P

PDP-11 FORTRAN-77 Object Time System
Reference Manual

Order Number: AA~V195B-TK

August 1988

This document describes the object modules that are selectively linked with
compiled PDP-11 FORTRAN-77 code by the appropriate operating system's
task builder to produce an executable task.

Revision/Update Information: This revised document supersedes
PDP-11 FORTRAN-77 Object Time System
Reference Manual, AA-V195A-TK

Operating System and Version: RSX-11M Version 4.4
RSX-11M/M~PLUS Version 4.1
RSTS/E Version 9.6
VAX/VMS Version 4.7

Software Version: Fortran-77 Version 5.3

digital equipment corporation
maynard, massachusetts

First Printing, July 1983
Revised, August 1988

The information in this document is subject to change without notice and
shouid not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibifity for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Copyright ©1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request
the user’'s critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS 1AS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDY

DECwsiter REX dligli|t/all ke

ZK4337

Contents

PREFACE xiii
CHAPTER 1 OBJECT TIME SYSTEM OVERVIEW 1-1
1.1 TABLES, BUFFERS, AND IMPURE STORAGE 1-1

1.2 1/0 PROCESSING ROUTINES 1-2

1.3 TASK CONTROL AND ERROR-PROCESSING ROUTINES 1-2

1.4 MATHEMATICAL FUNCTIONS AND SYSTEM SUBROUTINES 1-2

1.5 COMPILED-CODE SUPPORT ROUTINES 1-3
CHAPTER 2 CONVENTIONS AND STANDARDS 2—-1
2.1 REGISTERS 2-1

2.2 CALLING SEQUENCES 2-1

2.2.1 R5 Calls 2-2

2.2.2 PC Calls 2-4

2.2.3 R4 Calls 2-4

224 FO Calls 2-5

225 Special Call Conventions 2-6

2.3 LABELING CONVENTIONS 2-6

2.4 CONTEXT SAVE AND RESTORE 2-7

CHAPTER 3 ASSEMBLY LANGUAGE INTERFACES TO THE OTS 3-1
31 WRITING A FORTRAN MAIN PROGRAM IN ASSEMBLY
LANGUAGE 31
3.2 LINKAGE TO THE FORTRAN IMPURE STORAGE AREA 3-2
CHAPTER 4 DATA STRUCTURES AND STORAGE 4-1
4.1 WORK AREA STORAGE DESCRIPTION 4-1
4.2 LOGICAL UNIT CONTROL TABLE 4-8
4.2.1 Common LUB Definitions 4-9
422 LUB Definitions For FCS-11 Support 4-9
423 LUB Definitions For RMS—11 Support 4-11
CHAPTER 5 |- AND D-SPACE TASKS 5-1
5.1 SUPPORT FOR 1- AND D-SPACE TASKS 5-1
5.1.1 Processor and Operating System Support 5~2 -
51.2 D-Space Parameter Requirement for Support 5-2
5.1.3 /1D Switch Requirement for Support -2
CHAPTER 6 AN OVERVIEW OF FORTRAN INPUT/OUTPUT 61
6.1 COMPILED-CODE INTERFACE 6-3
6.1.1 Initialization Processing 6-3
6.1.1.1 The Routines ® 6—4
6.1.1.2 SINITIO = 6-7
6.1.2 List Element Transmission 6-11
6.1.3 Termination Call 6-12
6.2 DATA-FORMATTING LEVEL 6-12

6.3 RECORD-PROCESSING LEVEL 6-13

6.4 PRINT, TYPE. AND ACCEPT STATEMENTS AND LOGICAL

UNITO 6-13

6.5 OPEN AND CLOSE STATEMENTS 6-14
6.6 OTHER INTERNAL SUPPORT ROUTINES 6-18
6.6.1 $FCHNL, $GETFILE, and $10EXIT 6-18

6.6.2 Default File Open Processing—S$OPEN __._ = §-18

6.6.3 Default File Close Processing—$CLOSE _____ = 6-19

6.6.4 Direct Access Record Number Checking—$CKRCN _ 619

6.6.5 Associated Variable Update—$ASVAR _________ 6~19

6.6.6 Keyed /O Specifier Checking—S$CKKEY _____ = 6-20

6.6.7 Register Save and Restore—$8SAVPx = = 6-20

6.6.8 Register Save and Restore— SAVRY . 6-20

6.7 FORTRAN FILE AND RECORD FORMATS 6—20
6.7.1 Seguential Organization Files 6-21

6.7.2 Relative Organization Files 6-22

6.7.3 indexed Organization Files 6-22
CHAPTER 7 FCS-11 INPUT/OUTPUT SUPPORT 71
7.1 FCS-11 1/O0 CONTROL BLOCK 7-1
7.2 OPEN PROCESSING 7-2
7.2.1 OPEN Statement Processing 7-4

7.2.2 Default OPEN Processing 7-6

7.2.3 SOPENS Procedure - 77

7.2.4 USEROPEN Interface Specification 7-8

7.25 File Name Processing 7-10

7.3 FILE CLOSE PROCESSING 7-11

7.4 SEQUENTIAL INPUT/OUTPUT PROCESSING 7-11

7.5 DIRECT ACCESS INPUT/QUTPUT PROCESSING 7-12
7.6 AUXILIARY INPUT/OUTPUT OPERATIONS 7-13
1.7 INPUT/OUTPUT-RELATED SUBROUTINES 7-14
CHAPTER 8 RMS-11 INPUT/QUPUT SUPPORT 8-1
8.1 RMS-11 170 CONTROL BLOCKS 8-1
8.1.1 Dynamic Storage Allocation for Control Blocks 8-2

8.2 OPEN PROCESSING B8-3
8.2.1 OPEN Statement Processing 8-3

8.2.2 Default OPEN Processing 8-8

8.2.3 S$OPENS$ Routine 8-9

8.2.4 USEROPEN Interface Specification 8-10

8.2.5 File Open Utility Routines 8-12

8.3 FILE CLOSE PROCESSING 8-13
8.4 SEQUENTIAL INPUT/OUTPUT PROCESSING 8-14
8.4.1 Sequential Input ($GETS) 8-14

8.4.2 Saquential Qutput {$PUTS) 8-14

8.5 DIRECT ACCESS INPUT/OUTPUT PROCESSING 8-14
8.5.1 Direct Input {$GETR}) 8-15

8.5.2 Direct Output ($SPUTR And SPUTRI) 8-15

8.5.3 Direct Delete ($DELETE)} 8-15

854 Direct Access Record Number Checking {§CKRCN) _ 8-16

8.5.5 Associated Variable Update {$SASVAR) 8-16

8.6 KEYED INPUT/OUTPUT PROCESSING 8-16
8.56.1 Keyed Input {$GETK) 8-16

8.6.2 Keyed Output ($PUTS) 8-16

8.6.3 Keyed Rewrite (SUPDATE) 8-17

8.6.4 Keyed I/O Specifier Checking (SCKKEY) 8-17

e

8.7 AUXILIARY INPUT/OUTPUT OPERATIONS 8-17
8.8 INPUT/OUTPUT-RELATED SUBROUTINES 8-19
CHAPTER FORMAT PROCESSING AND FORMAT CONVERSIONS 9-1
9.1 COMPILER FORMAT LANGUAGE 9-1
9.1.1 Format Code Byte 9-1

9.1.2 Format Code Parameters 94

9.1.3 Hollerith Formats 9-5

9.1.4 Default Formats 9-6

9.1.5 Format Compiled Code Example 9-6

9.2 FORMAT PROCESSING PSECTS a-7
9.3 FORMAT AND LIST-DIRECTED PROCESSORS 9-8
9.3.1 Format Processor—$FIO 9-8

9.3.2 List-Directed input Processor—SLSTI 9-8

9.3.3 List-Directed Qutput Processor—$LSTO 9-9

94 RUN-TIME FORMAT COMPILER—FMTCV$ 9-9
9.5 INTEGER AND OCTAL CONVERSIONS 9-10
9.6 HEXADECIMAL AND NEW OCTAL CONVERSIONS 9-11
9.7 LOGICAL CONVERSIONS 9-12
9.8 REAL, DOUBLE-PRECISION, AND COMPLEX CONVERSIONS 9-13
9.9 FORMAT CONVERSION ERROR PROCESSING 9-14

vii

CHAPTER 10 ERROR PROCESSING AND EXECUTION CONTROL 10-1
10.1 TASK INITIALIZATION 10-1
10.2 EXECUTION-TIME ERRORS 10-2

10.2.1 TRAP Instruction Processing 10-2
10.2.2 Error Control Byte Processing 10-3
10.2.2.1 Continuation Processing * 10-3
10.2.2.2 W.IOEF Error Processing * 10-4
10.2.3 Floating-Point Processor Errors 104
10.2.4 Error Message Construction and Processing 104
10.2.4.1 Message Construction Utilities * 10-5
10.3 STOP AND PAUSE STATEMENT PROCESSING 10-6
10.4 USER INTERFACING TO ERROR PROCESSING 10-7
10.5 USER INTERFACING TO TERMINAL MESSAGE QUTPUT 10-7
10.6 EXECUTION CONTROL SUBROUTINES 10-B
CHAPTER 11 OTHER COMPILED-CODE SUPPORT ROUTINES 111
11.1 ARITHMETIC OPERATIONS 11-1
11.1.1 Exponentiation 11-2
11.1.2 Complex Arithmetic Operations 11-3
11.1.3 INTEGER»4 Arithmetic QOperations 114
11.1.4 Stack Swap Operations SWPxy$ 11-4
11.1.5 Character Operations 114
11.2 ARRAY PROCESSING SUPPORT 11-5
11.2.1 Adjustable Array Initialization 11-7
11.2.2 Array Subscript Checking 11-7
11.2.3 Virtual Array Processing 11-8

ass
vill

11.2.3.1 Calling Process * 11-8
11.2.3.2 Virtual Arrays in Separate |- and D-Space * 11-9

11.2.4 Notes on ADB Usage 11-9
11.3 GO 70 STATEMENT SUPPORT 11-10
11.3.1 Computed GO TO Statement Support 11-11
11.3.2 Assigned GO TO Statement Support 11-11
11.3.3 Label List Argument Format 11-11
11.4 TRACEBACK CHAIN PROCESSING 11-12
CHAPTER 12 OTS SYSTEM GENERATION AND TAILORING 12-1
12.1 ASSEMBLY OPTIONS 12-1
12.1.1 Operating System Options 12-2
1212 File System Options 12-2
- 12.1.3 EIS Instruction Set Option 12-2
12.1.4 Special Assembly Options 12-3
12.1.4.1 ouble-Precision Arithmetic Option ® 12-3
12.1.4.2 Floating-Point Format Conversion Option ® 12-3
12.2 OTS ASSEMBLY MACROS 12-3
12.3 OPTIONS AFFECTING COMPILE-TIME PERFORMANCE 124
12.31 Number of Temporary Files 124
_ 12.3.2 Size of the Dynamic Storage Area 12-5
12.3.2.1 Operating Systems Supporting Dynamic Memory
Allocation ® 127
12.3.2.2 RSX-11M Without Dynamic Memory Allocation ® 12-7
12.4 OTS OPTIONS 12-8
12.4.1 F7711S 12-8
12.4.2 Short Error Text — RSX—11M/M-PLUS and RSTS/E
Only 12-9
124.3 F77MAP 12-9
1244 F77EIS 12-10
12.45 F77CVF 12-11
12.4.6 F77NER 12—-12
12.4.7 F77NIO 12-12
12.4.8 F77RAN 1213

12.4.9 OTS Overiay Description Files 1213
12.4.10 OTS Modules Chart 12-13
CHAPTER 13 OTS RESIDENT LIBRARIES 13-1
13.1 TYPES OF RESIDENT LIBRARIES 13-2
13.1.1 Noncluster Libraries 13-2

13.1.2 Cluster Libraries 13-2

13.2 SUPPORT FOR RESIDENT LIBRARIES 13-3
13.3 VECTORED RESIDENT LIBRARIES 13-4
13.4 CREATING AN QTS RESIDENT LIBRARY 13-4
13.4.1 The Default Library 13-5

13.4.2 The Tailored Library 13-5

13.4.2.1 Editing the MACRO-11 File ®» 13-7

13.4.2.2 Building a Noncluster Library with FCS Routings ® 13-8
13.4.2.3 Building a Noncluster Library Linked to FCSFSL ¢ 13~10
13.4.2.4 Building a Library to Cluster with RMSRES ¢ 13-11
13.4.2.5 Building a lLibrary to Cluster with FCSRES * 13-12

APPENDIX A FORTRAN IMPURE AREA DEFINITIONS A-1

APPENDIX B FORTRAN LOGICAL UNIT CONTROL BLOCK
DEFINITIONS B-1

B.1 FCS-11 LUB CONTROL BLOCK FORMAT B-1

B.2 AMS—-11 CONTROL BLOCK FORMATS B-3

APPENDIX C OTS SIZE SUMMARY

ca

c.2

c3

c.4

cb

C.6

c.7

cs8

C.9

c.10

c1

MODULES ALWAYS PRESENT
c11 FCS-11 Support

C1.2 RMS-11 Support

COMMON 1/0 SUPPORT
c21 FCS-11 Support

c22 RMS—11 Support

SEQUENTIAL INPUT/OUTPUT
c.3.1 FCS-11 Support

c3.2 RMS—11 Support

DIRECT INPUT/QUTPUT
c.4.1 FCS-11 Support

c4.2 RMS—11 Support

KEYED INPUT/OUTPUT
C.5.1 RMS—11 Support

MISCELLANEQUS 1/O0 SUPPORT
C.6.1 FCS-11 Support

C.6.2 RMS-11 Support

MISCELLANEOUS COMPILED-CODE SUPPORT
PROCESSOR-DEFINED FUNCTIONS
COMPILED-CODE ARITHMETIC SUPPORT (R4 CALLS)

COMPILED-CODE CHARACTER SUPPORT

SERVICE SUBROUTINES

OPTIONAL MODULES

C-1
c-1
c-2

c-3

c4a

c-4
C-5
C-5

C-6
C-6
Cc-7

c-8
c-8

c-9
c-9
c-10

C-10

C-1

Cc-15

C-15

C-16

C-16

C.13 RSX-11S SUBSET SUPPORT ' c-17
APPENDIX D PROGRAM SECTION DESCRIPTIONS D-1
INDEX
FIGURES

6-1 The 1/O Subsystem 62

9-1 Format Code Form 9-2

12-1 Compiier Performance 12-6

B8—1 LUB Format B4

-
TABLES

2-1 Register Assignments for Subprogram Results {R5 Calls) 2-3

2-2 Processor-Defined Functions 2-5

4-1 Task Control Information 4-3

4-2 1/0 Controt Information 44

4-3 Format Control Information 4-5

4-4 Run-Time Format Control Information 46

4-5 Error Control Information 4--7

4-6 Error Message and Traceback Control Information . 4-7

4-7 Virtual Array Control Information 4-8

4-8 Trap Routine Information 4-8

6-1 1/0 Initialization Entries 64

6-2 i/0 Initialization Symbols 6-7

6-3 I/O Initialization Argument Masks 6-8

6—4 I/O Initialization Routine Functions 6—-9

6-5 Summary of Argument Blocks by Keyword 6-16

7-1 Summary of OPEN Statement Keywords and FDB Settings ____ 7-2

7-2 FDBSET Argument Summary 7-15

8-1 FAB/RAB Settings for OPEN Statement . 8-3

91 Compiled Format Codes 9-3

Preface

Manual Objectives

This manual contains detailed information about the FORTRAN-77 Object
Time System (OTS) not contained in the PDP-11 FORTRAN-77 User’s
Guide. The information is not needed for typical use of FORTRAN-77;
however, many users need to know more about the OTS for specialized
applications. This manual is especially helpful to programmers interfacing
MACRO-11 and FORTRAN-77 routines to the OTS.

intended Audience

This manual assumes that the readers know MACRO and FORTRAN
and are familiar with the information in the PDP-11 FORTRAN-77 User’s
Guide, their operating system’s executive reference manual and 1/O
operations reference manual, and the RMS-11 MACRO-11 Reference
Manual.

Internal OTS interfaces are not guaranteed o remain constant across
releases of FORTRAN-77. Calling the OTS the same way as the compiled
code is called and using the OTS named offsets ensure as much release-
to-release compatibility as possible.

xiii

Document Structure

This manual contains 13 chapters and four appendixes.

Chapter 1, “Object Time System Overview,” provides a conceptual
view of the structure of the OTS.

Chapter 2, “Conventions and Standards,” describes the calling se-
quences and naming conventions used by PDP-11 FORTRAN-77.

Chapter 3, “Assembly Language Interfaces to the OTS,” describes how e
to write MACRO-11 programs that interface with the OTS.

Chapter 4, “Data Structures and Storage,” describes the OTS work area
and logical unit control table.

Chapter 5, “I- and D-Space Tasks,” explains how to increase the
virtual task space available to your program.

Chapter 6, “Overview of FORTRAN-77 Input/Output,” provides
a conceptual view of OTS I/O processing and describes the 1/0
modules that are accessed by both the FC5-11 and RMS~11 file
management systems.

Chapter 7, “FCS-11 Input/Output Support,” describes the FC5-11 file
management system operations that are used to implement PDP-11
FORTRAN-77 1/0 operations.

Chapter 8, “RM5-11 Input/Output Support,” describes the RMS-11
file management system operations that are used to implement
PDP-11 FORTRAN-77 1/Q operations.

Chapter 9, “Format Processing and Format Conversions,” describes the
internal form of format specifications, the format processing algorithm,
and the format conversion routines.

Chapter 10, “Error Processing and Execution Control,” discusses
execution control processing, the detection and processing of run-time
errors, and the generation of error messages.

Chapter 11, "Other Compiled-Code Support Routines,” describes
routines that support various arithmetic and housekeeping operations
required by the compiled code.

Chapter 12, “OTS Systemn Generation and Tailoring,” describes the
QTS installation options.

Chapter 13, “OTS Resident Libraries,” describes how to create OTS
libraries.

Appendix A, “PDP-11 FORTRAN-77 Impure Area Definitions,” shows
the layout of the OTS work area described in Chapter 4.

Appendix B, “FORTRAN-77 Logical Unit Control Block Definitions,”
describes the data structures used in OTS 1/O processing.

Appendix C, “OTS Size Summary,” provides the approximate sizes of
all the OTS modules.

Appendix D, “Program Section Descriptions,” describes the program
sections (PSECTs) used by the OTS.

Associated Documents

The foliowing documents provide related information:

PDP-11 FORTRAN-77 User's Guide

PDP-11 FORTRAN-77 Language Reference Manual
RMS-11 User’s Guide

RMS-11 MACRO-11 Reference Manual
1AS/RSX-11 1/0O Operations Reference Manual

Conventions Used in this Document

The following syntactic conventions are used in this manual:

All references to FORTRAN-77 denote PDP-11 FORTRAN-77, unless
otherwise specified.

Uppercase type is used in text to indicate system commands and
command options.

Lowercase letters are used in syntax specifications and examples
to indicate variables; anything that is not a variable (for example,
statement names and keywords) appears in uppercase,

Brackets ([]) indicate optional elements within statements.

Braces ({}) are used to enclose lists from which one element is to be
chosen.

Horizontal ellipses (. ..) indicate that the preceding item(s) can be
repeated one or more times.

“Real” (lowercase) is used to refer to the REAL+4 (REAL), REAL+8 data
types as a group; likewise, “complex” (lowercase) is used to refer to
COMPLEX»*8; “logical” (lowercase} is used to refer to the LOGICAL»2
and LOGICAL#4 data types as a group; and “integer” (lowercase)

is used to refer to the INTEGER+2 and INTEGER#*4 data types as a
group.

Unless otherwise noted, numeric values are represented in decimal
notation. Values in MACRO-11 examples are in octal notation.

Unless otherwise specified, all commands end with a carriage return. r

& Chapter 1
Object Time System Overview

The FORTRAN-77 Object Time System (OTS) consists of assembly lan-
guage modules that complement your compiled code. Most OTS routines
are common to the RSX-11M/M-PLUS and RSTS/E operating systems,
and the FCS-11 and RMS-11 file management systems, However, certain
routines are supported only by a specific operating system or file manage-
ment system. The FORTRAN-77 distribution kit allows you to configure
systems individually for each file management or operating system.

The OTS has five main parts:

Tables, buffers, and impure storage that the OTS routines need
I/0 processing routines

Task control and error-processing routines

Mathematical functions and system subroutines

IR e

Other compiled-code support routines

The rest of this chapter introduces and describes each of these parts of the
OTs.

1.1 Tables, Buffers, and impure Storage

The OTS uses data areas that include read-only constants, logical unit
control tables, various buffers, and the impure storage area. Chapter 4
describes these data areas.

Object Time System Overview -1

1.2 1/0 Processing Routines

The 1/0 processing routines are a collection of small modules. Only those
modules required by a given FORTRAN source program need to be linked
into the user’s task.

Chapter 6 describes the I/O systern design and the I/O routines commeon

to the FCS-11 and RM5-11 file management systems. Chapter 7 discusses DR
FCS-11-specific routines, Chapter 8 discusses RMS-11-specific routines, N
and Chapter 9 contains information on format processing routines.

1.3 Task Contrel and Error-Processing Routines

For every FORTRAN main program, the compiler inserts a call to OTS
initialization. You can conirol program termination by using the USEREX
subroutine to set up a procedure that is called when a program terminates.

When the OTS detects an error, it executes a TRAP instruction with S
the error number in the low byte of the instruction. A service routine R
within the error-processing modules handles floating-point processor
asynchronous traps.

There are two methods of error recovery: use an ‘ERR=' transfer within
an I/O statement, or a return to the error site for appropriate action. A
byte in the OTS impure storage determines which action to take. Each
defined error number corresponds to an error control byte that you can
access using the FORTRAN-callable subroutines ERRSET, ERRTST, and
ERRSNS.

For more information on these subroutines, see Chapter 10.

1.4 Mathematical Functions and System Subroutines

The PDP-11 FORTRAN-77 User’s Guide describes how to use special
names to call mathematical routines from compiled code. These routines
are known as processor-defined functions. Appendix B of the PDP-11
FORTRAN-77 User's Guide describes the algorithms for these mathematical
library routines, and Appendix D describes the system subroutines.

1-2 Object Time System Dverview

1.5 Compiled-Code Support Routines

Compiled-code support routines complement the compiled code by
performing operations too complicated or cumbersome to perform with
in-line code, such as array subscript checking, exponentiation, character
assignment and comparison operations, and complex arithmetic.

For more information on these routines, see Chapter 11.

Object Time System Overview 1-3

R

Chapter 2
Conventions and Standards

FORTRAN-77 has specific procedural and naming conventions. The
following sections describe these conventions.

-~ 2.1 Registers

The eight processor general registers are referenced as follows:

RO to R5 = Registers 0-5
SpP = Register 6
PC = Register 7

The six floating-point processor accumulators are referenced as FO-F5.

2.2 Calling Sequences

FORTRAN-77 compiled code uses the following four calling sequence
conventions to call components of the OTS:

1. RS Calls—for all system subroutines, most processor-defined func-
tions, and all user-routine calls

2. PC Calls—for 1/O operations, system-dependent routines, and charac-
ter assignment and comparison operations

3. R4 Calls—for out-of-line, stack-oriented arithmetic routines and
certain compiled-code support routines

4. FO Calls—for faster calls to certain processor-defined functions

Conventions and Standards 2-1%

The following sections describe these calls.

2.2.1

R5 Calls

This calling sequence convention is the standard for FORTRAN-77. The
basic form for these calls is:

; IN INSTRUCTION-SFPACE

4 MOV #LIST RS ;Address of argument list to S
.regigter 5

JSR PC.SUB ;Call subroutine

; IN DATA-SPACE
LIST: -BYTE N.0 :Number of arguments

.WORD ADR1 ;First argument address
.WORD ADRN ;N'th argument address -;“,;

The argument list must reside in data-space and, except for label type
arguments, addresses in the list must also refer to data-space.

User programs should not reference the byte at address LIST+1. It is
reserved for future use by DIGITAL software. References to LIST + 1 may
cause unpredictable resuits.

Control returns to the calling program by restoring (if necessary) the stack
pointer (SP) to its value on entry and executing an RTS PC instruction.

Function subprograms return a single result in the processor general
registers. The type of variable returned by the function determines which
registers receive the result. Table 2-1 shows the variable types and their
associated register assignments.

2-2 Conventigns and Standards

Table 2-1: Register Assignments for Subprogram Results

{R5 Calls)
If the
Result Type Is: The Result Is in:
INTEGER»*2
LOGICAL~1 RO
LOGICALs2
INTEGER+*4
LOGICAL»4 RO—Low-order result
R1—High-order result
REAL RO—High-order result
R1—Low-order result
DOUBLE RO—Highest-order result
PRECISION R1
R2
R3—Lowest-order result
COMPLEX RO—High-order real result

R1—I_ow-order reat result
R2—High-order imaginary result
R3—Low-order imaginary result

Calling programs use RO through R5 to save values needed after a return
from a subprogram. The argument list pointer value in register R5 may
not be valid after return. Calling programs must save and restore the
floating-point registers that they use. You cannot assume that the called
routines will restore the floating-point status bits 1/L (integer/long integer)
or F/D (floating/doubie precision).

An address of -1 (177777 octal) represents a null argument in an argument
list. The -1 address ensures that null arguments in subprograms that
cannot handle them will result in an error when the routine is called,
The errors most likely to occur are illegal memory references and word
references to odd byte addresses.

For more information about this calling sequence convention, see the
PDP-11 FORTRAN-77 User’s Guide,

Conventions and Standards 2-3

2.2.2 PCCalls

Use a JSR PC,xxx instruction to make PC calls. These calls pass all
arguments on the stack and return with the arguments deleted from the
stack. There are no changes to registers R0O-R5, FO-F5, or the FPP status
register. PC calls are used for the following operations:

¢ All I/O statements except OPEN and CLOSE

¢ STOP, PAUSE, computed GO TO, and assigned GO TO statements

* Character out-of-line support routines for assignment and comparison
* Array subscript checking, if enabled

For example,

The FORTRAN-77 statement

REWIND 3

is compiled into the code

MOV #3,-(8P) ;Unit number
JSR PC, REWIS iREWIND processor

2.2.3 RA4Calls

Use this convention for out-of-line, stack-oriented arithmetic routines and
other compiled-code support. These routines receive argument values

on the stack, or a pointer to an argument value as an in-line argument
immediately following the call. They delete the stack arguments and
return a value on the stack. This type of routine is called by a JSR R4,xxx
instruction. R4 calls modify the FPP status register and registers FO-F5 and
RO-R4, but preserve R5. Chapter 10 describes the modules that use this
convention.

For example,
The FORTRAN statement

Xupusl

2-4 Conventiens and Standards

L

is compiled into the code

MOV A+2, -(8P} ;Push A

KOV A,-{SP)

JSR R4, PWRICS ;Compute Ax*]
.WORD I ;Address of I
MOV (SP)+. X ;Store at X

MOV (SP)+,X+2

22.4

F8 Calls

Commonly used processor-defined functions use this convention. It sets
the FPP F/D status bit to the type of argument and loads the argument

into FO. A JSR PC,xxx instruction calls this routine. It returns a result in
F0 and preserves the FPP F/D status bit, but does not preserve registers
RO-R5, F1-F5, and the FPP I/L status bit. The functions that use FO calls
are named $$xxxx, as shown in Table 2-2.

Table 2-2: Processor-Defined Functions

Name Function

$$SIN Real sine

$$DSIN Double-precision sine

$$SQRT Real square root

$$DSQR Double-precision square root
$$ATAN Real arctangent

$$DATN Double-precision arctangent

$$COS Real cosine

$$DCOS Double-precision cosine

$$ALOG Real logarithm (base e)

$$DLOG Double-precision logarithm (base e)
5ALG1 Real logarithm (base 10)

$$DLGL Double-precision logarithm (base 10)
$SEXP Real exponential (base e)

$$DEXP Double-precision exponential (base ¢)
$$TAN Real tangent

$$DTAN Double-precision tangent

Conventions and Standards

2-5

For exampile,

The FORTRAN statement
Y = SIN(X)
is compiled into the code

SETF ;set FPP mode
LDF X,FO

JSR PC,$¥8IH

8TF FO.Y

2.2.5 Special Call Conventions

The following are exceptions to the four general calling conventions:

OPEN (OPEN$) and CLOSE (CLOS$) statements use the R5 conven-
tion with a special argument list encoding.

Run-time format compilation (FMTCV$) uses a PC call but returns a
stack result for use in a subsequent 1/0 initialization call.
Adjustable array initialization calls (MAK1$, MAK2$, MAKNS, and
MAKV$) use a PC call but preserve only R5.

Traceback name initialization (@$NAMS) uses a coroutine call.
Virtual array processing ($VRTxy) uses a PC call that preserves all
registers except RO.

Task initialization ($OTI} uses a PC call that does not preserve the
registers. :

The intrinsic function INDEX uses the R5 convention, but the ad-
dresses in the list point to 2-word (length, address) descriptors of the
argument.

See the corresponding module descriptions in later chapters for more
details on these special variants.

2.3 Laheling Conventions

The labels of OTS routines begin with a dollar sign ($) and are followed
by the name or a contraction of the name. All external entry point names
contain a dollar sign ($) as either the first or last character.

2-6 Conventions and Standards

s

e

24

Context Save and Restore

The calling sequence determines the OTS register context conventions.
Refer to Section 2.2.

Internal OTS calls use various conventions. In general, the calling routine

saves those registers it requires. Registers not mentioned in the OTS
routine descriptons are saved.

Conventions and Standards 2-7

W -
e

Chapter 3

Assembly Language Interfaces

to the OTS

Chapter 2 describes how the compiled code that is output from your

FORTRAN-77 source program compilation interfaces with the OTS. You
also can write MACRO-11 programs that interface with the OTS. This

chapter summarizes how you can set up that interface.

3.1 Writing a Fortran Main Program in Assembly Language

The following MACRO-11 code represents a hypothetical FORTRAN-77

main program:

START: ;
JSR PC, OTI$

MDV.#‘R<IN .>,~{8F}
MOV #°R<.MA>, R4
JSR R4, O$NAMS

; Initialize the DTS and file management
; system

; Last 3 letters of name in RADIX-50
; Firat 3 letters of name in RADIX-50
. Initialize traceback chain if desired

Assembly Language Interfaces to the 0TS 3-1

JSR
-GLOBL
.GLOBL
.GLOBL
.GLOBL
.GLOBL
.GLOBL
.GLOBL
.END

Notes:

PC, EXITS
$OTSVA
RCIS

LCI$

IC1S
arGSQs
ORGRLS
ORGIXS
START

; Cloge files and exit

; Link in the impure area

; Floating point format conversions
; Logical format conversionms

; Integer format conversions

; RMS-1! gequential impyre

; RMS-11 relative impure

. RMS-11 indexed impure

1. The call to OTI$ initializes the FPP (SFPA$S), the SST vector
(SVTK$S), and FCS-11 (FINIT$) or RMS-11 ($INITIF).

2. The reference to $OTSVA loads the FORTRAN impure storage area.

3. The references to the FORMAT conversion routines are needed only
if the desired conversion routine is required. (Note that a FORTRAN
‘subprogram containing a FORMAT statement holds the required
FORMAT conversion references.)

4. The RMS-11 impure storage references are needed only if RMS~11
is the file system your program needs to process a particular file
organization.

3.2 Linkage to the FORTRAN Impure Storage Area

The FORTRAN impure storage area defines a global symbol $OTSVA,
which is referenced by the compiled code in FORTRAN main programs,
Subprograms do not reference this symbol. When the Task Builder
processes a reference to $OTSVA, it loads the FORTRAN impure area and
defines global symbol $OTSV in the task containing the address of the
symbol $OTSVA. All FORTRAN OTS routines obtain the address of the
impure area by referencing the location $OTSV (refer to the discussion of
the $AOTS macro in Chapter 12).

3-2 Assembly Language Interfaces to the 0TS

, w"’?.\v:\.
B [

Chapter 4
Data Structures and Storage

The OTS maintains two major areas of impure storage: the work area and
the logical unit control table. This chapter describes these two areas.

4.1 Work Area Storage Description

The work area contains task-specific data, such as address pointers, and
information about the currently active operation, such as a direct access
record number.

For example, the work area contains:

Named offsets

The named offsets make up the first 120 words of the work area and

have names of the form W.xxxx or xxxxxx. There are both word and

byte offsets, and some of the offsets have an associated global symbol
name.

QIO directive parameter block
The 12-word QIO directive parameter block (DPB) uses event flag
30 to send error messages to terminals, On RSX-11M/M-PLUS and

RSTS/E systems, you use the DPB for all message output. The offset
W.QIO points to the DPB.

Error message text buffer

The buffer for the error text message line is 70 bytes in RSX~11M
/M-PLUS and RSTS/E. The offsets W.ERLN (start address) and
W.ERLE (end address+1) point to the buffer.

Dats Structures and Storage 4-1

* Error control table The error control table is 128 bytes, with one byte
for each error. The error control table is an impure data area that the
error-handling routines use and manipulate. The task initialization
routine OTI$ copies a prototype version of the table into this area.
The offset W.ERTB points to this table.

* Synchronous System Trap vector address table

The Synchronous System Trap (SST) vector address table ($5ST)
contains an entry for each defined 5ST. The offset W.SST points to
this table.

* Window block

An 8-word address mapping window block is used by the virtual
array processing routines. The virtual array initialization routine
$VINIT initializes this window block. The offset W WDB points to this
window block.

In this section, the named offsets are organized into functional groups
and described in Tables 4-1 through 4-8. The functional groups and their
corresponding tables are as follows:

Task control—Table 4-1 oo
1/O control—Table 4-2

Format control—Table 4-3

Run-time format control—Table 4-4

Error control—Table 4-5

Error message and traceback control—Table 4-6

Virtual array control—Table 4-7

Trap routines—Table 4-8

4-2 Data Structures and Storage

Table 4-1: Task Control Information

Global Global

Symbol Description Name Default

EXADDR Address of USEREX routine or 0

W.ACPT Logical unit number for ACCEPT state- $ACCPT 5
ments

W.BEND High address+l of the user record buifer
W.BFAD Start address of the user record buffer

W.BLEN Length of the user record buffer; computed 133
at task initialization time and equal to
W.BEND - W.BFAD

W.DEV Start address of the logical unit control
table

W.DEVL For FCS-11, the high address+1 of the
logical unit control table; for RMS-11, the
address of the free storage

W.END Last word of named offsets
W.EXST Exit with status value

W.EXTK Size (in 64-byte units} of the task in- $EXTKL 16
crement value for use in the EXTK$
directive

W.FNML Maximum length of file name strings $MXFNL 80

nonblank characters
W.FPPF FP-11 flag byte; 0 if FP-11 present, 1 if

not
W.LIMT Address of a .LIMIT directive block
W.LNMFP Number of valid negative unit numbers 4
W.LUNS Number of valid logical units .NLUNS
W.MO Logical unit number for error messages MOLUN
W.PRNT Logical unit number for a PRINT $PRINT 6
statement

W.READ Logical unit number for a READ statement $READ 1
W.SKLM Task's current stack overflow

W.SST Limit address of the SST table

W.IKLM Task current maximum virtual address

Data Structures and Storage 4-3

Table 4-1 (Cont.): Task Control Information

Global
Symbol

Global
Description Name Default

W.TSKP

W.TYPE
W.LUND

Address of the special PSECT, $$TSKP,
containing task parameters

Logical unit number for a TYPE statement $TYPE

System logical unit number for $LUNO
FORTRAN-77 logical unit 0

Table 4-2: 1/0 Control Information

Global
Symbol

Description

BLBUF
COUNT
DENCWD
ENDEX
EOLBUF
ERREX
FILPTR
FMTCLN
ITEMSZ
LNBUF
RACNT
RECIO
UNCNT
UNFLGS
VARAD
W.EX]
W.FDB1

W.FDB2

W.FPST

4-4 Data Structures and Storage

Address of next data byte in current 1/0 record

Length of array in an [/0 list

Maximum number of 1/0 records or { if no limit
Address of END= statement or 0

End address+1 of current I/O record

Address of ERR= statement or

Address of active 1/O contro] block or 0

Value of SP on entry to [/O processing

Size in bytes of current I/0 list element

Start address of current 1/0 record

Number of data bytes remaining in current I/O record
Address of record-processing 1/0 routine (GET or PUT)
Number of data bytes remaining in record segment A
Segmented record control word

Address of current I/O list element or 0

Coroutine address of current 1/0 element processing routine

Pseudo 1/0 control block for ENCODE/DECODE and internal
files (word 1)

Pseudo I/O control block for ENCODE/DECODE and internal
files (word 2}

FP-11 status register at I/Q entry

PN

Table 4-2 (Cont.): |/0 Control Information

Global

Symbol Description

W.KDSC Character key descriptor address

W.KDTP Key data type byte

W.KMAT Key match criterion byte

W.KNUM Integer key value (2 words)

W.KREF Key-of-reference value

W.OPFL Count of errors during OPEN or CLOSE statement processing

W.RECH High-order direct access record number

W .RECL Low-order direct access record number

W.UOPN USEROPEN procedure address or 0

W.VTYP? Data type code of current [/O list element

Table 4—3: Format Control Information

Global

Symbol Description

D Decimal fraction width of current format item

DOLFLG Dollar sign format flag for the current 1/0 record

FMTAD Address of current format byte

FMTLP Infinite format loop flag

FMTRET Address in format for format reversion

FSTK Base of 16-word stack for format parenthesis nesting

ESTKP Address in FSTK of current nesting level

LENGTH Field width of current format item

PSCALE P format value

REPCNT Repeat count of current format item

TSPECP Highest address used in current 1/Q record

TYPE Current format code

W.CPXF Complex data item flag: 1-real part; 0=not complex;
-1=imaginary part

W.DFLT Current default format code or 0

Data Structures and Storage 4-5

Table 4-3 (Cont.): Format Control Information

Global
Symbol

Description

W.ELEM
W.LICB

W.LICP

W.NULL

W.PLIC

W.PNTY
W.R5
W.SPBN

Flag indicating data element has been processed

Base address of current list-directed data value control block in
previous versions of PDP-11 FORTRAN IV-PLUS

Address in list-directed data value control block of current data
value in previous versions of PDP-11 FORTRAN IV-PLUS

Flag indicating a slash separator character was seen during list-
directed input processing

Address in list-directed data value control block of current data
value

Variable format expression flag byte
Saved RS value for variable format expressions
The SP/55, BN/BZ, and T format flags

Table 4-4:

Run-Time Format Control Information

Global
Symboi

Description

NOARG
NUMFLG
PARLVL
W.OBFH
W.OBFL

Number of arguments required by current format code
Current numeric value

Currentfparenthesis] level

End address +1 of run-time format buffer

Start address of run-time format buffer

4-6 Data Structures and Storage

Table 4-5:

Error Control Information

Global

Symbol Description

W.ECNT Task error limit count, global name: SERCNT
W.ERNM Last error number or 0

W.ERTB Start address of error control table

W.ERUN Logical unit number of last 1/O error or 0
W.FERR Primary 1/O error code of last I/O error or 0
W.FER1 Secondary I/O error code of last I/O error or 0
W.IOEF Special 1/0 error processing flag

W.PC PC value of SST and FP’-11 errors

W.QIO Address of error message QIO DPB

Table 4-6: Error Message and Traceback Control Information
Global

Symbol Description

W.ERLE End address+1 of error message text buffer
W.ERLN Start address of error message text buffer
W.MOA1 MO first text segment address

W.MOA2 MO second text segment address

W.MOPR Address of MO parameter list

W.MOTC MO traceback count

W.MOTR MO traceback list head

W.MOTY Error message type byte: 0=-MOQO, 1=QIO

W.MOT2 MO traceback current statement number
W.MOV1 MO first text segment length

W.MOV2 MO second text segment length

W.NAMC Traceback chain list head, global name: $NAMC
W.QIO Address of error message QIO DPB

W.SEQC Traceback current statement number, global name: $SEQC
W.TKNP Address of task name in error message text buffer

Data Structures and Storage 4-7

Tabie 4-7: Virtual Array Control Information

Global
Symbol Description
W.WDB Address of window block for mapping

W.WNHI Current high-window address+1
W.WNLO Cusrent low-window address

Table 4-8: Trap Routine Information

Global

Symbol Routine Whose Address Contained
W.ERXT SERXIT

W.ERLG $ERRLG

W.FIN SEXIT

W.FPER $FPERR

W.NAM NAMS$

W.IOXT SIOEXIT

W.RLME RLMEMS$
W.ROME ROMEMS$
W.GSA RMSQL$

4.2 Logical Unit Control Table

The logical unit control table contains a block of storage for each logical
unit allocated to the FORTRAN-77 OTS. Each block contains complete
information required by the OTS to perform 1/0 to the assodiated unit.

All FORTRAN-77 1/0 is performed on logical units. Each logical unit
has a control block (LUB). The allocation and manipulation of the control
blocks depends on the file system in use: FCS-11 or RMS-11.

The following sections describe the LUB symbolic names and their use.
Appendix B contains the offset values for each symbolic name.

4-B Data Structures and Storage

4.2.1 Common LUB Definitions

The first two words of each control block are status words (D.STAT and
D.STA2). Certain bits in these status words are defined the same way
in both the FCS-11 and RMS-11 file systems to support common 1/0
processing as much as possible.

The following bits in D.STAT are defined the same way in both file
systems:

DV.FAK— partial control block for ENCODE/DECODE and internal
file usage

DV.FMP— formatted logical unit

DV .FRE— free format disallowed {“short field termination”)

DV.OPN— open logical unit

DV.RW — current operation type: 0= READ, 1= WRITE

DV.UFP— unformatted logical unit

The following bit definition in D.STA2 is common to both file systems:
DV.BN — BLANK = 'NULL'’ specified

4.2.2 LUB Definitions Fer FCS-11 Support

Each logical unit has a LUB in the $$DEVT program section (PSECT).
There is one LUB allocated for each unit declared in the task builder
UNITS= statement (if the UNITS= parameter is not specified, the default
value is six logical units). Each LUB is a fixed-length block consisting of
an FCS-11 File Descriptor Block (FDB) and a 6-word header for FORTRAN
usage. At task initialization time, each LUB is set to zero (0). A close
operation also sets each LUB to zero (0).

Offsets of the form D.xxxx describe the FORTRAN header portion of the
LUB, as follows:

D.STAT — status word 1 {see below)

D.STA2 — status word 2 (see below)

PB.RCNM — direct access record limit {low order)
D.RCN2 — direct access record limit (high order)
D.RCCT — record count for BACKSPACE (low order)
D.RCC2 — record count for BACKSPACE (high order)
D.AVAD — address of associated variable address or 0
D.RSIZ — maximum record length

D.FDB — start of FCS-11 FDB

Data Structures and Storage 4-9

Several of the words have different uses depending upon the kind of 1/0

operation.

The FORTRAN header portion of the LUB contains two status words.
The bits in these status words have symbolic names of the form DV .o,
These bits are defined as follows:

Status Bits for Word 1 (D.STAT)

=

Symbol Value Description

DV.FAK 20 Partial LUB for ENCODE/DECODE and internal files
DV.FNB 4 File Name Block initialized

DV.DFD 10 Direct access unit

DV .FACC 40 File attributes byte of FDB (F.FACC) defined
DV.OPN 200 Unit open

DV.FMP 2000 Formatted unit

DV.UFP 4000 Unformatted unit

DV.ASGN 10000 File name defined

DV.CLO 20000 Close in progress

DV.FRE 40000 Free format prohibited (short field termination)
DV.RW 100000 Input or output operation (0 = read, 1 = write)
DV.FIX 2 Fixed-length records

DV.VAR 400 Variable-length records

DV.SEG 1000 Segmented records

Status Bits for Word 2 (D.STA2)

Symbeol Value Description

DV.Al4 2 Associated variable is INTEGER+«4 data type
DV.CC 10 Explicit carriage control specified

DV.SPL 20 DISP = ‘PRINT’ specified

DV.DEL 40 DISP = 'DELETE’ specified

4-10 Data Structures and Storage

o

Symbol Value Description

DV.5AV 40000 DISP = ‘SAVE' specified
DV.RDO 400 READONLY specified
DV.UNK 1000 TYPE = 'UNKNOWN’ specified
DV.OLD 2000 TYPE = 'OLLY specified
DV.NEW 4000 TYPE = 'NEW’ specified
DV.SCR 10000 TYPE = 'SCRATCH' specified
DV.APD 20000 ACCESS = 'APPENDY specified
DV.RSZ 4 Explicit RECORDSIZE specified
DV.BN 100000 BLANK = '"NULL' specified

423 LUB Definitions For RMS-11 Support

Each open logical unit using RMS-11 has a LUB, which comes from the
storage pool. There is a 1-word pointer, or 0, to the LUB, which is allo-
cated in the $$DEVT PSECT. A LUB contains the following information:

* An RMS5-11 Record Access Block (RAB)
* FORTRAN control information
* Storage for the file specification string for use during error reporting.

* Allocation of the LUB occurs at the first reference to the logical unit,
Deallocation occurs at the close of the unit.

RMS-11 also requires these additional control blocks: the File Access
Block (FAB), Extended Attributes Block (XAB), and the Name Block. The
OTS allocates these as required.

Offsets of the form D.xxxx describe the FORTRAN header portion of the
L.UB as follows:

D.STAT — status word 1 (bits defined below)
D.STA2 — status word 2 (bits defined below)
D.LUN — logical unit number

D.NAMC — length of name string

D.IFI — RMS internal file identifier value
D.PFAB - pointer to FAB or 0

D.RSIZ — maximum record length

D.RCNM — direct access record limit (word 1)
D.RCN2 — direct access record limit (word 2)

Data Structures and Storage 4-11

D.RCCT — record count for BACKSPACE (word 1)
D.RCC2 — record count for BACKSPACE (word 2)
D.AVAD — address of associated variable or 0

D.STS — RMS status code

D.5TV — RMS secondary status code

D.RNUM — current direct access record number (2 words)
D.SPAR — spare word (reserved)

D.RAB — start of RMS RAB

D.NAM -- start of file name string save area

Several of these words have different uses depending on the kind of [/O

operation.

The FORTRAN header portion of the LUB contains two status words. The
bits in these status words have symbolic names of the form DV.xxxx. All
unused bit positions are reserved. These bits are defined as follows:

Status Bits for Word 1 (D.STAT)

Symbol Value Description :
DV.SEQ 1 Sequential access s
DV.DIR 2 Direct access

DV.KEY 4 Keyed access

DV.FIX 10 Fixed-Length records

DV.FAK 20 Partial LUB for ENCODE/DECODE and internal files
DV.FACC 40 File access set by CALL FDBSET

DV.VAR 100 Variable-Length records

DV.OPN 200 Unit open

DV.FMF 2000 Formatted unit i
DV.UFP 4000 Unformatted unit

DV.SEG 10000 Segmented records

DV.CLO 20000 Close in progress

DV.FRE 40000 Free format prohibited (short field termination)

DV.RW 100000 Input or output operation {0=read, 1=write)

4-12 Data Structures and Siorape

Eaihin

Status Bits for Word 2 (D.STA32)

Symbol Value Description

DV.SEQ 1 Sequential organization

DV.REL 2 Relative organization

bV.IDX 4 Indexed organization

DV.CC 10 Explicit carriage control specified
DV.SPL 20 DISP = 'PRINT’ specified

DV, DEL 40 DISP = 'DELETE’ specified
DV.Al4 100 Associated variable is INTEGER+4 data type
DV.RDO 400 READONLY specified

DV.UNK 1000 TYPE = "UNKNOWN' specified
DV.OLD 2000 TYPE = ‘OLD specified
DV.NEW 4000 TYPE = '"NEW' specified
DV.SCR 10000 TYPE = ‘SCRATCH' specified
DV.APD 20000 ACCESS = 'APPEND’ specified
DV.SAV 40000 DISP = ‘SAVE' specified
DV.RSZ 200 Explicit RECORDSIZE specified
DV.EN 100000 BLANK = 'NULL' specified

You need an RMS-11 FAB for file open and close operations. FORTRAN
allocates the FAB and additional control information. The LUB offset
D.PFAB points to this FAB.

The FORTRAN header portion contains eight words of control informa-
tion, including a 10-byte default file name string 'FOROnn.DAT’, where nn
is the logical unit number.

The information in the FORTRAN header portion is as follows:

F.STAT— FAB status byte

F.KYCT— number of keys in the OPEN statement KEY parameter
F.PXAB— pointer to key definition XAB conirol block

F.SPAR— spare (word reserved for future use by DIGITAL)
F.DNAM— start of defauit file name string

F.FAB — start of RMS FAB

Data Structures and Storage 4-13

FORTRAN uses XABs for key definitions when opening an indexed file.
The KEY parameter of the OPEN statement specifies the number of key
definition XABs to allocate. FORTRAN allocates a single large block of
memory for all key definition XABs, and FAB block offset F.PXAB points
to this block.

Each XAB in the block of key definition XABs contains two words ap-
pended to the RMS XAB. These words contain FORTRAN information
used to check the key definitions of an existing file. The definition of
these words is as follows:

X.XAB—start of RMS XAB

X.POS—start position of key specification
X.S1Z—size of key specification
X.DTP—data type of key specification

4-14 Data Structures and Storage

T
; 3

Chapter 5

|- and D-Space Tasks

I- and D-space (“I” represents “instruction” and “D” represents “data”) is
an advanced programming technique that allows you to effectively double
your virtual task space from 32K words to 64K words, More specifically,
you can have up to 32K words of instructions and 32K words of data
associated with a task. Without I- and D-space, only 32K total words are
available for your tasks.

5.1 Support for |- and D-Space Tasks

Before using the I- and D-space technique, you must establish that I- and
D-space support is available for your task by making sure that:

* Your processor and operating system support [- and D-space tasks.
(See Section 5.1,1.)

¢ The D-space parameter within the configuration file equals 1. (See
Section 5.1.2)

* You have included the /ID switch in the task-build command line for
your programs. (See Section 5.1.3.)

e If your task uses a FORTRAN-77 OTS resident library, that this
library’s relationships to supervisor-mode libraries, resident commons,
and virtual arrays respect restrictions.

i- and D-Space Tasks 5-1

5.1.1 Processor and Operating System Support

I- and D-space is supported by the following processors and operating
systems:

* Processors:

PDP-11/44 PDP-11/70
PDP-11/45 PDP-11/73 :
PDP-11/50 !
PDP-11/53 PDP-11/83
PDP-11/55 PDP-11/84

J-11

* Operating systems (version noted or higher):

RSX-11M/M~PLUS V2.0 RSTS/E V9.0
Micro/RSX V3.0 Micro /RSTS V2.0

[Ny

5.1.2 D-Space Parameter Reguirement for Support

See Chapter 1 of the PDP-11 FORTRAN-77 User's Guide for more informa-
tion about the D-space parameter and I- and D-space support.

5.1.3 /ID Switch Reguirement for Support

All I- and D-space tasks require an /ID switch in the Task Builder com- L
mand line. For example: e

TKB MYPROG/ID=MYPROG,LB:[1,1]F77FCS /LB
(On RSTS/E systems, replace LB:[1,1] with LB:.)

Instead of explicitly supplying the command line to the Task Builder, you
can use an indirect command file. In this case, edit your command file to
include the /ID switch on the command line.

5-2 |- and D-Space Tasks

i)

Chapter 6

An Overview of FORTRAN Input/Output

There are three kinds of OTS input/output (1/0) support modules:

* Those that are independent of a file system
s Those that use the FCS-11 file system
* Those that use the RMS-11 file system

This section describes some of the independent I/O modules (see
Chapter 9 for the format-processing routines) and provides an overview of
the 1/0O subsystem. Chapter 7 describes the FCS-11-specific modules and
Chapter 8 describes the RMS-11-specific modules.

FORTRAN I/0O processing consists of three layers or levels:

¢ Compiled-code interface (see Section 6.1}
¢ Data formatting (see Section 6.2)
* Record processing (see Section 6.3)

The compiled-code interface level consists of the routines called directly
by the compiled code. The routines listed in Table 6-1 take the compiled-
code arguments, transform them into OTS standard form, and pass them
to the data-formatting level,

The data-formatting level accepts the standard I/O arguments and pro-
duces I/0 records as specified by the data elements and format control.

The records are then passed to or received from the record-processing
level.

The record-processing level interfaces with the file management systems

to read and write logical records. It is the only level dependent on a
particular file system.

An Overview of FORTRAN Input/Output 6-1

Figure 6-1 illustrates the 1/0 subsystem.

Figure 6—-1: The 1/0O Subsystem

COMPILED COMPILED-CQODE /G STATEMENT
<ODE READILN [1%,A8C)
ENC
INIT INTEGER REAL STRING OF
| x ABC LIST
|
CODE INTEGER REAL STRING END-QF-
INTERFACE INITIALIZE VALUE VALUE . . ARBAY LisT
LEVEL TRANSMIT TRANSMIT TRANSMIT MARK
INTEGER
CORNVERSIONS
DATA
EORMATTING FORMAT PROCESSING BOOLEAN
LEVEL RECORD CONSTRUCTION CONVERSIONS
REAL
CONVERSIONS
HECOAD FES-11 Rﬁﬁg?:ﬂtlg !F!;%H RECCAT WO
PROCESSING FILE CEVICES FOR RECORD
LEVEL OPEN FE811 GET/PUT DEVICES - Q10
FGS-11 FCE-11 REX-EXEGUTIVE

TRAI-RY

6-2 An Overview of FORTRAN Input/Qutput

e

6.1 Compiled-Code interface

The compiled-code interface is the external interface for the OTS 1/O
subsystem. J

I/0 statements produce three types of subroutine calls in the compiled
code:

* Initialization calls—set up the 1/0O system for the specific I/Q re-
quested, open the specified logical unit if necessary, and declare the
1/0 systemn to be active

* Element transmission calls (if any)—generate calls to the OTS for
entities in the I/0 list

* Termination calls—complete the 1/O operation and declare the I/O
system inactive

For example, the FORTRAN statements

DIMENSION A(10)}
READ (2) I ,AB

are compiled into the following code:

MOV #2,-(SP) ;Unit number

JSR PC,ISU$;Initialize READ

MOV #I,-(SP) iAddress of I

JSR PC,I0AIS :Transmit integer

MOV #ASADB,-(SP) ;Address of array descripter for A
JSR PC,IDAAS$;Transmit array A

MOV #B,-(SPF) ;Address of B

JSR PC,10ARS ; Transmit real

JSR PC,$EOLST ;End-of-ligt

6.1.1 Initialization Processing

There is a separate initialization-processing routine for each compiled
FORTRAN /O statement. These routines take the [/O statement-specific
arguments, construct a mask word describing the arguments, and pass
them to the I/O statement initialization module $INITIQ.

An Overview of FORTRAN Input/Cutput 6-3

6.1.1.1 The Routines

Table 6-1 lists the entry point names for the initialization-processing
routines. Each routine has two entry points:

o xoox$—for [/0 statements that do not use END= or ERR=
s xoxE$—ifor 1/0O statements that do use END= or ERR=

Table 6-1: /0 Initialization Entries

Entry Name Arguments Function

ISF$ uf Sequential formatted input
ISFE$ uf,e

1S5U$ u Sequential unformattted input
ISUE$ ue

IRF$ urf Direct formatted input

IRFE$ u,rfe

IRU% u,r Direct unformatted input

IRUE$ ure

IKF$' u,fk kr,km Character keyed formatted input
IKFE$' u,fkkr.km,e

IKUS§' ukkrkm Character keyed unformatted input
IKUES$' uk krkm,e

ILF$' u,fLkr,km Integer keyed formatted input
ILFES$! u,f,lkr.km,e

ILu$ u,Lkr km Integer keyed unformatted input
ILUES! u,lLkr.km,e

OSF$ w,f Sequential formatted output
OSFE$ ufe

osuUs u Sequential unformatted output
OSUES ue

OKRF$ u,rf Direct formatted output

ORFE$ u,r,fe

ORUS ur Direct unformatted output
ORUE$ ure

RSF$! u,f Formatted rewrite

RSFE$' ufe

"These entries are supported only by RMS-11 versions.

6-4 An Overview of FORTRAN Input/Cutput

Table 6-1 (Cont.):

I/Q Initialization Entries

Entry Name Arguments Function

RSUS! u Unformatted rewrite
RSUES' ue

ENF$ cf,a ENCODE

ENFE$ cfae

DEF$ cfa DECODE

DEFE$ cfae

ISL$ u List-directed input
ISLE$ u,e

OSL% u List-directed output
OSLE$ ue

DLS§! u Sequential DELETE
DLSE$! u,s

DLR$! ur Direct DELETE
DLRES$! u,r,e

FDR$% ur Direct FIND
FDRE$ ur.e

ENDF$ u ENDFILE
ENDFE$ us

REWI$ u REWIND

REWIES u,s

UNLK$! u UNLOCK
UNLKES us

DEFF$ u,mur,rl,v,vf DEFINEFILE

IIF$ df Internal file read
IIFE$ df.e

IIFAS adb,f

IIFAE$ adb,fe

QIF% d,f Internal file write
QIFE$ dfe

OIFA$ adb,f

OIFAES$ adb.fe

These entries are supported only by RMS-~11 versions.

An Querview of FORTRAN Input/Cutput 6§-5

s

Arguments;

adb
kr

km

1l

vf

Logical unit number—INTEGER=*2 value.

Direct access record number—INTEGER*4 value.

Format specifier—address of compiled format text.

Character key specifier—address of key descriptor, which has the follow-

ing form:

lengtk of string R
address of string <--------- address of descriptor s
Note that the address points to the second word of the descriptor,

Address of the array descriptor block.

Key-of-reference number—INTEGER»2 value; if no KEYID is specified, a
value of -1 is supplied.

END=/ERR= specifier—address of END= label, followed by address of
ERR label. If one of the labels is missing, a 0 address is suppiied for that
label.

Integer key specifier—INTEGER+4 value.
km Key match criterion—INTEGER»2 value encoded as follows: e

0 -- equal match
1 -~ greater than or equal match
2 -- greater than match

ENCODE/DECODE buffer—address of buffer.
ENCODE/DECCDE buffer-~~INTEGER*2 value.

Address of the character descriptor. The first word of the descriptor
contains the length of the string; the second word contains the address of
the string.

ERR= statement label address.

Maximum direct access record number — INTEGER*4 value.

Record length in 16-bit words—INTEGER=*2 value.

Address of associated variable.

Associated variable data type flag—INTEGER=*2 value encoded as follows:

0
-1

INTEGER*2 data type
INTEGER+4 data type

NOTE

If a run-time format is specified, the run-time format compiler
FMTCV$ overwrites the source address of the run-time format
array with the address of the compiled format string.

6-6 An Overview of FORTRAN Input/Dutput

P

6.1.1.2 SINITIO

The $INITIO routine performs specific functions based on the arguments
passed by the initialization-processing routines described in

Section 6.1.1.1. In addition, $INITIO paves the way for the remaining
processing levels by storing the appropriate data-formatting routine
address in the impure area offset W.EX], and the appropriate record-
processing routine address in the impure area offset RECIO.

The routines that pass arguments to $INITIO use a bit-encoded mask to
indicate what operations need to be performed. When $INITIO is called,
RO points to the stack arguments and R1 contains the bit-encoded mask.

Tables 6-2 and 6-3 describe the symbols and argument masks used by
the routines. Table 6-4 describes the operations $INITIO performs based
on the bit settings.

Table 6-2: 1/0 Initialization Symbols

Symbol Value Description

FL.EERR 100600 END= # and ERR= present

FLINB 40000 Internal files passed by ADB

FL.IND 20000 Internal files passed by descriptor
FL.ENC 11000 ENCODE statement

FL.FMT 4200 Format present

FL.REC 2400 Direct access record number present
FL.EMP 200 Formatted operation permitted
FL.WRT 140 WRITE operation {with implied OPEN)
FL.RD 40 Read operation (with implied OPEN)
FL.EDA 10000 ENCODE /DECODE buffer address
FL.FMA 4000 Format address

FL.RNM 2000 Record number

FL.EDL 1000 ENCODE/DECODE buffer length
FL.DIR 400 Direct access

FL.OUT 100 Output operation

An Overview of FORTRAN Input/Output 6-7

Table 6-2 (Cont.): 1/0 Initialization Symbois

Symbol Value Description

FL.OPN 40 OPEN required

FLIGN 20 Ignore format and record type checks
FLKEY 10 Keyed access

FL.REW 4 REWRITE

FL.DEL DELETE

FL.KIN Integer key value

Table 6—3: /0 Initialization Argument Masks

Mask

Meaning

IST$
OSF$
ISU$
OsU$
ISL$
OSLS$
RSF%
RSU$
IRF$
ORF$
IRU$
ORU$
IKF$
IKU$
ILF$

ILUS$
ENF$
DEF3
ENDF$

Sequential formatted input: FLFMT+FL.RD

Sequential formatted output: FLLEMT+FL.WRT
Sequential unformatted input: FL.RD

Sequential unformatted output: FL.WRT

Sequential list-directed input: FL.EMP-FL.RD
Sequential list-directed output: FL.FMI+FL.WRT
Sequential formatted rewrite: FL.FMT+FL. WRT+FL.REW
Sequential unformatted rewrite: FL.WRT+FL REW
Direct formatted input: FL.LFMT+FL.REC+FL.RD

Direct formatted output: FLLEEMT+FL.REC+FL.WRT
Direct unformatted input: FLREC+FL.RD

Direct unformatted output: FL.REC+FL.WRT

Character keyed formatted input: FL.KEY+FL.FMT+FL.RD
Character keyed unformatted input: FL.KEY+FL.RD

Integer keyed formatied input:
FL.KEY+FL.FMT+FL.RD+FL KIN

Integer keyed unformatted input: FL.KEY+FL.RD+FL.KIN
ENCOQODE statement: FLFMT+FL.ENC
DECODE statement: FL.FMT+FL.ENC
ENDFILE statement: FLWRT+FL.IGN

6-8 An QOverview of FORTRAN Input/Qutput

A

Table 6-3 {Cont.}): /0 Initialization Argument Masks

Mask Meaning

DLS$ Sequential delete: FL.WRT+FL.IGN+FL.DEL

DLR$ Direct delete: FL. WRT+FL.REC+FL.IGN+FL.DEL

FDR$ FIND statement: FL.RD+FL.REC+FL.IGN

ILF$ Internal file read: FL.IND+FL.FMT

[IFA$ Internal file read with address of ADB passed as the Internal logical
unit number:
FL.INB+FL.FMT

OIF$ Internal file write: FL.IND+FL.FMT

OIFAS Internal file write with address of ADB passed as the Internal logical

unit specifier:
FLINB+FL.FMT

NOTE

If the corresponding END=/ERR= entry point is calied (for

instance, ISFE$ rather than ISF$), the argument mask includes
FL.ERR.

Table 6~4: /0 Initialization Routine Functions

Function

Description

FL.DEL

FL.DIR

FLEDA

FL.EDL

If the file organization is sequential, issue OTS error 55, DELETE
statement error.

Compare the access mode of the 1/O statement with the FLKEY
access mode of the logical unit; issue OTS error 31 if the access
mode does not match. Issue OTS error 26 if direct or keyed access
is required but has not been specified. Valid combinations are:

Direct access I/0 -- direct access unit
Sequential acceas 1/0 -- sequentizl or keyed access unit

Keyed access I/0 -- keyed access unit

Save the ENCODE/DECODE buffer address in the impure area
offsets, LNBUF (start address) and BLBUF (current address).

Add the ENCODE/DECCDE buffer length to the start address to
determine the end address of the buffer. Save this value in impure
area offset EOLBUF.

An Overview of FORTRAN Input/Qutput 6-9

Table 6-4 ({Cont.): 1/0 Initialization Routine Functions

Function

Description

FL.ERR

FL.FMA
FL.FMP

FLIGN

FL.INB

FLIND

FL.KEY

FL.KIN

FL.OFN

FL.OUT

FL.REW

FL.RNM

Save the END= address in impure area offset ENDEX, and the
ERR= address in impure area offset ERREX,

Save the format address in impure area offset FMTAD.

Compare formatting type specified with format type of the log-
ical unit. Mixed formatted and unformatted operations are not
permitted. lssue OTS error 31 if the format types do not match.

Ignore the format checks for ENDFILE, FIND, and DELETE since
both formatted and unformatted are permitted. Ignore the record
type check since record type depends on format.

Save the format address in impure area offset FMTAD. Save the
internal logical unit address in the impure area offsets LNBUF
(start address) and BLBUF (current address). Add the bytes per
element from offset A.BPE in the array descriptor block to offset
LNBUF to determine the end address of the internal logical unit.
Save this value in impure area offset EOLBUF. Divide the total
size of the array in bytes (offset A.SIZB in the ADB} by the bytes
per element {offset A.BPE) to determine the number of records and
store this value in the impure area offset DENCWD.

Save the format address in impure area offset FMTAD. Save the
internal logical unit address in the impure area offsets LNBUF
{start address} and BLBUF (current address). Add the length of the
internal logical unit specifier to offset LNBUF to determine the end
address of the internal logical unit. Save this value in impure area
offset EOLBUF.

Save the key value descriptor address in impure area offset
W.KDSC, the key-of-reference number in impure area offset
W.KREF, and the key match value in impure area offset W.KMAT,

Save the integer key value in impure area offset W KNUM and
W.KNUM+2, Set W.FDTF to integer.

If the logical unit is not yet open, open it using the default open
processor $OPEN.

Set the logical unit status to input or output as appropriate, If
output is specified and the logical unit is declared read-only, issue
OTS error 47.

If the file organization is sequential or relative, issue OTS error 54
(REWRITE statement error).

Save the direct access record number in impure area offsets
W.RECL and W.RECH as an INTEGER*4 value.

§-10 An Overview of FORTRAN Input/Output

6.1.2 Llist Element Transmission

The compiled code makes one data transmission call to the OTS for each
data item in the I/0 list. Data transmission entry points have the form:

IDat$
where:

a Designates whether the argument is an address or a value; can be A, for
address, or V, for value.

t The data type of the list element as follows:

== byte

-- Logicals2

-- Logical+4
Integer*2

-- Integer#4

-~ real

-~ double precisicn
-- complex

OO WL H R W
1
]

The following additional entry points are used only for arguments that are
addresses:

ICAHS - Transmits a Hollerith constant (output only). The argument is the
address of the first byte of the constant as an ASCIZ string,

IOAAS - Transmits an entire array by name. The argument is the address of
the array descriptor block. For formatted 1/0, each array element
is passed individually to the data-formatting level. For unformatted
I/0, the entire array is passed as a single large data item,

IOAVAS — Transmits an entire virtual array by name. The argument is the
address of the array descriptor block.

One entry is used for an argument that is two words (length,
address descriptor).

IOACHS$ - Transmits a character string. The argument is the length of the
character string and the address of the first byte of the ASCIZ
string.

The routines at each of these entry points set up impure area offsets and

then invoke the data-formatting level of processing at impure area offset
W.EX]. The impure area offsets set up are as follows:

An Overview of FORTRAN Input/Dutput 6-11

ITEMSZ - Size in bytes of the data item.

VARAD - Address of the first byte of the data item, or 0 if at end of list.
W.VTYP - Data type code of data item.

W.CPXF - Complex data type flag. Complex data items are passed as a

pair of real values., W.CPXF=0 indicates a noncomplex item;
+1 indicates the real part of a complex item; -1 indicates the
imaginary part of a complex item.

6.1.3 Termination Call S

The routine at entry point EOLST$ is called to specify the end of the I/O
list. No arguments are required.

6.2 Data-Formatting Level

The compiled-code interface level calls data-formatting routines to transmit
data between records and 1/0 list items, including any common operations .
that are required. . -

For formatted 1/0, there are three routines:

$FIO—format processor
$LSTI—list-directed input processor
$LSTO—list-directed output processor

These routines are called with no register arguments; on return all registers
are undefined.

Conversion is not needed for unformatted I/O so the appropriate initial-
ization modules maintain the transfer code as routines.

The data-formatting routines accept data item descriptions from the
impure area offsets ITEMSZ, VARAD, W.VTYP, and W.CPXF. On input,
the routines read the next field of the record and transfer data to the item.
On output, the data item value is transferred to the record. The following
impure area offsets describe the record being processed:

LNBUF —start-of-buffer address
BLBUF —address of next data byte
EOLBUF—end-of-buffer address

6-12 An Overview of FORTRAN Input/Output

When a new record must be read, or an output record is full, the record-
processing routine specified by impure area offset RECIO is called to
process the record. On input, the old record is discarded, a new record is
read, and the impure area record description is updated. On output, the
record is written and a new buffer area is set up.

6.3 Record-Processing Level

The record-processing routines are called to transfer records to and from
the file system. The record-processing routines are:

$GETS —sequential input
$PUTS ~—sequential output
$GETR —direct input
$PUTR —direct output
$GETK —keyed input
$UPDATE—rewrite

6.4 PRINT, TYPE, and ACCEPT Statements and Logical Unit 0

The PRINT, TYPE, and ACCEPT statements compile into equivalent
READ and WRITE statements using default unit numbers, Default unit
numbers are small negative integers, which $FCHNL maps through a table
in impure storage to actual unit numbers. This table has global names for
each statement to allow modification of the mapping. The global names
are:

$PRINT for PRINT
$TYPE for TYPE
SACCPT for ACCEPT
$READ for READ

The unit number value is at impure area offset W.LNMP. The mapped
values are at offsets W.PRNT for PRINT, W.TYPE for TYPE, W.ACPT for
ACCEPT, and W.READ for READ, with no unit number.

PRINT —compiles into OSF$ with unit number = -1, maps to 6
TYPE —compiles into OSF$ with unit number = -2, maps to 5
ACCEPT-—compiles into ISF$ with unit number = -3, maps to 5

READ —compiles into ISF$ with unit number = -4, maps to 1

An Overview of FORTRAN input/Output 6-13

If you specify logical unit 0, you must use the GBLPAT option of the Task Builder to
associate a valid logical unit number (1-99) with global $LUNO. $FCHNL (see Section
6.6.1) uses the value of $LUNO to change FORTRAN logical unit 0 to a valid system
logical unit number. If you attempt to use logical unit 0 without moving a valid number
to $LUNO, an error occurs.

6.5 OPEN and CLOSE Statements

The OPEN and CLOSE source statements allow your programs to control
the attributes and characteristics of files. The compiled code for these
statements uses the standard R5 calling sequence with a special argument
list encoding, as follows:

ARGLST: .WORD 2n
KEY1
KéYn
There is one argument for each keyword in the FORTRAN source state-
ment. Each argument consists of a 2-word block, formatted as follows:

15. 87 0

ARGTYPE KEYWRD ID

INFG

2K-7630-HC

KEYWRD ID

The low-order byte of the first word contains the keyword identification
number associated with the keyword name in the source statement (see
Table 6-5).

ARGTYPE

The high-order byte of the first word contains the argument type. It is
used in conjunction with the INFO word to identify the keyword's value.

6-14 An Overview of FORTRAN input/Output

i

INFO

The second word is called the information word; its use depends on the
ARGTYPE value.

The possible ARGTYPE values are 1 through 7. The meanings of each
ARGTYPE are as follows:

ARGTYPE

Value Meaning

1 The keyword’s value is an INTEGER»2 constant expression. The
INFO word contains the value.,

2 The keyword's value is an INTEGER#*2 variable, The INFO word
contains the address of the variable.

3 The keyword's value is an INTEGER*4 variable. The INFO word
contains the address of the variable.

4 The keyword’s value is an alphanumeric literal that can be decoded
by the compiler. The INFO word contains the keyword’s value
encoded as a small integer,

5 The keyword’'s value is a variable, array, array element, or char-
acter constant terminated by an ASCII null character (zero-byte).
The INFO word contains the address of the start of the string.

6 The keyword's value is the address of an external procedure. The
INFO word contains the address.

7 The keyword’s value is the address of a 2-word descriptor. The

first word of the descriptor contains the length of the string; the
second word contains the address of the string. The INFO word
contains the address of the first word of the descriptor.

A statement’s keywords can be in any order, but there cannot be any
duplicates. Table 6-5 lists the keyword names, their associated identifica-
tion numbers, and the ARGTYPES permissible with each keyword. The
table also lists the literal values and associated literal encoding possible for
keywords whose ARGTYPES are 4.

An Overview of FORTRAN Input/Output 6-15

Table 6-5: Summary of Argument Blocks by Keyword

Keyword Allowed Literal

Keyword Name Number Argtypes® Literal Values Encoding

ACCESS 4 4 DIRECT 1
SEQUENTIAL 2
APPEND 3
KEYED 4

ASSOCIATE VARIABLE 17 23

BLANK 25 4 NULL 1
ZERO 2

BLOCKSIZE 18 1,2,3

BUFFERCOUNT 9 1,2,3

CARRIAGECONTROL 7 4 FORTRAN 1
LIST 2
NONE 3

CHARKEY' 23 1,2,3

DISPOSE 2 4 SAVE 1
DELETE 2

_ PRINT 3

ERR 3 - Label

address

EXTENDSIZE 11 1,2,3

FILE or NAME 14 57

FORM 5 4 FORMATTED 1
UNFORMATTED 2

INITIALSIZE 10 1,23

INTKEY' 24 1.2.3

KEY! 22 1,2.3

MAXREC 16 1,23

NOSPANBLOCKS 12 -

YKEY occurs one time and gives the number of key specifications. KEY is followed by n pairs of CHARKEY
or INTKEY keywords giving the start and end positions of each key specification. The pseudo-keywords

CHARKEY and INTKEY denote the data type of the key specification.

2The ARGTYPE field for the ERR= keyword contains the number of bytes of temporary stack storage which

must be deleted if an ERR= transfer occurs.

6-16 An Overview of FORTRAN Input/Cutput

<

Table 6-5 (Cont.): Summary of Argument Blocks by Keyword

Keyword Allowed Literal

Keyword Name Number Argtypes’ Literal Values Encoding

ORGANIZATION 19 4 SEQUENTIAL 1
RELATIVE 2
INDEXED 3

READONLY -

RECORDSIZE or RECL 1,23

RECORDTYPE 20 4 FIXED 1
VARIABLE 2
SEGMENTED 3

SHARED 13 -

STATUS or TYPE 15 4 oLD 1
NEW 2
SCRATCH 3
UNKNOWN 4

UNIT 1 1,23

2The ARGTYPE field for the ERR~- keyword contains the number of bytes of temporary stack storage which

must be deleted if an ERR= transfer occurs.

As an example, consider the following FORTRAN source statement:
OPEN (UNIT-I, ERR=99, NAME='A.DAT')

When it is compiled, the code (in part) looks like the following:

ARGLST:

STRING:

MOV
JSR

-WORD
.BYTE
-WORD
.BYTE
.WQRD
.BYTE
. WORD

.BYTE

ARGLST,R5 ;Address of arg list
PC,DOPEN§ ;Open the file

6 i3 args

1,2 ;UNIT, ARGTYPE=2

I ;Address of I

3.2 iERR, 2 bytes of stack temp
.99 JAddrees of label

14,5 ;NAME, ARGTYPE=S

STRING ;Address of string
101,56,104,101,124,0 i "A.DAT"

An Overview of FORTRAN Input/Output 6-17

6.6 Other Internal Support Routines

The following sections describe several other internal support routines
used by the OTS,

6.6.1 SFCHNL, SGETFILE, and SIOEXIT

The $FCHNL, $GETFILE, and $IOEXIT routines serve as the common
entrance and exit to the [/O system.

$FCHNL locates the LUB for a given logical unit number and issues an
error for invalid units. It is called with the logical unit number in R2 and
returns the address of the associated LUB in R0. The PSW C-bit is used as
an error flag on return. The flag is set if there is an error, and is cleared
if there is no error. On return, registers R1 and R2 are undefined, R3
contains the impure area pointer, and R4 and R5 are preserved.

$GETFILE executes a $FCHNL, sets the FILPTR impure area offset, and
checks the status of the unit. It is called the same way as $FCHNL. It does
not return the C-bit error flag; however, its register returns are identical to
those for $FCHNL.

$10EXIT restores the user-level status and register state and executes the
ERR= transfer. It is called with the ERR= transfer address in R4 and the
work area pointer in R3.

6.6.2 Default File Open Processing—SOPEN

A default open is the implicit opening of a logical unit due to executing an
I/O statement on a closed logical unit. If a READ or FIND statement is
executed, the default open is equivalent to the following OPEN statement
{unless a DEFINEFILE has been executed):

OPEN (UNIT=unit, TYPE='OLD', ORGANIZATION= 'SEQUENTIAL', BLANK='ZERO',
FORM= "foym cof the I/ statement", ACCESS='SEQUENTIAL'}

If a WRITE statement is executed, the default open is equivalent to the
following OPEN statermnent {unless a DEFINEFILE has been executed):

OPEN (UNIT=unit, TYPE='NEW', ORGANIZATION= 'SEQUENTIAL', BLANK='ZERQ',
FORM= "form of the I/0 statement", ACCESS= 'SEQUENTIAL')

All other OPEN statement parameters assume their default values as
described in Chapters 7 and 8, respectively.

6-18 Ao Overview of FORTRAN Input/Gutput

sdgin

et

e o

The default file open processor is called with RO pointing to the LUB and
R3 pointing to the impure area. On return, all registers are preserved.

6.5.3 Default File Close Processing—SCLOSE

The file close processor is invoked when any one of the following occurs:

A CLOSE statement is executed.

A CALL CLOSE subroutine is executed.
A program terminates.

A file open fails.

The $CLOSE routine implements the DISPOSE= parameter set by the
OPEN or CLOSE statement, and invokes the appropriate routine to close,
delete, or print the file. '

This routine is called with the logical unit number in R2. On return,
RO, R1, R2, and R4 are undefined; R3 points to the impure area; R5 is
preserved; and the processor C-bit is set to indicate whether an error
occurred during the close operation.

6.6.4 Direct Access Record Number Checking—SCKRCN

$CKRCN compares the current record number with the maximum record
number for the file. The current record number is stored at offsets
W.RECL (low order) and W.RECH (high order). The maximum record
number, if it exists, is at D.RCNM (low order) and D.RCN2 (high order)
in the LUB. If the record number is valid, it is returned in R1 (high order)
and R2 (low order). This routine is called with the LUB address in R0, and
the impure area pointer in R3. Registers R4 and R5 are preserved.

8.8.5 Associated Variable Update—SASVAR

The current record number is obtained from offsets W.RECL and W.RECH,
incremented by one, and stored in the associate variabie at the address in
D.AVAD in the LUB,

Ar: Overview of FORTRAN inpet/Output 6-19

6.6.6 Keyed I/0 Specifier Checking—SCKKEY

$CKKEY verifies the key specification in a keyed 1/0O statement and sets
the proper control information in the LUB. This routine is called with the
LUB pointer in RO and the impure area pointer in R3. Registers R1 and R2
are destroyed; all other registers are preserved.

6.6.7 Register Save and Restore—S$SAVPx

The $SAVPx routine provides the register save /restore and argument
processing support for implementing the OTS PC call convention (see
Section 2.2.2), which pushes all arguments on the stack, calls the OTS
routine by a JSR PC,xxx instruction, and returns with arguments deleted
and all context preserved, This register save/restore routine is called by
the OTS routine. It saves all registers on the stack, sets R0 to point to
the call arguments, and co-routine calls the OTS module. Upon return
from the OTS routine, the register save/restore routine restores the
registers, deletes the stack arguments, and returns to the original caller,
Nine entry points are provided: $SAVP0-$SAVPS for routines with zero
to eight argument words on the stack. For routines with more than
eight argurmnents or with a variable number of arguments, $5AVPQ is
called to save the registers; upon return to the OTS module, R0 contains
the number of arguments and a jump to $SAVPC is executed at the
completion of the OTS module, rather than a return to the register restore
portion of the $SAVPx routine. For ERR= transfers, $5AVPx is jumped to
with RO containing the transfer address.

6.6.8 Register Save and Restore—.SAVR1

Several OTS routines call the FC5-11 register save co-routine 5AVR1 to
save and restore registers R1 through R5 in co-routine fashion.

6.7 FORTRAN File and Record Formats

This section describes the file and record formats that are processed by the
FORTRAN-77 1/0 system. ‘

6-20 An Overview of FORTRAN Input/Cutput

i

6.7.1 Sequential Organization Files

You can process sequential files on all devices. Records may be fixed
length, variable length, or FORTRAN segmented. Fixed-length records
have no control information and are packed densely into blocks by the
file system. Variable-length records have a count field in front of each
record. For ANSI magnetic tape, the count field is a 4-byte decimal ASCII
number. For all other devices, the count field is a 2-byte binary value.

A segmented record is a single logical record consisting of one or more
variable-length records, Each variable-length record constitutes a segment,
Segmented records are useful when you want to write exceptionally long
records, and are used for unformatted sequentia! files.

Because the size of a segmented record is unlimited, each variable-length
record in the segmented record contains control information to indicate
that it is one of the following:

* The first segment in the segmented record
* The last segment in the segmented record

* The only segment in the segmented record
» None of the above

This control information is in the first two bytes of the record after the
count field. Only two bits of the first byte are used; all other bits must be
zZero.

If both bits are set, the segment is the only segment in the record. If
only bit 0 is set, the segment is the first segment. If only bit 1 is set, the
segment is the last segment. If neither bit is set, the segment is not the
first, last, or only segment in the record.

This control information is transparent to the user program; it is inter-
preted only by the FORTRAN-77 I/0 system. If unformatted sequential
files are to be processed in any other way, the files must be created with
either fixed- or variable-length records.

The FORTRAN-77 /O system does not support systemn files or files with
variable fixed control (VFC) format records.

An Overview of FORTRAN Input/Output 6-21

6.7.2 Relative Organization Files

You can process relative files only on disk devices, Records may be

fixed length or variable length. Each record has a control byte used for
deletion control. Variable-length records are stored in fixed-length cells
that are the size of the largest record, as specified by the RECORDSIZE
parameter. Variable-length records also contain a 2-byte binary count field
that specifies the current length.

6.7.3 Indexed Organization Files

You can process indexed files only on disk devices. Records may be
fixed length or variable length. Each record has a control byte used
for deletion control. Variable-length records also have a 2-byte binary
count field. Each record contains additional bytes of RMS-11 control
information. Additional RM5-11 control information is stored for each
bucket. Additional buckets are required for index areas, alternate key
areas, and RMS~11 control information.

6-22 An Overview of FORTRAN Input/Output

Chapter 7

FCS-11 Input/Output Support

This chapter discusses the FCS-11-specific portions of the OTS. In
particular, it describes the explicit FCS operations used to implement
FORTRAN-77 I/O operations.

The following register assignments are normally made within the [/O
portion of the OTS:

¢ RO--address of the FCS File Descriptor Block (FDB)

* Rl—address of the Logical Unit Block (LUB)

* R3—address of the work area

* R2 and R4—scratch registers

PC,xxx instruction calls all routines except the co-routine calls. R5 is
generally preserved.

7.1 FES-111/0 CONTROL BLOCK

The FCS-11 1/0 system associates a single control block, called the File
Descriptor Block (FDB), with each open unit. The FDB is incorporated
within the FORTRAN-77 Logical Unit Block (LUB). See Section 4.2 and
Appendix B for more information about the LUB. See the IAS/RSX-11 I/O
Operations Reference Manual for more information on FCS data structures.

FCS-11 Input/Output Support 7-1

1.2 Open Processing

Default file open processing and OPEN statement processing merge into
a single common routine, SOPENS (see Section 7.2.3), for a file open.
$OPENS invokes the macro OFNB$, which performs all file open opera-
tions. If file name parsing logic is not required—that is, if FORTRAN-77
default file names are used—the routines for file name parsing are not
included in the task. Table 7-1 shows the OPEN statement keywords, the
possible values of the keywords, and the FDB settings associated with the

keyword values,

Table 7-1: Summary of OPEN Statement Keywords and FDB
Settings
Keyword Name Value FDB Setting
ACCESS ‘DIRECT’ Set FD.RAN in F.RACC
'SEQUENTIAL’ -
‘APPEND/ Set FO.APD in F.FACC
ASSOCIATEVARIABLE v -
BLANK ‘NULL' -
'ZERQ’ -
BLOCKSIZE n Set n in F.OVBS
BUFFERCOUNT n Set n in FMBCT
CARRIAGECONTROL ‘FORTRAN' Set FD.FTN in F.RATT
‘LIST’ Set FD.CR in F.RATT
‘NONE’
DISPOSE 'SAVE' Use CLOSES$ at file close
'DELETE’ Call .DLFNB at file close
‘PRINT’ Call .PRINT at file close
ERR s -
EXTENDSIZE n Set nn in FALOC
FILE or NAME f Cali $FNBST to set File
Name Block of FDB
FORM ‘FORMATTED’ -
'UNFORMATTED' -
INITIALSIZE n Set n in F.CNTG
MAXREC n -

7-2 FCS-11 Input/Cutput Support

i

p

i

Table 7-1 (Cont.): Summary of OPEN Statement Keywords

and FDB Settings

FDB Setting

Set FD.BLK in F.RATT
Set FO.RD in F.FACC
Setnin ERSIZ

Set R.FIX in F.RTYP
Set R.VAR in F.RTYP
Set R.VAR in FRTYP

Set FA.SHR in F.FACC

Use OPENS$U

Use QPENSW

Use OPNT$D

Try OPENSU, if no such
file, then OPEN$W

Set n in F.LUN

Keyword Name Value
NOSPANBLOCKS -
READONLY -
RECORDSIZE or RECL n
RECORDTYPE ‘FIXED'
"VARIABLE'
'SEGMENTED'
SHARED -
STATUS or TYPE ‘oLD’
'NEW'
"SCRATCH'
"UNKNOWN'
UNIT
USEROFEN
f

Is an array, array element, variable, or character constant.

n
Is an integer expression.

s
Is an executable statement label.

v
Is an integer variable name,

P
Is an external procedure name.

FCS-11 Input/Output Support 7-3

i e

7.2.1 OPEN Statement Processing

In OPEN statement processing, an argument list is searched and each
keyword is located in a prescribed order. All information required for each
keyword is available when that keyword is processed. An appropriate
default is used for keywords not in the list. If any errors occur during the
search, the execution of the OPEN statement is not attempted, the ERR=
transfer is executed, and the LUB is zeroed.

The processing for each keyword is as follows:

ACCESS—'DIRECT' sets DV.DFD; 'APPEND’ sets DV,APD, If
DV.RDO is set and DV.APD is specified, an error occurs. If DV.APD
is not specified, the default is ‘SEQUENTIAL',

ASSOCIATEVARIABLE—The variable address is stored at D.AVAD. If
the variable is type INTEGER*4, DV Al4 is set.

BLANK—'NULL' sets DV.BN. Note that if the /F77 switch is set
and no BLANK= is specified, the compiler passes a BLANK="NULL'
parameter.

BLOCKSIZE—The value specified is stored at F.OVBS. An error occurs
if the value is negative or greater than 32767.

BUFFERCOUNT-—The value specified is stored at F.MBCT. If the
value is less than -1, or greater than 127, an error occurs. Note that
the actual number of buffers used depends on which FCS version

is used and on the number of buffers available when the file is
opened. A buffer count of -1 means the unit is opened in block mode
(READS$ /WRITE$) rather than record mode (GET$/PUTS$). In block
mode, normal FORTRAN-77 1/0O is not permitted but the user can
perform asynchronous block mode I/O using the FORTRAN special
subroutines provided by the operating system. Note that when you
do block mode 1/0, you should either specify the Task Builder option
MAXBUF = recordsize or call the system subroutine ERRSET to avoid
run-time error 37 (inconsistent record length).

CARRIAGECONTROL—If DV.CC is set 'FORTRAN' sets FD.FTN in
F.RATT, and 'LIST’ sets FD.CR in F.RATT. If DV.CC is not set and
DV.FMP is specified, FD.FTN is the default.

DISPOSE—'SAVE' sets DV.SAV; 'PRINT' sets DV.SPL; and 'DELETE'
sets DV.DEL. If DV.RDO is set, and DV.DEL or DV.SPL is specified,
an error occurs. If a DISPOSE value is not specified and DV.SCR is
set, 'DELETE' is the default; otherwise, ‘SAVE’ is the default.

7-4 FCS-11 Input/Qutput Support

. K

ERR-—The ERR= transfer address is obtained and the stack adjustment
value is saved in the work area at offset COUNT. The transfer address,
if present, is stored at offset ERREX; if it is not present, ERREX is
cleared.

EXTENDSIZE—The value specified is stored at FALOC. If it is pos-
itive, a contiguous extend is made; if it is negative, a noncontiguous
extend is made. If the value is greater than 32767 or less than -32767,
an error occurs.

FILE or NAME—If a file is specified, $ENBST is called to initialize the
file Name block and DV.ASGN is set. $FNBST returns an error if the
string is incorrect.

FORM—'FORMATTED' sets DV.FMP; 'UNFORMATTED' sets
DV.UFP. If no value is specified and DV.DFD is set, DV.UFP is
the default; otherwise, DV.FMP is the default.

INITIALIZE—The value specified is stored at F.CNTG. If it is positive,
a contiguous allocation is made; if it is negative, a noncontiguous
allocation is made. If the value is greater than 32767 or less than
-32767, an error occurs.

MAXREC—The value specified is stored at D.RCNM and D.RCN2. If
the value is negative, an error occurs.

NOSPANBLOCKS—If this keyword is specified, FD.BLK is set in
F.RATT.

READONLY—If this keyword is present, DV.RDO is set.

RECORDSIZE or RECL—The value is stored at F.RSIZ. If it is negative
or is larger than the user record buifer size (MAXBUF value for TKB),
an error occurs, If DV.UFP (unformatted) is specified, the value is
converted to bytes from storage units (four bytes per storage unit). If
the value given does not equal the value for an existing file, an error
occurs unless the system subroutine ERRSET has been called to set the
continuation-type for error 37 (inconsistent record length) to a r:tum
continuation,

RECORDTYPE—'FIXED’ sets DV.FIX; ‘VARIABLE' sets DV.VAR: and
'SEGMENTED' sets DV.SEG.

The defaults are 'FIXED' for direct access; '"VARIABLE' for form: tted
sequential access; and ‘SEGMENTED' for unformatted sequentil
access. For direct access, 'VARIABLE' or 'SEGMENTED’ is an eiror;
for formatied, 'SEGMENTELY is an error.

SHARED—If this keyword is specified, FA.SHR is set in F.FACC.

FCS-11 Input/Qutput Suppert 7-5

‘@m/

®* STATUS or TYPE—If STATUS is not present, the default is 'NEW’,
Note, however, that if the /F77 switch is set and no STATUS =
parameter is specified in the source code, the compiler passes a
STATUS = 'UNKNOWN'’ parameter. 'NEW’ sets DV.NEW; ‘OLD’ sets
DV.OLD; ‘'SCRATCH' sets DV.SCR; and 'UNKNOWN' sets DV.UNK.
If DV.RDOQ is set, and DV.SCR, DV.NEW, or DV.UNK is specified, an
error occurs. If DV.APD is set, and DV.SCR or DV.NEW is specified,
an error occurs. The file access byte F.FACC is set up as follows:

DV.RDQ --> FO.RD
DV.APD --> FD.APD
DV.SCR --> FO.WRT + FA.TMP
DV.NEW --» FO.WRT
DV.OLD --> FO.UPD
DV.UNK --> FO.UFD
= UNIT—The unit number is obtained and $FCHNL is called to obtain

the LUB pointer. Processing is aborted immediately if there is no unit
number, the unit number is invalid, or the unit is already open.

* USEROPEN—The external procedure name is saved at offset
W.UOPN for use by $OPENS$.

7.2.2 Default OPEN Processing

If DV.FACC is not set, default OPEN processing performs the following
operations:

« For input, it sets DV.OLD and FO.UPD.
* For output, it sets DV.NEW and FO.WRT.

Other fields and values may have been set by CALL ASSIGN, CALL
FDBSET, or DEFINEFILE statements.

7-6 FC3-11 Input/Output Support

i

7.2.3 SOPENS Procedure

The $OPENS$ procedure opens the file and performs the checks and
computations common to OPEN statement processing {Section 7.2.1) and
default OFEN processing (Section 7.2.2).

Before the file is opened, $OPEN$ performs the following operations:

¢ If no user file specification is provided (DV.ASGN is not set), the
default File Name Block of the FDB is set up. The routine $FLDEF
is called to make the file name FOROnn.DAT (nn is the logical unit
number).

* If no directory is specified for the file, the FCS routine .GTDIL is
called to set the default directory.

* If DV.CC is not specified and the file is formatted, FD.FTN is set in
the F.RATT field of the FDB.

¢ The user record buffer description in the FDB, F,URBD, is initic lized
with the address specified by the impure area offset W.BFAD axd the
length specified by W.BLEN.

* FD PLC is set in the FRACC field of the FDB to specify locate mode
1/0 operations.

* A record format is set as follows: If DV.FIX is set, R.FIX is set in the
E.RTY?P field of the FDB; otherwise, R. VAR is set.

* If DV.DFD is set, FD.RAN is set in the F.RACC field of the FDB to
specify direct access.

* A record length is computed. If a user-specified value is availatle, that
value is used; otherwise, one of the following values is used:

133 for formatted files
123 for unformatted files of fixed-length records

125 for other unformatted files

If DV.FIX is set, the record length value is set in the F.RSIZ fie.d of
the FDB.

If impure area offset W.UOPN is nonzero, the user’s routine is called
to perform the FCS OPEN operation; otherwise, .OPFNB is called :0
open the file by file name block. If the open operation fails becaus: the
file cannot be found, and DV.UNK is set, the operation is retried with
DV.NEW set, and FO.WRT set in the F.FACC field of the FDB.

FCS-11 input/Qutpyt Suppirt 7-7

After the file is open, the following operations are performed:

* DV.OPN is set to indicate that the file is open.

* The record format is checked for consistency; if the user-specified
record type does not match the file’s record format, an error occurs.

s The record length, D.RSIZ, is checked for consistency.

- If the user-specified length does not match the file’s record length
for fixed-length records, an error occurs. If the error continuation bit
specifies “RETURN”, the user-specified length is used.

- For variable-length records, the record length is set to the maximum
of the user-specified length and the file’s maximum size.

* The user record buffer description in the FDB, F.URBD, is initialized
with the address specified by the impure area offset W.BFAD and the
length specified by D.R5IZ.

e If D.RSIZ is larger than the user record buffer, as specified by impure
area offset W.BLEN, a record size error occurs,

If any errors occur, either reported by the FCS or resulting from the
consistency checks, the file is closed. If the file was just created, it is
deleted as well.

7.2.4 USEROPEN Interface Specification

The USEROPEN parameter of the OPEN statermnent gives you a way

to access special FCS processing options not explicitly available in the
FORTRAN language. The value of the USEROPEN parameter is the name
of a user-written MACRO~-11 routine that the OTS calls to open a file. To
use the special FCS processing options, you must do the following:

¢ Using the MACRO-11 language, write a routine that opens the file.
* In your FORTRAN program, add the statement:
EXTERNAL filename

where “filename” is the name of the MACRO-11 routine you wrote to
open the file,

* In the OPEN statement in your FORTRAN program, add the keyword
parameter USERQOPEN=filename, where “filename” is the name of
your MACRO-11 routine.

7-8 FCS-11 Input/Output Support

Although the MACRO-11 routine is called by the OTS (not your
FORTRAN program), write it as if it is being called by a FORTRAN p-o-
gram. You must report the status of the open operation in R0. The OTS
invokes the routine as a standard FORTRAN function of one argumerit
using this standard FORTRAN calling convention:

ISTS = userprocedure (FDB}

FDB The address of the FCS FDB for the logical unit.

ISTS The INTEGER*2 error status to be returned. The value is expected to
be the F.ERR FCS completion status and to follow the FC5 conven iions
{positive numbers indicate success, negative numbers failure). The
status is returned only to the OTS, not to the FORTRAN program.

The following limits and constraints are imposed on the user-written
procedure:

¢ All FORTRAN processing is completed prior to the call,

* The FDB address specified is valid until the logical unit is closed. You
do not have access to the FDB in the FORTRAN program. You can
access the FDB in a MACRO-11 program; the FDB address is at 2 R5).

The following sample FORTRAN program and user-open procedure
specify that an existing file of the same name should not be superseded by
a create operation:

EXTERNAL NGBUP
OPEN (UNIT = 1, USEROPEN=NOSUP,TYPE='NEW')

END

.MCALL OQFNBE$
NOSUP: . MOV 2{R5) RO ; Get FDB addr
BISB #FA.NSP,F.FACC(RO) . Set no supersede
QFNBS i Open the file
MOV F.ERR(RO}.RO ; Return completion status
RETURN

FCS-11 Input/Output Support 7-9

7.2.5 File Name Processing

Two routines—$FNBST and $FLDEF—are used to process file name
strings and supply FORTRAN default file names.

The File Name Block Initialization module, $FNBST, sets up the File Name
Block {FNB) of the LUB.

If there is a file name argument (the NAME keyword is used), $FNBST

is called from the ASSIGN subroutine and uses the command string
interpreter routines (.CSI1 and .CSI2) and the FCS-11 .PARSE logic to
construct the FNB. $FNBST is called with R3 containing the impure area
peointer, R2 containing the length of the name string, and R1 pointing to
the start of the string. Registers R0, R1, and R2 are destroyed; R3, R4, and
R5 are preserved.

If no file name is provided, the Default File Name Generation module,
$FLDEF, is called to fill in the default file name. It stores the default
FORTRAN file name and file type in the FNB. On input, the FORTRAN
default file name is FOROnn.DAT, where nn is the unit number. R3 points
to the impure area. All registers are preserved.

The following FCS-11 utility routines are invoked during file name
processing;

* The Default Directory Processing routine, .GTDID, is called by
$OPENS$ to obtain the default directory used in constructing the
File Name Block.

¢« The File Name Block Processing routines, .PARSE, .CSI$1, and .CSI$2,
are called by SFNBST when a user file specification is to be used
rather than the FORTRAN default file names. Refer to the IAS/RSX
[/0 Operations Manual for more information on these routines.

7-10 FCS-11 Input/Gutput Support

7.3 File CLOSE Processing

File CLOSE processing is performed by the OTS routine $CLOSE, which
uses the following FCS-11 routines:

» The File Close Processing routine, CLOSES$, to close files
* The File Deletion routine, .DLFNB, to delete files
® The File Printing routine, .PRINT, to print and optionally delete files

The CLOSE source statement is compiled using an encoded argumer ¢

list similar to that for the OPEN statermnent; however, only the UNIT,
ERR, and DISPOSE keywords are allowed, The processing used is aiso
similar: the argument list is searched for each allowed keyword and
appropriate actions are taken. If any errors are encountered, the CLCSE is
not attempted and the LUB is not zeroced.

The processing for each keyword is described below, in order of execution:

1. ERR—The ERR~= transfer address is obtained and the stack adjustment
value is saved at offset COUNT. If present, the address is stored at
offset ERREX.

2. UNIT—The unit number is cobtained, and $FCHNL is called to ohrtain
the LUB address. If no unit number is present, or if an invalid unit
number is specified, a fatal error occurs.

3. DISPOSE—If not present, the existing disposition is used. 'SAVIY’
sets DV.SAV, ‘PRINT' sets DV.SPL, and 'DELETE’ sets DV.DEL. If
DV.SCR is set, and DV.SPL or DV.SAV is specified, an error occurs. If
DV.RDQ is set, and DV.SPL or DV.DEL is specified, an error occars.

7.4 Sequential Input/Output Processing

This section describes low-level OTS routines called by the 1/0 state nent
processors and format processors to perform the actual calls to FCS-11 for
sequential record transfers, and to perform miscellaneous utility tasks. The
routines are called with the work area address in R3.

The Sequential Input Routine, $GETS, does the following:
* Obtains the LUB pointer from offset FILPTR.

FCS-11 Input/Output Support 7-%1

* Calls FCS macro GET$S to get a record. If FCS error IE.EQF is
returned, or an ENDFILE record is read, the END= transfer is executed.
If IE.EOF is returned and no END= transfer address is given, an error
occurs. Errors cause the ERR= transfer to be executed.

* Increments the record count in D.RCCT and D.RCC2.

* Returns the actual record length in R1, and returns the start address of
the record in R2 (RO is undefined).

The Sequential Output routine, $PUTS, proceeds as follows:

* Obtains the LUB pointer from offset FILPTR
* (Calls the PUT$S macro to output the record
* Increments the record count in D.RCCT and D.RCC2

$PUTS is called with the record length in R1. Registers R0, R1, and R2
are undefined upon return.

7.5 Direct Access Input/Output Processing

This section describes low-level QTS routines called by the /0 statement
processors and format processors to perform the actual calls to FCS for
direct access record transfers, and to perform miscellaneous utility tasks.
The routines are called with the work area address in R3.

The Direct Access Input routine, $GETR, proceeds as follows:

* Obtains the LUB pointer from offset FILPTR, and calls $CKRCN to
verify the record number and return it in R1 and R2
» Calls FCS macro GET$R to read the record

e Calls $ASVAR to update the associated variable

Registers R0, R1, and R2 are undefined.

The Direct Access Output routines, $PUTR and $PUTRI, proceed as
follows:
® $PUTRI is called to initialize a direct access write operation.

* Obtains the LUB pointer from offset FILPTR and calls $CKRCN to
verify the record number.

s Stores the record number at FRCNM and F.RCNM+2 in the FDB.

7-12 FCS-11 input/Output Support

e (Calls the FCS routine .POSRC to position the file to the desired r=xcord.
If FCS error IE.EQFT is returned, it is ignored. All other errors caise
the ERR= transfer to be executed.

* $PUTR is called to write the record.
* Obtains the LUB pointer from FILPTR.

» Computes the number of unfilled bytes in the record. The record is
padded to the correct length with blanks for formatted records and
zero bytes for unformatted records.

s (Calls the FCS macro PUT$R to write the record and $ASVAR to
update the associate variable.

Registers RO, R1, and R2 are undefined.

The Direct Access Record Number Checking routine, $CKRCN, verifies the
current record number by comparing it against the maximum record num-
ber for the file. The current record number is stored at offsets W.RECL
(low-order) and W.RECH (high-order). The maximum reccrd number,

if it exists, is at D.RCNM (low-order) and D.RCN2 (high-order) in the
LUB. The record number, if valid, is returned in R1 thigh-order) anc R2
(low-order).

$CKRCN is called with the LUB address in R0, and the impure-are:
pointer in R3. Registers R4 and RS are preserved.

The Associated Variable Update routine, $ASVAR, obtains the current
record number from offsets W.RECL and W.RECH, increments it by 1,
and stores it in the associate variable at the address in D.AVAD in the
LUB. $ASVAR is called with RO pointing to the FCS portion of the FDB.
Registers R1 and R2 are undefined.

7.6 Auxiliary Input/Output Operations

This section identifies and explains the routines that perform the op-
erations of the following FORTRAN source statements:: BACKSPACE,
REWIND, ENDFILE, DEFINEFILE, and FIND.

BACKSPACE—BKSP$

The unit number is obtained and $GETFILE is called to obtain the LUB
address. If the file is closed or is a direct access file, the operation is
ignored. If the file is opened for append, an error occurs. A call to the
FCS routine .POINT is made to position the file at the beginning (virtual
block 1, byte 0). The record count is obtained from D.RCCT and D.RCC2

FCS-11 Input/Output Support 7-13

in the LUB. The record count is decremented by 1, and n-1 reads are
performed. The count is the logical record count, and therefore that
multiple physical reads may be required for unformatted segmented
records.

REWIND—REWI$

The unit number is obtained and $GETFILE is called to obtain the LUB
address. If the file is closed or is a direct access file, the operation is
ignored. The append bit is cleared and the record count D.RCCT and
D.RCC2 is zeroed. A call to the FCS roufine .POINT is made to position
the file at the beginning (virtual block 1, byte 0). T

ENDFILE—ENDF$

The unit number is obtained and $GETFILE is called to obtain the LUB
address. If the file is a direct access file, an error occurs and the operation
is ignored. If not open, the file is opened by $OPEN (default open) for
write. A 1-byte record, containing an octal 32 (CTRL/Z), is output to the
file, using $PUTS.

DEFINEFILE—DEFF$

The unit number is obtained and $GETFILE is called to obtain the LUDB
address. If the unit is open, an error occurs. The number of records is
stored at D.RCNM and D.RCN2 in the LUB. The recordsize is converted
to bytes and stored at R.RSIZ in the FDB. The associated variable address
is stored at D.AVAD, and DV.Al4 is set if the associated variable is
INTEGER#4., DV.DFD and DV.UFP are set. If DV.DFD was previously
set, an error occurs, If the number of records or record size is negative, an
error occurs,

FIND—FINDS

The FIND statement is contained in the same.module as that of the
DEFINEFILE statement. The argument mask for $INITIO is set to
FL.REC'FL.RD and $INITIO is called. The associated variable, if present,
is set to the record number. No FCS-11 call is required.

1.7 Input/Output-Related Subroutines

This section describes the operation of three I/O-related subroutines. The
PDP-11 FORTRAN-77 User’s Guide describes these subroutines in greater
detail.

7-14 FCS-11 Input/Output Support

ASSIGN

The unit number is placed in R2 and $GETFILE is called to get the LUB
address. The file specification string address is placed in R1. If no string
length is present, it is computed by scanning for a zero-byte. $FNBST is
called to parse the file specification and set up the file name block in the
FDB.

CLOSE

The unit number argument is moved to R2 and the OTS routine $CLOSE
is called to close the file, ‘

FDBSET

The unit number is placed in R2 and $GETFILE is called to get the LUB
address. The first character of the access mode string is checked against
the list, and the corresponding file access is stored at F.FACC in the FDB.
Table 7-2 summarizes the argument processing.

Table 7-2: FDBSET Argument Summary

Call FDBSET Arguments FDB Setting
Argument 1 =n Set n in F.LUN
Argument 2 = 'READONLY’ Set FO.RD in F.FACC
= 'NEW' Set FO.WRT in F.FACC
='OLD’ Set FO.UPD in F.FACC
= 'APPEND’ Set FO.APD in F.FACC
= 'UNKNOWN’ Set FO.UPD in F.FACC; if no such file,
then set FO.WRT in F.FACC.
Argument 3 = ‘SHARE' Set FA.SHR in F.FACC
Argument 4 = n Set n in FMBCT
Argument 5 = n Set n in FCNTG
Argument 6 = n Set n in F.ALOC
n

Is an integer expression.

FCS-11 Input/Dutput Suppori 718

L“kuc d

Chapter 8

RMS-11 Input/Ouput Support

This chapter discusses the RMS-11-specific portions of the OTS.
Particularly the explicit RM5-11 operations used to implement FORTRAN
1/0 operations.

8.1 RMS-111/0 Control Blocks

RMS5-11 uses two primary and several secondary control biocks to control
1/0 operations. The primary control block for file functions {open, close,
and so forth) is the File Access Block (FAB). The primary control block
for record functions (read, write, and so forth) is the Record Access Block
(RAB). RMS-11 uses auxiliary control blocks for file name parsing (NAM
block) and indexed file key specification (XAB blocks).

The FORTRAN-77 1/0O system uses one Logical Unit Control Block
{LUB) to control 1/0 for each logical unit, The LUB contains FORTRAN
control information, a RAB, and a file-name-string save area whose size is
specified by the impure area offset W.FNML. The RMS FAB, NAM, and
XAB control blocks are allocated and deallocated as needed.

Indexed file key specifications are processed by the OPEN statement and
are allocated as a single block containing n key-definition XAB control
blocks. Each XAB has two extra words containing position and size values
used for consistency checks for an existing file. The file open processor
$OPENS$ uses an RMS NAM control block to obtain the expanded file
name string that is used for error reporting and file deletion.

For more information about RMS-11 control blocks, see Section 4.2 and
Appendix B.

RMS-11 Input/Ouput Support 8-1

8.1.1 Dynamic Storage Allocation for Control Blocks

All OTS and RMS-11 control blocks and I/O buffers are dynamically
allocated and deallocated from a central storage pool. The size of the pool
is determined by the Task Builder option EXTTSK or the /INC option of
the INSTALL or RUN commands.

Two OTS procedures manage the storage: RQMEMS allocates storage
and RLMEMS$ deallocates storage. RMS-11 obtains storage from the OTS
by using the option $SETGSA, and the storage allocation algorithm uses
the operating system procedure $RQLCB. The OTS storage pool listhead
address is contained at offset W.DEVL. Best-fit allocation is used.

The three storage management procedures are:
* RQMEMS (allocate storage)

On input - RO contains the size of the request,

On output ~ R0 contains the address of a successful alloca-
tion. A Condition-bit error flag is returned. If
unsuccessful, all other registers are preserved.

s RLMEMS (deallocate storage)
On input - RO contains the address of the storage to deallo-
cate, R1 contains the size of the storage.

On output - RO and R1 are undefined; all other registers are
preserved,

¢ RMSQL$ (RMS-called GSA (get-space-available) routine to request
and release storage)

On input - RO contains the address of an RMS pool {ignored).
R1 contains the size of the block to allocate or
deallocate. RZ contains 0 for allocation request;
address of the block if release request.

On output - RO contains the address of a successful request. A
Condition-bit error flag is returned if unsuccessful.

RMSQL$ calls either RQMEMS$ or RLMEMS$ to process the request or
release.

8-2 RMS-11 Input/Ouput Support

R

.

8.2 Open Processing

Default file open processing and OPEN statement processing merge into a
single common routine, §OPEN$ (see Section 8.2.3), for a file open.

8.2.1 OPEN Statement Processing

Table 8-1 shows the OPEN statement keywords, the possible values of
the keywords, and the RMS FAB and RAB settings associated with those

values.

Table 8-1: FAB/RAB Settings for OPEN Statement

Keyword Name Value FAB/RAB Setting
ACCESS ‘DIRECT’ -
‘SEQUENTIAL' -
'APPEND’ RB$EQF in O$SROP in RAB
ASSOCIATEVARIABLE v -
BLANK ‘NULL' -
'ZERQ’ -
BLOCKSIZE n Set n in O$BLS in FAB; set
(max(n, RECORDSIZE)+511
/512) in O$BKS in FAB and
O$MBC in RAB
BUFFERCOUNT n Set n in O$MBF in RAB
CARRIAGECONTROL ‘FORTRAN’ Set FB$FTN in O$RAT in
LIST FAB
‘NONE' Set FBSCR in O$RAT in
FAB
DISPOSE ‘SAVE' Use $CLOSE at file close
‘DELETE’ Use $ERASE at file close
‘PRINT’ Use $CLOSE at file close
ERR 5 -
EXTENDSIZE n Set IABS(n) in O$DEQ in

FILE or NAME

FAB

Call $FWBST to initialize
O$FNA and O$FNS in FAB

AMS-11 tnput/Ouput Support 8-3

Table 8-1 {Cont.):

FAB/RAB Settings for OPEN Statement

Keyword Name

Value

FAB/RAB Setting

FORM

INITIALSIZE

KEY

KEYCNT

Keyword Name
MAXREC
NOSPANELOCKS

ORGANIZATION

READONLY
RECORDSIZE or RECL

RECORDTYPE

SHARED

8-4 RBMS-11 input/Quput Support

FORMATTED"

"UNFORMATTED!

nl:n2

Value

‘SEQUENTIAL'
‘RELATIVE
INDEXED'

n

‘FIXED'
‘VARIABLE'
'SEGMENTED’

1 positive, set FBSCTG in
O$FOP in FAB;

Set TIABS(n) in O$ALQ in
FAB.

Set nl in O$POS0 in XAB;
Set n2-nl+1 in O$SIZ0

in XAB; Set XB$5TG

in O$DTP in XAB; Set
XB$CHG!XBSDUP in
O$FLG in XAB if not
primary key.

Allocate n XABs and set
address in O$XAB in FAB

FAB/RAB Setting
- (Depends on device type)

Set FB$BLK in O$RAT in
FAB

Set FB$SEQ in O$0ORG in
FAB
Set FB$REL in O$ORG in
FAB
Set FBSIDX in O$ORG in
FABR

Set FB$GET in O$FAC in
FAB

Set n in Q$MRS in FAB if
needed

Set FB$FIX in Q$RFM in
FAB

Set FBSVAR in DSRFM in
FAB

Set FB$VAR in O$RPM in
FAB

Set FB$WRI in O$SHR in
FAB

Table 8-1 (Cont.): FAB/RAB Settings for OPEN Statement

Keyword Name Value FAB/RAB Setting
STATUS or TYPE ‘OLD’ Use $OPEN
'‘NEW’ Use $CREATE
‘SCRATCH' Use $CREATE, set FB$TMD
in O$FOP in FAB
‘UNKNOWN' Try $OPEN. If no such file,
then $CREATE
UNIT n Set n in O$LCH in FAB
USEROPEN p -
f

Is an array, array element, variable, or character constant.

n
Is an integer expression.

s
Is an executable statement label.

1 4
Is an integer variable name.

P
Is an external procedure name.

In basic OPEN statement processing, an argument list is searched and
each keyword is located in a prescribed order. All information required
by a given keyword is available when that keyword is processed. An
appropriate defauit is used for keywords not in the list. If any errors occur
during the search, the OPEN is not attempted, the ERR~ transfer is taken,
and the LUB is released.

The processing for each keyword is described below.

RMS-11 Input/Quput Support 8-5

» ACCESS—The default access is 'SEQUENTIAL'. The FORTRAN LUB
fields are set as follows:

SEQUENTIAL - DV.SEQ

DIRECT - DV.DIR
AFPPEND - DV.SEQ and DV.APD
KEYED - DV.KEY

If DV.RDOQ and DV.APD are set, an error occurs.

¢ ASSOCIATEVARIABLE—The variable address is stored at D.AVAD. If
the variable is type INTEGER#4, DV.Al4 is set.

* BLANK—'NULL’ sets DV.BN. If the /F77 switch is set and no
BLANK-= is specified, the compiler passes a BLANK='NULL' parameter.

* BLOCKSIZE—The value specified sets the following values:
- The physical blocksize for sequential tape files.
- The multiblock count for sequential disk files.
- The bucketsize for relative and indexed files.

The values set are as follows for a BLOCKSIZE value of n {n must be
positive and less than 32767):

- Set n in O$BLS in the FAB for magtape.

- Set (511+MAX(n,RECORDSIZE)) /512 in O$BKS in the FAB for
bucketsize and in O$MBC in the RAB for multiblock count.

¢ BUFFERCOUNT—The value specified is stored at O$MBF in the RAB.
If the value is negative or greater than 127, an error occurs.

* CARRIAGECONTROL—If specified, DV.CC is set. 'FORTRAN' sets
FB$FIN in O$RAT and 'LIST’ sets FB$CR in O$RAT in the FAB. If
DV.CC is not set and DV.EMP is specified, FD.FIN is the default.

» DISPOSE—'SAVE' sets DV.SAV; ‘PRINT’ sets DV.SPL; and ‘DELETE’
sets DV.DEL. If DV.RDO is set, and DV.DEL or DV.5PL is specified,
an error occurs. If a DISPOSE value is not specified and DV.SCR is
set, 'DELETE’ is the default; otherwise, ‘'SAVE’ is the default.

o ERR—The ERR= transfer address is obtained and the stack adjustment
value is saved in the work area at offset COUNT. The transfer address,
if present, is stored at offset ERREX; if it is not present, ERREX is
cleared.

B-6 RMS-11 Input/Ouput Support

EXTENDSIZE—The absolute value specified is stored at O$DEQ in
the FAB. If the value is greater than 32767 or less than -32767, an
error occurs.

FILE or NAME—If specified, $FNBST is called to initialize the file
name specification in the FAB. $FNBST returns an error if the string is
incorrect.

FORM—'FORMATTED' sets DV.FMP, 'UNFORMATTED" sets
DV.UFP. If not specified and DV.DIR or DV KEY is set, then DV.UFP
is the defauit; otherwise, DV.FMP is the default.

INITIALSIZE—The absolute value specified is stored at O$ALQ in the
FAB. If the value was positive, FB$CTG is set in O$FOP in the FAB to
indicate contiguous allocation.

KEY-—Each key entry is processed as follows:

- nl is set in O$POSO of the XAB and X.POS in the FORTRAN portion
of the XAB.

- n2-nl+1 is set in O$SIZ0 of the XAB and X.SIZ in the FORTRAN
portion of the XAB,

- An error occurs if nl is greater than 32767 or if n2-n1+1 is greater
than 255.

KEYCOUNT—n XABs are allocated as a single control block. The
XABs are linked together, and the XABBLK address is stored at
O$XAB in the FAB and F.FXAB in the FORTRAN FABBLK, The
XABs are initialized with XB$STG as the data type and XB$CHG and
XB$DUPT as options for all but the primary key. An error occurs if n is
greater than 255 or negative.

MAXREC—The value specified is stored at D.RCNM and D.RCN2. If
the value is negative, an error occurs.

NOSPANBLOCKS—If specified, FB$BLK is set in O$RAT in the FAB.

ORGANIZATION—The default organization is 'SEQUENTIAL’. The
FAB organization field is initialized, the LUB organization field is
initialized, and the file access field, O$FAC in the FAB, is initialized as
follows:

If DV.RDO is set, then FB$GET is set; otherwise:
SEQUENTIAL —FB$GET!FB$PUT!FB$TRN
RELATIVE —FBSGETIFB$PUT!FB$UPDIFB$DEL
INDEXED —FB$GETFB$PUT!FB$UPDIFB$DEL

RMS-11 Input/Ouput Support 8-7

* READONLY~If present, DV.RDO is set.

* RECORDSIZE or RECL—The value is stored at D.RSIZ. If the value
is negative or larger than the user record buffer size (MAXBUF value),
an error occurs. If DV.UFP (unformatted) is specified, the value is
converted to bytes from storage units (four bytes per storage unit), If
the value given does not equal the value for an existing file, an error
occurs.

* SHARED—If specified, FBSWRI is set in O$SHR in the FAB.

¢« STATUS or TYPE—H not present, the default is 'NEW'. Note, how-
ever, that if the /F77 switch is set and no STATUS = parameter
is specified in the source code, the compiler passes a STATUS =
'UNKNOWN' parameter. 'NEW' sets DV.NEW, ‘OLLY sets DV.OLD,
‘SCRATCH' sets DV.SCR, and ‘UNKNOWN' sets DV.UNK. If
DV.RDO is set and DV.SCR, DV.NEW, or DV.UNK is specified, an
error occurs. If DV.APD is set and DV.SCR or DV.NEW is specified,
an error occurs.

* UNIT—The unit number is obtained and $FCHNL is called to obtain
the LUB pointer. Possible fatal errors include: no unit number, invalid
unit number, or unit already open. A FAB is allocated and its address = _.
is stored in D.PFAB.

* USEROPEN—The address of the procedure is saved at FUOPN in the
FORTRAN portion of the FAB.

After all keywords are processed, $OPENS is called to perform the actual
file open. If successful, then the key specifications, if present, are checked
for consistency. The FAB and XAB control blocks are released.

8.2.2 Default OPEN Processing

Default OPEN processing sets the following values and then calls
$OPENS:

* Sets organization to SEQUENTIAL; sets DV.SEQ and FB$SEQ in
O%0RG in the FAB

e If DV.FACC is not set and the I/O statement is an input operation,
sets DV.OLD; otherwise, sets DV.NEW

Other fields and values may have been set by CALL ASSIGN, CALL
FDBSET, or DEFINEFILE statements.

8-8 RMS-11 Input/Ouput Support

ST

8.2.3 SOPENS Routine

The $OPENS$ routine opens the file and performs the various checks and
computations common to OPEN statement processing (see Section 8.2.1)
and default OPEN processing (see Section 8.2.2).

Before file open, $OPEN$ performs the following operations:

= If no user file specification is provided, uses the default file string for
error reports

» If append access is not specified, sets FBSNEF in O$FOP in the FAB to
inhibit positioning to end-of-file for magnetic tape files

* Sets the RMS record format to FB$FIX if DV.FIX is set; otherwise, sets
the record format to FB$VAR

* Computes a record length as follows:

If a user-specified value is available, uses that value and moves it to
O$MRS in the FAB; otherwise, uses 133 for formatted files, 128 for

unformatted files with fixed-length records, and 126 for unformatted
files with variable or segmented records; if DV.FIX or DV.REL is set,
sets record length in O$MRS in the FAB

* If DV.CC is not specified, sets FB$FTN in O$RAT in the FAB if
formatted

* Saves the organization type for consistency checks

* Sets RBSLOC and RB$UIF in O$ROP in the RAB to enable locate
mode I/O and to permit WRITE statements to update records in
relative files

e Sets O$UBF and O$USZ in the RAB to reflect the user record buffer as
specified by impure area offsets W.BFAD and W.BLEN

* Creates an RMS NAM block to obtain the expanded file name string
for error reports and file deletion

If impure area offset W.UQOPN is nonzero, $OPEN$ calls the user’s
routine to perform the RMS OPEN and CONNECT, If F.UOPN is not set,
$OPENS calls $CREATE, if DV.NEW is set, or $OPENS$ if DV.NEW is not
set. If DV.UNK is set and $OPENS$ fails with error ER$FNF, $CREATE is
tried with DV.NEW set,

After the SCREATE or $OPEN routine is executed, the following opera-
tions are performed:

* The expanded file name string from the NAM block is copied to the
LUB name string save area and the NAM block is deleted.

AMS-11 Input/Quput Support 8-9

= DV.OPN is set to indicate that the file is open.
* The file organization is checked for consistency.

® The record format is checked for consistency; if the uéer—speciﬁed
record type does not match the file’s record format, an error occurs.

® The record length is checked for consistency as follows:
If the user-specified length does not match the file size, an error

occurs. If the default length is used, the value is set to the maximum
of the file and default values,

* The RMS $CONNECT operation is performed. y

If any errors occur, either reported by RMS or as a result of the consistency
checks, the file is closed. If DV.NEW is set, the file is deleted as well.

8.2.4 USEROPEN Interface Specification

The USEROPEN parameter of the OPEN statement allows you to ac-
cess special RMS processing options not explicitly available in the
FORTRAN-77 language. The value of the USEROPEN pararmeter is

the name of a user-written MACRO-11 routine that the OTS calls to open
a file. To use this facility, you must do the following:

* Using the MACRO-11 language, write a routine that opens the file.
¢ In your FORTRAN~77 program, include the statement

EXTERNAL filename

where “filename” is the name of the MACRO-11 routine you wrote to
open the file.

¢ In the OPEN statement in your FORTRAN program, include the
keyword parameter USEROPEN=filename, where, again, “filename” is
the name of your MACRO-11 routine.

Although the MACRQO-11 routine is called by the QTS (not your
FORTRAN-77 program), you should write it as if it were being called by a
FORTRAN-77 program. You must report the status of the open operation
in R0O. The OTS invokes the routine as a standard FORTRAN function of
two arguments using the standard FORTRAN calling convention:

ISTS= userprocedure (FAB,RAB)

8-1C RMS-11 Input/Ouput Support

s

FAB
The address of the RMS FAB for the logical unit.

RAB
The address of the RMS RAB for the logical unit.

ISTS

The error status to be returned. This value is expected to be the RMS
completion status (STS value) and follows the RMS conventions (positive
numbers indicate success and negative numbers indicate failure.) Note
that the status is returned only to the OTS, not to the FORTRAN program.

The following limits and constraints are imposed on the user procedure:

* All FORTRAN processing is completed prior to the call. All nonzero
fields containing addresses must be preserved so that postprocessing
will operate correctly and storage for control blocks and scratch areas
can be returned.

» If additional XABs are used, they must be included in the XAB list
at the front. XAB is the address of the RMS key access block for the
logical unit.

* Al control blocks allocated by the procedure must be deallocated
as well. Only control blocks and storage allocated by the OTS are
deallocated by the OTS.

* The FAB address specified is not valid after the file open is completed.
The RAB address specified is valid until the logical unit is closed. Care
must be taken to ensure that an invalid FAB address is not saved for
later use.

* The user procedure must perform both the $CREATE /$OPEN function
and the $CONNECT function.

The following sample FORTRAN program and user-open procedure
specify that bucket fill numbers are to be used when records are inserted.
EXTERNAL USROPN

OPEN (UNIT=1, ORGANIZATION='INDEXED', ACCESS='KEYED',
1 USEROPEN=USRQPN)

END

RMS-11 tnput/Ouput Support 8-11

USROPN:: MOV 2(RS) B2 ;Get FAB pointer
MOV 4{(R5} ,R1 :Get RAB pointer
$OPEN k2 ;Open the file
MOV D$STS(R2) RO iGet error status
BLE i3 ;Quit on error
BIS #RBSLCA, OROP(R1) ;Uee bucket fill numbers
$CONNECT R1 iConnect the RAB
MOV 0$STS(R1) .RO :Get error status
1$: RETURN ;Return with status in RO

8.2.5 File Open Utility Routines

The following procedures are used internally as part of file open
processing;:

FABRQS

Allocates and initializes a FORTRAN FAB block. The address of the
FAB is set in D.PFAB in the LUB and in O$FAB in the RAB, The string
FOROnn.DAT is set up as the default file name string by initializing
O$DNS5 and O$DNA in the FAB.

This procedure is calied with the LUB pointer in RO. It returns with the
FAB pointer in R1 and all other registers preserved. A Carry-bit (C-bit)
error is returned if no storage is available.

FABRLS

Deallocates a FAB. In addition, deallocates the XAB block connected to the
FAB through offset FE.PXAB. LUB offset D.PFAB is set to 0. This routine is
called with the LUB pointer in RO. All registers are preserved. If no FAB
is currently allocated, this routine has no effect.

$FNBST

Initializes the user file name specification for the LUB at offset FILPTR.
The string is copied to the name string area of the LUB. Scanning ceases
when the user count is exhausted or an ASCII null byte is scanned. The
string is converted to uppercase and space characters are removed.

On input, this routine has the following register assignments:

¢ Rl—address of file name string
e R2—length of string or 0
* R3—impure area pointer

8-12 RMS-11 Input/Ouput Support

{ﬂh
. R

On output, RO, R1, and R2 are undefined; R3, R4, and RS are preserved.
A Carry-bit (C-bit) error is returned if the string does not fit in the name
string save area, or if the length of the string is zero.

8.3 File Close Processing

File close processing is performed by the routine $CLOSE. The following
functions are performed:

$DISCONNECT is executed if O%IS] in the RAB is nonzero.
$CLOSE is executed.

If DV.DEL is set, $ERASE is executed. The file name specification is
taken from the name string save area.

If DV.SPL is set, no operation is performed.

The CLOSE statement is compiled using an encoded argument list similar
to that for the OPEN statement; only the UNIT, ERR, and DISPOSE
keywords are allowed. Processing is similar to OPEN: the argument list is
searched for each allowed keyword and appropriate actions are taken. If
any errors are encountered, the CLOSE is not attempted and the LUB is
not zeroed.

The following list describes the processing for each keyword:

ERR—The ERR= transfer address is obtained and the stack adjustable
value is saved at offset COUNT. The address is stored at offset ERREX,
if present.

UNIT—The unit number is obtained and $FCHNL is called to obtain
the LUB address. If no unit number is present or an invalid unit
number is specified, a fatal error occurs.

DISPOSE—If not present, the existing disposition is used. '‘SAVE’
sets DV.SAV, 'PRINT’ sets DV.SPL, and ‘DELETE’ sets DV.DEL. If
DV.SCR is set and DV.SPL or DV.SAV is specified, an error occurs. If
DV.RDO is set, and DV.SPL or DV.DEL is specified, an error occurs.

RMS-1T lnput/Ouput Support 8-13

84

Sequential Input/Output Processing

The following sections describe low-level OTS routines called by the 1/0
statement processors and format processors to perform the actual calls to
RMS for sequential record transfers, and to perform miscellaneous utility
tasks. These routines are called with the work area address in R3.

8.4.1 Sequential Input (SGETS) L

The LUB pointer is obtained from offset FILPTR. The RMS $GET operation
is executed to get a record. If RMS error ER$EOF is returned or if an
ENDFILE record is read, the END= transfer is made; any other error
transfers control to the ERR= address. The record count at D.RCCT and
D.RCC2 is incremented.

8.4.2 Sequential Output (SPUTS)

The LUB pointer is obtained from the offset FILPTR. The RMS operation e
$PUT is executed to output the record. If RMS error ERSNEF is returned
for a sequential organization file, the file is not positioned at end-of-file
and must be truncated before the record can be written. This is done by
performing RMS sequential $FIND and $TRUNCATE operations before
re-executing the $PUT operation.

If the file contains fixed-length records, the record is padded with spaces
for formatted files and nulls for unformatted files. The record count at
D.RCCT and D.RCC2 is incremented. This routine is called with the
record length in R1. On return, RO contains the LUB pointer; R1 and R2
are undefined; and R3, R4, and RS are preserved.

8.5 Direct Access Input/Output Processing

The following sections describe low-level OTS routines called by the
1/0 statement processors and format processors to perform the calls to
RMS-11 for direct access record transfer, and to perform miscellaneous
utility tasks. These routines are called with the impure area address in
R3. For sequential organization files, the RMS $SETRECN operation
is executed to include the RMS routine that converts a relative record
number to an actual record file address.

B8-14 RMS-11 Input/Quput Support

8.5.1 Direct Input (SGETR)

The $GETR routine proceeds as follows:

Obtains the LUB pointer from offset FILPTR

Calls $CKRCN to verify the record number and sets the KRF and K5Z
fields in the RAB

Executes the RMS $GET operation to read the record
Calls $ASVAR to update the associated variable

8.5.2 Direct Output (SPUTR And SPUTRI)

$PUTRI initializes a direct access write operation. It proceeds as follows:

Obtains the LUB pointer from offset FILPTR.

Calls $CKRCN to verify the record number and initialize the KRF and
KSZ fields of the RAB.

For sequentia!l files, executes $UPDATE to update an existing record,
or $PUT to write a new record.

Executes an RMS $FIND operation to position the file to the desired
record. If RMS error ER$EOF is returned, the record does not exist
within the current file storage allocation. In that case, the sequential
$PUT operation automatically extends the file to the correct size to
accommodate the record.

$PUTR is called to write the record. It proceeds as follows:

Obtains the LUB pointer from FILPTR

If the file contains fixed-length records, pads the record (with spaces
for formatted records and zero bytes for unformatted records) to the
correct length

Calls $ASVAR to update the associate variable

8.5.3 Direct Delete (SDELETE)

The LUB pointer is obtained from offset FILPTR. The RMS $DELETE
operation is executed to delete the record.

RMS-11 Input/Ouput Suppert 8-15

8.5.4 Direct Access Record Number Checking (SCKRCN)

$CKRCN verifies the current record number by comparing it with the
maximum record number for the file. The current record number is
stored at offsets W.RECL (low-order) and W.RECH (high-order). The
maximum record number, if it exists, is at D.RCNM (low-order) and
D.RCN2 (high-order) in the LUB. The record number, if valid, is returned
in R1 (high-order) and R2 (low-order). This routine is called with the LUB
address in R0. Registers R4 and R5 are preserved.

8.5.5 Associated Variahle Update (SASVAR)

The current record number is obtained from offsets W.RECL and W.RECH,
incremented by 1 and stored in the associate variable at the address

in D.AVAD in the LUB. $ASVAR is called with the LUB pointer in RO.
Registers R1 and R2 are undefined.

8.6 HKeyed Input/Output Processing

The following sections describe low-level OTS routines called by the
[/O statement processors and format processors to perform the calls to
RMS for keyed record transfer, and to perform miscellanecus utility tasks.
These routines are called with the work area address in R3.

8.6.1 HKeyed Input (SGETK)

The LUB pointer is obtained from offset FILPTR, and $CKKEY is called to
verify the validity of the key expression and initialize the KRF and KSZ
fields in the RAB. The RMS $GET operation is executed to read the record.
On output, RO contains the LUB pointer; R1 is undefined.

8.8.2 Keyed Output (SPUTS)

Keyed output is performed identically to sequential output.

8-16 RMS-11 Input/Quput Support

8.6.3 Keyed Rewrite (SUPDATE)

The LUB pointer is obtained from offset FILPTR. If the file contains fixed-
length records, the record is padded with spaces for formatted files or
nulls for unformatted files. The RMS $UPDATE operation is executed to
update the record.

8.8.4 Keyed I/0 Specifier Checking {SCKKEY)

$CKKEY verifies the key specification in a keyed I/O statement and sets
the proper control information in the LUB. it is called with the LUB
pointer in RO and the impure area pointer in R3. Registers R1 and R2 are
destroyed; all other registers are preserved.

8.7 Auxiliary Input/Output Operations

This section identifies and explains the routines that perform the oper-
ations of the FORTRAN statements BACKSPACE, REWIND, ENDFILE,
UNLOCK, DEFINEFILE, FIND, and DELETE.

BACKSPACE—BKSP$

The unit number is obtained and $GETFILE is called to obtain the LUB
address. If the file is closed or is a direct access file, the operation is
ignored. If the file is opened for append, an error occurs. An RMS
$REWIND operation is executed to position the file at its beginning. The
record count is obtained from D.RCCT and D.RCC2 in the LUB. The
record count is decremented by 1, and then n-1 reads are performed. Note
that the count is the logical record count; hence, multiple physical reads
may be required for the unformatted segmented records.

REWIND-—REWI$

The unit number is obtained and $GETFILE is called to obtain the LUB
address. If the file is closed or is a direct access file, the operation is
ignored. The append bit is cleared and the record count at D.RCCT and
D.RCC2 is zeroed. An RMS $REWIND operation is executed to position
the file at its beginning.

AMS-11 Input/Quput Support 8-17

ENDFILE—ENDF$

$INITIO is called with argument mask FL.IGN + FL.WRT to open the file,
if necessary, and prepare for the output operation. If the file has relative
or indexed organization, or contains fixed-length records, an error occurs.
A 1-byte record containing octal 32 (CTRL/Z) is output to the file using
$PUTS.

UNLOCK—UNLKS

The unit number is obtained and $GETFILE is called to obtain the LUB
address. If the file is closed, the operation is ignored. An RMS $FREE
operation is executed to unlock the currently locked record bucket. If RMS
error ERSRNL is returned, indicating that no record was locked, the error
is ignored.

DEFINEFILE—DEFF$

The unit number is obtained and $GETFILE is called to obtain the LUB
address, [f the unit is open, an error occurs. A FAB is allocated if one

is not already present. The number of records is stored at D.RCNM and
D.RCN2 in the LUB. The record size is converted to bytes and stored at
D.RSIZ in the LUB, The associated variable address is stored at D.AVAD
and DV.Al4 is set if the associated variable is INTEGER+4. DV.DIR and
DV.UFP are set. If DV.DIR was previously set, or if the number of records
or record size is negative, an error occurs.

FIND—FIND$

$INITIO is called with argument mask FL.RD+FL.REC+FL.IGN to open
the file, if necessary, and prepare for an input operation. $CKRCN is
called to initialize the RAB KRF and KSZ fields and verify the validity of
the record number. The RMS $FIND operation is executed to locate the
record, $ASVAR is called to update the associated variable,

DELETE—-DLSS$ and DLRS
BINITIO is called to prepare for the I/O operation. The argument mask is
as follows:

Sequential DELETE: FL.WRT+FL.DEL+FL.IGN
Direct DELEIE: Fl..WRT+FL.DEL+FL. IGN+FL.REC

For sequential DELETE, RMS $DELETE is executed to delete the record.

For direct DELETE, $CKRCN is called to initialize the record number,

If the current record number equals the requested record number, RM5
$DELETE is executed to delete the current record without unlocking it. If
the operation fails with the error NO CURRENT RECORD, then $GETR
is called to locate and lock the record, and RMS $DELETE is called to

8-18 RMS-11 input/Ouput Support

delete the record. The $ASVAR routine is called to update the associated
variable.

8.8 Input/Output-Related Subroutines

This section describes the operations of the three I/O-related subroutines
ASSIGN, CLOSE, and FDBSET. The subroutines are described in detail in
the PDP-11 FORTRAN-77 User’s Guide.

ASSIGN

The unit number is placed in R2 and $GETFILE is called to get the LUB
address. A FAB is allocated if one is not present. The file specification
string address is placed in R1. If no length is present, the string length is
computed by scanning for a zero-byte. $FNBST is called to store the file
name string in the LUB and set up the file name specification in the FAB.

CLOSE

The unit number argument is moved to R2 and the OTS routine $CLOSE
is called to close the file

FDBSET

The unit number is placed in R2 and $GETFILE is called to get the LUB
address. A FAB is allocated if one is not present. The first character of the
access mode string is checked against the list, the corresponding file access
fields are stored in the FAB and LUB, and DV.FACC is set in the LUB.

Parameter

Value OSFAC in the FAB LUB Status
‘NEW' FBSGET!FB$PUT!IFBSUFDIFBSTRN DV.NEW

'OLD’ FB$GET!FB$PUTIFB$UPD!FBSTRN DV.QOLD
'READONLY’ FB$GET DV.OLD!DV.RDO
'APPEND FB$GET!FB$PUT!FB$UPDIFB$ TRN DV.OLDIDV.APD
"MODIFY’ FBSGET!IFBSPUTIFRSUPDIFBSTRN DV.OLD

TUNKNOWN' FB$GET!'FBSPUTIFBSUPDIFBSTRN DV.UNK

If the third argument is 'SHARED’, FB$WRI is set in the SHR field in
the FAB. The fourth argument, if present, sets the MBF field in the RAB.
The fifth argument, if present, sets the ALQO field in the FAB. The sixth
argument, if present, sets the DEQ field in the FAB. The value is made
positive. '

RMS-1% input/Duput Support B-18

Chapter 9

Format Processing and Format
Conversions

This chapter discusses the internal form of format specifications, the
N format processing algorithm, and the format conversion routines.

9.1 Compiler Format Language

Format specifications are compiled into a standard internal form, which
consists of a format code byte followed by one to five bytes of optional
format code parameters. Figure 9-1 illustrates this form.

. 8.1.1 Format Code Byte

The format code byte consists of a 6-bit format code, a 1-bit Variable
Format Expression {(VFE) flag, and a 1-bit repeat count flag.

The flags indicate whether the VFE mask and repeat count bytes are
included in the compiled code. If the VFE flag equals 0, no VFEs are
present in the format. If the VFE flag equals.1, VFEs are present and the
compiled code includes a VFE mask byte followed by VFE addresses. If
the repeat count flag equals 0, the repeat count for the format specification
is 1. If the repeat count flag equals 1, the repeat count for the specification

is greater than 1 or is a VFE, and the repeat count byte is included in the
compiled code. -

Format Processing and Format Conversions 9-1

Figure 9-1: Format Code Form

bit 7 65

0

FORMAT

R v CODE

VFE MASK

REPEAT COUNT N

FIELD WIDTH:W

DECIMAL PART:D

EXPONENT FIELD:E

address

n+1
n+2
n+3
n+4
n->5

ZK-230-81

Table 9-1 lists the decimal value of each 6-bit format code, gives its source
code form, and indicates whether it uses the field width and decimal part

parameters.

9-2 Format Processing and Format Conversions

-

Table 9-1: Compiled Format Codes

Decimal Source Repeat

Code Form Conmt W D E Notes

0-3 - - - = - Format error, only 0 and 2 are
used currently; (0 means format
syntax error; 2 means format too
large

{ - - - - Format reversion point
n{ n-1 - -~ = Left paren. of repeat group
) - - = - Right paren. of repeat group

10) - - = =~ End of format

12 / - - - -

14 $ - - - -

16 - - - -

18 sP - s - -

20 Q - N

22 n - n - -

24 nX n-1 - - — Previous PDP-11 FORTRAN V-
PLUS behavior for nX {(Compiler
does not generate this code for
nX; OTS still includes routine for
compatibility)

26 nHcl ... n-1 - - -~ nnot VFE; n characters follow

c<n or
‘el.en’

28 nAw n-1 w - — Standard conversions

30 nlw n-1 w - -

32 nQOw n-1 w - -

34 nlw n-1 w -

36 nFw.d n-1 w d -

38 nEw.d n-1 w d -

40 nGw.d n-1 w d -

42 nDw.d n-1 w d -

Format Protessing and Format Conversions

8-3

Table 9-1 {Cont.):

Compiled Format Codes

Decimal Source Repeat
Code Form Count W D E Notes
44 na n-1 - - - Default formats
46 nL n-1 - - =
48 nQ n-1 - - -
50 ni n-1 - - -
52 nF n-1 - - -
54 nE n-1 - - -
56 nG n-1 - - -
58 nD n-1 - o~ -
5 - - - - New format deseriptors
7 sSP - - - -
9 55 - - - -
11l BN - - - -
13 BZ - - - -
15 TLn - n - -
17 TRn or - - -
nX
19 nZw n-1 w - -
21 nZ n-1 - - - Default Z format
23 nEw.dEe n-1 w d e E format descriptor with exponent
component
25 nGw.dEke n-1 w m - G with e component
27 nOw.m n-1 w m - 0O, Z I with m component
29 nZw.m n-1 w o m -
3 niw.m n-1 w m -

9.1.2 Format Code Parameters

Up to five bytes of format code parameters may appear in the compiled
code for a format specification. The parameters are:

9-4 Format Processing and Formiat Conversions

* VFE Mask Byte—indicates whether the other format code parameters
are VFEs or compiled constants. Bits 7, 6, and 5 are associated
with the repeat count, field width, and decimal part parameters,
respectively. A bit setting of 1 means that the associated parameter is
a VFE; a 0 setting means that the associated parameter is a compiled
constant.

* Repeat Count Byte—contains the repeat count value when the repeat
count is not 1. This value is 1 less than the source code value. It must
be in the range 1 to 255.

* Field Width Byte—-contains the field width or tab position in the range
1 to 255, or the scale factor in the range -128 to +127.

» Decimal Part Byte-—contains the decimal field width for the floating-
point conversion codes, in the range 0 to 255; or contains the signifi-
cant digit part for -he I, O, and Z formats in the form Iw.m, Ow.m, or
Zw.m.

» Exponent Field Width Byte—contains the optional exponent field
width value, in the range 0 to 255. The default value is 2.

When the repeat count, field width, or decimal part is a VFE, the VFE
address begins on the next word boundary after the VFE mask byte. The
VFE is compiled as an unparameterized arithmetic statement function

of type INTEGER*2 and is called by the instruction JSR PC,xxxx, with
R5 pointing to the prcgram unit argument list. The format interpreter
performs all range checking on the result.

9.1.3 Hollerith Formats

Quoted format strings (character constants) are compiled as Hollerith
constants. The characters to be transmitted are included in the compiled
code following the repeat count. The repeat count cannot be a VFE.

AT,

Format Processing and Format Conversions 9-5

89.1.4 Default Formats

Most format code field descriptors have default values that are supplied if
no numeric value is present. The defaults are determined from the format
code and the data type of the corresponding list element, as follows:

Format Code Data Type Default Values of W, W.D, or W.DE

I INTEGER=*2 7

I INTEGER*4 12

EG REAL=4 15.7(E=2)

E.G REAL~8 25.16(E=2)

DF REAL*4 15.7

D.F REAL+8 25.16

0,2 All W=MAX(7, MIN(255(8*ELEM _SIZE)/3+2))
L All 2

A All Number of bytes in the variable

X — 1

9.1.5 Format Compiled Code Example

This section gives an example of the code resulting from the compilation
of a FORMAT source statement.

The FORTRAN statement:
1 FORMAT(1X, F13.5, 'ABCDE', <K>I10, 3{2E15.7E4}/)

is compiled into the following:

.1 .BYTE 21,1 ;11X
.BYTE 44,15.5 ; F13.5
.BYTE 232 ; Hollerith code
-BYTE 4 7 Repeat count
LBYTE 101,102,103,104,105 ; 'ABCDE'
.BYTE 342 i 1 format code
.BYTE 200 ; VFE mask

$-6 Format Processing and Format Conversions

N

.WORD L$VFE : VFE address

.BYTE 12 ; 110
.BYTE 4 ; Reversion point
.BYTE 206,2 . Left paren and repeat count
.BYTE 2271 . E format code and repeat count
.BYTE 17,7.4 ; E15.7E4
.BYTE 10 ; Right paren
.BYTE 14 . / code
.BYTE 12 ; End-of-format
L$VFE: MOV K.RC
RTS PC

9.2 Format Processing PSECTs

The OTS uses the following program sections (PSECTs) for format and
list-directed processing:

$$FIOC—contains the pure code of the format processor ($FIO) and
the list-directed processors ($LSTI and $L.STO)

$3FIOD—contains pure data (constants and dispatch tables) used by
$FIO, $LSTI, and $LSTO

$$FIOI—contains the code for integer conversions

$$FIOL—contains the code for logical conversions

$$FIOR~——contains the code for floating-point conversions
3FIOS—contains the list-directed input constant storage block
$$FIOZ—contains the code for octal and hexadecimal conversions
$$TF102—contains the addresses of the conversion routine entry points

Each module stores its own entry point address in $$FIO2. The processing
routines pick up the addresses of the appropriate conversion routines as
needed (if that address is (, an error occurs). The PSECTs have the GBL
attribute so that the Task Builder can correctly build overlaid tasks.

None of the conversion routines reference the work area or any other
portion of the OTS. They preserve R5 and the FPP registers, and leave all
other registers undefined,

Format Pracessing and Format Conversions 9-7

9.3 Format and List-Directed Processors

The format and list-directed processors—$FIO, $LSTI, and $LSTO -
operate as coroutines with the I/Q transmission operators. They are called
at the end of 1/0 initialization, and process formats and list iterns until
called with offset VARAD equal te 0.

9.3.1 Format Processor—SFI0 e

$FIO processes through the format, calling an internal routine for each
format code. It calls VFEs as encountered, with all context saved and R5
restored to the user code value. When $FIO encounters a format requiring
a list item, it calls the appropriate conversion routines (except the ‘A’
format, which is handled within $FIO) until no elements remain in the
list (offset VARAD = 0}. For nested group repeat specifications, $FIQ uses
-a pushdown stack in the work area. Offset FSTKP points to the current
position; offset FSTK is the base of the pushdown stack.

9.3.2 List-Directed Input Processor—SLSTI

$LSTI lexically scans the external record, delimits a field of input charac-
ters, determines the data type of the field, and calls the appropriate input
conversion routine. It converts the resulting internal data value to the
appropriate type and moves it to the list element. The currently active
data value is stored at the address in PSECT $$FIOS pointed to by the
work area offset W.PLIC.

The parameters passed to the format conversion modules include the
buffer pointer, the actual field width as determined by the delimiter scan,
and, for floating-point conversions, a decimal part of 0 and scale

factor of 0.

9-8 Format Progessing and Format Conversions

9.3.3 List-Directed Output Processor—SLSTO

$LSTO accepts the list element and determines a format based on the list
element data type, as follows:

Data Type Format

BYTE I5

LOGICAL=*2 L2

LOGICAL=4 L2

INTEGER=*2 17

INTEGER*4 112

REAL#4 1PG15.7

REAL»8 1Pi525.16

COMPLEX+8 1X,'(.1PG14.7,, 1PG14.7,Y

CHARACTER*n nAl where n is the string length.
or Hollerith

If the computed fielc. length is longer than the number of remaining
characters in the record, $LSTO writes the current record and begins a
new record. Each item is contained in a single record except for character
constants that are longer than a single record. $LSTO inserts a space

at the front of each record for carriage control. The record length is

the record size specified in the RECORDSIZE parameter of the OPEN
statement. If no RECORDSIZE parameter is specified, the default is 81
bytes, which yields £0 print positions.

9.4 Run-Time Format Compiler—FMTCV$

Format specifications stored in arrays are converted into the required form
during execution. This is done by the following:

1. Pushing the address of the array specification
2. Executing JSR PC,FMTCV$

FMTCV$ does not delete the stack argument; it replaces its value with the
address of the compiled format.

Format Processing and Format Conversions 9-9

Object time formats are compiled into a buffer in the OTS, whose length
is controlled by the Task Builder option FMTBUF. The buffer's address
is stored at offset W.OBFL and its high address+1 is stored at W.OBFH,
QOffset FMTAD points to the current entry in the output format buffer.

Within the FMTCVS$ processing routines:

* R5 points to the source characters.
* R0 contains the current source bytes.
* R2 contains any numeric value being accumulated.

* Offset NOARG indicates the number of expected arguments for the
code.

e Offset PARLVL specifies the parentheses depth encountered.
e (Offset NUMFLG indicates whether a number is available in R2.

i

The module examines each source character. 1f the character is a digit, a
number is accumulated; if it is a number or a special character, a dispatch
is made to process the format code.

If the buffer space is exhausted, FMTCV$ stores the FMTBIG format code o
(2) in the first byte of the compiled format and returns an error. If a !

format syntax error is detected, FMTCV$ stores the FMTBAD format code
(0} in the first byte and returns an error,

9.5 Integer and Octal Conversions

For input, the routines called are OCI$ for octal conversions (FAP V3
version) and ICI$ for integer conversions. The calling sequence is:
1. Push the address of the input string

2. Push the number of input characters (high bit of this word indicates
BN/BZ; (=BZ and 1=BN)

3. Call ICI$ {or OCI8)
The routines return a 2-word result on the stack in INTEGER#*4 {ormat.
The calling arguments are deleted. If an error occurs, the C-bit is set and

the value returned is 0. The floating-point conversions call the routine at
entry point $ECI to input the exponent field.

§-10 Format Processing and Format Conversions

For output, the routines called are OCO$ for octal conversions {previous
PDP-11 FORTRAN [V-PLUS version), and ICO$ for integer conversions.
The calling sequence is:

1. Push the address of the output field

2. Push the width of the output field (high bit of this word indicates
SP/SS; 0=55 and 1=5P)

3. Push the INTEGER=*4 value
4, Call ICO$ (or OCO%)

The return is made with the calling arguments deleted. If an error occurs,
the C-bit is set and the output field is filled with asterisks.

Also for output, IMO$ is called for integer conversions of the form Iw.m.
The calling sequence is:

1. Push the address of the output field

2. Push the width of the output field (high bit of this word indicates
SP/SS; 0=SS and 1=SP)

3. Push the INTEGER#*4 value
4. Push the least number of digits to be output
5. Call IMO$

NOTE

The OTS no longer uses the entry points OCI$ and OCQO$ for
octal conversions. They are included for compatibility purposes.

9.6 Hexadecimal and New Octal Conversions

The hexadecimal and new octal conversions apply to all data types in
PDP-11 FORTRAN-77. The calling sequence uses descriptors instead of
values on the stack. For input, the routines called are ZCI$ for hexadeci-
mal conversions and NOCI$ for octal conversions. The calling sequence
is: :

1. Push the address of the input string.

2. Push the number of input characters (high bit of this word indicates
BN/BZ; 0=BZ and 1=BN).

3. Push the variable address.
4. Push the variable length.

Format Processing and Format Conversions 8-11

i
‘

5. Call ZCI$ or NOCI$.

The return is made with the arguments deleted and the value loaded into
the variable whose address was given. If an error occurs, the C-bit is set
and the value returned is 0.

For output, the routines called are ZMO$% for hexadecimal conversions and
OMO#$ for octal conversions. The calling sequence is:

1. Push the address of the output field.

2. Push the width of the output field (high bit of this word indicates
SP/SS; 0=55 and 1=SP).

Push the least number of digits to be output (for Zw.m and Ow.m),
Push the variable address.

Push the variable length.

6. Call ZMO$ or OMOS.

oo W

The return is made with the arguments deleted. I an error occurs, the
C-bit is set and the output field is filled with asterisks.

9.7 Legical Conversions

The input logical conversion routine, LCI$, is called as follows:

1. Push the address of the input field.
2. Push the width of the input field.
3. Call LCI$.

LCI$ returns a 1-word result on the stack: 0 for .FALSE and -1 for .TRUE.
The calling arguments are deleted. If an error occurs, the C-bit is set and
 .FALSE is returned.

The output logical conversion routine, LCOS$, is called as follows:

1. Push the address of the output field.
2. Push the width of the output field.
3. Push the 1-word logical value.

4. Call LCOS.

The return js made with the calling arguments deleted and the C-bit
cleared.

9-12 Format Processing and Format Conversions

9.8 Real, Double-Precision, and Complex Conversions

The input conversion routine, RCI$, is called for all formats (D, E, F, and
G format codes) as follows:

1.
2.

3.
4.
5.

Push the address of the input field.

Push the width of the input field (high bit of this word indicates
BN/BZ; 0=BZ and 1=BN).

Push the decimal part width.
Push the scale factor (P format).
Call RCI$.

RCI$ returns a 4-word, double-precision result on the stack. The calling
arguments are deleted. If an error occurs, the C-bit is set and the value

returned is 0.0. If an exponent subfield is encountered, $ECT is called in
the integer input conversion routine to handle the conversion.

The output conversion routines, DCO$, ECO$, FCO$, and GCOS$, are
called as follows:

1.
2.

3.

4.
5,
6.

Push the address of the output field.

Push the width of the output field (high bit of this word indicates
SP/SS; 0=55 and 1=5P).

Push the decimal part width (high byte of this word contains the value
of e for forms Ew.dEe or Gw.dEe).

Push the scale factor.
Push the 4-word, double-precision value.
Call DCO$, ECO$. FCO$, or GCOS.

The return is made wih the calling arguments deleted. If an error occurs,
the C-bit is set and the output field is filled with asterisks.

The real, double-precision, and complex conversions are done in the
software; the FPP unit is not used,

The optional module provided, F4PCVF, is an FPP implementation that
is significantly faster but slightly less accurate. The entire FPP state is
conserved. '

Format Processing and Format Conversions 9-13

9.9 Format Conversion Error Processing

When a format conversion error occurs, both methods of error contin-
uation, ERR=transfer and return (see Section 10.2.2.1), are generally
supported. The actions taken for these errors are as follows:

Error 59 - List-directed I/O syntax error. The result value is null (no
change}. .
[
Error 61 - Format/variable type mismatch error. The value is used as is, .~
without conversion,
Error 63 — Qutput conversion error. The field is filled with asterisks.
Error 64 - Input conversion error. The result value is 0, 0. or 0.D0.
Error 68 - Variable format expression value error. A value of 1 is used for

repeat count or field width; a value of 0 is used for the decimal
part or scale factor.

For more information on format conversion error processing, see the
PDP-11 FORTRAN-77 User's Guide.

9-14 Fommat Processing and Format Conversians

Chapter 10

Error Processing and Execution Control

This chapter discusses execution control processing, detecting and process-
ing run-time errors, ard generating error messages.

7. 10.1 Task Initialization

The first instruction of every FORTRAN main program calls the OTS
initialization routine, as follows:

J8R PC,OT1S

The following operations are performed:

P

An SVTKSS executive directive initializes the synchronous trap vector.

$STEPP is called to initialize the FP-11 floating-point processor or the
KEF11A floating-point microcode option (unless F4PEIS is used).

The error control byte table is copied into impure storage.

The number of available logical units is computed as the minimum of
the size of the device table program section (PSECT) and the value of
impure area offset W.LUNS. The device table PSECT is set to zero.

The user record buffer PSECT size is computed and stored at impure
area offset W.BLEN.

Miscellanecus impure area offsets are set to zero.
The task error count limit is set to 15.

$VINIT is called to initialize the virtual array mapping window if
virtual arrays are used.

If the FCS-11 files system is being used, FINIT$ is executed to initialize
FCS.

Error Processing and Execution Conteol 10-1

e If the RMS-11 file system is being used:

— The free storage pool size is determined using the task .LIMIT
directive, and the GPRT$S and GTSK$S system directives and free
storage list head are initialized.

— An RMS-11 $SETGSA operation is executed to initialize the RMS
GSA storage allocation procedure.

10.2 Execution-Time Errors

The following sections describe the types of errors reported by the OTS.

10.2.1 TRAP Instruction Processing

The OTS uses TRAP instructions to report errors. FORTRAN error num-

bers range from 1 through 120 (decimal). Not all numbers have a defini- ‘
tion; some are reserved for future error definitions. The error number is in et
the low byte of the TRAP instruction. Internally, it is 128 larger than the
reported number; thus, error number 21 is internally represented as 149.

The first 128 TRAP values are available to users {see Section 10.4).

When a TRAP instruction is executed, the operating system transfers
control to the TRAP instruction processor, $55T6, which checks the range
of the error number. If that is valid, $55T6 calls SERRAA to do the error
analysis and reporting. If the error number is invalid, $55T6 retums an
error number 1.

$ERRAA’s processing is based on the contents of an error control byte in
impure storage. The error control byte is bit encoded. The bit descriptions
are:

EC.CON — Continue

EC.CNT — Count

EC.UER — Use ERR= exit if 1; return if 0
EC.LOG — Log

EC.INU — This number defined for use
EC.RTS — Return continuation permitted
EC.ERE — ERR= continuation permitted

10-2 Error Processing and Execution Controt

The sign bit of the error control byte has no name. It is tested and cleared
by the ERRTST system subroutine. When it is clear, an error has not
occurred; when it is set, an error has occurred.

The standard bit combtinations are as follows:

Fatal EC.FAT = EC.INU + EC.LOG

Errors:

1/0 ECIO = EC.INU + EC.CON + EC.CNT + EC.LOG + EC.UER +
Errors: EC.ERE

Other EC.NRM = EC.INU + EC.CON + EC.CNT + EC.LOG + EC.RTS
Errors:

19.2.2 Error Control Byte Processing

$ERRAA obtains the error control byte from the OTS impure area. The
sign bit is set. $ERRAA examines other bits in the error control byte and
acts as follows:

* If the continue bit is cleared, the error report includes the exit flag.

* If the count bit is set and no ERR=address exists, offset W.ECNT is
decremented. If W.ECNT is less than or equal to zero, the report
includes the exit flag.

* If the continue-type bit is set and no ERR= address exists, the error
report includes the exit flag.

* If the log bit is sel, the error report includes the no-exit flag. If the
task exits, the message is always logged.

$ERRAA calls $ERRLG to log all terminal messages, both error reports,
and the messages from STOP and PALUSE statements.

10.2.2.1 Continuation Processing
Two types of continuation after an error are supported:

* Transfer to an ERR= address. This type is used for most I/C errors.

* Return to the source of the error. This type is generally used for errors
other than I/Q errors.

Error Processing and Execution Control 10-3

's,_;_,» .

10.2.2.2 W.IOEF Error Processing

For some 1/0 errors, it may be better if the ERR= transfer is initiated by
the 1/O routine itself, rather than by the error processor ($ERRAA). For
example, when OPEN statement processing detects an error in a keyword,
the transfer to the ERR= address is delayed until all of the statement’s
keywords are examined.

Work area offset W.IOEF is used to obtain this special error processing.
The effects of W.IOEF's value are as follows:

* When it is 0, default processing is enabled.

» When it is negative, default processing is performed except that the
ERR= transfer is not made; instead, control is returned to the source of
the error and the ERR= transfer can be made from there.

e When it is positive, the return type of continuation is always executed.

W.IOEEF is initially zero and is reset to zero before exiting from a routine
that uses it. Regardless of the W.IOEF setting, if no ERR= address exists,
the task will exit.

10.2.3 Floating-Point Processor Errors

All Floating-Point Processar (FPP) errors are processed as Asynchronous
System Traps (AST) in routine $FPERR. When divide-by-zero, overflow,
or underflow occurs, zero is supplied as the result of the operation that
caused the trap. The AST procedure log uses the TRAP instruction to
issue the error report.

10.2.4 Error Message Construction and Processing

Error message construction and processing is performed by many small
routines. Message processing begins with a call to $ERRLG, which
controls the flow of message processing, calling the appropriate message
utilities as required. $ERRLG produces a 5-line error log containing the
following:

* On line 1, the task name and error number.

* On line 2, the text of the message.

s On line 3, the value of the program counter at the time of the error.
This is found at offset W.PC.

18-4 Error Processing and Execution Control

* On line 4, the error count exceeded message. This is based on the
error limit count stored at offset W.ECNT.

e Online 5, the 1/0 error data, which is based on the primary error field
of the LUB (referenced by offset W.FERR), followed by the program
unit traceback.

The log does not include any line that is inappropriate or unavailable. On
RSX-11M/M-PLUS and RSTS/E, messages are output by issuing QIOs to
the user’s terminal.

For message construction, R3 points to the work area, R5 points to the
current position in the message text being constructed, and offset W ERLN
points to the beginning of the error message buffer.

Offset WMOTY is zero if the message output task (MO) is being used,
and nonzero if QIOs to the terminal are being performed.

$ERRLG is also called to output messages from STOP and PAUSE state-
ments. It uses the values of R0 and R1 to determine the type of message
being generated, as follows:

= IfR1 is 0, the message is associated with a STOP or PAUSE statement,
and RO points to the message text block.

e If R1 is not 0, the message is an error message, and RO is -1 if the task
is exiting and 0Q if the task is continuing.

10.2.4.1 Message Construction Utilities

The following routines build the error report text in the error text buffer.
They operate the same way whether messages are output by the message
output task (MO) or QIOs to the user’s terminal.

Error Processing and Execution Control 10-5

Terminal QIO

1

SATT -

$ERRNL -

$ERRZA -

$BINAS -
$FILL -

$R50AS,SR50AB

Perform a QIO of message to the user’s terminal. Compute
the message length; set MO LUN number (offset W.MO,
global symbol MOLUN) in the QIO DPB. Issue the QIO.
Wait for the QIO to complete.

Initialize RS to error message buffer and store a carriage-
return/line-feed (CR/LF) as the first two characters. Set
R5 into offset W.MQOAI.

Start a new line. Store a CR/LF in buffer.

\\"“f:‘:‘«;;/-

Perform a GTSK$S directive to obtain the task name. Call .

$ATT and $R50AB to decode the Radix-50 task name.
Convert a binary number to decimal ASCII,

Move ASCIZ text pointed to by Rl to error message buffer
pointed to by RS.

Convert Radix-50 value to ASCI by calling $R50.

10.3 STOP and PAUSE Statement Processing

STOP and PAUSE statements are compiled to calls as follows:

1. Push the address of the display (0 indicates no display).

2. C(all the statement-specific entry:
STOP$ for STOP
PAUSS$ for PAUSE

All context is saved. $ERRLG (see Section 10.2.4) is called to output the
message. STOP then jumps to $EXIT; PAUSE issues a SPND$S directive

and returns.

10-6 Error Processing and Execution Control

10.4 User Interfacing to Error Processing

The first 128 (0 to 127) trap codes are available to users. TRAP in-
structions transfer control to the OTS error processor by using a System
Synchronous Trap Table located in the OTS impure work area. The first
word of this table has the global symbol $55T. You can use coding similar
to the following to intercept control:

; INITIALIZATION

INIT: MOV $88T+14,88T6 ;Save 0TS TRAP addr
MOV #INTCEP,$S8T+14 ;Put new addr in sst table
SST6: .WORD @
; TRAP HANDLER
INTCEP CMP #128.*2,Q@5P ;Low byte =2 of TRAP
;Instruction from executive
BHI 1% ;Branch if user code
JMP QS8T6 ;Goto ote
1%: . ;User trap processing code
TST' SP)+ ;Digcard extra word
;Trap number
RTI ;Exit interrupt

You can use similar techniques to intercept the other synchronous traps.

10.5 User Interfacing to Terminal Message Output

The error-reporting message facility enables you to write text to your
terminal without doing FORTRAN I/0O. A message text block similar to
that used for STOP and PAUSE statements is constructed as follows. R1
equals 0; RO points to a 2-word message block. The first word of the block
contains the address of an ASCIZ string (ASCII string terminated by a
zero byte); the second word is 0. The text is output by executing a JSR
PC, $ERRLG instruction. The following example prints "HELLO' on the
user terminal:

In FORTRAN-77"

Error Processing and Execution Control 10-7

CALL MSG ('HELLOD')

END
In MACRO-11

MSG:: CLR -(SF) ; 2nd word of message block
Moy 2(R8),-(8P) ; Address of ASCIZ text
MOV SP,RO ; RO points to message block
CLR Rl ; Signal nomnerror type message
JSR PC,$ERRLG ; Output the message
CMP (SP)+, (8P)+ ; Delete message block
RTS PC ; Return
.END

User text is preceded by the task name. Only a single line can be output.

10.6 Execution Control Subroutines
The following subroutines are described in detail in the PDP-11
FORTRAN-77 User’s Guide:

ERRSET—The error number specified by the user is extracted and checked
for validity. The logical arguments are extracted and the appropriate bits
in the error control byte are manipulated. If a limit count is provided, it is
stored at offset W.ECNT.

ERRSNS—This routine is called with zero to four integer arguments:
CALL ERRSNS (NUM, FERR, FER1, UNIT)

The information saved from ihe latest error is returned as follows:

offset W.ERNM into NUM
offset W.FERR into FERR
offset W.FER1 into FER1
offset W.ERUN into UNIT

These offsets are then zeroed.

ERRTST-—The error number is retrieved and checked for validity. The
sign bit of the error control byte is tested and cleared, and the result is
returned in the second argument.

EXIT—Performs a jump to $EXIT.
USEREX—Stores the argument address at work area offset EXADDR for
use during task termination.

10-8 Emor Processing and Execution Control

Chapter 11

Other Compiled-Code Support Routines

This chapter describes routines that support various arithmetic and house-
keeping operations required by the compiled code.

11.1 Arithmetic Operations

All the routines follow a common naming convention in which:
e The first two letters indicate the operation performed, as follows:
AD-—addition
SB—subtraction
ML—multiplication
DV—division
PW-—exponentiation
CM—comparison
TS-—test for zero
NG—negation

¢ The next letter (next two, in the case of exponentiation) indicates the
data types of the arguments, as follows:

[—INTEGER=*2
J~—INTEGER=4
R—Real

Other Compiled-Code Suppert Routines 11-1

W 9

D—Double precision

C—Complex

* The last letter indicates how to access either the single argument of
a one-argument operation or the second (right hand) argument of a
two-argument operation. For two-argument operations, the first (left
hand) argument is alwavs on the stack. The last letter can be one of
the following:

S—indicates the argument is at the top of the stack

C-—indicates that the following in-line word is the address of the
argument

P—indicates that the following in-line word is the offset in the
parameter list {pointed to by R35), which contains the address of the
argument

All of these routines are called using the R4 convention described in
Chapter 2. In addition, they all delete their stack arguments, return their
result on the stack, and preserve the contents of general register 5 (R5).

11.1.1 Exponentiation

The exponentiation routines are as follows:

+«Data Type

Routine Base Exponent Result
PWIIx$ INTEGER=2 INTEGER+2 INTEGER»2
PWIx$ INTEGER*2 INTEGER*4 INTEGER*4
PW]Ix$ INTEGER~4 INTEGER*2 INTEGER~¢
PW]]x$ INTEGER~4 INTEGER*4 INTEGER+4
PWRIx$ REAL=4 INTEGER=*2 REAL*4
PWR]x$ REAL~*4 INTEGER=*4 REAL*4

11-2 Other Compiled-Code Support Routines

*Data Type

Routine Base Exponent Result
PWDIx$ REAL»8 INTEGER=»2 REAL=§
PWDIx$ REAL»8 INTEGER=*4 REAL+8
RWRRx$ REAL=4 REAL«4 REAL«4
PWRDx$ REAL=4 REAL=8 REAL=8
PWDRx$ REAL=8 REAL=4 REAL=8
PWDD«x$ REAL=8 REAL»8 REAL«8
PWCIx$ COMPLEX=8 INTEGER»*2 COMPLEX+§
PWC]x$ COMPLEXs8 INTEGER+*4 COMPLEX=*8
PWCCx$% COMPLEX=8 COMPLEX*8 COMPLEX»8
xis 5, C, or P.

NOTE

This table of routines shows only the entry points called by
the compiled code; it is not a complete list of all the supported
forms of exponentiation. For example, a base of complex

and an exponent of REAL#*4 is supported by converting the
REAL*4 to a complex number and calling the entry point that
supports a base and exponent of complex. For a complete

list of the supported forms of exponentiation, see the PDP-11

FORTRAN-77 User's Guide.

11.1.2 Complex Arithmetic Operations

The following entries are used in complex arithmetic operations:

ADCx$ — complex addition
SBCx$ — complex subtraction

MLCx$ — complex multiplication

DVCx$ — complex division

TSCx$ — complex test for zero

NGCx$ — complex negation
CMCx$ — complex compare
xis S, C, or P.

Other Compiled-Code Support Routines

YTy

11.1.3 INTEGER+=4 Arithmetic Operations

The following entries are used in INTEGER+4 arithmetic operations:
MLIx$ — Multiplication
DV]x$ — Division
xis 5, C, or P.

11.1.4 Stack Swap Operations SWPxy$ o

The stack swap routines are used in conjunction with the out-of-line
arithmetic operation eniries when the order of evaluation causes the two
arguments of the operation to be on the stack in reverse order. Entry
names have the form:

SWP1r$

!
The number of words the left argument occupies: 1, 2, or 4.

r
The number of words the right argument occupies: 1, 2, or 4.

The two arguments are swapped on the stack.

11.1.5 Character Operations

The character operations routines are called using the PC convention
described in Chapter 2, with the modification that a descriptor (length,
address pair) is pushed on the stack for each argument. The two character
operations are character assignment (entry point $CHASN) and character
comparison (entry point $CHCMP).

Character assignment is called as follows:

1. Push the length of the destination (in bytes).

Push the address of the first byte of the destination.
Push the length of the source (in bytes).

Push the address of the first byte of the source.

JSR PC $CHASN.

A o

11-4 (Other Compiled-Code Support Routines

On return, the stack arguments are deleted.
Character comparison is called as follows:

1. Push the length of the left side of the comparison operation (in bytes).
2. Push the address of the first byte of the left side of the comparison

operation.

3. Push the length of the right side of the comparison operation (in
bytes).

4. Push the address of the right side of the comparison operation (in
bytes).

5. JSR PC$CHCMP.

On return, the stack arguments are deleted and the condition codes are set
for an unsigned branch (C and Z bits of the PSW are valid).

11.2 Array Processing Support

An Array Descriptor Block (ADB) is a data structure provided by the
compiler to describe an array. FORTRAN-77 compiled code uses ADBs
for the following:

* Array subscript calculations for dummy argument arrays

¢ 1/0 calls that transmit an entire array

* Amray subscript limit checking when specified by the compiler /CK
command switch

* Virtual array load and store operations
The compiler defines the constant parts of an ADB. The varying parts

are initialized when the subprogram containing the array declaration is
executed.

Other Compiled-Code Support Routines 11-5

The offsets within the ADB are as follows:

AASTR

A ASUM
AAQ

A.CWRD

A.BPE

ADI

A SIZB

APLYA

APLYV

APWRD

AUN

1

Actual base storage address (first element) or, for virtual arrays,
the 64-byte block number of the array base in virtual storage.

Assumed size array flag bit in code word A.CWRD,

Zeroth-element address (address of A (0,0,0 ... 0)). This offset is
ignored for virtual arrays.

Code word containing the number of dimensions, data type,
element size, and information denoting whether it is an assumed
size array:

Assumed Size Number of Element
Array Flag Data Type Dimensions Size
1 bit 4 hits 3 bits 8 bits

Number of bytes per array element (BPE). {Low byte of
A.CWRD))

First dimensicn span. (Other dimensions follow A.D1 but are not
named; that is, A.D142 is the second dimension span.)

Total array size in bytes, A.SIZB = D1+D2« . . . Dn*BPE; or, for
virtual arrays, the number of elements in the array.

Addressing polynomial evaluated for the first element,
polyA(L1,L2, ... Ln}.

Addressing polynomial evaluated for the first element of a virtual
array, pOIyA{L1,L2, ... Ln).

Used for adjustable arrays. 2N 1-bit fields denoting an adjustable
/non-adjustable bound. Encoding is left-justified as follows:

Un Lo Up-i .. m L1 not used

Last upper bound. Other bounds are stored in front of A.UN but
are not named; that is, A.UN-2 is the last lower bound, A.UN-4
is the next-to-last upper bound, and so on.

The data type codes contained in A.CWRD are:
A.LGC1 = LOGICAL#1 (BYTE)

A LGC2 = LOGICAL»?

A.LGC4 = LOGICAL*4

A.INT2 = INTEGER»2

AINT4 = INTEGER+4

A REA4 = REAL#*4

A.REA8 = REAL#*8 (DOUBLE PRECISION)
A.CMP8 = Complex

11-6 Other Compiled-Code Support Routines

A.CHAR = Character
A.HOLL = Hollerith

/0 transmissions also use these codes to denote the list item data type.
The dimension spans (Di) for arrays are the sizes of each dimension:
Di = upper bound (Ui)-lower bound (Li) + 1

The compiled code uses dimension spans to determine the subscript value.
The ADB retains the upper and lower bounds for each array. The bounds
determine the size and shape of arrays.

11.2.1 Adjustable Array Initialization

There are four routines for initializing the contents of ADBs for dummy
argument adjustable arrays: MAK1$ for one-dimensional arrays, MAK2$
for two-dimensional arrays, MAKN$ for arrays with three to seven di-
mensions, and MAKV$ for virtual arrays. Only R5 is preserved by these
routines. They are called as follows:

1. Push the dimension bounds for any nonconstant elements onto the
stack in order of their appearance in the array declarator.

2. Push the base address of the dummy argument array passed in the
subprogram call.

3. Push the address of the array descriptor block onto the stack.

4. Execute a call in the form of JSR PC, to one of the following routines:
MAK1$, MAK2§, MAKNS, or MAKVS.

5. On return, the stack arguments are deleted.

11.2.2 Array Subscript Checking

I the compiler switch option /CK is in effect, each array reference is
checked to verify that the array element address is within the bounds
established for the array by the array declarator.

The form of the call is:

1. Push the array element address onto the stack.
2. Push the address of the array descriptor block.
3. Execute a call in the form of JSR PC,ARYCKS.

Other Compiled-Code Support Routines 11-7

This call preserves all registers.

11.2.3 Virtual Array Processing

Virtual array elements are processed by out-of-line calls in all cases. The
OTS call returns the mapped virtual address of the array element. Either
the value of the array element is loaded into a register for use or a value

is stored into the array element.

11.2.3.1 Calling Process
To process the call, perform the following steps:

1.
2.
3.

Push the address of the array descriptor block on the stack.
Move the indexing expression into RO.
Call the routine:

VRTx$, if /-CK was specified
VRTxC$, if /CK was specified

where x is one of the following data type code letters:

B - LOGICAL#1
L - LOGICAL=»2
M - LOGICAL#4
I - INTEGER*2

} - INTEGER#4
R - REAL+4

D - REAL»8

C - COMPLEX*8

On return, the stack argument is deleted, RO contains the virtual
address of the element, and all other registers are preserved.

11-8 Other Compiled-Code Support Routines

11.2,.3.2 \Virtual Arrays in Separate [- and D-Space

When programming virtual arrays, you should carefully consider virtual
array interaction with other elements. This is particularly important when
your programs run in separate I- and D-space.

I- and D-space is an advanced programming technique that allows you to
effectively double your virtual task space. Normally, 32K words can be
associated with a task. With I- and D-space, this number increases to 64K
words. (See Chapter 5 for more information on I- and D-space.)

1- and D-space increases your virtual task space, but it complicates rela-
tionships among virtual arrays and resident libraries, resident commons,
and other shared regions. You must pay attention to these relationships,
or you might experience failing tasks and unreliable results.

NOTE

Be careful if you use virtual arrays in an I- and D-space task
. linked to a resident library that contains data. This configura-
S tion is not supported on all operating systems.

The Task-Builder for RSX-11M/M-Plus Version 4.1 supports the mapping
of virtual arrays and resident libraries in an I- and D-space task. Refer to
the RSX-11IM/M-Plus Version 4.1 Release Notes and the RSX-11M/M-PLLIS
Task-Builder Manual for more information on using resident libraries and
virtual arrays in 1- and D-space.

11.2.4 Neotes on ADB Usage

o

The following defines the array-addressing polynomial function, polyA,
for a three-dimensional array:

DIMENSION A(L1:Ui,L2:V2,L3:U3)
polyA(I,J,K)=((K&D2+J)#D1+I)*BPE
A.AQ is defined as A.ASTR - polyA(Ll,LZ,L3).

The address of an array element is then calculated as:

address of A{i,j,k)=A.ASTR+polyA(i.j.k) -polyA(Li,L2,L3)
=A.AQ+polyA(t,j.k)

Other Compiled-Code Support Routines 11-8

Array bounds checking consists of verifying that the array element address
is both of the following:

® Greater than or equal to the base address, A.ASTR
® Less than the high address+1, A,ASTR+A.SIZB

Only the complete subscript value is within the array; individual dimen-
sions are not checked against their corresponding dimension bounds.

For example, the FORTRAN statements

SUBROUTINE X(A,N)
DIMENSION I{100}, A(10:N-1,N)

cause the following ADBs to be created for [and A:

.WORD 310 ; A.SIZB
I.ADB: .WORD I ; ALASTR
.WORD I-2 : A.AC

.WORD 20402 - ; A.CWRD
iNo Di values since I is not
ran adjustable array

.WORD 12 . Lt =10
.WORD o] H Ui = N-1
.WORD 1 ;o L2 =%
.WORD o] ;o U2 =N
.WORD 12000 ; A.PWRD
.WORD 0 ; A.SIZB

A ADB: .WORD 0 i A.ASTR
.WORD 0 . ALAD
.WORD 31004 ; A.CWRD
.WORD 0 FE 15 1
.WORD [+ : o2

11.3 GO TO Statement Support

The following sections describe the code that results from compiling
FORTRAN-77 GO TO statements.

11-10 Other Compiled-Code Support Routines

: s
et

11.3.1 Computed GO TO Statement Support

A computed GO TO statement is compiled to a call as follows:

1.
2.

3.
4,
5.

Push the address of the label list.

Convert the index expression value to INTEGER+2 (if needed) and
push it on the stack.

Execute a call in the form of JSR PC,CGOS$.
On return, the stack arguments are deleted.

If the index value is less than 1 or greater than the number of labels
in the list, no transfer takes place and all registers are preserved.

11.3.2 Assigned GO TO Statement Support

An assigned GO TO statement is compiled to a call as follows:

1.

U

Push the assigned label address.

Push the address of the allowed label list.
Execute a call in the form of JSR PC,AGO$.
On return, the stack arguments are deleted.

If the assigned label value is not in the list, no transfer takes place and
all registers are preserved.

11.3.3 Label List Argument Format

The label list for the assigned or computed GO TO statement has the
following form:

ADDR: .WORD 1
.WORD labell

.WORD labeln

Other Compiled-Code Support Routines 11-11

11.4 Traceback Chain Pracessing

The traceback chain for error processing is a linked list constructed dy-
namically on the run-time stack.

The work area contains the list head and the current statement number.
The list head is at offset W.INAMC, with global name $NAMC. The
current statement number is at offset W.SEQC, with global name $SEQC.

The list elements are 4-word blocks located on the stack in the following
form:
$NAMC -> pointer to mext
statement pumber

program unit

name in RADSO
The list head points to the currently active program unit entry. This entry
contains the following items:
¢ The currently active program unit name in Radix-50 =

¢ The current statement number in the calling program at the time of
the call

* A pointer to the cailing program list block

The statement number pertains to the program unit of the NEXT list block,
since the current program unit statement number is maintained at the fixed
- global location $SEQC.

If the compiler command option /TRINAMES, /TR:BLOCKS, or /TR:ALL
is specified, a call is made to link the program unit name into the OTS
name list used for producing the error traceback information. The form of
the call is:

1. Push the last three letters of the entry name (represented in Radix-50)
onto the stack.

2. Load the first three letters of the entry name into register R4.

3. Execute a call in the form of JSR R4,@$NAMS.

The current statement number, $SEQC, is set to zero. The traceback
information is maintained on the execution stack. When the program unit
returns, it returns to the NAMS routine, which resets the stack, removes
the name chain link, and returns control to the caller.

11-12 Other Compiled-Code Support Routines

If /TR:INAMES is specified, the current statement number is not updated
($SEQC remains zero).

If /TR:BLOCKS is specified, the current statement number is periodically
updated by the compiler to contain the negative of the statement number,
for instance, -21 for statement 21.

If /TR:LINES is specified, the current statement number is updated on
every statement, maintaining a positive number.

Other Compiled-Code Support Routines 11-13

Chapter 12
OTS System Generation and Tailoring

The PDP-11 FORTRAN-77 Installation Guide describes how the OTS is
built during the installation process. This chapter describes options you
can choose when building FORTRAN-77 into your system. It gives a
more detailed explanation of the installation options, as well as infor-
mation on building the OTS from sources. This chapter also includes
factors affecting compiler performance and information about optional

OTS modules that you can use to tailor FORTRAN-77 to your particular
applications.

12.1 Assembly Options

All assembly options are determined by the definition or nondefinition of
a symbol.

There are three operating system assembly options, three file system
assembly options, twc hardware assembly options, and two special
assembly options. No two options affect the same module; so options can
be combined.

0TS System Generation and Tailoring 12-1

12.1.1 Operating System Options

The three operating system option symbols are RSXD for IAS, RSXM for
RSX-11M/M-PLUS and RSTS/E, and RSXS for R5X-11S. The following
modules are affected:

$OTV —impure area allocation
$ERRMO —error report interface
$ERRLOG—error report construction
$ERRTPT —error processor

The modules $ERTXT and $SHORT are used only with
R5X-11M/M-PLLS.

12.1.2 File System Options

The two versions of 1/0 systerns are maintained as separate sources, but

three assembly options are maintained. The assembly options are: :

* FCS specifies FC5-11 version.
* RMS specifies RMS-11 version.

* Nothing specifies the RSX-11S subset.

12.1.3 EiS Instruction Set Option

The two hardware options are defined by the symbol FPP. If FPP is not
defined, then you can use the OTS on a PDP-11/45 or -11/40 with EIS,
provided no floafing point computations are attempted.

The modules affected are:

$ML] —INTEGER*4 multiplication

$DV] —INTEGER*4 division

$JMOD —INTEGER#*4 modulo
$FPPUTI—FPP save/restore and initialization

12-2 (0TS System Generation and Tailoring

12.1.4 Special Assembly Options

The following sections describe the two special assembly options.

12.1.4.1 Double-Precision Arithmetic Option

The symbol F77DP is used to assemble certain mathematical functions in
double-precision mode.

The modules affected are:

$ASIN—arc sine
$ACOS—arc cosine
$TAN —tangent

12.1.4.2 Floating-Point Format Conversion Option

The symbol PP is also used to define the floating-point output conversion
module that utilizes the FPP.

The module affected is:

$CONVR - floating-point format conversion

12.2 0TS Assembly Macros

The OTS data base, PSECT attributes, and errors are defined at assembly
time by the following macros contained in the parameter file F77. MAC:

* OTSWA Macro—Defines the work area offsets (see Appendix A).

* ERRDEF Macro—Defines the OTS errors, error control byte control
bits, and error message text.

* $AOTS Macro—Cbtains the impure area pointer from location $OTSV
and places it in a register, usually R3.

* OTS$! Macro—Defines the OTS code PSECT $$OTSI.
* OTS$D Macro—Defines the OTS pure area PSECT $30OTSD.

* ADBDEF Macro—Defines the array descriptor block offsets and the
data type codes. It is found in the parameter file ADBDEF.MAC.

0TS System Generation and Tailoring 12-3

* FBLOCK Macro—Defines the LUB control block offsets for the FCS or
RMS versions of the I/O system. It is defined in the parameter files
FCS and RMS.

12.3 Options Affecting Compile-Time Performance

The following two options affect compile-time performance:

* You can choose one, two, or three temporary disk files for the com-
piler to use to store information during the compilation process.

* You can change the size of the dynamic storage area in the compiler.

The PDP-11 FORTRAN-77 compiler uses temporary disk files for storing
information during the compilation process. The compiler requires at least
one temporary file, called the work file.

The work file contains information that the compiler normally accesses

at random (for example, the symbol table and the constants table). The
dynamic storage area within the compiler is used to manipulate this
information. (Only part of the work file is in memory at any given time.
Software paging techniques move information back and forth between the
dynamic storage area and the work file.)

Information must be moved into the dynamic storage area when needed
by the compiler. Increasing the size of the dynamic storage area increases
compilation speed by reducing the number of disk I/O operations (see
Section 12.3.2).

12.3.1 Number of Temporary Files

The /WF:w compiler switch specifies the number of temporary disk files
that are available to the compiler. If you specify /WE:1, the compiler
stores internal representations in just the work file. However, if you
specify /WF:2 (or /WF:3), the compiler stores some (or all) of these
representations in the one or two other temporary files. The /WF:2 option
is the default.

Using additional temporary files slows the compilation process, but it
significantly increases the capacity of the compiler. For instance, with
three temporary files (/WF:3), the compiler can compile a program that is
approximately three times larger than any it can compile with only one
temporary file (/WF:1). No significant change occurs in the compilation

12-4 (TS System Generation and Tailoring

rate if you place the temporary files on a fixed-head disk, because these
files are written and read sequentially.

12.3.2 Size of the Dynamic Storage Area

Increasing the size of the dynamic storage area increases the rate of
compilation. Figure 12-1 illustrates the correlation between compile

time and the size of the dynamic storage area. The compile time of

four different FORTRAN programs, varying in length from 90 to 450
statements, was measured on a PDP-11/60. The compiler used two
temporary files (/WF:2), with the work file residing on the system moving-
head disk (RP{04). The dynamic storage area varied in size from 4 to 26
pages (when the listing file was suppressed).

The measurements at the end points of each curve denote the approx-
imate compilation rate measured in statements compiled per minute.
Continuation and comment lines were not counted.

Figure 12-1 shows that compilation speed is approximately three times
greater when 26 pages of dynamic storage are used than it is when only
4 pages are used. However, using 14 pages results in optimal compiler
performance. Building the compiler with more than 14 pages of dynamic
storage achieves minimal improvement in the rate of compilation. The
default size of the dynamic storage area is 12 pages.

DTS System Generation and Tailoring 12-5

Figure 12-1:

Compiler Performance

LT

160

150 o

135

120 4

105 <

90

75 A

COMPILE TIME (seconds)

60

45

30-]

181

138

159

138

6 Resident Pages

14 Res.dent Pages

711

500

548

§

415

RESIDENT WORK FILE PAGES (1 PAGE-256 WORDS)

FRAOGRAM T
450 statemen:s

PROGRAM Q
250

PROGRAM D
210 statements

PROGRAM M
80 statements

TR-208.81

12-6 (0TS System Generation and Tailoring

12.3.2.1 Operating Systems Supporting Dynamic Memory Allocation

Under a RSTS/E, RSX-11M/M-PLUS, or R5X-11M system with dynamic
memory allocation, you specify the size of the PDP-11 FORTRAN-77
compiler’s dynamic storage area by using the EXTTSK option in the task-
build command file. The value specified by EXTTSK is the size of the
dynamic storage area in decimal words. The size of the dynamic storage
area is computed as follows:

256 (n+w+1)

n
The number of pages for the dynamic storage area.

w
The value specified in the /WF:w switch,

You can override the dynamic storage area specified by EXTTSK at
installation by means of the INC switch on the INSTALL (INS) command.
The task extension size is specified in decimal words.

The following table shows the correlation between the compiler task size,
the EXTTSK value, and the number of pages for the dynamic storage area

under /WEF:2.
Number of EXTTSK — Value
Pages INS/INC Value Size of Compiler Task {Words)
4 1792 22K
2816 23K
12 3840 24K
16 4864 23K

For RSX~11M/M-PLUS instaliations whose default is the ANSI magnetic
tape version of FCS-11 (LB:[1,1JANSLIB.OLB), the compiler task size
increases by approxirnately 500 words.

12.3.2.2 RSX-11M Without Dynamic Memory Allocation

On an RSX-11M system without dynamic memory allocation, the PDP-11
FORTRAN-77 compiler determines the size of the partition in which

it is operating and uses all of the memory in that partition. Install the
compiler in a partition large enough for the compiler to run with the
desired number of pages of dynamic storage.

0TS System Generation and Tailoring 12-7

12.4 0TS Options

The distribution kit includes a number of optional OTS modules. After
building the OTS library, you can add one or more of these optional
modules to the library, or you can maintain these modules separately
and refer to them only as needed, The installation procedures copy
these modules to LB:[1,1] {or, on RSTS/E systems, to LB:). The PDP-11
FORTRAN-77 system does not require any of the optional modules for
normal use. The following sections describe these moduiles.

124.1 F7711S

Module F77115.0BS consists of a set of concatenated object modules con-
taining alternate versions of FORTRAN sequential 1/O support modules.
These 1/Q support modules, designed for use with RSX-115, provide
sequential I/0O to non-file-structured devices (for example, terminals, non-
spooled card readers, and line printers). These modules do not use the
file system but perform direct I/O operations; they reduce task size by
approximately 2500 words,

You can use F77115.0BS in two ways:
* You can include it as an object module at task-build time, as follows:

TEB>MAIN/FP=MAIN,[B:[1,11F77115.0B3

NOTE

On R5TS/E systems, replace LB:[1,1] with LB:.

* You can build a separate F77 OTS library for RSX-115 use,
LB:[1,1]F77115.0LB, in addition to the host operating system’s
OTS library. To do this, when building the OTS, substitute mod-
ule LB{[1,1]JF7711S.0BS (or, for RSTS/E, LB:F77115.0BS) for the file
system module you selected in the installation procedure. For ex-
ample, replace the reference to FCS11M.OBS with F77115.0BS. Use
this OTS library, rather than the host operating system’s OTS library,
when building tasks for RSX-115, as follows:

TXB>MAIN/FP=MAIN, LE: [1,11F77118/LB

NOTE
On RSTS/E systems, replace LB:[1,1] with LB..

12-8 0TS System Generation and Tailoring

12.4.2 Short Errer Text — RSX-11M/M-PLUS and RSTS/E Only

For error messages, the PDP-11 FORTRAN-77 OTS references an error-
text module containing ASCII text. If your operating system is RSX-11M,
RSX-11M/M-PLUS, or RSTS/E, you can use a long or a short error-text
module. The long error-text module requires approximately 1000 words of
memory, but the alternate version (SHORT.OBJ) requires only one word
of memory.

A task with the short error-text module built inte it generates complete
error reports, but omits the one-line description of the error condition.
The PDP-11 FORTRAN-77 User’s Guide contains a complete list of OTS
error numbers and message text. The F77 OTS uses the long error-text
module by default. You can build a task using the short error-text module
by loading module $SHORT from the library.

12.4.3 FTIMAP

Module F77MAP.OBS consists of a set of concatenated object modules that
you can use to transform intrinsic function names into internal names at
task-build time, (The PDP-11 FORTRAN-77 compiler transforms intrinsic
function names into internal names at compile time.)

Without F77MAP.OBS, if a program written in MACRO-11 attempts to
reference a PDP-11 FORTRAN-77 intrinsic function with the FORTRAN
name of the function instead of the internal name, an unresolved refer-
ence will occur during task build. For example, F77MAP.OBS maps the
FORTRAN narme SIN using the following module:

.TITLE $MSIN
SIN:: JIMP $3IN
.END

F77MAP.OBS contains an object module similar to the preceding module
for each of the PDP-11 FORTRAN-77 intrinsic functions.

You can build an F77MAP library as follows:
LER> LB: [1,1}F77MAP.OLB/CR:40.=LB: [1,1]F77MAP OBS
NOTE
On RSTS/E systems, replace LB:[1,1] with LB:.

UTS System Generation and Tailoring 12-8

12.4.4 F77EIS

Module F77EIS.OBS consists of a set of concatenated object modules

that contain extended instruction set (EIS} versions of certain integer
functions that normally use a floating-point processor. This module allows
FORTRAN programs that do not perform floating-point arithmetic to run
on a machine that has the extended instruction set but not a floating-point
processor. The modules provided in the F77 OTS use a floating-point
processor for maximum efficiency in certain INTEGER#*4 computations.

B

Use one of the following commands at task-build time to replace the
normal modules in file INT with their EIS versions:

For FCS OTS

TKB> INT/-FP=INT,LB:[1,1]F77EIS.0BS,
LB:[1,1]F7T7FCS/LB

For RMS OTS

TKB> INT/-FP=INT,LB:[1,1]F77ElS.OBS.
LB [1,11F7TRMS/LE,
LB: [1,11RMSLIB/LB i

NOTE
On RSTS/E systems, replace LB:[1,1] with LB:.

You may, instead, substitute the F77EIS module for the default conversion
module as follows:

For FCS OTS
LBR>LE: [1,31]F77FCS/RP=1B: [1,1]FTTEIS

For RMS OTS
LBR>LE: [1,1]F77RMS/RP~LE: [1,1]F77EIS
NOTE
On RSTS/E systems, replace LB:[1,1] with LB:.

No changes in the Task Builder command line are necessary if you
perform this substitution.

This module cannot be used with optional OTS module F77CVF.

12-10 OTS System Generation and Tailoring

124.5 F77CVF

Module F77CVF.OB]J is an alternative module for performing formatted
output of floating-point values under control of the D, E, F, and G field
specifiers. The standard module provided as part of the F77 OTS uses
multiple-precision, fixed-point integer techniques to maintain maximum
accuracy during the conversion of data (FPP hardware is not used). The
alternative module performs the same functions using the FPP hardware.
It is approximately twice as fast as, but in some cases slightly less accurate
than, the standard module. Use one of the following commands at task-
build time to replace the normal modules in file OUTR with their ¥77CVF
FPP versions:

For FCS OTS
TXB> DUTR=DUTR,LB: [1,1]F7T7CVF,LB: [1,1]F77FCS/LB

For RMS OTS

TKB> OUTR=0UTR,LB: [1,1)F77CVF,LB: [1, 11F77RMS/LE,
LB: [1,1]1RMSLIB/LB

NOTE
On RSTS/E systems, replace LB:[1,1] with LB,

You may substitute the F77CVF module for the default conversion module
as follows:

For FCS OTS

LBR> LB: [1,1]F77FCS/RP=11: [1,1]FT7CVF

For RMS OTS
LBR> LB: [1,1]F77RMS/RE=LE: (1,11 FTTCVF
NOTE
On RSTS/E systems, replace LB:[1,1] with LB:.

No changes in the Task Builder command line are necessary if you
perform this substitution.

This module cannot be used with optional OTS module F77EIS.

OTS System Generation and Tailoring 12-11

124.6 F77NER

Module F77NER.OBS consists of a set of concatenated object modules

for reporting run-time errors. Using this module suppresses the error-
message text report. However, error processing and calls to ERRSET,
ERRSNS, and ERRTST continue to operate normally; only the logging of
the message on the user’s terminal is suppressed. The STOP and PAUSE
statement messages are also suppressed. F77NER.OB] reduces task size by
approximately 375 words less than the standard module.

If you use F77NER with optional OTS modules F77115 or F77NIO, a
multiply-defined symbol error may result during task-build. Two correct
ways to use F77NER with F77115 or F77NIO are:

* Build F7711S (or F77NIQO) and F77NER as separate libraries and use
them as follows:

TKBE> MAIN/FP=MAIN,LB:[1,1)F77NER/LE:$NERRL,
LB: [1,1]F77118/1B,LB: [1,1]F77FCS/LB

NOTE

On RSTS/E systems, replace LB:[1,1] with LB:.

® Build an OTS by incorporating F77115.0BS instead of FCS11M.0B5
into F77FCS. Name the resulting library F77115.0LB, and build
F77NER as a separate library. Use those libraries as follows:

TKB> MAIN/FP=MAIN,LB:[1,1]F77NER/LB:$NERRL,
LB: [1,1]F7711S/LB

NOTE
On RSTS/E systems, replace LB:{1,1] with LB..

12.4.7 F77NIO

Module F77NIO.OBS consists of a set of concatenated object modules
containing alternative versions of certain OTS routines that are always
present in the user task and that provide support for FORTRAN-77

1/0O operations. The alternate routines in F77NIO.OBS do not support
FORTRAN-77 1/0 and reduce task size by approximately 1000 words for
programs not requiring FORTRAN-77 1/O (such as process control).

12-12 QTS System Generation and Tailoring

i

LR .
QR

124.8 F77RAN

Module F77RAN.OBS consists of a set of concatenated object modules
that contain an alternative random-number generator that is com-

patible with previous releases of PDP-11 FORTRAN. If you require

this random-number generator for compatibility purposes, include file
LB:[1,1]F77RAN.OBS (for RSTS/E systems, LB:F77RAN.OBS) at task-build
time.

12.4.9 OTS Overlay Description Files

The two OTS overlay clescription files are:

FC$11M.ODL — FCS-11 support for R5X-11M/M-PLUS and
RSTS/E
RMS11M.ODL — RMS support for RSX~-11M/M-PLUS and RSTS/E

o Each file is an ODL fragment file that you can use for overlaying the
. PDP-11 FORTRAN-77 OTS modules. Each file contains documentation
describing OTS options and the procedures for using the file.

NOTE

If you are using the RSTS/E system, files FCS11M.ODL and
RMS11M.ODL contain references to LB:f1,1]. Change all
occurrences of LB[1,1] to LB:.

= 12.8.10 0TS Modules Chart

The following chart lists the optional OTS modules and indicates whether
- they require a floating-point processor (FPP) and whether they can replace
the standard OTS modules in your OTS library.

0TS System Generation and Tailoring 12-13

Module

F77118.

FTTMAP,

F77EIS.

F77CVF
F7THER

F77TNID

F77RAN.
FCSL1M.

RMS11M,

uBs
0BS

0BS

-0BJ
ORI

.0BS

0BS
opL

ODL

SHORT. OBJ

* -~ Use thias

Requires Can Replace Modules
FPP in Standard QOTS
B il L e L +
l ¥O i YES * !
o e —— e ——— Fm e e mm e +
I NO =+ i ND I
O s T A A ———— - -
H ND sk { YES % |
4 mmmb e ma———n L L) +
| YES | YES |
A - e m e, +
! NOQ | YES |
A mm e - ——— A ————— g +
| KO | YES * |
EE R P e L L e it -———
| NO = | YES |
A mm— e ————— e e — = +
! NO | NO |
L R e L T e e e +
I NO | NQ {
D et LT L L e b m——————————— +
| NO | --- |
L ettt e +

module instead of FCS11M teo build the OTS.

#% - Thig module does mot require an FPP, but
a program using the reeults might.

#%x — This module is for processors without an FPP and
cannot be used with cptional module FT7CVF.0BJ.

12-14 QTS System Generation and Tailoring

.

Chapter 13

OTS Resident Libraries

This chapter describes how to create OTS resident libraries. First, it
discusses factors that influence your choice of library. (Note in particular
the new vectored defauit.) Then, it provides instructions for building the
resident library of your choice.

A resident library has the following characteristics:

* It resides in memory and must be installed before a task that refer-
ences it can be instalied or run.

* It can be shared by muiltiple tasks. However, it occupies virtual
address space in each task to which it is linked. ‘

The FORTRAN-77 OTE has the following general limitations:

* It does not contain position-independent code (PIC) and, so it cannot
be built into a PIC resident library.

* It cannot be built into a supervisor-mode library. (However, it can be
linked to the FCSFSL supervisor-mode library; see Section 13.1.1))

For more information on resident libraries, refer to the Task Builder
manual for your operating system.

0TS Rasident Libvaries 13-1

g

13.1 Types of Resident Libraries

There are two general types of resident libraries: noncluster and cluster.
Within each of these two types, you can employ various schemes of
organizing your libraries, and you can choose either File Control Services
(FCS} or Record Management Services (RMS). The following sections
describe the various combinations possible and some of the considerations
involved in choosing a resident library organization.

13.1.1 Noncluster Libraries

In a simple noncluster library, all of the library code takes up virtual ad-

dress space in the task. The size of the library (and the amount of address
space it requires) consists of the total amount of space required by OTS
routines and the file system (typically FCS) routines. A resident library of

this type may be faster than an equivalent cluster library organization, but

it also takes up much more space. You must use this organization, but, if

you have an RSX system that contains no support for memory-mapping _
directives or for supervisor-mode libraries. (Section 13.4.2.2 contains a e
sample command file to build a nonclustered FCS library.)

For REX-11M/M-PLUS or Micro/RSX systems that support supervisor-
mode libraries, you can link the OTS resident library with the supervisor-
mode FCS library (FCSFSL). With this organization, only the OTS library
takes up virtual address space in your task. When available, this config-
uration is recommended because it is slightly faster than the equivalent
cluster organization. However, you cannot link the OTS resident library
with the RMS supervisor-mode library. (Section 13.4.2.3 describes how to
build a nonclustered library linked to the supervisor-mode FCS library.)

13.1.2 Cluster Libraries

Cluster libraries are sets of two or more resident libraries that share the
same portion of virtual memory. Conceptually, cluster libraries are like
memory-resident overlays; the two or more cluster libraries form a single
memory-resident overlay tree in your task’s virtual address space.

When your task is linked with cluster libraries, only one of the two or
more libraries is mapped by your task at one time. Therefore, the amount
of virtual address space dedicated to libraries equals the largest of the
cluster libraries, rather than their total. When a call is made to a routine

13-2 (0TS Resident Libraries

ST,

in a library other than the one currently mapped, the task automatically
remaps to the new library, This process incurs some overhead; cluster
libraries are slower than their noncluster or supervisor-mode counterparts.

If your task uses RMS, a cluster library organization is recommended.
Using this scheme, you can include all of RMS and a great deal of the
FORTRAN-77 OTS in 8K words of your task’s virtual address space.

(Section 13.4.2.4 shows how to build a resident library clustered with
RMSRES.)

If your task uses FCS, you should use a cluster library organization

for these same reasons, unless your system supports supervisor-mode
libraries. The supervisor-mode library (see Section 13.1.1) gains for
your task the same advantages as those of a cluster library and is faster.
(Section 13.4.2.5 shows how to build a resident library clustered with
FCSRES.)

13.2 Support for Resident Libraries

The chart below indicates the support available for the types of OTS
libraries described in Section 13.1. Unless noted, support is extended
regardless of operating system.

FCS QT8 RMS 0TS
A ———— Ao me——————— +
NONCLUSTER LIBRARY | SUPPORTED | NOT SUPPORTED I
o —rrmu e ——————— e mrm b — . ————— -+
CLUSTER LIBRARY I SUPPORTED I SUPPORTED |
o mmr—————————— e e ———. -
LINKED AGAINST | | |
SUPERVISOR-MODE I SUPPORTED=* | NOT SUPPORTED |
LIBRARY I f |
R il LT demm e —————— +

* This combination is not supported on the RSTS/E operating system.

OTS Resident Libraries 13-3

13.3 Vectored Resident Libraries

No matter which type of resident library you favor for your task, it will
be a vectored library. A vectored resident library references a fixed entry
point to an OTS routine, not the address to an OTS routine.

This means that tasks built using a vectored resident library do not need
to be rebuilt if routines in the resident library change. When modifications
to the OTS resident library routines occur, the OTS routine addresses may
shift, but the vectored entry pointers in the resident library do not.

It also means that resident libraries must remain the same size (see
Section 13.4.2.1 for information about optimal sizes). A task linked
against a resident library of one size fails when run against a resident
library of another size.

13.4 Creating an OTS Resident Library

After you identify the type of OTS resident-library needed, you must
choose between a default or a tailored version of this library:

¢ A default version offers you ease and speed in building, as well as a
standard library size (8K-words).

* A tailored version offers you your choice of library modules and some
choice in library size {(a 4K-word multiple}.

Section 13.4.1 provides instructions for building a default library;
Section 13.4.2 provides instructions for building a tailored library.
Section 13.4.2 provides Task Builder command file examples for each
type of resident library; these examples will build appropriate libraries in
most situations.

NOTE

The command files listed in this chapter do not link the two
OTS error message modules, $ERTXT and $SHORT, inte
the resident library. You may include one of these modules
when building a library if you wish to force long or short
error-message text to be used by programs that link to that
library.

13-4 TS Resident Libraries

13.4.1 The Default Library

Your FORTRAN-77 installation kit contains the command files identified
in the following list. You build a default OTS resident library by invoking
the command file corresponding to the type of library you desire.

Command File Name Type of OTS Resident Library Built
F7FRES.BLD Noncluster with FCS Routines Included
F7SRES.BLD Noncluster Linked to FCSFSL
F7RCLS.BLD Cluster with RMSRES

F7FCLS.BLD Cluster with FCSRES

These command files perform the following steps:

1. Compile the vector module twice, once to create F77VEC (without
OTS routine pointers} and once to create F77REC (with OTS routine
pointers).

2. Replace the .OLB vector module in the OTS resident library with
F77VEC.

3. Build an 8K-word resident library.
4. Install the library in a partition.

These steps make a default OTS resident library available to you.

13.4.2 The Tailored Library

Your FORTRAN-77 installation kit contains the MACRO-11 files iden-
tified in the following list. You can build a tailored OTS resident library
by editing the MACRO-11 file corresponding to the type of library you
desire.

OTS Resident Libraries 13-5

MACROQO-11 File Type of OTS Resident Library Built

F7FRES MAC Noncluster with FCS routines included
F7SRES.MAC Noncluster linked to FCSFSL
F7RCLS.MAC Cluster with RMSRES

F7FCLS MAC Cluster with FCSRES

Section 13.4.2.1 provides more information on editing these files,

Depending on the degree of tailoring desired, you can then invoke the Ll

appropriate command file (see Section 13.4.1), or you can issue commands
and create command files of your own as follows:

1.

2.

Compile the MACRO-11 file you just edited. Use .OBJ as the file
extension in your output file.

Use a text editor to create an appropriate Task Builder command file
to build your resident library. (The command files in Sections 13.4.2.2
through 13.4.2.5 should work as shown or with slight modifications.)

Make sure the number in your EXTSCT=$$OTSI:n statement is correct;
it should extend your task’s size to 8K.

Make sure that the OTS object module library you specify contains file
system modules (FCS or RMS) that match the file system you intend
to use.

Invoke the Task Builder and pass to it the command file you just
created.

Inspect the map file resulting from the task-build. If the resident
library is too large or is not large enough, edit (or re-edit) your
MACRO-11 file and repeat the steps above.

Purge any task, map, or STB files resulting from previous task-builds.

Install the library in memory, following the instructions in the docu-
mentation for your particular operating system,

These steps make a tailored OTS resident library available to you.

13-6 0TS Resident Libraries

13.4.2.1

Editing the MACRO-11 File

The four MACRO-11 files (F7FRES.MAC, F7SRES.MAC, F7FCCLS.MAC,
and F7RCLS.MAC) contain global references to OTS entry points. The
modules referenced in the MACRO-11 file you choose will make up your
OTS resident library. You can edit these files to include modules that your
tasks use frequently, or to exclude modules that are used infrequently.
(Editing instructions are included in the file.) You can also use each file as
is.

If you edit one of these files, you should create an OTS resident library
that balances the requirements of size and functionality. If your library

is large, the virfual address space available for your task may be small.
(A library size of 8K words is recommended.) The Task Builder places in
your task the object code for any modules it references that are not in the
OTS resident library so it does not make sense to exclude commonly used
modules from the library.

To make the best use of available virtual memeory, the OTS resident library
should be nearly equal to, but slightly below, a multiple of 4K words.
Each time the size of the library exceeds a 4K multiple, an additional
APR is required; this has the effect of reducing the virtual address space
available to the task by 4K words. The following table illustrates this
relationship:

Number of
Size in Words APRs Size in Octal Bytes
4096 1 20000
8192 2 40000
12288 3 60000
16384 4 100000

In the case of an OTS resident library to be clustered with a file system
library, there is an additional consideration. Remember that with clustered
libraries, the virtual address space occupied by the libraries is equal to
the size of the largest of the libraries. For example, if your OTS resident
library occupies 4K words and the file system library occupies 8K words,
the libraries occupy a full 8K words of virtual address space. In this
situation, there is no advantage to limiting the size of your OTS resident
library to 4K words; use the full 8K words for a richer library.

OTS Resident Libraries 13-7

The file system cluster libraries occupy space as follows:

File System Library Name Number of APRs
ECS FCSRES 1
RMS RMSRES 2

When you create the command file to build the OTS resident library,
include a PAR option as follows:

PAR=pname:bage:length

The pname is the partition name; it must be the same as the name of the
resident library, For RSX~11M systems, this partition must exist in the
system; for RSX~11M/M-PLUS, the INSTALL command places the library
in another partition if the specified partition does not exist. The values
you supply for base and length depend on the number of APRs that the
resident library occupies, as follows:

Number of

APRs Base Length
1 160000 20000
2 140000 40000
3 120000 60000
4 100000 100000

When you use these values, the OTS resident library occupies the highest
virtual addresses of your task.

13.4.2.2 Building a Noncluster Library with FCS Routines

The command files in this section build 8K-word OTS resident libraries
that include FCS modules. You can tailor your library by modifying
F7FRES.MAC.

RSX Systems

The following command file builds an 8K-word OTS resident library
{F7FRES.TSK) that includes FCS modules referenced by the OTS:

13-8 0TS Resident Libraries

F7FRES/-HD/L1/-PI,F7FRES/-SP/MA, FTFRES=F77RES
LB:{1,1}F77FCS/LB

/

STACK=0

UNITS=0

PAR=F7FRES: 140000 : 40000

EXTSCT=$$0TSI: 1000

QLB: [1,1]F77GBL.XCL

174

The number 1000 in the EXTSCT statement is a variable, not a constant, It
represents the difference between actual library size and the recommended
8K library size.

Note that the FORTRAN-77 OTS library (LB:[1,1]F77FCS.0LB) is ref-
erenced in this command file. This library is the FCS version of the
FORTRAN-77 OTS.

When you link a task to this library, include LB:[1,1JF77FCS /LB:[1,1]JF77VEC
in the task’s root and use the following Task Builder option:

LIBR=F7FRES :RQ
RSTS/E Systems

The following command file builds an 8K-word OTS resident library
(F7FRES.TSK) that includes FCS modules referenced by the OTS:

F7FRES/-HD/L1/-PI,F7FRES/-SP/MA, F7FRES=FT7RES
LB:F77FCS/LB

/

STACK=0

UNITS=0

PAR=F7FRES : 140000 :40000

EXTSCT=$80TSI: 1000

QLE:F77GBL. XCL

/Y

The number 1000 in the EXTSCT statement is a variable, not a constant. It
represents the difference between actual library size and the recommended
8K library size.

Note that the FORTRAN-77 OTS library (LB:F77FCS.OLB) is referenced
in this command file. This library is the FCS version of the FORTRAN-77
OTS.

When you link a task to this library, include LB:F77FCS/LB:F77VEC in
the task’s root and use the following Task Builder option:

LIBR=F7FRES:RO

OTS Resident Libraries 13-8

13.4.2.3 Building a Noncluster Library Linked to FCSFSL

The following command file builds an OTS resident library (F7SRES.TSK)
for which FCS routines reside in a separate supervisor-mode library. As
supplied, F7SRES.MAC builds a 8K-word library to link to FCSFSL. You
can tailor your library by modifying F7SRES.MAC.

You can use this configuration only on RSX-11M/M-~PLUS systems that
support supervisor-mode libraries.

F7SRES/-HD/LI/-P1 F7SRES/-SP/MA,FTSRES=F77RES Eor
LB: [1,1]F77FCS/LB O
/

STACK=0

UNITS=0

SUPLIB=FCSFSL: 5V

PAR=FTSRES: 140000 40000

GBLDEF=.FSRCA:0

GBLYCL=.FSRCA

EXTSCT=$$0TSI: 1000

@LB: [1,1]F77GBL. XCL

/

Note that the number 1000 in the EXTSCT statement is a variable, not a
constant, It represents the difference between actual library size and the
recommmended 8K library size.

Note also that the FORTRAN-77 OTS library (LB:[1,1JF77FC5.0LB} is
referenced in this command file. This library is the FCS version of the
FORTRAN-77 OTS.

When you link a task to this library, make sure that you include
LB:[1,1JF77FCS/LB:F77VEC in the task’s root. Then, use the following
Task Builder option:

LIBR=F7SRES: RO

i .

13-10 0TS Resident Libraries

13.4.2.4 Building a Library to Cluster with RMSRES

The command files in this section build 8K-word OTS resident libraries
that cluster with RMSRES, the RMS file system resident library. You can
tailor your library by modifying F7RCLS.MAC

RSX Systems

The following command file builds an 8K-word OTS resident library
{F7RCLS.TSK) that clusters with RMSRES:

F7RCLS/-HD/LI1/-P1,F7RCLS/-5P/MA, F7TACLS=F77RES
LB: [1,1]F77RNS/LB

LB: [1.1]RMSLIB/LE:RORMSC
/

STACK=0

UNITS=0

PAR=F7RCLS: 140000 : 40000
GBIXCL=.SAVR1
EXTSCT=$$0TS1 : 10000

@LB: [1,1]JF776BL.XCL

174

The number 1000 in the EXTSCT statement is a variable, not a constant. It
represents the difference between actual library size and the recommended
8K library size.

Note that the FORTRAN-77 OTS library (LB{1,1JF77RMS OLB) is ref-

erenced in this command file. This library is the RMS version of the
FORTRAN-77 OTS.

When you link a task to this library, include the following modules in the
task’s root:

LE: {1,1]1F77RMS/LB : FT7VEC
LE: {1, 1)RMSLIB/LE:ROAUTL : ROIMPA: ROEXSY : RMSSYM

Then, use the following Task Builder option:
CLETR=FTRCLS, RMSRES : RD
RSTS/E Systems

The following command file builds an 8K-word OTS resident library
{F7RCLS.TSK) that clusters with RMSRES:

OTS Resident Libraries $3-11

F7RCLS/-HD/LI/-P1,FTRCLS/ -SP/MA, FTRCLS=F77RES
LB:F77RMS/LB

L'B: RMSLIB/LB : RORMSC

/

STACK=0

UNITS=0
PAR=F7RCLS : 140000: 40000
GBLXCL=. SAVR1
EXTSCT=$$0TS1 : 1000
QLE:F77GBL. XCL

/i

The number 1000 in the EXTSCT statement is a variable, not a constant. It
represents the difference between actual library size and the recommended
8K lbrary size.

Note that the FORTRAN-77 OTS library (LB:F77RMS.OLB) is referenced
in this command file. This library is the RMS version of the FORTRAN-77
OTS. When you link a task to this library, include the following modules
in the task’s root:

LB:F77RMS/LB:FTTVEC
LB :RMSLIB/LE :ROAUTL : ROINMPA: ROEXSY :RMSSYM

Then, use the following Task Builder option: S
CLSTR=F7RCLS, RMSRES : RO

13.4.2.5 Building a Library to Cluster with FCSRES

The following command file builds an 8K-word OTS resident library
(F7FCLS.TSK) that clusters with FCSRES, the FCS file system resident
library. As is, FFFCLS.MAC builds a 8K-word library to cluster with
FCSRES. You can tailor your library by modifying F7ZFCLS.MAC.

This command file is applicable to RSX systems only.

F7FCLS/-HD/L1/-PI FTFCLS/-SP/MA, F7FCLS=F77RES
LB:[1,1)F77FCS/LB

LB: [1,118YSLIB/LB:FCSVEC
/

STACK=0

UNITS=D
PAR=FTFCLS: 140000 :40000
EXTSCT=$$0TSI:1000

@LB: [1,1)F77GBL.XCL
GBLINC=.FCSJT

GBLXCL=. ASLUN
GBLXCL=.CLOSE

13-12 OTS Resident Libraries

-

GBLXCL=.CSI1
GBLXCL=.CBI2
GBLXCL=.CSI4
GRLXCL=.DELET
GBLXCL=.DLFNB
GBLXCL~.ENTER
GBLXCL=.EXPLG
GBLXCL= .EXTND
GBLXCL= FCTYP
GBLXCL=.FIND
CGBLXCL=.FINIT
GBLXCL=.FLUSH
GBLXCL=_GET
GBLXCL=.GETSQ
GBLXCL=.GTDID
GBLXCL=.GTDIR
GBLXCL=.MARK
GBLXCL=.MRKDL
GBLXCL=.QPEN
GBLXCL=.0PFID
GBLXCL=.0PFNB
GBLXCL=.PARSE
GBLXCL= POINT
GBLXCL=.POSIT
GBLXCL=.POSRC
GBLXCL=.PRINT
GBLXCL=.PRSDI
GBLXCL=.PRSDV
GBLXCL=.PRSFR
GBLXCL=_.PUT
GBLXCL=.PUTSq
GBLXCL=_READ
GBLXCL=_REMOV
GBLXCL= . RENAM
GBLXCL=.BAVR1
GBLXCL=. TRNCL
GBLXCL=.WAIT
GBLXCL=.WRITE
'

The number 1000 in the EXTSCT statement is a variable, not a constant. It
represents the difference between actual library size and the recommended
8K library size.

Note that the FORTRAN-77 OTS library (LB:[1,1]F77FCS.OLB) is ref-
erenced in this command file. This library is the FCS version of the
FORTRAN-77 OTS.

When you link a task to this library, include LB:{1,1]JF77FCS/LB:F77VEC
in the task’s root and then use the following Task Builder option:

CLSTR=F7FCLS ,FCSRES-RD

0TS Resident Libraries 13-13

Appendix A

FORTRAN Iimpure Area Definitions

FORTRAN Imgure Area Definitions A-1

atlal otiser
o

2

25
22
24

28

32
23
6
an
42
44
46

50

106

12
14

116

122
Y]
128

13C

A-2 FORTRAN impure Area Definitions

¥SEQC

L

WHANG

W.LUNS

W.MO

W.BFAD

W.BLEN

W.BEND

LNBUF

Ww.Ql0

W.0EV

RECIO

FMTAD

FILPTH

ZOLBUF

A

FMTCLN

BLBUF

PSCALE

W LICP/FSTKR

W.LICB/FSTK/NOARG

PARLVL

NUMFLG

1B word seratch area

ouarliow word

FMT]ET

VARAD

TSPECP

TYPE

UNFLGS/REPCNT

LENGTH

n

1TEMSZ

W.ELEM | DOLFLG

COUNT

alobai symbol
SOTSVA, $5EQC
INAMC
NLUNS

SMOLUN

K 7B

oc1al offset

136
140

142

(L)
150
152
154
166
Mo
162
164
1685
170
172
17a
126
200
202
204
206
210
nz
14
2718
@20
22

228

W.UOPN/RACHNT/UNCNTIFMTLR

QENCWO

VBT

EXADDR

ENPEX

ERREX

W.ECNT

W.ERNM

W.LIMT

W.OPFYL

wW.ERLN

WERLE

W.TKNP

W.ERTB

W.FERR

WFER1

WAST

W.0BF{

W.OBFH

Vi ERUN

wEPs1

WEXJ

W.iDEFJi\LPN“.’V

W.RS

WTYP

W XNUMANAESL/W KDSC

w.AECH

w.DFLi‘lw EPRF

W.LNMP

WPRNT

W.TYPE

WACPY

W.READ

global symbal

SERCNT

$PRINT
3TYPE
SACCPT

SREAD

IR.23581

FORTRAN Impure Area Definitions

A-4 FORTRAN Impure Area Definitions

octal otfear

234
236
240
42

244

250
252
254

258

262
284
2B5
270
2372
274
21
felad]
302

kL

W.MOPR

wW.MOVY

W.MOAT

WMOVE

WMOAZ

W.MOTC

W.MOTR

W.MOT2

‘W.MOT\'

w.DEVL

w.NULL] W.CPXF

W.FOB!

W.FOB2

W EXST

W.FNML

W.wng

W.SKLM

W.TKLM

W.TSKP

WWNLD

WWNHI

WEKOTP | W KMAT

W KREF

WEXTK

WSPBNI W.LUND

W.ALIC

W TBST

wW.TBFN

w ERXT

W.ERLG

W FiN

W.NAM

W.IOXT

W RLME

W ROME

W.GSA

W.END

§lobar symbo!

SMOPRM

SMXFNL

SEXTKL

K236

Appendix B

FORTRAN Logical Unit Control Block

Definitions
B.1 FCS-11 LUB Contrel Block Format
offset
D.STAT
0
D.STA2
2
D.RCNM/D.RCCT
______________ 4
D.RCN2/D.RCC2
6
D.AVAD
8.
DRSIZ
10.
12=D.FDB
start of FCS-11
~ FDB ~

ZK-234-81

FORTRAN Logical Unit Control Block Definitions B-1

Status Bit Definition
D.STAT - Word 1

DV.FIX
DV.FNB
DV.DFD
DV.FAK
DV.FACC

DV. 0PN
DV.VAR
DV.SEG
DV.FMP

=2
=4
=10
=20
=40

=200
=400
=1000
=2000

D.STAT - Word 1

DV .UFP
DV .ASGN

DV.CLO
DV.FRE
DV.RW

=4000

RECORD TYPE ='FIXED’
FILE NAME BLOCK INITIALIZED
DEFINE FILE DONE DIRECT ACCESS UNIT
PARTIAL FDB FLAG FOR ENCODE/DECODE
FILE ATTRIBUTES: 0 - DEFAULT
1 - CALL FDBSET

UNIT OPEN MUST BE 200'S BIT
RECCRDTYPE='VARIABLE'

RECORDTYPE='SEGMENTED"

FCORMATTED ACCESSED UNIT

UKFORMATTED ACCESSED UNIT

=10000 FILESPEC: 0 - USE DEFAULT

1 - FROM CALL ASSICN

=20000 CLOSE IN PROGRESS
=40000 FREE FORMAT ALLOWED

=100000

D.STA2 - Word 2

DV.AI4

DY .RSZ
v.ce

DV.SPL
DV.DEL
DV.RDO
DV.UNK
DV.0LD
DV.NEW
DV.3CR
DV.APD
DV.SAY
DV.BN

=2

=4
=10

=20
=40
=400
=1000
=2000
=4000
=10000
=20000
=40000
=10000Q

CURRENT OPERATION: 0 -READ
1 - WRITE

DEFINEFILE ASSDC VAR: O - Ix2

1 - I=4
EXPLICIT RECORDSIZE SPECIFIED
EXPLICIT CARRIAGE CONTROL SPECIFIED

DISPUSE = 'PRINT®
DISPOSE = 'DELETE'
READDNLY

TYPE = 'UNKNOWN'
TYPE = ‘QLD?

TYPE = 'NEW'

TYPE = 'SCRATCH'
ACCESS ='APPEND'
DISPOSE='SAVE'

BLANK = ‘NULL’

B-2 FORTRAN Logical Unit Control Block Definitions

B.2 RMS-11 Control Block Fermats

Status Bit Definitions
D.STAT - Word 1

Dv.
v,
V.
DV.
Dv.
DV.

V.
Dv.
DV.

SEQ
DIR
KEY
FIX
FAK
FACC

VAR
OPN
FMP

=1
=2
=4
=10
=20
=40

=100
=200
=2000

D.STAT - Word 1

DV.
- DV.
) DV.
DV.
oV,

UFp
SEG
CLD
FRE
RW

=4000
=10000
=20000
=40000
=100000

D.STA2 - Word 2

Dv.
v,
V.
V.
ov.

V.
Dv.

SEQ
REL
IDX
cec

SPL

.DEL
JAl4

BN

=1
=2
=4
=10
=20
=40
=100

=200
=400
=100Q
=2000
=4000
=10000
=20000
=40000
=100000

SEQUENTIAL ACCESS
DIRECT ACCESS
KEYED ACCESS
FIXED LENGTH RECORDS
PARTIAL FDB FLAG FOR ENCODE/DECODE
FILE ATTRIBUTES: 0 - DEFAULT

1 - CALL FDBSET
VARIABLE LENGTH RECDRDS
UKIT OPEN MUST BE 200'S BIT
FORMATTED ACCESSED UNIT

UNFORMATTED ACCESSED UNIT
SEGMENTED RECORDS (UNFORMATTED SEQ ONLY)
CLOSE IN PROGRESS
FREE FORMAT ALLOWED
CURRENT OPERATION: ¢ - READ
1 - WRITE

ORGANIZATION=SEQUENTIAL
ORGANIZATION=RELATIVE
ORGANIZATION=INDEXED

EXPLICIT CARRIAGE CONTROL SPECIFIED
DISPOSE = 'PRINT'

DISPOSE = 'DELETE'

DEFINEFILE ASSOC VAR: O - Ix2

1 - Ix¢
EXPLICIT RECORDSIZE SPECIFIED
READONLY
TYPE = 'UNKNOWN'
TYPE = 'OLD’
TYPE = 'NEW®

TYPE = 'SCRATCH'
ACCESS='APPEND'
DISPOSE="'SAVE"®
BLANK ='NULL'

FORTRAN FAB block definition

FORTRAN Logical Unit Control Black Definitions

Figure B-1: LUB Format

LUB FORMAT
offset
D.STAT
0
D.8TA2
2
O.NAMC D.LUN
a4 s
D.IFI
6
D.PFAB
8.
D.RSIZ
10.
D.RCNM/D.RCCT
[— - — = = - —_ e — 12
D.RCN2/D.RCC2
14,
D.AVAD
16. k
D.STS
18
D.8TV
20.
D.RNUM
22,
24,
D.SPAR"
286,
28. = D.RAB
RMS-11 RAR e
o~ ot
length = RB$BLN
D.NAM = D.RAB+RBS$BLN
file specification save area
~ size = value of offset W.FNML o~
in the impure area

ZK-235-81

B-4 FORTRAN Logical Unit Control Block Definitions

FORTRAN Key Definition XAB blocks

offset
F.KYCT| F.STAT
0
F.PXAB
2
F.SPAR
4
6 = F.DNAM
default file spec “FOROnN.DAT"
8.
10.
12.
14,
RMS-11 16. = F.FAB
—~ FAB —~
length = FB$BLN
ZK-236-81
offset
RMS-11
~ XAB ~
length = XBSKYL
X.POS XBSKYL
X.DTP| X.81Z XBEKYL+Z
7K-237-81

FORTRAN Logical Unit Control Block Definitions B-§

Appendix C

OTS Size Summary

This appendix is a guide to the approximate sizes of all the modules in
the PDP-11 FORTRAN-77 OTS. Modules are grouped by related function
and identified by the TITLE, as shown in Task Builder storage allocation
maps. All object module sizes are shown in decimal words.

€.1 Modules Always Present

C.1.1 FCS-11 Support

Module Name

Module Size in
DPecimal Words

$CLOSE
$ERRLO
$ERRMO
$ERRPT
$ERTXT
$FCHNL
$FPERR
$FPUTI
$OTI
$RS50
$SAVRG
$VINIT

Close files

Error message construction
Error message [/O

Exror control processing
Error message text

LUB processing

FPP interrupt processor
FPP utilities

OTS initialization
Radix-50 to ASCII conversion
Register save co-routine
Virtual array initialization

44

303
37/97

252
1128/0

67

54

37

84

44

59

42

OTS Size Summary C-1

$OTV OTS Impure area (by PSECT)

$$A0TS
$3DEVT
$$FSR1
$$10B1
$$0BF1

$$FSR2
$80TSI

Common work area
Logical unit control table [Size=UNITS#54]
FCS buffer area [Size=ACTFIL»264]

1/O buffer [Size=max(MAXBUF,67)]

Object time format buffer
[Size=max(FMTBUF,32)]

FCS impure area
Mixed OTSs trap

274

1056
87
32

75

C.1.2 RMS-11 Support

Module Size in

Module Name Decimal Words
$CLOSE Close files 98
$ERRLO Error message construction 292/230
$ERRMO Error message /0 37/97
$ERRPT Error control processing 2497259
$ERTXT Error message text 1128/0
$FABUT FAB control block processing 87
$FCHNL LUB processing 101
$FPERR FPP interrupt processing 54
$FPUTI FPP utilities 37
$OTI OTS initialization 130
$R50 Radix-50 to ASCII conversion 44
$RQLME Dynamic memory atlocation 58
$SAVRG Register save to-routine 58
$VINIT Virtual array initialization 42

C-2 OTS Size Summary

Module Size in

Module Name Decimal Words
$OTV OTS Impure area (by PSECT)
$$A0TS Common work area 279
$$DEVT Logical unit control table [Size=UNITS+1] 6
$$FSR1 Dynamic memory area 1816
[Size=ACTFIL*(S.LUB+5.FAB+704)]
$$10B1 I/0 record buffer [Size=max(MAXBUF,66)] 66
$$0BF1 Run-Time format buffer 32
[Size=max(FMTBUF,32)]
$$DEVU Dynamic memory listhead
$$OTSI Mixed OTSs Trap

C.2 Common |/0 Support

The following modules are common to all I/O operations.

Module Size in

Module Name Decimal Words
$CONVI] Integer format conversions’ 225
$CONVL Logical format conversions' 49
$CONVR Real format conversions' 680
SCONVZ Octal and }‘Eexadecimal format 335

conversions
SFIO Format processor 1045
SEMTCV Run-time format compiler 532
$IOARY Array /O transmission 71
$IOELE I/0O element transmission 164
$IOVAR Virtual array 1/0 transmission 94

!Loaded only if needed, or if list-directed or run-time format processing is used.

? Loaded only if needed, or if run-time format processing is used.

0TS Size Summary C-3

Module Name

Module Size in
Decimal Words

$LSTI
$1LSTO
LICSBS

List-directed input processor
List-directed output processor

List-directed input constant storage
block®

484
282
129

* Loaded only if list-directed input processing is used.

C.2.1 FCS-11 Support

Module Name

Module Size in
Decimal Words

$FCSRM
$FNBST
$INITI
$OPEN

Dummy RMS-11-only entries
File specification processing
I/CO statement initialization

File open processing

61
75
210
318

C.2.2 RMS-11 Support

Module Name

Module Size in
Decimal Words

$FNBST
$SINITIO
$OPEN

File specification processing
1/0 statement initialization
File open processing

43
309
381

C.3 Sequential Input/Output

The following modules are used for sequential access I/0O.

C-4 0TS Size Summary

C.3.1 FCS-11 Support

Module Name

Module Size in
Decimal Words

$ISU
$0suU
$ISF
$OSF
$I1SL
$OSL
$GETS
$PUTS

Sequential unformatted READ
Sequential unformatted WRITE
Sequential formatted READ'
Sequential formatted WRITE'
List-directed READ'
List-directed WRITE'

Get sequential record

Put sequential record

81
47
26
37
36
54
40
34

'Requires format processing routines.

C.3.2 RMS-11 Support

Module Name

Module Size in
Decimal Words

$ISU
$0O5U
$ISF
$OSF
$I1SL
$OSL
$GETS
$PUTS

Sequential unformatted READ
Sequential unformatted WRITE
Sequential formatted READ'
Sequential formatted WRITE'
List-directed READ!
List-directed WRITE!

Get sequential record

Put sequential record

80
95
26
37
36
54
62
78

1Rez:;uire's format processing routines.

0TS Size Summary

C-5

C.4 Direct Input/Output

The following modules are used for direct access 1/0.

C.4.1 FCS-11 Support

Module Size in

Module Name Decimal Words
$IRU Direct access unformatted READ 40
$ORU Direct access unformatted WRITE 42
$IRF Direct access formatted READ! 29
$ORF Direct access formatted WRITE' 43
$GETR Get direct access record 22
$PUTR Put direct access record 50
$CKRCN Check record number, update associated 40

variable
$DEFF DEFINEFILE and FIND statements 71

1Requi:res format processing routines.

£-6 0TS Size Summary

e

€.4.2 RMS-11 Support

Module Name

Module Size in
Decimal Words

$IRU
$ORU
$IRF
$ORF
$GETR
$PUTR
$CKRCN

$DEFF
$FOR
$DLR

Direct access unformatted READ
Direct access unformatted WRITE
Direct access formatted READ?
Direct access formatted WRITE?
Get direct access record

Put direct access record

Check record number, update associated
variable

DEFINEFILE statement
FIND statement
DELETE statement

40
47
29
43
42
94
30

54
58
62

!Requires format processing routines.

0TS Size Summary C-7

C.5 Keyed Input/Output

The following modules are used for keyed access 1/O.

C.5.1 RMS-11 Support

Module Name

Module Size in
Decimal Words

$IKF
$IKU
$CKKEY
$DLS
$RSF
$RSU
$UPDAT
$GETK

Formatted keyed READ!
Unformatted keyed READ
Key description setup
Sequential DELETE
Formatted REWRITE’
Unformatted REWRITE
Update record

Get keyed record

68
70
45
44
37
43
58
47

1Requires format processing routines.

C-8 0TS Size Summary

C.6 Miscellaneous |/0 Support

C6.1 FCS-11 Support

Module Size in

Module Name Decimal Words

$ASSIG ASSIGN subroutine 41

$BACKS BACKSPACE statement 90

$CLSCA CLOSE subroutine g

$CLSST CLOSE statement 150

$ENCDE ENCODE/DECODE and internal file 143

statements’

$ENDF ENDFILE statement 57
o $FDBSET FDBSET subroutine 90
$OPNST OPEN statement 530

$REWIN REWIND statement 51

]Requires format processing routines.

0TS Size Summary C-8

S

C.6.2 RMS-11 Support

Module Name

Module Size in
Decimal Words

$ASSIGN
$BACKS
$CLSCA
SCLSST
$ENCDE

$ENDF
$FDBSET
$OPNST
$REWIN
SUNLOC

ASSIGN subroutine
BACKSPACE statement
CLOSE subroutine
CLOSE statement

ENCODE/DECODE and internal file

staternents’
ENDFILE statement
FDBSET subroutine
OPEN statement
REWIND staterment
UNLQCK statement

43

100 .

9 ot
154
143

40
98
709
59
47 .

1Rec{t.lires format processing routines.

C.7 Miscellaneous Compiled-Code Support

Module Size in

Module Name Decimal Words .
$AGO Assigned GO TO statement 12 T
$ARYCK Array subscript checking 17
$CGO Computed GO TO statement 18
$MADB1 1-Dimensional adjustable array 44
$MADB2 2-Dimensional adjustable array 63
$SMADBN N-Dimensional adjustable array 69
$MADBV Adjustable virtual array 62

C-10 0TS Size Summary

i

Module Name

Module Size in
Decimal Words

$NAM
$STPPA
SVIRT

Traceback chain processing
STOP/PAUSE statements

Virtual array addressing

15
31
84

C.8 Processor-Defined Functions

Module Name

Module Size in
Decimal Words

$ABS
$ACOS
$AIMAG
$SAINT
$ALOG
SAMIX0
$AMIX1
$AMOD
$SANINT
$ASIN
$SATAN
$CABS
SCEXP
$CLOG
$CMPLX
$CONJG
$COSH
$CSIN
$CSQRT
$DABS

Real absolute value

Arc cosine

Imaginary part

Real truncation

Real log

Real max/min of INTEGER»2
Max/min of REALS

Real modulo

Real and DOUBLE nearest integer
Arc sine

Arc tangent

Complex absolute value
Complex exponential
Complex logarithm

Complex from reals

Complex conjugate
Hyperbolic cosine

Complex sine

Complex square root

Double absolute value

7
49
6
9
87
23
33
15
24
41
i1
33
26
26
9
10
71
53
42
9

0TS Size Summary C-11

Module Name

Module Size in
Decimal Words

$DACOS
$DASIN
$DATAN
$DBLE
$DCOSH
$DDIM
$DIM
$DINT
$DLOG
$DMIX1
$DMOD
$DPROD
$DSIGN
$DSIN
$EXP
$FCAL
$FLOAT
$FLOT]
$ICHAR
$INDEX
$LEN
$LGE

$LGT
$SLLE

$LLT
$I4FIX
$IABS

C-12 0TS Size Summary

Double arc cosine

Double arc sine

Double arc tangent

Doubie from REAL

Double hyperbolic cosine
Double positive difference
Positive difference

Double truncation

Double logarithm

Max/Min of DOUBLES
Double modulo

Doble product of REALS
Double transfer of sign
Double Sine

Real exponential

Internal service entry
INTEGER*2 to Real
INTEGER*4 to Real
Character to integer conversion
Match a substring in a string
Length of a character element

Lexical greater than or equal to character
comparison

Lexical greater than character compari-
son

Lexical less than or equal to character
comparison

Lexical less than character comparison
Real to INTEGER*4
INTEGER=2 absolute value

53
45
159

91
14
12
11
117
25
17
12
13
119
120

17

40

16

16

16

16
12

B e:’ -

e

Module Name

Module Size in
Decimal Words

$IAND
$IDIM
$IEOR
$IFIX
$MOD
$INOT
$IOR
$ISHFT
$I1SIGN
$JABS
$JAND
$JDIM
$JEOR
$JMIX
$IMOD
$JNOT
$JOR
$JSHFT
$JSIGN
$MAXO
$MINO
$NINT
$REAL
$RIMIX

INTEGERs2 AND

INTEGER#2 positive difference
INTEGER+*2 exclusive OR
Real to INTEGER»*2
INTEGER#*2 modulo
INTEGER=2 NOT

INTEGER»?2 inclusive OR
INTEGER»*2 shift

INTEGER*2 transfer of sign
INTEGER*4 absolute value
INTEGER#*4 AND

INTEGER#4 positive difference
INTEGER#*4 exclusive OR
INTEGER*4 minimum and maximum
INTEGER*4 modulo
INTEGER*4 NOT

INTEGER#*4 inclusive OR
INTEGER=*4 shift

INTEGER=*4 transfer of sign
INTEGER#*2 maximum
INTEGER»2 minimum

Nearest integer

Real from Complex

Real max/min of INTEGER*4

7
1¢

S B T s I I -)

12
11
13
23
11
44
22

30
21
10
10
19

27

075 Size Summary C-~13

Module Name

Module Size in
Decimal Words

$SIGN
$SIN
$SINH
$DSINH
$SNGL
$SQRT
$TAN
$DTAN
$TANH
$DTANH

Real transfer of sign

Real sine

Hyperbolic sine

Doubile hyperbolic sine
Real from Double

Square roat

Real tangent

Double tangent
Hyperboli¢ tangent
Double hyperbolic tangent

11
99
73
93
14
78
36
40
68
102

£-14 0TS Size Summary

C.9 Compiled-Code Arithmetic Support (R4 Calls)

Module Size in

Moeduie Name Decimal Words

$ADC Add/subtract Complex 29

$CMC Compare Complex 22

$DVC Divide Complex 50

$DV] Divide INTEGER=*4 26

$MLC Multiply Complex 27

SMLJ Multiply INTEGER=4 21

S$NGC Negate Complex 16

SPWCC Complex to Complex expontentiation 71

$PW(] Compiex to Integer exponentiation 115

. $PWDD Floating to floating exponentiation 68

o $PWIIL INTEGER+2 to INTEGER»2 exponentia- 54
tion

$PWJJ INTEGER+4 TO INTEGER*4 exponentia- 133
tion

$PWRI Floating to integer exponentiation 81

$PWRR Real to Real exponentiation 40

$SWPXY Stack swap 95

$TSC Test Complex 16

C.10 Compiled-Code Character Support

Module Name

Module Size in
Decimal Words

$CHASN
$CHCMP

Character assignment

Character comparison

42
65

T

0TS Size Summary 6-15

C.11 Service Subroutines

Module Name

Module Size in
Decimal Words

$DATE
$ERRSE
$ERRSN
$ERRTS
$EXIT
$IDATE
BIRADS
$R50AS
$RADS0
$RAN
$RANDO
$RANDU
$SECND
$TIME
$USERE

DATE
ERRSET
ERRSNS
ERRTST
EXIT
IDATE
IDATESD
R50ASC
RADS0
RAN
Random number generation
RANDU
SECNDS
TIME
USEREX

68
72
22
22
13
29
15

6
11
19
53
18
49
41
11

C.12 Optional Modules

Module Name

Module Size in
Decimal Words

$CONVR
$FPPUT
$SHORT
$ERRLO
$MLJ
$DV]
$]MOD

Real format conversions {FPP version)

EIS version

Null error message text
Null error message logging
EIS version

EIS version

EIS version

587
7

1

1
57
74
25

C-16 QTS Size Summary

2T,

c.13

RSX-11S Subset Support

Module Name

Module Size in
Decimal Words

$CLOSE Close files 2
$ERRLO Error message construction 262
$ERRMO Error message /0 48
$ERRPT Error control processing 228
$FCHNL LUB processing 63
$FCS11 Dummy ECS entry points 61
$GETS Sequential input 39
$INITIO I/O statement initialization 179
$ISF Sequential formatted input’ 26
$ISL List-directed input’ 41
$I15U Sequential unformatted input 57
$OSF Sequential formatted output’ 37
$OSL List-directed output' 40
$OsuU Sequential unformatted output 47
$0TI OTS initialization 68
$PUTS Sequential output 27
$OTV OTS Impure area (by PSECT)

$$AO0TS Common work area 266
$$I10B1 I/Q buffer (Size=max{MAXBUF,67)) 67
$$0BF1 Run-Time format buffer 32

(Size=max(FMTBUF,32))

$$0TSI Mixed OTSs traps 2
SNAMS 1

1Requires format processing routines.

0TS Size Summary £-17

"

Eaii

Appendix D
Program Section Descriptions

This appendix describes the program sections (PSECTs) used by the OTS.
PSECTs are named segments of code or data. The attributes associated
with each PSECT direct the Task Builder when constructing an executable
task image.

$80TSI—OTS Instructions

$$OTSI contains all of the executable code in the OTS except the for-

matted and list-directed 1/O processors. This PSECT has the attributes:
RO,I,CON,LCL.

$$OTSD - OTS Pure Data

$$OTSD contains all of the read-only pure data in the OTS except the
formatted and list-directed 1/O data. This PSECT contains constants

and dispatch tables used by the code in $$OTSI. It has the attributes:
RO,D,CON,LCL.

$SAOTS—OTS Impure Storage

$$A0TS contains the FORTRAN work area impure storage associated
with each task. It must be contained in the task’s root segment and is
pointed to by the contents of global symbol $OTSV. A detailed description
is contained in Appendix A. All references in this manual to “the work
area” or “the FORTRAN work area” apply to this PSECT, which has the
attributes: RW,D,CON.

Program Section Descriptions D-1

$$DEVT—Logical Unit Device Table

$$DEVT defines the FORTRAN logical unit device table. The entries in
this table are fixed-length FORTRAN Logical Unit Blocks (LUB). A LUB is
composed of a File Control Services (FCS) FDB or an RMS RAB and FAB,
and a header for use by FORTRAN. At task start-up, the actual number
of LUBs available to the FORTRAN task is determined from the size of
$$DEVT. This area is pointed to by the value of offset W.DEV in the work
area. This PSECT has the attributes: RW,D,OVR.

$8$10B1—User Record Buffer

$3IOB1 defines the FORTRAN user record buffer. The length is deter-
mined at task-build time by the MAXBUF keyword; the default value

is 133 (decimal) bytes. This area is pointed to by offsets W.BFAD (start
address) and W.BEND (end address+1) in the work area and its iength is
computed at task initialization and stored at offset W.BLEN in the work
area. This PSECT has the attributes: RW,D,OVR.

$$0BF1—Object-Time Format Buffer

$$OBF1 defines the FORTRAN object time format buffer. The length is O
determined at task-build time by the FMTBUF keyword; the default value

is 64 (decimal} bytes. This area is pointed to by offsets W.OBFL (start

address) and W.OBFH (end address+1) in the work area. This PSECT has

the attributes: RW,D,0VR.

$$TSKP—Task Information

$$TSKP contains five 2-byte fields that provide the OTS with information
about the task. The information is supplied by the Task Builder,

Format Conversion PSECTs

The formatted and list-directed I/O processors minimize task size by
loading only those format conversion modules referenced by the user's
format specifications. Each module is in an independent PSECT and
‘places a pointer to itself in a special PSECT used as a dispatch table.
These PSECTs have the global (GBL) attribute to ensure that this collection
of modules is placed in the lowest common segment of an overlaid task.

D-2 Program Section Descriptions

The PSECTs are named as follows:

$$FIOC—contains the format processor code and the list-directed
processor code
$$FIOD—contains the format and list-directed processor pure data
$$F1OI—contains the integer conversions
$$FIOL—contains the logical conversions

. $$FIOR—contains the floating-point conversions -

R $$FIOS—contains the list-directed constant storage block
$$F1OZ—contains the octal and hexadecimal conversions
$$FI0O2—contains the conversion dispatch table

,""ﬁ"" 3

Program Section Descriptions D-3

-

A

c

ACCEPT statement® 6-13

logical unit number ® 4-3
ACCESS keyword®*6-16, 7-4, 8-3
Adjustable arrays initialization routines ® 11-7
$$AQTS impure storage PSECT * D1
Arithmetic operations® 11-1 10 11-4
Array-addressing polynomial function® 11-9
Array descriptor block ({ADB)® 11-5
Arrays

dirnension spans® 11-7

dummy argumant adjustable® 11-7

processing support® 11-6

subscript checking® 11-7
Assembly

options® 12-1

OTS macros® 12-3
Assembly language (MACRO-11)#*3-1, 10-8
ASSIGN subroutine ¢ 7—-10, 8-19
ASSOCIATEVARIABLE keyword® 6—16, 7~4,

8~3
$ASVAR (associated variable update) routine ®
6-19, 7-13, 8-16

Asynchronous System Traps (AST)® 104

BACKSPACE {BKSPS$) routine® 7-13, B-17
BLANK keyword® 6-16, 7-4, 8-3
BLOCKSIZE keyword®6—16, 7-4, 8-3
BUFFERCOUNT keyword ® 616, 7-4, 8-3

Calling sequence conventions
exceptions® 26
FO calls® 2-5
PC calls® 2—4
R4 calls®2—4
R5 ralis ® 22
CARRIAGECONTROL keyword® 616, 7-4, 8-3
$CKKEY (keyed 1/O specifier checking) routine ®
6-20, 8-17
$CKRCN routine ® 6-19, 7-13, 8-16
$CLOSE {file close processing) routine ® 8-19
RMS-11¢8-13
$CLOSE {file CLOSE processing) routine
FCS-11®7-11
CLOSE statement®6-14, 7-11, 8-13
argument blocks by keyword ® 6—15
Cluster library
See also FCS
See also OTS resident library
See also RMS
building
with FCSRES® 13-12
with RMSRES ® 13-10
description ® 13-2
limitations ® 13-2
optimal use virtual memory ® 13-7
support® 13-3
Compiled code
interface ® 61
support routings® 1-3, 11-1to 11-13
Compiler command option {/ TR:NAMES,
/TR:BLOCKS, or /TR:ALL}® 11-12

Index-1

Compile-time performance
See also Dynamic storage area
See alsc Work file
Continuation after an error ® 10-3
Control block
dynamic storage allocation ® 82
FCS-11 LUB farmat®B-1
RMS—11 formats *B-3

Data
formatting® 612
storage®4-11to0 4~14, 8-2
transmission®6-11
Default directory processing
See .GTDID routine
Default file name generation®7-10
Default file processing
close® 619
cpen®&-18
FCS-11*7-2
RMS-11%8-3
Defauit unit numbers®6-13
DEFINEFILE {(DEFF$) routine ® 7-14, 8-18
DELETE (DLS$ and DLR$} RMS routines ® B—18
$DELETE RMS statemnent ® B—18
$$DEVT logical unit device table PSECT ®D-2
Direct access
input and output routines ® 7-12
record number checking
See SCKRCN routine
record ransfers® 7-12
SDISCONNECT procedure # 8—13
DISPOSE keyword *6-16, 7-4
.DLFNB {file deletion) routine® 7-11
Double precision
arithmetic cprion® 12-3
conversions ® 9-13
Dynamic storage area
See also Work file
affect on compiler speed® 12-5
aflocation for control blocks ® 8~2
computing size® 12-7
definition® 124
effact on compiler spesd ® 12-4, 12-5

2~index

Dynamic storage area {cont’d.)
effect on |/Q operations ® 124
increasing
with dynamic memory allocation® 12-7
without dynamic memory allocation® 127

EIS instruction set option® 12-2
ENDFILE (ENDF$) routine ® 7—14, 8-17
EQLSTS termination call® 6~12
ERR keyword® 6~16, 7-5, 8-3
$ERRLG lerror message log) routine ® 10—4
Error control® 46
byte® 10-2 10 10-3
message and traceback information ® 4-7
operating system reporting options * 12~-2
tabie ® 41
Error message text buffer®4-1, 10-5
Error processing® 10-2 10 10-8
message output 1o ierminal® 10-7
message utilities * 10-4, 10-5
routings ® 1-2
traceback chain® 11-12
user interface ® 10-7
Error recovery methods ® 1-2
ERTXT
resident library ® 13-4
ERTXT module* 12-89
Execution control subroutines ® 10-8
Execution-time errors ® 10-2
Exponentiation routines ® 11-2
Extended attributes block {(XAB}*8-1
EXTENDSIZE keyword® 6-16, 7-5, 8-3
EXTTSK
increasing value® 12-7

F

FO calls® 2-5

E77115S OTS option*® 12-8
with F77NER® 1212

F77CVF QTS option® 12-11
with F77EIS® 12--T1

F77EIS QTS option® 1210
with F77CVF#® 12-10

F77MAP OTS option ® 12-9

g

F77NER QTS option® 12-12
with F77115% 12-12
with F77NIO® 12-12
F77NIO OTS option® 12-12
wtih F77NER® 12-12
F77RAN OTS opticn® 12-13
FABRLS (block deallocation) procedure ® 8—12
FABROS (block allocation and initialization}
procedure ® 8-12
$FCHNL routine®*6--18
FCS (Fite Contral Services)
FCSFSL
See also Cluster library
See also Noncluster library
function ® 13-1
FCS-11
file descriptor block {FDB}® 7-1
File Descriptor Block (FDB) ®4-9
11O support®*7—1 10 7-15
Logical Unit Block {LUB}® 4-8 to 4-11
LUB control block format® B—1
FCS11M OTS option® 12-13
FCSFSL
OTS resident library® 13-1
FDB
See FCS-11, Fite Descriptor Block
FDBSET subroutine® 7—15, 8—-19
File access block (FAB)® 81
Fite Access Block (FAB)®4-13
File name
block processing routines— PARSE, .C5I1$1, and
.CSI52® 7-10
FILE or NAME keyword®6-16, 7-5, 8-3
Files
default close processing® 6-19
default open pracessing® 6-18
FCS-11 CLOSE processing®7—11
FCS-11 default open processing® 7—-2
name processing® 7-10
organization
indexed® 6-22
rolative ® 622
sequential * 521
RMS~11 close processing®8-13
RMS-11 default open processing® 8-3
RMS open utility routines ®* 8-12
system options ® 12-.2

FIND {FIND$) statement® 7—14, B—18
$FLDEF routine® 7-10
Floating-point processor
accurnulator refaerences ® 2-1
errors® 104
format conversion option® 12-3
FMTCVS routine ® 6-6, 9-9
$FNBST procedure®*8-12
$FNBST routine® 7~10
Format
code®9-1to 9-7
control ® 4-5 :
conversion error processing ®*9-14
conversion PSECTs*D-2
conversion routines ® 8—-10
Conversion routines® 9—13
default® 9-6
Hollerith®* 9-5
processing and conversion®9-1to 9-14
processing program sections {PSECTs) ® 9-7
processor ($FI0}® 9-8
run-time control ® 4—6
Formatted /O routines—$FIO, SLSTI, and $L.STO*
6-12
FORM keyword®6-16, 7-5, 8-3

$GETFILE routine® 6-18, 7-14
$GETK routine ®* 8-16
$GETR (direct input) routine® 7-12, 8-156
$GETS (seguential input) routine®7-11, B-14
Global patch value
specifying ®* 5-1, 5-2

GOTO statement support routines ®

11-10t0 11-11
GTDID routine ® 7--10

Hexadecimal conversions®9—11

f- and D-space
See also Virtual array

Index-3

I- and D-space {cont'd.)
definition®*5-1, 11-9
0TS resident library in® 5—1
See also Global patch value® 11-9
See also ID switch® 11-9
support®5-1, 65-2, 11-9
virtual arrays in®5-1, 11-9
ID switch
specifying® 5-1
Impure starage
allocation ($QTV option)® 12-2
area definitions ® A~1 to A—4
area linkage ® 3-2
logical unit control table ¢ 48
PSECT ($$A0TS)*D-1
work area® 4--1
Indexed files #6-22
Initialization processing routines ® -3
INITIALSIZE keyword ® 616, 7-5, 8-4
SINITIO routine® 67
Input/Output
auxiliary operations® 7—13, 8-17
control information ®* 4—4
conversion raytines ®* 9~10 t¢ 9-13
formatted® 6-12
initialization
argument masks ® 6-8
entries * 64
routine functions® 5-9
symbols ® 6-7
processor routines 612
related subroutines®7-14, 8-18
Internal support routines® 6~18
$$I0B1 user record buffer PSECT *D-2
SIOEXIT routine® 6-~18

e

Labeis

OTS routing® 2-8
List-directed input and output processors (BLSTH,
and $LSTO)* 6-12
List element transmission ®6-11
Logicaf unit
control table®4-8
device table PSECT ($$DEVT)eD-2
Logica! Unit Block {LUB)
FCS-11 support® 4—9
RMS—11 support®*4—11

MACRO-11 assembly language ®3-1, 10-8
Mathematical routines ® 1-2
MAXREC keyword*6-16, 7-5, 8—4

SNAMC global name® 11-12
Named offsets ® 41 ‘
described by functional groups ® 4~2 e
Noncluster library
See also FC5
See also OTS resident library
See ailsa RMS
building
with FCS® 13-8
with FCSFSL® 13-10
description® 13-2
limitations ® 13—2
support® 13-3
NOSPANBLOCKS keyword® 6~18, 7-5, 8-4

R—

Keyed /O specifier checking

See SCKKEY routine
Keyed record transfer* 8-16
Key specification ® 615

L

Label list format® 11-11

4-Index

£S0BF1 object-time format buffer PSECT*D-2
Object Time System (0TS)
agsembly macros® 12-3
definition ® 1-1
module size summary®*C—1to C-17
routine labels ® 2—-6
systern generation and tailoring ® 12-1
Qctal conversions®*9-11
OFNB$ macro*7-2

R

$OPENS procedure® 7-7, 8-9
Open processing
FCS-1187-2
RMS—-118-3
QOPEN statement ® 6-14, 7-2, 7-4, 7-8, 8-3,
8-10
argument blocks by keyword ® 6-15
Operating system options® 12-2
ORGANIZATION keyword ® 8—4
QTS
See Object Time System
$30TSD pure data PSECT @ D-1
$$0TSI instructions PSECT #D-1
QTS option
See also spacific options
reference list® 12-13
replacing standard modules® 12—-13
requiring floating-point processor® 1213
OTS resident library
See aiso Cluster library
See aiso Noncluster library
See also PAR option
See also Supervisor-meda library
building
options® 13-4 10 13-8
limitations ® 13—1
optimal use virtuat memory® 13-7
vectored® 13-3
$OTSVA globat symbol® 3-2

P

PAR option
See also APR {Active Page Register)
See also OTS resident library
specitying® 13-8
PAUSE statement® 10-6
PC calls®* 24
.POINT (FCS file positioning) routine ® 7—13
PRINT (file printing} routine® 7—11
PRINT statement®6-—13
Processor-defined functions ® 2-5
Processor general registers ® 2—1
Program termination control
See USEREX subroutine

PSECT
$ETSKP®4-4
$PUTR and $PUTRI (direct output} routines ® 7—12,
B-15
$PUTS (sequential output) routine ® 7-12, 8-14

QIO directive parameter block ® 4—1
Cuoted format strings ® 9-5

R4 calls® 2-4
READONLY keyword®6—17, 7-5, 8—4
READ statement® 8-13
Record formats ¢ 6-20
Record length®*6-21
Record processing routines®*6—13
RECORDSIZE keyword® 617, 7-5, 8-4
RECORDTYPE keyword®6-17, 75, 8—4
Register naming conventions ® 21
Register save and restore* 2—-3
See aiso $SAVPx and .$SAVR routines
Relative files ® 6-22 '
Resident library
See also OTS resident library
description® 13—1
in - and D-space® 11-9
REWIND (REWIE) routine®*7-14, 8-17
RLMEMS {deallocate storage)RMS procedure ® B2
RLMEMS {RMS storage deallocation) procedure ®
8-2
RMS (Record Management Services)
See aiso Cluster library
See also Noncluster library
See also Supervisor-mode library
function® 13-1
RMS~11
control block formats ® B-3
extended attributes block (XAB)® 8—1
Extended Attributes Block (XAB)® 4—11
file access block (FAB}®8-1
Fite Access Block (FAB)*4~11
1/O control blocks * 81
t/O support® 8—1

RMS—-11 (cont'd.)
Legical Unit Block (LUB}*4-11tc 4-13
Name Block ®# 4—11

RMS11M OTS option® 12-13

RMSQLS$ routine ® §-2

ROMEMS (RMS storage allocation) procedure ®

B-2

Run-time format compiler
See FMTCVS routine

Run-time forrmat control ® 4—-8

UNIT keyword ®#6-17, 7-6, 8-5

UNLOCK {UNLK$) routine * 8-18
SUPDATE (keyed rewrite} operation® 817
USEREX subroutine® 1-2, 10-8
USEROPEN parameter® 7-8, 8-10

v

$SAVPx routine ® 6--20
SAVR1 co-routine ® §-20
Sequential files®* 621
Sequential /O * 7-11
$SETGSA storage option #8-2
SHARED keyword®6-17, 7-5, 8-4
SHORT OTS option® 12--8
See also ERTXT
resident library ®* 13-4
Stack swap routines ® 11-4
STATUS or TYPE keyword®6-17, 7-6, 8-4
STOP statement ® 10-6
Subroutine call types*® 6-3
Supervisor-rmode library
See atso FCSFSL
OTS resident library ® 13-1
support® 13-3
Synchronous system trap ({SST)
global symbol $SST ® 10-7
Synchronous System Trap {SST)
vector address tabie $SST#4-2
System generation® 12-1
System subroutines ® 1-2

T

Task control® 4-2
Task initialization rowting ® 10~1
Temporary disk file
See Work file
TRAP instruction ® 10-2
$BTSKP task parameters PSECT #4-4, D-2
TYPE statement® 613

Variable format expression (VFE) flag® 9—1
Variable type register assignments ® 2-2
Virtual array

See also |- and D-space

control information®4-7

processing routines ® 4-2

processing support® 11-6, 11-8

Window block * 4.2

Work file
See also Dynamic storage area
affect on compiler space® 12—4
affect on compiler speed® 12—4
definition® 12-4
effect on compiler speaed® 12-5
ingreasing number of® 124

