obscure problems occurring when you try to use the compiler.

e To see whether your RSX system is SYSGENed correctly.

& To determine the hardware configuration for your particular systcm.

¢ To see whether you've incorrectly added floating-point hardware after configuring the RSX monitor.
e To see whether the Pascal support library is the correct version,

e To receive a demonstration of Pascal-2's error reporting capabilities. The demonstration intentionally
canses an /O error and shows the diagnostics Pascal-2 prints. For details, see “Typical Verification
Session” below and the section om “Run-Time Error Reporting” in the Programmer's Guide of the
Pascal-2 User Manual

Running VERIFY

The UTLBLD.CMD command file sutomatically compiles and builds the VERIFY program. To rum the
program, enter the command:

>RUE VERIFY

If your system crashes at this point, you have incorrectly SYSGENed RSX for your hardware. You'll have to
re-SYSGEN your system correctly before running VERIFY again. Chances are, you won't have this problem.
Only a few users have reported such system crashes, which only occur when all of the following conditions
exist:

1. No floating-point hardware is present;

2. During Phase I of the SYSGEN of your RSX system you answered “yes” to the question: “Floating
point processor (FP-11) present?” (the correct response here is “no”);

3. A program is task-built with the /FP ewitch. The /FP switch tells the RSX monitor to save the status
of the FPP hardware when the task checkpoints.

The system crashes after the program is executed because the poorly configured RSX monitor is trying to
save the contents of the nonexistent floating-point registers. The RSX monitor cannot save the registers and
it traps while trying to execute a reserved instruction. If in doubt, configure Pascal to use EIS mstructions.

In this situation, any task (Pascal or otherwise) that you build using the /FP switch may crash the system.
You must re-SYSGEN your system correctly, without FPP hardware. The AUTOCOZFIGURE option in the
Version 4.0 RSX SYSGEN helps prevent this kind of problem.

The run-time error message “PASCAL — Fatal initialization error” usually means that you have configured
the compiler and support Library incorrectly. Reinstall the compiler with the correct hardware options for
your system.

2-5

The run-time error “Not enough memory. Try making task checkpointable or expand $$SHEAP” has three
poseible causes:

¢ You did not task-build VERIFY with the /CP switch, as shown above.

¢ Checkpointing is not enabled. Use the 4CS command to allocate checkpoint space.

¢ The maximum task extension limit is set too low. Have the system manager reset the limit to 64K bytes
using the SET/HAIEXT command because Pascal-2 tasks must be able to expand up to 64K bytes.

The run-time error “No FPP support. Re-Task Build with /FP" has two possible causes:
¢ You incorrectly SYSGENed your RSX system. This could occur if your processor has FPP hardware

but you answered “no” to the Phase-I question “Floating point processor (FP-11) present?” A “mo”
answer prevents RSX from using the floating-point hardware.

2-6

Typical Verification Session
The results of the verification program are usually eimilar to this sample

>RUE VERIFY
Pascal installation verificatiecs program ¥2.1

Congratulatioms! You have correctly comfigured your Pascal eystem.

Today is Thursday, 26-8ug-1983 12:44:26 PE
Thie is ar BSI-11E operatimg system

The name of this task ie “TT2"

It is rusming im the "GEE" partitiea
Your UIC is [2,32]

Your default disk is: DLO:

Errer reportimg demomstratioen

This program Bnow intentiomally ceuses as I/0 errex
to show the full error repertimg facilities.

The erxror shonld be "readimg past end of file".

4 complete dump of the file structures will folloew.

4 dump of how memory is allocated will be pristed, and
an error walkback idemtifies where the error happened.

112 -=- I/0 error at user PC= T738
Attempt to read past end of file
I1/0 ezxor code= -10. (366B) iam file: DBO:TEST.THP0

End of file detected- text of I/O error message
File imformation for file variable at: 1264728 beginning of file dump
Hemory map: beginning of memory dump

Task slze=47040. bytes

Error occurred at lime 862 im procedure cause.erroz
Last called from lime 880 im procedure error_demo
Last called from line 896 im program verify

2-7

A Sample Installation

(This log file shows a sample use of the PASBLD.CMD command file in which the automatic configuration
option is selected and the compiler and support library are installed and old versions are deleted.}

>@PASBLD

?;

>; Pascal-2 ¥2.1D Configuratiocr proceduxze

2;

»; Comsult the "Installatiecr Guide” im the Eslease Botes

>;

»;

>; This command file cam sutomatically comfigure the Pascal compiler
>; and support library to make the most efficient use of the hardware
»; available om your precessecr.

>

>¢ Use antomatic configuration for cempiler amd library? [Y/E]: ¥

>TUB COBNFIG/CP=PASEIS/LB:COBFIG,PASEIS/LE
>BUE COBFIG
Tour system supports FPP floating polmt imstrmctions.

>PIP CHPLIB.OLB/RE/EV=CHPFPP.0OLB

>TEB @PASCAL

>PIP PASLIB.OLB=PASFPP.OLB/RE/EY

>LBR PROFIL=PASLIB/EX:PROFL1

2;

>; The Pascal-2 sampport library PASLIB.OLB comtaims modules to support both the
>; Pascal-i and Pascal-2 compilers. The modules used omly by Pascal-1 cam be
>; removed, and the size of PASLIB.OLE cam be reduced.

>3

»% 3hould the Pascal-l modules be deleted from PASLIB.OLB® ([Y/E]: ¥

>PIP PASLIB.OLB;0/LI

Directory DLO:{2,33]
2-§0V-83 15:22

PASLIB.OLB;4 350. ¢ 02-§07-83 15:18

Total of 350./350. blocks iz 1. file

2-8

>LBE PASLIB/DE:DBG:DBG1:DBGZ:DPDINT: $DEBUE:PROFLL: 8HEGY
Hodules deleted:
bBg

$EEG1

»LBR PASLIB/DE:D1:D2:D3:D4:06:D6:D7:08:D9:D10
Bodules deleted:

Di

D10

>LBR PASLIB.OLB/CO=PASLIB.OLE

>PIP PASLIB.OLB/TR

>PIP PASLIB.OLB;0/LI

Directoxry DLO:[2,33]
2-§0¥-83 15:27

PASLIB.OLB;& 246. ¢ 02-80v-83 15:26

Total of 246./246. blockes in 1. file

we we

The Pascal euppoert library is uswelly located im LB:[1,1]PASLIR.OLB.
This is mot a requiremsst, but if yew wish te use overlaye yeou will
; need to edit PAS.ODL if PASLIB.OLE will not reside im LB:{1,1]. The
; Pascal compiler PAS.TSE ie uswally located im LB:[1,54].

2

- e

o we

WOV W W W W W

>¢ Should PAS.TSE be copied to LB:[1,54]7 [V/H]: Y
>PIP LB:[1,64]/87=P4S.TSK

>;
>; The new compiler will be imstalled
>;
>REE PAS

>IBS §PAS

>e Should previcus versloms of 1b:[1,64]PAS.T9E be deleted? [Y/8]: Y

>PIP LB:[1,64]1PAS.TSE/PU

>¢ Should PASLIB.OLB be copied to LB:[1,1]? [V/B]: Y

>PIP LB:[1,1]/BV=PASLIB.OLE

">¢ Should the previous versioms of LB:([1,1]PASLIB.OLB be deleted? [V/E]: Y
>PIP LB:[1,1]PASLIB.OLB/PU

>s Should the overlay descriptiom PAS.0DL be coplied te LB:[1,1]1* [¥/B): ¥
>PIP LB:[1,1]/EV=PAS.0DL -
>¢ Should the previous versioms of LB:[1,1]PAS.ODL be deleted? [Y/E]: Y

>PIP LB:[1,1]PAS.0DL/PU

; Configuratior is mow cemplete.

&

; Hany of the files wsed durinmg the coafiguratiom of your cempiler will mot

5

; be meeded now that yoer compller hes beem built,

&

W W W W W

>¢ Should the unnecessary files be deleted? [Y/E]: Y
>PIP PASCAL.CHD;/DE/EH,PASCAL.0DL ;% ,PASA.OLB;» P4ASB.OLB; e
>PIP P4S.TSK;+/DE/WH

>PIP PASLIB.OLB;¢/DE/EE

>PIP PASLIB.OLB/PU/EE

>PIP PA3.0DL¢/DE/BH

>PIP PASFIS.0LB;«/DE/FE

>PASEIS.OLB;¢/DE/FE

>PIP PASSIH.OLB;</DE/2E

>PIP PASBLD.CHD;‘/DE/I!,CDIFIG.ClD;O,COIFIG.TSK;‘,COIFIG.KIE;O
>@ <EQF>

2-10

Utilities Installation Control File (UTLBLD.CMD)

o
&

: beilé Pascal-2 mtilities

pas
pas
pas
pas
pas

‘tkb
tkb
tkb
tkb
tkb

&

; Pascal-2 utility comstructicz complets.

&

verify
pasmat
proge
procre
zref

verify/cp/fp=verify,1b:[1,1]paslib/1b
pasmat/cp/fpepasmat ,1b:[1,11paslib/1ib
prose/cp/ip=prose,lb:[1,1]paslib/lb
procre/cp/fp=procre,lb: [1,1]paslib/lb
rref/cp/ip=xzef,1b:[1,1]paslib/1ib

2-11

Release Notes

The infbrmation contained in this document describes the Pascal-2 Version 2.1E release package. In these
notes you will find:

¢ A summary of problems (“bugs”) we've fixed in this release.
& Notes on changes in the documentation and on how to update the user manual.
¢ Miscellaneous notes of interest to Pascal-2 users.

Version 2.1E is primarily a maintenance up-date: most of the changes from Version 2.1D to 2.1E correct
reported problems. In particelar, two major problems have been corrected:

Packing Problems. The buge in Pascal-2's packing of records and arrays have been corrected without
any modification of the packing algorithm. Users who have programs that imvolve the reading and
writing of packed records or arrays may continue to used their data files under 2.1E.

‘BREAK’ Function. The break procedure is now fully operational. A new library modale, called OP-
BRK.MAC, replaces the name OPIO.MAC in the listing of library source files (page 2-102) as the
source of p$62.

Problems We've Fixed
Version 2.1E corrects a number of bugs. Two particalary troublesome ones are:

e Complex or numerous definitions in a ¥include file no longer cause the compiler to generate a spurious
error message “Actual parameter type doesn't match formal parameter type” in the listing file.

e Variables declared with a fixed origin of 1777778 no longer are reported as a syntax errors.

3-1

Known Problems
At the time of this release, Version 2.12.1E hes the following limitations.

DCL Command-Line Interpreter

A problem may occur due to the imteraction of Pascal-2 and the DCL command-line interpreter. The
symptoms are: when a command containing a compiler switch is issued to the installed Pascal-2 task, this
command returns an error message complaining about Two filemames im ome field.... For example,
neither of the following commands would succeed because the compiler ewitch rocheck iz used.

$PAS PROGEAE/EOCHECE

§pas
file? PROGEAHE/BOCEECE

To work around this problem, you may use the following command:

$RUE §PAS
PAS> PROGEAEE/BOCHECE

Another solution is to change the name of the installed Pascal-2 task. Simce the problem is caused by
the presence in the DCL tables of a predefined command PA4S, changing the task name to something else
eliminates the conflict with DCL. The new task name should be three characters which do not conflict with
any other DCL commands. The name change can be accomplished using the INSTAL utility, as in:

$IESTAL $PAS/TASEs...PC2
Note that this INSTAL command is performed during compiler installation.

When the compiler is invoked by another task name, such as PC2, no adverse interaction with DCL occurs,
as unrecognized Pascal-2 commands are passed to the MCR command line interprcter. Note: Examples in
the manual still show P43 as the invocation for the compiler.

Documentation Notes

The documentation for Pascal-2 Version 2.1E includes a copy of the third edition of the Pascal-2 User
Manual

Miscellaneous Notes

Version 2.1E requires more memory than the 2.1D version. The change which uses the memory allows
certification of the compiler at ISO Level 1. If you find that compilations of large programs fail with the
“Out of memory” error message, you should break the modules involved into smaller sized units and recompile

them.

Note the following, additional items:

e The oxd function returns a range of 0..255 for type chas.

¢ Users may experience problems with restoring registers after calls to non-pascal subroutines, e.g. FOR-
TRAN. When calling 8 FORTRAN procedure vis a Pascal-2 procedurel from a Pascal-2 procedure¥,
a real variable which is local to procedureY gets corrupted. The variable is held in a floating-point
accumulator rather than in the stack. This problem will be resolved in a future release.

Please be aware of the following documented limitations of the software:

1. PASMAC does not support structared functions.
2. The Pascal-2 Debugger cannot be used when images are task-built to use I/D space separation.
3. A call to the eof function may alter the resulis of the Getpos procedure.

4. Structured constants containing strings create duplicates of each string. This may caunse problems for a
system with limited memory or for large tasks that approach the 64K byte limit. This problem can be
avoided by dropping down one level of structuring and defining the individual characters of the array
as separate clements, not as strings.

3-3

Pascal Certification Report

The British Standards Institution has certified this version of the Pascal-2 compiler for compliance with ISO
standard 7185. During validation process, Oregon Software submits the software to an antomated snite of
740 tests. The test program sutomatically generates a report on the software's performance, whick must be
distributed with the software. The report contains four notable gections:

e Processor Identification — indicates the exact combination tested: the machine, the version and release
level of the compiler, the operating system, and the conditions under which the tests were made.

e Statement of Compliance — states the level of the standard, any exceptions to compliance, non-standard
extensions, and any implementation-specific features.

& Details of Tests — provides data on the type of teste performed and the results of each. This sec-
tion contains tests of: conformance and deviamce, error-handling, implementation-defined features,
implementation-dependent f{eatures, quality, and eztensions.

@ Statistical Summary — gives the number of tests passed, failed, or withdrawn; the mumber of errors
detected or not detected.

Pascal certification is relstively new. In fact, Oregon Software is the first company in the United States
to successfully complete the process and has passed the largest number of compilers at one time—eleven
at the first attempt. Assuming that our users are not familiar with validation reports, we've provided this
summary of the report’s contents. Yow may find a more complete explanation of the test criteria, with
comments on how to interpret the dats, in: A Readers’ Guide to Pascal Compiler Validation Reports by Z.
J. Ciechanowicz and R. A. Wichmann, NPL Report DITC 24/83, © 1983.

The report uses the following terms as they are defined in the standard:

processor the complete Pascal implementation needed to execute a Pascal program, including a compiler,
run-time library, operating system, and underlying hardware.

implementation-defined & feature of the language that must be defined in order to adhere to the standard.

implementation-dependent s feature of the language that is not in the standard and which may not be
portable.

shall indicates a requirement of the standard: the compiler must perform the specified action and/or
detect deviations.

error a specific transgression of the standard that requires some course of action.
The report also uses the standard's conventions for reference. For example, the results of each test indicate

the applicable subsection by number, e.g. 6.1.1-3 for the test of an error caused by accessing s field with an
undefined-value. Letter-number combinations refer to the standard'’s definitions, as follows:

E.ltoc E.18 implementation-defined features
D.1 to D.59 error nambers
Fileo F.11 implementation-dependent features

A final note: Users may decide upon the relevance of this data. For example, the authors of A Readers’
Guide... point out that “failure of each quality test is reported and it is up to the user to determine whether
any failare indicates s weakness that is critical to his application.”

PASCAL VALIDATIOE REPORYT

PASCAL PROCESSOR IDEBTIFICATIOR
HACHIFE : Digitel PDP-11
COHPILER : Pascal-2.1E, to be released spring 1986
OPERATIEG SYSTEE : PDP-11 ESI AHE hosted om VAL/VES 3.2

TEST COEDITIOES
DATE : February 11, 1986
TESTER : Dom Baccus, Oregom Software, Imc
TEST SUITE VERSIOE : 4.1
EVALUATOE :] B 3outer

COEPILER CPTIOCWS USED DURIEG VALIDATIOR
"Standard" switch used
defaunlt values for other switches were used (ramge checkiag,
index bounds checking, poimter checking, source walkback emabled).

Statemsnt of compliance

The above processor complies with the requirements of level 1 of
IS0 7185 with mo exceptioms.

The implementation-defined features are as follows:

E.1 The value of each char-type correspording to each allowed
string-character is the correspomding IS0 character

E.2 Default subset of real mumber demoted by sigmed-real are
the valnes representable by Digital’s 32-bit floating poinmt
format, about 7 digits of accuracy. User may specify
Digital’s 64-bit floating poiat format as a compile time
option, givisg about 16 digits of accuracy.

E.4 The values of the char-type are the IS0 character set, see

IS0 646.

Lazy~1/0 is implemsnted.

The valse of maximt is 3I2767.

The accuracy eof the approximatioms of the real operatioms

is determined by whick of the twe formats described ims E.2

is chesen and by roumdimg of intermediate resmlts. The.

processor uses Oregom Software’s proprietary implememtation

of standard fumctions om real nmumbers, and ie limited to

roughly 6 digits precisiom im single precisiom mode.

Default Total¥idtk for imtegers is 7 characters.

Default TotalWidth for reals is 13 characters.

1 g b
~ @ v

3 g
L o

.10 Default Total¥idth for beocleams is § characters.

.11 The valme of ExpDigites is 2

12 The exzpoment character is e (lower case)

.13 Booleas values output im upper case

.14 Page outpute form-feed

.16 Input and Outpet may be bouzd by messe of ESI commands

before executiom. Other files are lscael te curremt
executior unless mom~standaerd features are lavoked.

E.16 Rewrite teo standard output does mot overvrite previeus
eutput unless it has beem boumd to & mem-xecord device
(mass storage) by BSI commands imvoked before ezecmtiom.
Beset sats file variable te mezt recozd of stamdard file
output (mormally user’s terminal) emless it was previcusly
bound extermal te the exscution &s previcusly described,
in which case file variable polnts te first recerd of the
file.

E.17 411 eguivalent symbols are provided.

L I I A]

The followimg errors are detected:

p.i, b.3, .4, .7, D.10, DB.14, D.16, D.16,
b.23, b.24, b.28, 0.29, D.33, D.34, D.37, D.40,
D.41, D.44, D.456, D.49, D.61, D.B4, D.66, D.87,
D.69, ’

The processor does mot contais any extemsions to 1306 7186
when the "standard” compilaticm ewitck is used.

Implemsntation dependent features F.1-F.8, F.10 and F.11 are
treated as undetected errors, and our processocr does mot
guarantee any particular order of evaluation whers permitted
by the standard, and may evaluate simllar expressiecss is
different order im differemt comtexts. Hom-file variablee
denoted as program parameters are mot bound im amy way to
the extermal emviromment of the program (F.9).

DETAILS OF TESIS

CORFOREABCE TESTS

Total number of Conformamce tests = 218
Busber of tests passed = 213

Bumber of tests withdrawa = 2

The following tests vere withdrawn simce they contais mmimitialized
variables (correctly detected by the preocessor):

6.1.1-3
This test comtaimns every valid pair of adjacemt lezical
units.

6.6.3.7.1-6

4-3

This test checks that the fimsl array dimessioz of a
gchema cae be packed aszd else checks the
bound-identifier valumes.

DEVIABCE TESTS

Total mumber of Deviamce tests = 282
Bumber of tests which detected deviastioms = 252
Eumber of tests vhich did zot detect devistioms = @

ERBORHABDLIEG TESTS

The manufacturer claimed detectiom of the followisg error numbers
b.1, b.3, 0.7, D.10, D.14, D.16, b.16, D.23,
D.24, D.28, D.29, D.33, D.34, .40, D.41, D.44,
D.45, D.49, D.51, D.54, D.56, D.57, D.69,

Totel zumber of Errorhandling teste = 88

Bumber of pretests which passed = 88

fumber of pretests which failed = 0

Bumber of tests which detected erveors = 49

Bumber of tests which did mot detect errors = 37

Details of tests im which an error comditien wae mot detected:

6.4.3.3-10 Error Humber = 0.2
This test caunses am error by accessing a field of am
inactive variant.

6.4.3.3-11 Error fumber = D.43
This program causes am error by accessiamg a field with
an undefined-value.

6.4.3.3-12 Error Bumber = D.43
This program accesses a field of & variamt which is uet
the curremt variamt, thereby chamging the selected
variant, but causes am errer due to the
undefined-valune.

6.4.3.3-13 Error Fumber = D.43
This program causes an error by accessing a field with
an urdefined-value.

6.4.6-12 Error Eumbezr = D.50
This test violates the assigmmeamt-compatibility rules
for set-types.

6.4.6-13 Exrror Bumber = D.8
This test viclates the assigmmemt-compatibility rules
for sets passed as paramsters.

6.6.4-2 Error Humber = D.4
Thie test causee am errcr simce the pointer-variable

4-4

bes s mndefimed value whem it is dereferenced.

8.6.6-2 Error Humber = D.€
This progrem causes ar error to occur by changimg the
carrest file poesitics of a file, while the
beffer-variable is am ectual varisble parsmster to &
procedure.

6.6.6-3 Error Bumber = D.8
Thie test causes am errvor by alterisg the valuwe of &
file-variable vher & referemce te the buffer-veriable

exists.

€.8.2-7 Error Zumber = D.48
This program comtaime & fumctioz with an aseigmment te
its idemtifier, however the assigmment is mever
executed.

6.6.5.2-9 Erzor Fumber = D.12
This test causses am error by applyisg ’‘pet’ te ez
andefined buffer-variable.

6.6.6.2-12 Exrror Bumber = D.17
This program ie im errozr simce the valwe of the
buffer-variable ie not assigmment-coempatible with the
variable-access, as & result of a call of read.

6.6.5.2-14 Error Humber = D.18
This test causes &am error by ¥ritimg am expressiocam
vhich is not assignment-compatible with the
buffer-varieble, a2z a result of a call of erite.

6.6.56.3-6 Error Humber = D.B
This program causes aB errof to oCcuYr as & variable
which is curremtly am actual variable parameter is
referred to by the pointer paramster of dispese.

6.6.6.3-7 Exrzer fumber = D.§
This program caunses am errer to occur as & variable
which is an element of the record-variable-list of a
with-statement is referred te by the pointer parameter
of dispose.

6.6.5.3-8 Exrror Humber = D.26
This progrem causes am erzozr te occur, ae & variable
created by the wse of the long form of mew is used as
an operand im an expressiom.

6.6.5.3-9 Exrror Humber = D.25
This program causes am error to occur, &s & variable
created by the long form of new is wsed as the variable
in ap essigmment-statemsnt.

6.6.6.3-10 Ezxror Humber = D.256

4-5

This program causes a8 erref %o 0CCur, &2 & vaviable
created by the long form of mew is used 2s am actual

pazamster.

6.6.5.3-11 Erzor Humber = D.43
This progrem is illegel simce it uses the valuwe of a

pointer after a call of dispese,

6.6.65.3-13 Exror Bumber = D.19
Thie test causes am error by activating a variamt shich
is different from those specified by mew(p,cl, ,cm).

6.6.6.3-14 Error Bumber = D.20
This test causes an error simce am identifying-value
whick had beem created usimg the form mew(p,ci, ,ca) is
consequently removed by applyimg dispose(p).

6.6.5.3-16 Error Humber = D.21
This test causes am error by calling dispose(q,k1, ,km)
with az incorrect number of parameters.

6.6.5.3-17 Exror Bumber = D.22
This test causes am error by calling dispose(q,ki, ,km)
vhen the variasts ia the variable idemtified by the
pointer q, are differemt from those specified by the
case-constants ki, ,km.

6.6.5.3-21 Exror fumber = D.4

This test causes am error by dereferemcisg a dangling
pointer.

6.6.6.2-13 Error Bumber = 0.32

This program causes am error to occur by a call of the
function sqr such that the resulting value does mot
sxigt with an integer parameter.

§.6.6.4-5 Erzor Humber = D.38

This program causes am error to occur as the fumction
suce is applied to the last value of anm erdinal-type.

6.6.6.4-6 Error Humber = D.39

This program causes am error to occur as the function
pred is applied to the first value of am exrdinal-type.

6.6.6.4-7 Exror Bumber = D.37

This test evokes am error by pasking chr past the
limits of the char-type. It assumes that meo char-type
has more tham 1000 + ord(’0’) valuee.

6.6.6.6-7 Exrrer Humber = D.42

This test causes am error by applyisg the eoln functiom
te a file £ while ecf(f) is true.

8.7.2.2-12 Error Humber = D.47

4-6

Thie program attemptes to output & valme whick
overflows.

8.7.2.2-13 Error Bumber = D.46
Thie program imcerporates the errexr of j beimg megative
iz the expressiom 1 mod .

6.7.2.2-19 Exrzror Bumber = .47
This test comtaime & simple-expressiocm im whichk the
valne of & term exceeds maxint,

6.7.2.4-4 Errer Bumber = D.50
This test checks that operatioms om overlapping sets
are detected.

6.9.1-10 Errer Bumber = D.58
This test causes am error by readimg am integer whose
value is mot sssignment-compatible witk the type
possessed by the variable-access.

6.9.3.1-2 Error Humber = D.58
This test attempis to output charscters whose field
vidth parameters are mom-positive.

8.9.3.1-3 Error Fumber = D.58
This program comtains the error of FracDigits beiag
less tham ome.

8.9.3.1-7 Error Humber = [.58
This program comtains the error of FracDigits being
less thas ome.

TEPLEEEBTATIOR DEFINED TESTS

Total number of Implementation Defined tests = 17
Bumber of tests passed = 17
Eumber of tests failed = ¢

Details of successfel tests:

6.1.9-6 Beference Humber = E.17
ALTEREATE SUBSCRIPT BRACIEYTS INPLENEETED
ALTEREATE COHNEFT DELINITERS IMPLEEEETED

6.4.2.2-10 Eeference Humber = R.6
TEE VALUE OF HAXIET IS 32767

€.4.2.2-11 Beference Bumber = E.2
ACCURACY OF UESIGEED-REAL IS
8 DECIHAL PLACES

6.4.2.2-12 fleference Eumber = E.4
OEDIBAL VALUES OF CHARACTERS

4-7

VALUE CHAR BETVEEE DECIEAL POINTS

85 UPPER CASE LETTER
86 UPPER CASE LETTER
87 UPPER CASE LETTER
68 UPPER CASE LETTER
89 UPPER CASE LETTER
70 UPPER CASE LETTER
71 UPPER CASE LETTER
72 UPPER CASE LETTER
73 UPPER CASE LETTER
74 UPPER CASE LETTER
78 UPPER CASE LETTER
76 UPPER CASE LETTER

UPPER CASE LETTER
UPPER CASE LETTER
UPPER CASE LETTER
UPPER CASE LETTER
UPPER CASE LETTER
UPPER CASE LETTER
UPPER CASE LETTER
UPPER CASE LETTER
UPPER CASE LETTER
UPPEE CASE LETTER
UPPER CASE LETTER
UPPER CASE LETTER
UPPER CASE LETTER
UPPER CASE LETTER

OV OV N R b o =3 [+] [w0 @
VAN e m N A LN O NN NN NGB PO TR R R R R L D D A

DIGIT
DIGIT
DIGIT
DIGIT
DIGIT
DIGIT
54 DIGIT
113 DIGIT
1] DIGIT
57 DIGIT
43 PLUS
45 HIEUS
42 HULTIPLY
47 DIVIDE
61 EQUALS
60 LESS THAE
62 GREATER THAE
46 ... DECIHAL POIEY
44 .». COHHA
58 .:. COLOE
59 .;. SEHICCLOE
94 .". UP-ARROV OR COMEERCIAL AT
40 .(. OPEE ROU¥D BRACEET
41 .). CLOSED ROUED BRACEET
32 . . SPACE
39 .?. APOSTROPEE

97 .a. LOWER CASE LETTER

98 .b. LOVEE CASE LETTEE
99 .¢. LOYER CASE LETITER
100 .4, LOVER CASE LETITER
101 .e. LOVER CASE LETIER
102 .£. LOWER CASE LETTER
103 .g. LOWER CASE LETTER
104 . LOVER CASE LETIER
106 .i. LOWER CASE LETIER
106 .j. LOWER CASE LETTER
107 .kE. LOVER CASE LETTER
108 .1. LOVER CASE LETTER
109 .. LOUER CASE LETTER
110 .B. LOWER CASE LETTER
111 .6. LOWER CASE LETTEZ
112 .p. LOVER CASE LETTER
113 .q. LOYER CASE LETTER
114 .x. LOVER CASE LETTER
115 .8. LOWER CASE LETTER
116 .¢. LOPER CASE LETTER
117 2. LOWER CASE LETTER
118 .¥. LOVER CASE LETIER
119 .®. LOWER CASE LETTIER
120 .x. LOVER CASE LETTER
121 .¥. LOVER CASE LETTER
122 .z. LOWER CASE LETTER
8.6.6.2-11 Reference Humber = E.2
BETL = 2
T=s 24
BED = i
EGED = 0
HACHEP = -24
EEGEP = -24
IEXP = 8
EIFBEIP = -126
HAZEIP = 124
EPS = 6.960464¢~08
EPSEEG = 5.960464e-08
IBIE = 1.1754%4¢-38
IHAZ = 2.126765e+437
6.7.2.2-17 Beference Humber = E.7

ACCURACY OF REAL OPERATIONS IS
ABOUT 7 DECYMAL PLACES

6.9.3.1-1 Beference Fumber = E.9
DEFAULT OUTPUT WIDTE FOR BREALS
TOTALVIDTE DEFAULT VALUE = 13 CEARACTERS

6.9.3.1-8 Reference Humber = E.10
DEFAULT OUTPUT WIDTE FOR BOOLEABS
TOTALUIDTE DEFAULT VALUE = 6 CHABACTERS

6.9.3.1-9 Reference Bumber = E.8

DEFAULT OUTPUT ¥YIDTE FOR IETEGERS
TOTALUIDTE DEFAULT VALUE = T CEHBRACTERS

8.9.3.4.1-1 Beference Eumber ® E.11
FUEBER OF DIGITS IE AE EIPOEEET
EIPDIGITS IS 2

6.9.3.4.1-2 feference Humber = E.12
IHPLEMEETATIOE DEFIEED EXPOEEET CHARACTER
I8 e
LOVER CASE

6.9.3.8-¢ Beference Fember = E.13
CASE OF BOOLEAE VALUES
TRUE, FALSE
Uugy, uUooug

6.10-9 Beference Humber = E.i6€
FIRST HESSAGE: IF THIS IS TEE FIRST LIEE OF QUTPUT,
TEEE REWRITE DOES EOT OVER@RITE PREVIOUS OUTPUT.
SECOED HESSAGE: IF THIS 18 THE FIRST LINE OF OUTPUT,
TEEE BEWRITE CAUSES PREVIOUS QUTIPUT TO BE OVERWRITTEE.

6.4.2.2-13 Beference Fumber = E.4
BAEGE OF OBDIWAL VALUES OF CHAR-TYPE IS
FROE 0 10 258

6.1.9-6 Beference Humbezr = E.17

EQUIVALEET SYHBOL 10 UP-ARRO¥ IS ITHPLENESTED

IHPLEMEETATIOE DEPEEDENT TESTS

Total number of Implemsntatioz Dependent tests = 16

Bumber of tests whichk preduced imformative cutpat = 16

Humber of tests which did mot produce informstive oumtput = O
Details of tests whick produced infermative output:

6.56.3.2-6 Reference Humber = F.1
EVALUATIOE ORDER OF ¥(.4,B,C.) IS ABC

6.6.5.2-16 Reference Bumber = F.10
FUHBER OF EVALUATIOES OF F IE READ(F,4,B,C) I8 1

6.6.6.2-17 Beference Bumber = F.10
BEUHBER OF EVALUATIOES OF F IB WRITE(F,4,B,C) IS 1

68.6.6.4-8 Reference Humber = F.11
ORDEE OF EVALUATIOR OF PACE(A,I,Z) I8 szI

68.6.5.4-9 Beference Bumber = P.11
ORDER OF EVALUATION OF UBPACE(Z,4,I) 18 ZaX

4-10

6.7.1-11 Beference Humber = F.2
ORDER OF EVALDATIOBN OF (. &, B, € .) I8 ABC

€.7.4-12 fleference Bumber = F.3
ORDER OF EVALUATIOE OF (. 4..B .) I8 &8

6.7.1-14 Beference Humber = F.3
ORDER OF EVALUATIOE OF (. & .. B .} IS 4B

6.7.2.3-3 Beference Bumber = F.4
TEST OF 3SHORY CIBCUIT EVALUATIOE OF (4 LED B)
BOTHE EXIPRESSIOES EVALUATED

8.7.2.3-¢ Reforence Fumber = F.4
TEST OF SHOBY CIRCUIT EVALUATIOR OF (2 02 B)
BOTH EIPRESSIOES EVALUATED

6.7.3-2 Beference Uumber = F.5
ORDER OF EVALUATIOE OF F(F(2,B),F(C,D}) IS LBCD

6.8.2.2~1 feference Bumber = F.6
TEST OF BIEDIEG ORDER (4[] := EXPRESSIOE)
SELECTIOE THEF EVALUATION

6.8.2.2-2 Beference Fumber = F.6
TEST OF BIEDIEG ORDER (P := EIPRESSIOE)
SELECTIOE THEE EVALUATIOB

6.8.2.3-2 Beference Humber = F.7
ACTUAL PARAWETERS EVALUATED IE FORWARD ORDER

6.9.6-3 Beference Eumber = F.8
SEQUEECE CORRESPONDIEG TO PAGE
CHAR, OBD(C)= 12
QUALITY TESTS
Total number of (uality tests = 64
Humber of tests passed = 48
Bumber of tests failed = 16

Details of failed testis:

1.2-3

Thie program is & test om the speed of procedere calls.

6.1.6-10

This program checks that there ere me small limite om
the number of real literals allowed by & processor.

6.4.3.4-8
This test contains soms very complicated

set-constructors, im particular it comtaims ’set of

4-11

-10..10°. Proceseors will razely pase this test.

8.6.1-2
Thiz test checks that 300 idemtifiezs arc allswed iz a

variable~declaration-part.

6.6.3.2-3
This program checks that array imdices caz be nested 10

deep.

6.6.1-8
This test checks that proceduree may be mested te 15
levels.

6.6.6.2-8
This test checks the implemsatatioz of the exp

function.

6.6.6.2-9
This test checks the implementation of the sim amd cose

functions.

6.6.6.2-10
This test checks the implementatiomn of the la fuactiem.

6.7.1-3
Thie program checks that deeply-nested ezpressiocms are
permitted.

6.7.1-15
Thie test comstructs a null set by using &
member-designator of the form maxint..-mazimt.

6.8.3.2-2
This program checks that & procedure may have 300
statements.

6.8.3.4~2
This program checks that deeply-nested if-statements
are permitted.

6.8.3.9-20
This program checks that for-statements cam be mested
16 deep.

6.8.3.10-7
This test checks that with-statements may be mested teo
15 levels.

6.9-3
This test writes a lime of length 255 to a textfile.

Details of successfal tests:

4-12

6.1.3-3

FUEBER OF SIGEIFICAET CHABACTERS >= 20

6.7.2.2-14

BEAL DIVISIDE IS SUPPORTED I¥ SEESE OF € § BROWE

6.9.1-6

EEAD OF REALS SUPPORTED IE SEESE OF ¥ S BROWE

6.9.1-8

BEAD/VRITE OF REALS IS APPROIIMATE

6.9.3.4.2-2

YRITE OF REALS 18 APPROXIMATE

EXTEESIDE TESTS

Total mumber of Ezteneioz tests = 4
411 Ezxtensiocs tests have beer rejected

STATISTICAL SUHEARY OF THE VALIDATION

Total
|Conformance 1213/2 PASS/VITHDRAWE j215]
IDeviance {262/0 PASS/FAIL 1282}
{Pretests | 86/0 PASS/FAIL | 88l
|Error Handling | €9/37 DETECTED/EOT DETECTFD | 86l
|Implemsntation Defined | 17/0 PASS/FALL {171
|Implementation Dependent | 0/16 DETECTED/EGT DETECTED | 18]
{Quality | 48/16 QUALITY/FAIL _ | esl
|Extension ! 4/0 DETECTED/BOT DETECTED I 4

Grand Total [740]

4-13

