PDP-11 FORTRAN-77
Language Reference Manual

Order Nurnber: AA-V193B-TK

August 1988

This document describes the syntar. and semantics of the FORTRAN-77 im-
plementation of PDP-11 FORTRAN. It does not, however, present information
specific to any operating system.

Revision/Update Information: This revised document supersedes PDP-11
FORTRAN-77 Language Reference Manual,
AA—V193A-TK.

Operating System and Version: RSX~11M Version 4.3
RSX-11M/M~PLUS Version 4.1
RSTS/E Version 9.6
VAX/VMS Version 4.7

Software Version: FORTRAN-77 Version 5.3

digital equipment corporation
maynard, massachusetts

First Printing. July 1983
Revised, August 1988

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furhished under. a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Copyright ©1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A,

The postpaid Reader's Comments forms at the end of this document request
the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of ’Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX

DEC/MMS IAS VAXcluster

DECnet MASSBUS VMS$
DECsystem~10 PDP VT
DECSYSTEM-20 PDT

DECUS RSTS — ™
DECwriter | RSX digital

ZK4339

Contents

PREFACE

Xv
CHAPTER 1 INTRODUCTION TO PDP-11 FORTRAN-77 1-1
1.4 LANGUAGE OVERVIEW 1-1
1.2 PROGRAM ELEMENTS 1-3
1.2.1 Statements 14
1.2.2 Comments 1-4
1.2.3 Character Set 1-8
1.3 FORMATTING A FORTRAN LINE 1-6
1.3.1 Character-per-Column Formatting 1-6
1.3.2 Tab-Character Formatting 1-8-
1.3.3 Statement Label Field 1-9
1.3.3.1 Comment Indicators ® 1-9
1.3.3.2 Debugging-Statement Indicator ® 1-10
1.34 Continuation Field 1-10
1.35 Statement Field 1-10
1.3.6 Sequence Number Field 1-11
1.4 PROGRAM UNIT STRUCTURE 1-11
1.5 INCLUDE STATEMENT

t-12

CHAPTER 2

2.1

2.2

2.3

24

25

2.6

2.7

STATEMENT COMPONENTS

SYMBOLIC NAMES

DATA TYPES

CONSTANTS

2.3.1 integer Constants

23.2 Real Constants

2.3.3 Double-Precision Constants
234 Complex Constants

235 QOctal and Hexadecimal Constants
2.3.6 Logicat Constants :
2.3.7 Character Constants

2.3.8 Hollerith Constants

VARIABLES

241 Data Typing by Specification
24.2 Data Typing by Implication
ARRAYS

251 Array Declarators

2.5.2 Subscripts

253 Array Storage

2.5.4 Data Type of an Array

255 Array References Without Subscripts
2.5.6 Adjustable Arrays

CHARACTER SUBSTRINGS

EXPRESSIONS
2.7.1 Arithmetic Expressions
2.7.1.1 Use of Parenthesas * 2—26
2.7.1.2 Data Type of an Arithmetic Expression * 2—27
2.7.2 Character Expressions
2.7.3 Relational Expressions
274 Logical Expressions

24
2-5
2-6
2-8
2-9
2-9
2-12
2-12
213

2-15
2-16
2-17

2-17
2-18
2-20
2-20
2-.22
2-22
2-22

2-23

2-24
2-24

2-29
2-29
2-31

AT,

CHAPTER 3 ASSIGNMENT STATEMENTS 31
31 ARITHMETIC ASSIGNMENT STATEMENT 31
3.2 LOGICAL ASSIGNMENT STATEMENT 34
G 3.3 CHARACTER ASSIGNMENT STATEMENT 34
34 ASSIGNING STATEMENT LABELS 3-6
CHAPTER 4 CONTROL STATEMENTS 4-1
4.1 GO TO STATEMENTS 4-2
. 4.1.1 Unconditional GO TO Statement 4-2
SR 4.1.2 Computed GO TO Statement 4-2
4.1.3 Assigned GO TO Statement 4-3
4.2 iF STATEMENTS 4-4
421 Arithmetic IF Statement 4-4
4.2.2 Logical IF Statement 4-5
4.2.3 Block IF Statements 4-6
4.2.3.1 Statement Biocks * 4-9
4232 Block IF Examples * 4-9
‘_,_\; 4.2.3.3 Nested Block IF Constructs # 4-11
oA

T 43 DO STATEMENT 4-12
' 4.3.1 DO Iteration Control 4-14
4.3.2 Nested DO Loops 4-15
433 Control Transfers in DO Loops 4-16
4.3.4 Extended Range 4-17
4.4 CONTINUE STATEMENT 4-18
4.5 CALL STATEMENT 4-19

4.6 RETURN STATEMENT

420

4.7 PAUSE STATEMENT 4-20
48 STOP STATEMENT 4-21
4.9 END STATEMENT 4-22
CHAPTER 5 SPECIFICATION STATEMENTS -1
5.1 IMPLICIT STATEMENT 5-2
52 TYPE DECLARATION STATEMENTS 5--3
5.2.1 Numeric Type Declaration Statements 5—4

5.2.2 Character Type Declaration Statements 54

53 DIMENSION STATEMENT 5-5
54 COMMON STATEMENT 5-6
55 VIRTUAL STATEMENT 5-9
5.5.1 Restrictions on Using Virtual Arays 5-10

55.2 Virtual Array References in Subpragrams 5-11

5.8 EQUIVALENCE STATEMENT b-12
5.6.1 Making Arrays Equivalent 5-14

5.6.2 Making Substrings Equivalent 5-16

5.6.3 Extending Common Blocks 6-20

5.7 SAVE STATEMENT 5-21
5.8 EXTERNAL STATEMENT 522
5.9 INTRINSIC STATEMENT 522
5.10 DATA STATEMENT 5-24

5.11 PARAMETER STATEMENT 5-27

5.12 PROGRAM STATEMENT 5-28

5.13 BLOCK DATA STATEMENT 5-29

CHAPTER 6 SUBPROGRAMS 6-1

6.1 SUBPROGRAM ARGUMENTS 61

6.1.1 Rules Governing Subprogram Arguments 6-2

6.1.2 Adjustable Arrays 6-3

6.1.3 Assumed-Size Dummy Arrays -5

6.2 USER-WRITTEN SUBPROGRAMS 6-6

— 6.2.1 Statement Functions 6-7

Soay 6.2.2 Function Subprograms 6-9
R 8.2.3 Subroutine Subprograms 6-11
6.2.4 ENTRY Statement 8-13

6.2.4.1 ENTRY in Function Subprograms * 6—14
6.2.4.2 ENTRY in Subroutine Subprograms * 6—16

6.3 INTRINSIC AND OTHER LIBRARY FUNCTIONS 6-186
6.3.1 Intrinsic Function References 6-17
6.3.2 Generic Function References 8-17
6.3.3 Intrinsic and Generic Function Usage 6-19
6.3.4 Character and Lexical Comparison Library Functions . 6-22

CHAPTER 7

vili

7.1

7.2

7.3

7.4

INPUT/OQUTPUT STATEMENTS

1/0 OVERVIEW
711 Records

7.1.2 Files

7.1.2.1 Sequential Organization ¢ 7—4
7.1.2.2 Relative Organization * 7-4
7.1.2.3 Indexed Organization ®* 74
internal Files

~N N
L.
b

Access Modes

7.1.4.1 Sequential Access ® 7-8
7.1.4.2 Direct Access * 7-6
7.1.43 Keyed Access ®* 7-8

I/0 STATEMENT COMPONENTS
7.2 The Controf List

7.2.1.1 Logical Unit Specifier » 7-8

Internal File Specifier * 7-8

Format Specifier » 7-9

Recard Specifier # 7-9

Key Specifier « 7-10
Transfer-of-Control Specifiers ® 7-13
7.2.2

Simple List » 7-14
Implied DO List ® 7-15 .

Mo & Do

MO RbMP R
NMI_:__A..-A..;_\

NNZ NNNNN

SYNTACTICAL RULES

THE READ STATEMENTS
7.4.1 The Sequential READ Statements

7-3
7-3

7-3

76
7-5

7-7
7~7

7-14

7-17

7-17

7-18

7.4.1.1 The Formatted Sequential READ Statement ® 7-19

7.4.1.2 The List-Directed READ Staterment ® 7—-19

7.4.1.3 The Unformatted Sequential READ Statement » 7-22

7.4.2 The Direct Access READ Statements

7-23

7.4.2.1 The Formatted Direct Access READ Statement ® 7-24

7.4.2.2 The Unformatted Direct Access READ

Swatement * 7-24
7.43 The Indexed READ Statements

7.4.3.1 The Formatted Indexed READ Statement ® 7-26

7-25

7.4.3.2 The Unformatted indexed READ Statement s 7-27

7.4.4 The Internal READ Statement

7-28

B

7.5

THE WRITE STATEMENTS 7-29
7.5.1 The Sequential WRITE $tatements 7-30
7.5.1.1 The Formatted Sequential WRITE Statement ¢ 7-31
7.5.1.2 The List-Directed WRITE Statement ® 7-32
7.5.1.3 The Unformatted Sequential WRITE Staterment ® 7-33
7.5.2 The Direct Access WRITE Statements ___ = 7-34
7.5.2.1 The Formatied Direct Access WRITE Statermnent » 7-356
7.5.2.2 The Unformatted Direct Access WRITE.
Statement * 7-35 ‘ ,
7.5.3 The Indexed WRITE Statements - 7-35
7.5.3.1 The Formatted Indexed WRITE Statement » 7-36
7.5.3.2 The Unformatted indexed WRITE Statement ® 7-37

1.5.4 The Internal WRITE Statement 7-37

7.6 THE REWRITE STATEMENT 7-38
7.6.1 The Indexed REWRITE Statement 7-38

7.6.1.1 The Formatted Indexed REWRITE Statement ® 7-39
7.6.1.2 The Unformatted indexed REWRITE Statement ® 7-40

7.7 THE ACCEPT STATEMENT 7-40
7.8 THE TYPE AND PRINT STATEMENTS 741
CHAPTER 8 FORMAT STATEMENTS 8-1
8.1 FIELD AND EDIT DESCRIPTORS 8-3
8.1.1 BN Edit Descriptor 8-4

8.1.2 BZ Edit Descriptor 8-4

8.1.3 SP Edit Descriptor 8-5

8.1.4 SS Edit Descriptor 8-5

8.1.5 S Edit Descriptor 8-5

8.1.6 | Field Descriptor 8-6

8.1.7 O Field Descriptor 8-7

8.1.8 Z Field Descriptor 8-8

8.1.9 F Field Descriptor 8-10

8.1.10 E Field Descriptor 8-12

8.1.11 D Field Descriptor 8-13

8.1.12 G Field Descriptor 814

8.2

8.3

84

8.7

8.8.3 Output Rules

8.1.13 L Field Descriptor

8.1.14 A Field Descriptor
8.1.15 H Field Descriptor

8.1.16 X Edit Descriptor

8.1.17 T Edit Descriptor

8.1.18 TL Edit Descriptor

8.1.19 TR Edit Descriptor

8.1.20 - Q Edit Descriptor

8.1.21 Dollar Sign Edit Descriptor

8.1.22 Colon Edit Descriptor

8.1.23 Scale Factor
8.1.24 Complex Data Editing

8.1.25 Repeat Counts and Group Repeat Counts

8.1.26 Default Field Descriptors
VARIABLE FORMAT EXPRESSIONS
CARRIAGE CONTROL CHARACTERS
FORMAT SPECIFICATION SEPARATORS
EXTERNAL FIELD SEPARATORS
RUN-TIME FORMATS

FORMAT CONTROL INTERACTION WITH INPUT/QUTPUT
LISTS

SUMMARY OF RULES FOR FORMAT STATEMENTS
8.8.1 General Rules

8.8.2 input Rules

8~-16
8-17
8-20
8~-21

8-22

8-23
8-23
8-23
8-24
8-25
8-25
8-27
8-28
8-29

8-30

8-31

8-32

8-33

8-36

8-37
8-39

8-41

N e

CHAPTER 9

9.1

9.2
9.3
9.4

AUXILIARY INPUT/QUTPUT STATEMENTS

OPEN STATEMENT
2.1.1 ACCESS

9.1.2 ASSOCIATEVARIABLE

9.1.3 BLANK

9.1.4 BLOCKSIZE

9.1.56 BUFFERCOUNT

8.1.6 CARRIAGECONTROL

9.1.7 DISPOSE

9.1.8 ERR
8.1.9 EXTENDSIZE
9.1.10 FILE

2.1.11 FORM

9.1.12 INITIALSIZE

9.1.13 KEY

9.1.14 MAXREC

9.1.16 NAME

9.1.16 NOSPANBLOCKS

9.1.17 ORGANIZATION

9.1.18 READONLY

9.1.19 RECL

9.1.20 RECORDSIZE

9.1.21 RECORDTYPE

9.1.22 SHARED

9.1.23 STATUS

9.1.24 TYPE

9.1.25 UNIT

9.1.26 USEROPEN

CLOSE STATEMENT
REWIND STATEMENT
BACKSPACE STATEMENT

DELETE STATEMENT
9.5.1 Sequential DELETE Statement

9.5.2 Direct DELETE Statement

9-1
97

9-9

9-9
910
9-10
911
9-11
9-11
9-12
9-~12
9-13
8-14
9-14
9-14
9-15
9-16
9-18
9-16
9-17
918
9-18
9-19
9-19
9-19

9-20

9-21

9-21

9-22
9-22
9-23

9.6 UNLOCK STATEMENT 9--23
9.7 ENDFILE STATEMENT 9-24
APPENDIX A ADDITIONAL LANGUAGE ELEMENTS A-1
A THE ENCODE AND DECODE STATEMENTS A1
A2 DEFINE FILE STATEMENT A-3
A3 FIND STATEMENT A-5
A4 PARAMETER STATEMENT A-B
A5 OCTAL FORMS OF INTEGER CONSTANTS A=7
A6 /NOF77 INTERPRETATION OF THE EXTERNAL STATEMENT A-7
APPENDIX B CHARACTER SETS B-1
B FORTRAN CHARACTER SET 8-1
B.2 ASCll CHARACTER SET B--2
B.3 RADIX-50 CONSTANTS AND CHARACTER SET B-3

APPENDIX C LANGUAGE SUMMARY Cc-1
C.1 EXPRESSION OPERATORS c-1
C2 STATEMENTS c-2
c.3 LIBRARY FUNCTIONS C-25
EXAMPLES
6-1 Multiple Functions in a Function Subprogram 6-156
6-2 Multiple Function Name Usage 6-20
FIGURES
1-1 FORTRAN Coding Form 1-7
1-2 Line Formatting Example 1-8
1-3 Required Order of Statements and Lines 1-12
2-1 Array Storage 2-21
4-1 Examples of Block IF Constructs 4-8
4-2 Nested DO Loops 4-16
4-3 Control Transfers and Extended Range 4.-18
5-1 Equivalence of Substrings 5-17
5-2 Equivalence of Character Arrays 519
5-3 Common Block 5--21
TABLES
2-1 Entities ldentified by Symbolic Names 2--2
2-2 Data Type Storage Requirements 2-5
2-3 Exponentiation Data Types 2-25
3-1 Conversion Rules for Assignment Statements 3-2
5-1 Equivalence of Array Storage 5-15
5-2 Equivalence of Arrays with Nonunity Lower Bounds 5-16
6-1 Types of User_Written Subprograms 6-7
6-2 Generic Function Name Summary 6-18

il

- =1

-2
7-3
8-1
8-2

8-4
9-1
9-2

B-1
1
c-2
c-3

Available 1/O Statements

Access Modes for Each Fila Organization

List-Directed Output Formats

Effect of Data Magnitude on G Formats

Default Field Widths

Carriage Control Characters

Summary of FORMAT Codes

OPEN Statement Keyword Values

Allowed Combinations of ACCESS Values and File
Organizations

Valid Access Modes for ORGANIZATION Keywords
ASCH Character Set ‘

Exprassion Operators

Statements

Generic and Intrinsic Functiohs

H

T

Preface

Manual Objectives

This manual describes the elements of PDP-i1 FORTRAN-77 and serves
as the PDP-11 FORTRAN-77 language reference manual for several

T operating systems that run on the PDP-11 family of computers. No

information specific to any operating system is presented here. For
information on a particular operating system, refer to the user’s guide for
that system or the PDP-11 FORTRAN-77 User’s Guide.

Intended Audience

Readers who have a basic understanding of the FORTRAN programming
language will detive maximum benefit from this manual.

Structure of this Document

This manual presents the information in ten chapters and three ap-
pendixes, as follows:

¢ Chapter 1 contains general information about how PDP-11
FORTRAN-77 adheres to standards and provides extensions to those
standards. It also discusses how to write a PDP-11 FORTRAN-77
program.

* Chapter 2 describes the data types, data items, and expressions that
can be used in PDP-11 FORTRAN-77 programs.

* Chapter 3 describes the assignment statement, Wthh defines the
values of data itemns.

* Chapter 4 describes specification statements, which are nonexe-
cutable statements. Specification statements allocate and initialize data
items and define various characteristics of symbolic names used in a
program.

e Chapter 5 describes control statements, which specify when and
where control transfers from one point in a program to another.

e Chapter 6 discusses subprograms (subroutines and functions), both
those written by users and those supplied by PDP-11 FORTRAN-77.

¢ Chapter 7 describes I/0O (input/output) statements, which physically
transfer data, both internally within memory and to and from output
storage devices.

* Chapter 8 describes formatting statements, which are used together
with formatted 1/0 statements.

e Chapter 9 describes auxiliary 1/0 statements, which manage files.

* Appendix A describes some statements and language features that
support programs written in older versions of FORTRAN.

» Appendix B summarizes the character sets supported by PDP-11 R
FORTRAN-77.

* Appendix C summarizes PDP-11 FORTRAN-77 features: opera-
tors used in expressions, statements, intrinsic functions and their
arguments, and system subroutines and bit manipulation functions.

Associated Documents

The following documents are of interest to PDP-11 FORTRAN-77
programmers:

e PDP-11 FORTRAN-77 User’s Guide
¢ PDP-11 FORTRAN-77 Object Time System Reference Manual
* PDP-11 FORTRAN-77 Installation Guide/Release Notes

Conventions Used in this Document

The following syntactic conventions are used in this manual:

All references to FORTRAN-77 denote PDP-11 FORTRAN-77, unless
otherwise specified.

Uppercase type is used in text to indicate system commands and
command options.

Lowercase letters are used in syntax specifications and examples
to indicate variables; anything that is not a variable (for example,
statement names and keywords) appears in uppercase.

Brackets ([]) indicate optional elements within statements.

Braces ({}) are used to enclose lists from which one element is 1o be
chosen.

Horizontal ellipses (. ..) indicate that the preceding item(s) can be
repeated one or more times.

“Real” (lowercase) is used to refer to the REAL*4 (REAL), REAL+8 data
types as a group; likewise, “complex” (lowercase) is used to refer tc.
COMPLEX»*8; “logical” (lowercase) is used to refer to the LOGICAL#2
and LOGICAL=4 data types as a group; and “integer” (lowercase)

is used to refer to the INTEGER*2 and INTEGER#*4 data types as a
group.

Extensions to the FORTRAN-77 standard are printed in blue.

In addition, the following notations denote special nonprinting characters:

Tab character <TAB>

Space character A

Chapter 1

~ Introduction to PDP-11 FORTRAN-77

1.1 lLanguage Overview

The PDP-11 FORTRAN-77 language comprises the American National

Standard FORTRAN-77 subset language (ANSI X3.9-1978), DIGITAL-
e supplied enhancements to the FORTRAN-77 subset standard, and certain
Lo features of full-language FORTRAN as defined by the ANSI Standard. For
information on how to obtain a copy of the ANSI standard, write to the
American National Standards Institute, Inc,, 1430 Broadway, New York,
New York 10018,

The DIGITAL-supplied enhancements to the FORTRAN-77 subset stan-
dard follow:

° You can use any arithmetic expression as an array subscript. If the
expression is not an integer type, it is converted to integer type.

* Mixed-mode expressions can contain elements of any data type except
character.

o The LOGICAL*1 and LOGICAL=2 data types have been added.

¢ The IMPLICIT statement redefines the implied data type of symbolic
names.

o The following input/output (I/O) statements have been added:

Introduction to PDP-11 FORTRAN-77 1-1

ACCEPT

TYPE Device-oriented 1/0

PRINT

READ {ur)

WRITE (u'r) Unformatted direct-access 1/0

FIND {u'r)

READ (u'r,imt)

WRITE {u'r,fmt) Formatted direct-access 1/0

DEFINE FILE File control and attribute specification
ENCODE Formatted data conversion in memory
DECODE

READ (u,fkey)

READ (ukey} Indexed 1/C

REWRITE .

DELETE Record control and update

UNLOCK

e You can include an explanatory comment on the same line as any
" statement, These comments begin with an exclamation point (!).

° You can include debugging statements in.a program by placing the
letter D in column 1. These statements are compiled only when you
specify a compiler command qualifier; otherwise, they are treated as
comments.

e You can use any arithmetic expression as the control parameter in the
computed GO TO statement. :

e Virtual arrays provide large data areas outside of normal program
address space.

® You can include the specification ERR=s in any OPEN, CLOSE, FIND,
DELETE, UNLOCK, BACKSPACE, REWIND, or ENDFILE statement
to transfer control to the statement specified by s when an error
condition occurs.

e The INCLUDE statement incorporates FORTRAN statements from a
separate file into a FORTRAN program during compilation.

e The INTEGER*4 data type provides a sign bit and 31 data bits.

o You can use octal and hexadecimal constants in place of any numetic
constants.

© You can use character substrings and all the character intrinsic func-
tions defined in the full language except CHAR.

1=2 |Introduction to PDP-11 FORTRAN-77

T

In addition, PDP-11 FORTRAN-77 includes the following features of
- full-language FORTRAN as defined by the ANSI Standard:

s Double-precision and complex data types

» Function subprograms, including LEN, ICHAR, and INDEX

* Exponentiation forms, including double-precision

» Format edit descriptors, including S,SP,SS,T,TL, and TR

» Generic function selection based on argument data type for
FORTRAN-defined functions

* Use of a real or double-precision variable as a DO statement control
variable

* Use of any arithmetic expression as the initial value, increment, or
final value in a DO statement

» (CLOSE and OPEN statements

‘e Use of the specification ERR=s in READ or WRITE statements to
transfer control to the statement specified by s when an error occurs

e Use of list-directed I/0 to perform formatted 1/O without a format
specification

* Use of constants and expressions in the 1/0 lists of WRITE, REWRITE,
TYPE, and PRINT statements

* Specification of lower bounds for array dimensions in array declarators

* Use of ENTRY statements in SUBROUTINE and FUNCTION subpro-
grams to define multiple entry points

® Use of PARAMETER staternents to assign symbolic names to constant
values

1.2 Pr;gram Elements

All FORTRAN programs consist of statements and optional comments.
The statements are organized into program units. A program unit is a
sequence of statements that defines a computing procedure and terminates
with an END statement. A program unit can be either a main program or
a subprogram. An executable prograrn consists of one main program and
one or more optional subprograms.

Introdustion to PDP-11 FORTRAN-77 1-3

1.2.1 Statements

Statements are grouped into two general classes: executable and nonex-
ecutable. Exscutable statements specify the actions of a program; nonex-
ecutable statements describe data arrangement and characteristics, and
provide editing and data-conversion information,

Statements are divided into physical sections called lines. A line is a string
of up to 80 characters. If a statement is too long to fit on one line, it can
be continued on one or more additional lines, called continuation lines.

A continuation line is identified by a continuation character in the sixth
column of that line. (For further information on continuation characters,
see Section 1.3.4.)

You can identify a statement with a label to enable other statements

to reference it: that is, either to transfer control to it or to obtain the
information it contains., A staternent label is an integer number placed
in the first five columns of a statement’s initial line. Any statement can
have a label; however, only executable and FORMAT statements can be
referenced with a label.

i.z.z Comments

1-4

Comments do not affect program processing in any way; they are merely
a documentation aid. You can, and are encouraged to, use comments
freely to describe the actions of a program, to identify program sections
and processes, and to facilitate the reading of source-program listings. The
letter C or an asterisk {*) in the first column of a source line identifies that
line as a comment. In addition, if you place an exclamation point (!) in
any column of a line excepi column 6, the rest of that line is treated as a
comment. (However, if you place an exclamation point in column 6 of a
line, that line will be treated as a continuation line.)

Any printable character can appear in a comment.

introduction te PDP-11 FORTRAN-77

1.2.3 Character Set

The PDP-11 FORTRAN-77 character set consists of:

1. Al uppercase and lowercase letters (A through Z, a through z)
2. The numerals 0 through 9
3. The special characters listed below:

Character Name
A or (TAB| Space or tab
= Equal sign

+ Pius sign

- ~ Minus sign

* Asterisk

/ Slash

(Left parenthesis
) Right parenthesis
. Comma

Period
Apostrophe
Quotation mark

$ Dollar sign

T Exclamation peint

Colon
- < Left angle bracket
> Right angle bracket

Other printable ASCII characters can appear in a FORTRAN statement
only as part of a character or Hollerith constant (see Appendix B for a list
of printable characters).

Except in character and Hollerith constants, the compiler makes no
distinction between uppercase and lowercase letters.

Introduction to PDP-11 FORTRAN-77 1-6

1.3 Formatting a Fortran Line

Every FORTRAN line has four fields:

* A statement label field

¢ A continuation indicator field
¢ A gtatement field

> A sequence number field

You can format a FORTRAN line in two ways: 1) by typing one character
per column {character-per-column formatting); or 2) by using, in conjunc-
tion with character-per-column formatting, the tab character (tab-character
formatting) to get from field to field. You can use character-per-column
formatting when punching cards, writing on a coding form, or typing on
a terminal keyboard; you can use tab-character formatting, however, only
when you are typing at a terminal keyboard.

1.3.1 Character-per-Column Formatting

As shown in Figure 1-1, a FORTRAN line is divided into four separate

fields: a statement label, a continuation indicator, statement text, and a

sequence number. (Sections 1.3.3 through 1.3.6 describe the use of each
. field.)

Each column represents a single space, into which can be placed a single
character. To get from one field to another, you type each space individa-
ally until you arrive at the correct position. For example, in Figure 1-1, to
enter the comment, after typing ‘C’ you press the space bar five times and
then begin typing the comment.

1-6 Introduction to PBP-11 FORTRAN-77

Fy
3

Figure 1-1: FORTRAN Coding Form

EORTRAN L:mm BaT gt —l
OGO I omp J
FORTRAN STATEMENT IENTIECATION
AR A ls'.|?Ill'lﬂii)!!!?‘?5!!7?1[””)#”l’!lﬁ!xl?ﬂalﬂ“l?lkloﬁh"lluﬂaliiw’! E!ﬂn"
- [HIS, PROGRAM CALCULATES PRIME NUMBERS FROM 11 T0O 50
10, 1=011 5.0 s
=1 —
B oy .
A
LA e e e e ——————— ——
L= lsd., i e - -
L lfB=A-L e v
LF J8) 5. 10,3 —
35 D F (I LT . SQRYT _(FLOAT {(11)) GO TO 4
WYPE 105 1

| FONMIINUE s aanaa v s

Pt e e

|05 | JFORMAT (14,15 PRIME.)

D
— - —.——
— ———— bbbt b o o bk e} 4y g & b e
-
— ER . — et e e g e m— e b b e v g .
Lac Rt + o+ . e L e e o SEESE S AT BT
133 4 3R] T RS W IS0 122D N TN 17 TE N B 319 1A) b M I Y Wi 7 St 2 1 L PPy e
G3 DIQITAL EQUIPMENT CORPORATION « MAYNARD, MASEACHMUBETYS

ZK-203-81

Field Column(s)
Statement label 1 through 5
Continuation indicator 6

Statement ‘ 7 through 72
Sequence number 73 through 80

Introduction to PDP-11 FORTRAN-77 1-7

1.3.2 Tab-Theracter Fermaiting

You can press the tab character to move to the continuation-indicator
field from the statement label field, or to the statement fieid from the
continuation-character field; however, you cannot move to the sequence-
number field by using the tab. Figure 1-2 compares keystrokes in lines
typed with tab-character formatting with those in lines typed with
character-per-column formatting.

Fipure 1—2: Line Formatiing Example

Farmat Using TAB Character Character-per-Column Format

112 3 4 5167 8 @ 1011 12 13 14 12116 1718 19 20

¢ @& FIRST VALUE c] Flilr[s]|T viaiL |JujE

W@ = |+ 5K + 10} blob=| {o] t+] |s]-|x| |+

G 1 LM L] m

@B VAL = I+2 Pviatie! [=] life]2 s

ZK-204-81
ety

In tab-character formatting, the statement-label field consists of the
characters you type before you type the first tab character; however, the
statement-labe! field cannot have maore than five characters.

After you type the first tab character, you can enter either a continuation-
indicator field or a statement field.

To enter a continuation-indicator field, you type any digit; the statement
field then consists of all the characters you type after this digit, to the end
of the line.

1-8 introduction to POP-11 FORTRAN-17

To enter a statement field without entering a continuation-indicator
field, you simply type the statement immediately after the first tab. (No
FORTRAN statement can start with a digit.)

Many text editors and terminals advance the terminal print carriage to a
predefined print position when you type the TAB key. However, this ac-
tion is not related to the PDP-11 FORTRAN-77 compiler’s interpretation
of the tab character described above.

R If you use the tab character to improve the legibility of a FORTRAN

S statement, the spaces introduced into the statement are ignored by the
compiler but are printed in a source listing. Tab characters in a statement
field are ignored by the compiler as well. In a source listing, a tab causes
the character following the tab to be printed at the next tab stop (which is
jocated at columns 9, 17, 25, 33, and so forth).

1.3.3 Statement Lahel Fiold

AT A statement label, or number, consists of up to five decimal digits in the
S statement-label field of a statement’s initial line. Spaces and leading Os are
T ignored. (An all-zero stateraent label is invalid.)

Any statement referenced by another statement must have a label. No
two statements within a program unit can have the same label.

You can use two special indicators in the first column of a label field:
the comment indicator and the debugging-statement indicator. These
indicators are described in Sections 1.3.3.1 and 1.3.3.2.

The statement label field of a continuation line must be blank.

1.3.3.1 ' Comment Indicators

The letter C or an asterisk (*) in column 1 of a line indicates that the
entire line is a comment. An exclamation point (!} in any column of a line
except column 6 indicates that the remainder of the line is a comment. All
blanks indicate a blank comment,

The compiler prints a comment line in a source-program listing and then
ignores it.

Introduction to PDP-11 FORTRAN-77 1-9

1.3.3.2 Behbugging-Statement indicator

The letter D in column 1 of a line designates the contents of the statement
field as a debugging statement. A debugging-statement line can have

a statement label in the four remaining columns of the label field. If

a debugging statement is continued to one or more other lines, every
continuation line must have a D in column 1 and a continuation indicator
in column 6.

Debugging statements are not compiled unless you use a compiler com-
mand to specify that they be compiled. If you do not specify debugging-
statement compiiation, any debugging statements are treated as comments,
For a description of the available compilation commands, refer to the
PDP-11 FORTRAN-77 User's Guide.

1.3.4 Continuation Field

A continuation indicator is any character (except 0 or space) in column 6
of a line, or any digit (except 0) after the first tab. .

A statement can be divided into continuation lines at any point.

The compiler considers the characters after the continuation character to
follow the last character of the previous line, as if there were no physical
breaks at that point. If a continuation indicator is 0, the compiler considers
the line containing it to be the first line of a statement.

Comment lines cannot be continued. They can, however, occur between
a statement’s initial line and its continuation line or lines, and between
successive continuation lines.

1.3.5 Statement Field

The text of a statement is placed in a statement field. Because the compiler
ignores all tab characters and spaces in a statement field except those in
Hollerith constants and alphanumeric literals, you can space the text in a
statement field in any way you desire to maximize legibility. The use of
tabs for spacing is discussed in Section 1.3.2.

NOTE

If a line extends beyond character position 72, the text following
position 72 is ignored; no warning message is printed.

1~-10 Introduction to POP-11 FORTRAN-77

1.2.6 Seguence Mumber Field

A sequence number or other identifying information can appear in
columns 73 through 80 of any line; the compiler ignores characters in
this field.

Remember that you cannot move to the sequence-number field by tab-
character formatting,.

1.4 Program Unit Structure

Figure 1-3 shows the allowed order of statements in a PDP-11

FORTRAN-77 program unit. In this figure, vertical lines separate state-

ment types that may be interspersed with one another—that is, occur

in any order relative to each other. For example, comment lines and

FORMAT statements may occur before, between, or after DATA state-

ments and executable statements (see next paragraph) in the body of a
AT program. Horizontal lines indicate statement types that cannot be in-
. terspersed but must occur in a prescribed order within a program. For
example, an IMPLICIT or IMPLICIT NONE statement cannot occur before
a PROGRAM statement or after an END statement.

The “executable” statements mentioned in Figure 1-3 include: assignment,
ASSIGN, GOTO, arithmetic IF, logical IF, block IF, ELSE IF, ELSE, ENDIF,
CONTINUE, STOP, PAUSE, DO, READ, WRITE, PRINT, TYPE, ACCEPT,
FIND, DELETE, REWRITE, BACKSPACE, ENDFILE, REWIND, UNLOCK,
OPEN, CLOSE, CALL, RETURN, and END.

The “specification” statements mentioned in Figure 1-3 include:
=7 DIMENSION, COMMON, EQUIVALENCE, EXTERNAL, INTRINSIC,
S SAVE, and type declaration.

Introduction to PDP-11 FORTRAN-77 1-11

Figure 1-3:

Required Order of Statements and Lines

PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA Statements

IMPLICIT
Statements
PARAMETER
Other Statements
Comment Specification
Lines Statements
and FO:nI\:AT
INCLUDE
Staterments ENTRY Statement Function
Statements DATA " Definitions
Statements
Executable
Statements
END Line

ZK-205-81

1.5 INCLUDE Statement

1-12

The IN_CLUDE statement specifies that the contents of a designated file
are to be incorporated into a compilation directly following the statement.
INCLUDE has no effect on program execution.

The INCLUDE statement has the form:

INCLUDE ‘filespecl/[NO]LIST]®

Introduction ts PDP-1% FORTRAN-77

’/‘—1\\

fTlespec

A file specification in the form of a character constant string that represents
the file to be included in a compilation. This file specification must be
acceptable to the operating system. (See the PDP-11 FORTRAN-77 User’s
Guide for the form of a file specification.)

The /LIST qualifier specifies that the statements in the designated file

are to be included in the compilation source listing; an asterisk {«) pre-
cedes each statement included. The /NOLIST qualifier specifies that the
statements in the designated file are not to be included in the compilation
source listing. The defauit is /LIST; that is, the compiler assumes /LIST if
you do not specify either qualifier.

When the compiler encounters an INCLUDE statement, it stops reading
statements from the current file and begins reading statements from the
designated, or included, file. When it reaches the end of this file, the
compiler reads the next statement after the INCLUDE statement.

An INCLUDE statement can be contained in an included file.

Arn included file cannot begin with a continuation line; each statement
included must be completely contained within a single file.

The INCLUDE statement can appear anywhere that a comment line can
appear.

Any PDP-11 FORTRAN-77 statement can appear in an included file;
however, all the statements in an included file, when combined with the
other statements in a compilation, must satisfy the requirements shown in
Figure 1-3.

In the following example, the included file COMMON.FTN defines the
size of the blank COMMON block and the size of the arrays X, Y, and Z.

Main Program File File COMMON.FTN
INCLUDE *'COMMON.FTN' PARAMETER (M = 10Q)
DIMENSIDN Z(M) COMMON X(M) Y (M)
CALL CUBE
Do 5, I={.M

5 Z(I) = X(I)+SGRT(Y(I))

SUBROUTINE CUBE
INCLUDE ‘COMMON . FTH'
Do 10, I=1.M

10 X(I) = Y(I)#=3
RETURN
END

Introduction to PDP-11 FORTRAN-77 1-13

Chapter 2
Statement Components

PDP-11 FORTRAN-77 statements are composed of five basic components:

s Constants—fixed values, such as numbers. These values cannot be
changed by program statements.

* Variables—symbolic names that represent stored values. These values
can be changed by program statements.

* Arrays—groups of values that are stored contiguously and can be
referenced individually by a symbolic name with a subscript, or
collectively by a symbolic name only. Individual values are called
array elements.

¢ Function references—function names optionally followed by lists of
arguments. A function is a program unit that performs a specified
computation (for example, computing a trigonometric sine) using
arguments supplied by a function reference; the resulting value is then
used in place of the function reference,

» Expressions—combinations of constants, variables, array elements,
function references, and operators. An operator is a unique symbol
for a particular operation (such as multiplication) that obtains a single
result.

Variables, arrays, and functions have symbolic names. A symbolic name
is a string of characters that identifies an entity in a program.

Constants, variables, arrays, expressions, and functions can have the

following data types:
* Logical
* Integer

® Real

Statement Components 2-1

* Double-precision
* Complex

* Character {except for functions)

Symbolic names, data types, and all the statement components except
function references are discussed in this chapter; function references are
discussed in Chapter 6.

2.1 Symboelic Names

Symbolic names identify the entities that can appear in a program unit.

The entities that symbolic names identify are listed in Table 21, where
the column labelled “Typed” indicates whether an entity has a data type
(such as real or integer). (Data types are discussed in Section 2.2.)

Table 2-1: Entities Identified hy Symbolic Names

Entity Typed
Variables Yes
Arrays Yes
Statement functions Yes
Intrinsic funciions Yes
Function subprograms Yes
Subroutine subprograms No
Common blocks No
Main programs No
Block data subprograms No
Dummy arguments Yes
Function entry points Yes
Subroutine entry points No
Parameter constants Yes

A symbolic name is a string of characters (letters and digits) totaling a
maximum of six; the first character must be a letter. If more than six
characters are used, the system will automatically truncate the name to six
characters during compilation.

2-2 Statement Components

Examples of valid and invalid symbolic names are:

Valid Invalid Explanation
NUMBER 5Q Begins with a numeral
K9 B.4 Contains a special character

iy Symbolic names must be unique within a program unit—that is, the same
A symbolic name cannot be used to identify two or more entities in the same
Sl ‘ program unit.

in executable programs consisting of two or more program units, a sym-
bolic name for any of the following entities must be unique throughout all
the program units:

* Intrinsic functions

* Function subprograms

¢ Subroutine subprograms

s Common blocks

* Main programs

* Block data subprograms
* Function entries

* Subroutine entries

Therefore if, for example, one of your program units contains a function
named UMP, you cannot use UMP as the symbolic name for any other
entity anywhere else in your program, even in a completely separate
program unit.

2.2 Data Types

Each basic statement component in a PDP-11 FORTRAN-77 program
(constant, variable, array, function reference, or expression) has assighed
to it one of six data types that specifies the kind of value it can represent.
The data types and the values they represent are:

* Integer—for a whole number

* Real—for a decimal number: that is, a whole number, a decimal
fraction, or a combination of a whole number and a decimal fraction

Statement Compongnts 2-3

i
i

* Double precision—for a real number with more than twice as many
maximum significant digits as real

s Complex—for a pair of real numbers representing a complex number:
the first value representing the real part, the second representing the

_ imaginary part

* Logical—for the value true or the value false

¢ Character—for a sequence of characters

The data type of a basic component can be assigned in one of three ways:
it can be inherent in the component’s construction (as in constants); it
can be implied by a naming convention (with or without an IMPLICIT
statement); or it can be explicitly declared.

Whenever a value of one data type is converted to a value of another
type, the conversion is performed according to the rules for assignment
statements (see Table 3-1).

For the purpose of facilitating control of processing performance and

memory requirements, PDP-11 FORTRAN-77 provides several data types

(or data type variations) in addition to the six basic data types listed ot
above. These data types are included in Table 2-2, which lists all PDP-11 ...,
FORTRAN-77 data types, as well as the amount of memory each data —
type requires for storage.

The form *n appended to a data type name is called a data-type length
~ specifier.

2.3 Constants

A constant represents a fixed value and can be a number, the logical o
values true or false, or a character string. R

Octal, hexadecimal, and Hollerith constants have no data type; these
constants assume the data type prescribed by the context in which they
appear {see Section 2.3.8.).

2-4 Statement Components

Table 2—2: Data Type Storage Requirements

Data Type Storage Requirements
BYTE la
LOGICAL 2ordb
LOGICAL=1 la
LOGICAL#*2 2
LOGICAL+4 4
£y INTEGER 2 or 4b
o INTEGER«2 2
INTEGER»4 4
REAL 4
REAL=*4 4
REAL»*8 8
DOUBLE PRECISION 8
COMPLEX 8
COMPLEX*§ 8
CHARACTER*len len ¢

a. The 1-byte storage area can contain the logical values true or false, a
single character, or integers in the range -128 to +127.

b. Either two or four bytes are allocated depending on the compiler
command qualifier specified. The default allocation is two bytes.
When four bytes are allocated, all four bytes are used for computation.

¢. The value of len is the number of characters specified; this number
can be any integer within the range 1 to 255.

BYTE and LOGICAL=1 are synonymous.

23.1 lntoger Constants

An integer constant is a whole number with no decxmal point. It can have
a leading sign and is interpreted as a decunal number. An integer constant
has the form:

snn

Statement Components 2-5

s
An optional sign.

nn
A string of numeric characters.
Leading Os, if any, are ignored.

A minus sign must appear before a negative integer constant; a plus sign
is optional before a positive constant {an unsigned constant is assumed to
be positive).

Except for the sign, an integer constant cannot contain a character other
than the numerals 0 through 9.

The absolute value of an integer constant cannot be greater than
2147483647,

Examples of valid and invalid integer constants are:

Valid Invalid Explanation
0 99999999993 Too large
-127 3.14 Decimal point not allowed
+32123 32,767 Comma not allowed

If the value of a constant is within the range -32768 to +32767, this value
represents a 2-byte signed quantity and is treated as an INTEGER#2 data
type; if a value is outside this range, it represents a 4-byte signed quantity
and is treated as an INTEGER»4 data type.

2.3.2 Real Constants

A real constant is a number with a decimal point and can occur in any one
of three forms:

& As a basic real constant
* As a basic real constant followed by a decimal exponent
* As an integer constant followed by a decimal exponent

2-6 Statement Components

|"_
L3S

A basic real constant is a string of decimal digits in one of three formats:

s.nn .
8nn.nn
snn.

s
An optional sign.

nn
A string of decimal digits.

The decimal point can appear anywhere in the string. The number of
digits is not limited, but only the leftmost 7 digits are significant. Leading
0s (Os to the left of the first nonzero digit) are ignored in counting the
leftmost 7 digits; therefore, in the constant 0.00001234567, all of the
nonzero digits are significant, but none of the 0s is significant.

A decimal exponent has the form:
Esnn

s
An optional sign.

nn
An integer constant.

The exponent represents a power of 10 by which the preceding real or
integer constant is to be multiplied; for example, 1.0E6 represents the
value 1.0 * 10 #+ 6.

A real constant occupies four bytes and is interpreted as a real number
with a precision, typically, of seven decimal digits.

A minus sign must appear between the letter E and a negative exponent; a
plus sign is optional between the letter E and a positive exponent.

Except for algebraic signs and a decimal point, and the letter E if used, a
real constant cannot contain a character other than the numerals 0 through
9.

If the letter E appears in a real constant, an integer constant exponent
must follow it. The exponent cannot be omitted; however, it can be 0.

The magnitude of a nonzero real constant cannot be smaller than approxi-
mately 0.29E-38 or greater than approximately 1.7E38.

Statement Components 2-7

Examples of valid and invalid real constants are:

Valid Invalid Explanation
3.14159 1,234,567 Commas not aliowed
621712. 325E-45 Too small
-.00127 -47.E47 Too large
+5.0E3 100 Decimal point missing
2E-3 $25.00 Special character not allowed b

2.3.3 Double-Precision Constants

A double-precision constant is a basic real constant or an integer constant
followed by a decimal exponent of the form:

Dann

&
An optional sign.

nn
An integer constant.

A double-precision constant occupies eight bytes and is interpreted as a
real number with a precision, typically, of 16 decimal digits. The number
of digits-that precede the exponent is not limited, but only the leftmost 16
digits are significant.

A minus sign must appear before a negative double-precision constant; a

plus sign is optional before a positive constant. A minus sign must appear . -

between the letter D and a negative exponent; a plus sign is optional
between the letter D and a positive exponent.

The exponent following the letter D cannot be omitted; however, it can be

The magnitude of a nonzero double-precision constant cannot be smaller
than approximately 0.29D-38 or greater than approximately 1.7D38.

2-8 Statement Components

Examples of valid and invalid double-precision constants are:

Valid Invalid Explanation
1234567890D+5 1234567890045 Too large
+2.71828182846182D00 1234567890.0D-89 Too small
-72.5D-15 +2.7182812846182 No Dsnn present

ST 1D0 This is a valid real constant

2.3.4 Complex Constants

A complex constant is a pair of integer or real constants separated by a
comma and enclosed in parentheses. The first constant represents the real
part of a complex number, the second constant the imaginary part.

A complex constant has the form:

{rc,rc)

rc
A real constant.

The parentheses and comma are part of the complex constant and are
required. See Section 2.3.2 for the rules for forming real constants.

A complex constant occupies eight bytes and is interpreted as a complex
number.

Examples of valid and invalid complex constants are:

< Valid Invalid Explanation
(1.70391,-1.70391) {1.23) Second real constant is missing
(+12739E3,0.) (1.0,1.0D0) Double-precision constants are not
aliowed

2.3.6 Oetsi and Henzdovimatl Constante

Octal and hexadecimal constants are alternative ways to represent numeric
constants; you can use them wherever numeric constants are allowed.

Staternent Compenents 2-9

An octal constant is an unsigned string of octal digits enclosed by apos-
trophes and followed by the alphabetic character O. An octal constant has
the form:

‘clc2¢3. . .cn'0
€
A digit in the range 0 to 7,

A hexadecimal constant is an unsigned string of hexadecimal digits
enclosed by apostrophes and followed by the alphabetic character X. A
hexadecimal constant has the form:

'¢ic2¢3. . .en'X

c
A hexadecimal digit in the range 0 to 9, or a letter in the range Ato For a
to f.

Leading zeros are ignored in octal and hexadecimal constants. You can
specify up to 32 bits (11 octal digits, 8 hexadecimal digits).

Examples of valid and invalid octal constants are:

WValid Invalid Explanation

07737'0C ‘'7782°0 Invalid character

10 7772'Q No initial apostrophe
0737 No O after second apostrophe
‘-4367 Signed

Examples of valid and invalid hexadecimal constants are:

Valid Invalid Explanation

‘AP9730°X '999.°X Invalid character

‘FFABC'X "FoX No apostrophe before the X
'~ACF4’ Signed

Octal and hexadecimal constants are typeless numeric constants; they
assume data types that are based on the way they are used (and thus they
are not converted before use), as follows: _

2-10 Statement Components

When the constant is used with a binary operator, including the
assignment operator, the data type of the constant is the data type of
the other operand. For example:

Data Type of
Statement Constant Length of Constant
REAL»8 DOUBLE
INTEGER#4 N
RAPHA = "99AF2'X REAL«4 4
JCOUNT = ICOUNT + 77770 INTEGER=2 2
DOUBLE = "FFF99A’X REAL+8 8
IF(N.EQ."123'0) GO TO 10 INTEGER=4 4

When a spedific data type—generally integer—is required, this type is
assumed for the constant. For example:

Data Type of
Statement Consiant Length: of Constant
Y(IXFY('15'0)+3. INTEGER=2 2

When the constant is used as an actual argument, no data type is
assumed; however, a length of two bytes is always used. For example:

Data Type of
Statement Constant Length of Constant
CALL APAC('34BC'x) None 2

When the constant is used in any other context, INTEGER=2 data type
is assumed. For example:

Data Type of
Statement Constant Length of Constant
IFCAF77'X) 1,2,3 INTEGER#2 2
I="7777'0 — "A39'X INTEGER=2 2
] = NOT.73777'0 INTEGER=2 2

* An octal or hexadecimal constant actually specifies as much as 4 bytes of
data. When the data type implies that the length of the constant is more

Statement Components 2-11

than the number of digits specified, the leftmost digits have a value of
zero, When the data type implies that the length of the constant is less
than the number of digits specified, the constant is truncated on the left.
An error results if any nonzero digits are truncated. Table 2-2 lists the
number of bytes that each data type requires.

2.38 Logical Constants

A logical constant specifies true or false; therefore, only the following two
logical constants are possible: '

-TRUE.
FALSE.

The delimiting periods are a required part of each constant.

2.3.7 Character Constants

A character constant is a string of printable ASCII characters enclosed by
apostrophes.

A character constant has the form:

'elc2e3. . .cn!

c
A printable character.

Both delimiting apostrophes must be present.

The value of a character constant is the string of characters between
the delimiting apostrophes. The value does not include the delimiting
apostrophes, but does include all spaces or tabs within the apostrophes.

Within a character constant, the apostrophe character is represented by
two consecutive apostrophes (with no space or other character between
them).

The length of the character constant is the number of characters between
the delimiting apostrophes (two consecutive internal apostrophes counting
as one character). The length of a character constant must be in the range
1 through 255.

2-12 Statement Components

Examples of valid and invalid character constants are:

Valid Invalid Explanation

"WHAT? "HEADINGS No trailing apostrophe _

"TODAY"S DATE IS’ ” Character constant must
contain at least one character

'HE SAID, “HELLO™ “NOW OR NEVER” Quotation marks cannot be

used in place of apostrophes

If a character constant appears in a numeric context (for example, as the
expression on the right side of an arithmetic assignment statement), it is
considered a Hollerith constant (see Section 2.3.8)).

2.3.8 Helierith Constants

A Hollerith constant is a string of printable characters preceded by a
character count and the letter H.

A Hollerith constant has the form:

nHcic2¢3. ..¢cn

n

An unsigned, nonzero integer constant stating the number of characters in
the string (including spaces and tabs).

c
A printable character.

The maximum number of characters is 255.

Hollerith constants are stored as byte strings, one character per byte.

Hollerith constants have no data type; they assume a numeric data type
according to the context in which they are used. Hollerith constants
cannot assume a character data type and cannot be used where a character
value is expected.

Examples of valid and invalid Hollerith constants are:

Statement Components 2-13

Valid Invalid Explanation
16HTODAY'S DATE IS: 3HABCD Wrong number of characters
1HB

When Hollerith constants are used in numeric expressions, they assume a
data type according to the following rules:

¢ When the constant is used with a binary operator, including the
assignment operator, the data type of the constant is the data type of
the other operand. For example:

Data Type of Length of
Statement Constant Constant
INTEGER*2 ICOUNT
REAL=8 DOUBLE
RALPHA = 4HABCD REAL=4
JCOUNT = ICOUNT +2HXY INTEGER»2 2
DOUBLE = BHABCDEFGH REAL«8

© When a specific data type is required, this type is assumed for the
constant. For example: ’

Data Type of Length of
Statement Constant Constant
X=Y(1HA} INTEGER*2 2

e When the constant is used as an actual argument, no data type is
assumed. For example:

Data Type of Length of
Statement Constant Constant
CALL APAC (9HABCDEFGHI) : None 9

o When the constant is used in any other context, INTEGER+2 data type
is assumed. For example:

2-14 Statement Components

Era

[
4

Y

Data Type of Length of

Statement Constant Constant
IF (2HAB) 1,2,3 INTEGER»2 2
= 1HC - 1HA INTEGER=2 2
= .NOT. 1HB INTEGER=2 2

When the length of the constant is less than the length implied by the
data type, spaces are appended tc the constant on the right; when the
length of the constant is greater than the length implied by the data type,
the constant is truncated on the right. An error results if any nonblank
characters are truncated.

Table 2-2 lists the number of characters required for each data type. Each
character occupies one byte of storage.

2.4 Variables

e

A variable is a symbolic name associated with a storage location {see
Section 2.1 for the form of a symbolic name). The value of the variable is
the value currently stored in that location; however, you can change that
value by assigning a new value to the variable.

Like constants, variables are classified by data type. The data type of a
variable indicates the type of data the variable represents, its precision,
and its storage requirements. When data of any type is assigned to a
variable, this data is converted, if necessary, to the data type of the
variable. You can establish the data type of a variable by using type
declaration statements or IMPLICIT statements, or by choosing names that
begin with certain letters (I—N for integer; any other for real).

-~ Two or more variables are associated with each other when they refer

~ to the same memory location. They are partially associated when part
of the location to which one variable refers is the same as part or all of
the location to which the other variable refers. Association and partial
association occur when you use COMMON statements, EQUIVALENCE
statements, and actual and dummy arguments in subprogram references.

A variable is considered defined if the storage location associated with
it contains data of the same type as the variable name. A variable can
be defined before program execution by a DATA statement, or during
execution by an assignment or input statement.

Statement Components 2-15

If variables of different data types are associated (or partially associated)
with the same storage location, and if the value of one variable is defined
(for example, by assignment), the value of the other variable becomes
undefined; that is, its value cannot be predicted.

2.4.1 Data Typing hy Specification

To specify the data types of variables, you use type declaration statements
(see Section 5.2). For example, the statements

)
i
s

COMPLEX VAR
DOUELE PRECISION VAR2

assign the COMPLEX data type to the variable VAR1 and the DOUBLE
PRECISION data type to the variable VAR2; that is, they cause the
variable VARI to be associated with an 8-byte storage location that will
contain complex data, and the variable VAR2 to be associated with an
8-byte double-precision storage location.

Character type declaration statements assign the character data tybe and a
value length to specified variables. For example, the statements

CHARACTER#72 INLIKE
CEARACTER NAME*12, NUMBER*9Q

cause the variables INLINE, NAME, and NUMBER to be associated
with storage locations containing character data of lengths 72, 12, and 9,

respectively,
The IMPLICIT statement (see Section 5.1) has a more general effect: it

assigns, in the absence of an explicit type declaration, a specified data
type to any variable beginning with a specified letter or any letter within a

specified range. :,
You can explicitly declare the data type of a variable only once. An
explicit declaration takes precedence over an IMPLICIT statement.
Sy
o

2-16 Statement Components

2.4.2 Data Typing by Implication

In the absence of either IMPLICIT statements or type declaration state-
ments, all variables you use that have names beginning with I,], K, L,
M, or N are assumed to be integer variables, and those that have names
beginning with any other letter are assumed to be real variables. For

example:
(R Real Variables Integer Variables
ALPHA JCOUNT
BETA ITEM
TOTAL NTOTAL
2.5 Arrays
“ kf An array is a group of contiguous storage locations associated with a

single symbolic name (the array name). The individual storage locations,
called array elements, are referred to by a subscript appended to the array
name. (Section 2.5.2 discusses subscripts.)

In PDP-11 FORTRAN-77, an array can have from one to seven dimen-
sions. A single column of figures, for example, is an array having only
one dimension—or a one-dimensional array; to refer to a value in this
array, you need only specify the value’s row number. Similarly a table of
more than one column of figures is a two-dimensional array; to refer to

a value in this array, you must specify both the value’s row number and
its column number. And a table of figures that covers several pages is a
three-dimensional array; to refer to a value in this array, you rnust specify
the value’s row number, its column number, and its page number.

The following PDP-11 FORTRAN-77 statements establish arrays:
¢ Type declaration statements (see Section 5.2)
* The DIMENSION statement (see Section 5.3)

¢ The COMMON statement {see Section 5.4)
¢ The VIRTUAL statement (see Section 5.5)

Statement Components 2-17

These statements may contain array declarators (see Section 2.5.1) that
define the name of the array, the number of dimensions in the array, and
the number of elements in each dimension.

An element of an array is considered defined if the storage location
associated with it contains data of the same type as the array name (see
Section 2.5.4). An array element or an entire array can be defined before
program execution by a DATA statement. An array element can be defined
during program execution by an assignment or input statement; an entire 4
array can be defined during program execution by an input statement. PR

2.5.1 Array Declarators

An array declarator specifies the symbolic name that is to identify an array
within a program unit, and it specifies the properties of this array.

An array declarator has the form:

a (af,a) ...

The symbolic name of the array—that is, the array name. (Section 2.1
gives the form of a symbolic name.)

d
A dimension declarator.

The number of dimension declarators indicates the number of dimensions
in the array; the number of dimensions can range from one to seven.

For example, in
DIMENSION IUNIT (10,10,10)
[UNIT is a three-dimensional array.

The value of a dimension declarator specifies the number of elements in
that dimension: in the example above, each dimension of IUNIT consists
of 10 elements.

The number of elements in an array is equal to the product of the values
of the dimension declarators; IUNIT above contains 1000 elements (10 X
10 X 10).

An array name can appear in only one array declarator within a program
unit.

2-18 Statement Components

e

AT,
S

Dimension declarators that vary in value are not permitted in a main pro-
gram, but they are permitted in a subprogram in order to define adjustable
arrays. You can use adjustable arrays within a single subprogram—to
process arrays with different dimension declarators—by specifying the
declarators as well as the array name as subprogram arguments. (See
Section 6.1.2 for more information.)

A dimension declarator in PDP-11 FORTRAN-77 can specify both a lower
bound and an upper bound, as follows:

[dl:] du

dl
The lower bound of the dimension.

du
The upper bound of the dimension. (Can be an asterisk (*); see below.)

The number of elements specified by a dimension with upper and lower
bounds is du-dl+1.

Specifying the lower bound of an array allows you to use a range of
subscripts that does not begin with 1. For example, to reference an array
storing data for the years 1964 to 1974, you could specify an upper bound
of 74 and a lower bound of 64 as follows:

DIMENSION KYEAR (64:74)

The value of the lower bound, dl, can be negative, 0, or positive. The
value of the upper bound, du, must be greater than or equal to the cor-
responding lower bound. If a lower bound is not specified, it is assumed
that the lower bound is 1 and that the value of the upper bound is the
number of elements in the dimension.

For example, in the statement
DIMENSION MM (0:9,-1:1)
NUM contains 30 elements.

The upper bound in the last dimension declarator in a list of dimension
declarators may be an asterisk; an asterisk marks the declarator as an
assumed-size array declarator (see Section 6.1.3).

Each dimension bound is an integer arithmetic expression in which:

¢ Each operand is an integer constant, an integer dummy argument, or
an integer variable in a COMMON block

Statement Componants 2-19

e Each operator is a +, —, *, /, or *» operator

Array references and function references are not allow_éd in dimension
bounds expressions.

252 Subscripts

A subscript is a list of expressions, called subscript expressions, enclosed
in parentheses, that specify, or reference, a particular element in an array;
a subscript is said to “qualify” an array name. A subscript is appended to
the array name it qualifies.

A subscript has the form:
(sf,8]...)

s

A subscript expression,

A subscript expression can be a constant, a variable, or an arithmetic
expression. If the value of a subscript is not of type integer, it is converted
to integer by truncating any fractional part.

A subscripted array reference must contain one subscript expression for
each dimension defined for the array being referenced (one for each
dimension declarator).

2.5.3 Array Storage

As suggested earlier in Section 2.5, you can think of an array as an
arrangement of values in rows, columns, and pages (or planes)—that is, as
an arrangement of values in other than a strictly linear sequence. An array
of any size is always stored in memory, however, as a linear sequence

of values: A one-dimensional array is stored with its first element in the
first storage location, and its last element in the last storage location of the
sequence; a multidimensional array is stored so that the leftmost subscripts
vary most rapidly. This storage arrangement for arrays is called the “order
of subscript progression.” Figure 2-1 shows array storage in one, two, and
three dimensions.

2-20 Statement Components

Figure 2-1: Array Storage

One-Dimensional Array BRC (6)

[]sncm[2]BRC(zs] 3]Bncml 4]ar-\cu)] s |srces)| 6 |sreie)]

Memory Positions

Two-Dimensional Array BAN (3.4)

BAN(1,2)] 7 | BAN(1,3)| 10 | BAN(1.4)
BAN(2.4)

ry

BAN(1.1}| 4
BAN(2, 1)) 5 | BAN22)! 8 |BAN{23)]1
BAN(3,1)| 6 | BAN(3,2}| 9 | BAN{3.3) | 12 [BAN{3 4}

-

—=t & | o

Memory Positions

Three-Dimensional Array BOS (3.3,3)

19| 808(1.1,31 | 22| BOS(1.2.3) | 25| BOS(1,3.3)
20| BOS(2.1,3} | 23 { BOS§(2,2,3) | 26} BOS(2.3.3)
271 BOS(3.3.3)

10| BOS(1,1,2) 113 | BOS(1,2,2) { 16 { BOS(1.3.2)
B808(2,1.2) }14 | BOS(2,2,2) | 17 | BOS{2,3,2)

1

—_

1 180S(1.1.1}| 4 |BOS(1.21)| 7 | BOS(1,3.11 § | 18| BOSE.3.2
N 2 |Bos.1.11] 5 | BOS(2:2,1) | 8 | BOS{2.3.1)
3 {Bos@a.1.1] 6 | BOS@3.21)| 9 | BOS(3,3.1)

Memory Positions
ZK-7827-HC

Statement Components 2-21

2.5.4 Data Type of an Array

The data type of an array is specified in the same way that the data type
of any other variable is specified—that is, implicitly by the initial letter of
the name, or explicitly by a type declaration statement.

All the values in an array have the same data type. Any value assigned
to an array element is converted to the data type of the array. If an array
is named in a DOUBLE PRECISION statement; for example, the compiler
allocates an 8-byte storage location for each element of the array. When a
value of any type is assigned to any element of this array, it is converted
to double precision.

2.5.5 Array References Without Subscripts

In the following types of statements, you can indicate that an entire array
is to be used (or defined) simply by specifying the array name without its
subscript:
* Type declaration statements
* COMMON statement
¢ DATA statement
* EQUIVALENCE statement
* TFUNCTION statement
. * SUBROUTINE statement
* Input/output statements
+ ENTRY statement
* SAVE statement

You can also use unsubscripted array names as actual arguments in
references to external procedures. Unsubscripted array names are not
permitted in any other type of statement.

2.5.6 Adjustable Arrays

Adjustable arrays allow subprograms to manipulate arrays of variable
dimensions. To use an adjustable array in a subprogram, you specify
the array bounds and the array name as subprogram arguments. (See
Chapter 6 for more information.)

2-22 Statement Components

2.6 Character Substrings
A character substring is a contiguous segment of a character variable or
character array element, '
A character substring reference has one of the forms:
v(le1]: [e2])
a{sl,s]...) (letl:[e2])

v
A character variable name,

a
A character array name.

s
A subscript expression.

el

A numeric expression that specifies the leitmost character position of a
substring.

e2

A numeric expression that specifies the rightmost character position of a
substring.

Character positions within a character variable or array element are
numbered from left to right, beginning with 1. For example, LABEL
(2:7) specifies the substring beginning with the second character position
and ending with the seventh character position of the character variable
LABEL. If the CHARACTER+8 variable LABEL has a value of XVERSUSY,
then the substring LABEL(2:7) has a value of VERSUS.

If the value of the numeric expression el or e2 is not of type integer, it is
converted to an integer value before use by truncating any fractional part.

The values of the numeric expressions el and e2 must meet the following
conditions:

1 .LE. el .LE. e2 LE. len

Statement Components 2~23

len
The length of the character variable or array element.

If el is omitted, FORTRAN-77 assumes that el equals 1; if e2 is omitted,
FORTRAN-77 assumes that e2 equals len.

For example, NAMES(1,3)(:7) specifies the substring starting with the first
character position and ending with the seventh character position of the
character array element NAMES(1,3).

2.7 Expressions

An expression consists of a single basic component (such as a constant
or a variable} or a combination of basic components with one or more
operators that represents a single value. Operators specify computations
to be performed on the values of the basic components,

Expressions are classified as arithmetic, character, relational, or logical.
Arithmetic expressions produce numeric values, character expressions
produce character values, and relational and logical expressions produce
logical values.

2.7.1 Arithmetic Expressions

Arithmetic expressions are expressions that are formed with arithmetic
elements and arithmetic operators. The evaluation of an arithmetic
expression yields a single numeric value.

An arithmetic element can be any of the following:

* A numeric, Hollerith, octal, or hexadecimal constant
¢ A numeric variable

* A numeric array element

& An arithmetic expression enclosed in parentheses

¢ An arithmetic function reference

The term “numeric,” as used above, includes logical data, because logical
data is treated as integer data when used in an arithmetic context.

2-24 Statement Compenents

Arithmetic operators specify a computation that is to be performed on the
values of arithmetic elements to produce a numeric value as a result. The
operators and their meanings are:

Operator Function

. Exponentiation

* Muttiplication

/ Division

+ Addition and unary plus

- Subtraction and unary minus

These operators are called binary operators because each is used with two
clements. When written immediately preceding an arithmetic element, to
denote a positive or negative value, the plus (+) and minus (-) symbols
are unary operators.

You can use any arithmetic operator with any valid arithmetic element,
except as noted in Table 2-3.

A variable or array element must have a defined value before it car. be
used in an arithmetic expression.

Table 2-3 shows the allowed combinations of base and exponent data
types, and also shows the data type of the result of exponentiation.

Table 2-3: Exponentiation Data Types
Exponent Types

Base Type Integer Real Double Complex

Integer Integer Real Double Complex

Real Real Real Double Complex

Double Double Double Double No

Complex Complex Complex No Complex
NOTE

A negative element can be exponentiated only by an integer el-
ement; and an element with a 0 value cannot be exponentiated
by another 0-value element.

Statement Components 2-25

In any valid exponentiation, the result has the same data type as the
base element, except in two cases: (1) a real base and a double-precision
exponent produces a double-precision result; and (2) a base of any type
and a complex exponent produces a complex result.

Arithmetic expressions are evaluated in an order that is determined by the
operators involved. The five operators in FORTRAN are performed in the
following order of precedence:

Operator Precedence
- First

*and / Second
+and - Third

When two or more operators of equal precedence (such is + and -) appear,
they are evaluated by the compiler in any order that is algebraically
equivalent to a left-to-right order of evaluation. For example, in 3+4-1,
the addiion is performed before the subtraction. Exponentiation, however,
is evaluated right to left, For example, in the expression AssBexC, BesC is
evaluated first, and then A is raised to the result of Bs«(C. =

2.7.1.1 Use of Parenthesgses

You can use parentheses to force a particular order of evaluation. When
part of an expression is enclosed in parentheses, this part is evaluated
first, and then the result is used in the evaluation of the remainder of the
expression. In the following examples, the numbers below the operators
indicate the order of evaluation:

4+43%2-6/2=7

t+ t f+ %

2 1 4 3
@4+3)*»2-6/2=11

£ | S

1 2. 4 3

d+3%2-6/2=2
% 4
2 1 3 4

2-26 Statement Components

g

R

(4+3)+2-6)/2=4
L LU | A
1 2 3 4

As shown in the third and fourth examples above, expressions within
parentheses are evaluated according to the normal order of precedence,
unless you override the order by using parentheses within parentheses.

P Using parentheses to specify evaluation order is often important in high-

Lo accuracy computations because rounding and normalizations may cause
algebraically equivalent evaluation orders not to be computationally
equivalent.

Using parentheses to specify evaluation order is also important in complex
expressions, where it is difficult during the process of writing a program to
analyze visually what is to happen to what. If you have any doubt about
accuracy, use parentheses.

2.7.1.2 Data Type of an Arithmetic Expression

If every element in an arithmetic expression is of the same data type, the
value produced by the expression is also of this data type. If elements of
different data types are combined in an expression, the data type of the
result of each operation is determined by a rank associated with each data
type. The data types are ranked as follows:

Data Type Rank
Logical 1 (Low)
Integer 2

Real 3
Double Precision 4
Complex 5 (High)

The data type of the value produced by an operation on two arithmetic
elements of different data types is the data type of the highest-ranked
element in the operation. For example, the value resulting from an
operation on an integer and a real element is real.

The data type of an expression is the data type of the result of the last
operation performed in that expression.

Statement Components 2-27

Operations are classified by data type as follows:

Integer operations—Integer operations are performed only on integer
elements. (Logical entities used in an arithmetic context are treated as
integers.) In integer arithmetic, any fraction that results from division
is truncated, not rounded. For example:

1/3 + 1/3 + 1/3
The value of this expression is 0, not 1.

In PDP-11 FORTRAN-77, an operation involving an INTEGER=2
element and an INTEGER#*4 element is carried out as an INTEGER*4
operation and produces an INTEGER*4 result.

Real operations—Real operations are performed only on real elements
or combinations of real, integer, and logical elements. Any integer
elements present are converted to real data type by giving each integer
element a fractional part equal to 0. The expression is then evaluated
using real arithmetic. Note, however, that in the statement Y = (I/])*X
an integer division operation is performed on I and J, and then a real
multiplication is performed on the result and X.

Double-precision operations-—Any real or integer element in a double-
precision operation is converted to double precision, by making the
real or integer element the most significant portion of a double-
precision element; the least significant portion is given the value 0,
The expression is then evaluated in double-precision arithmetic.

T

Converting a real element to a double-precision element does not
increase its accuracy. For example, the real number

0.3333333

is converted to {approximately):

Nl

0.3333333134651 184D0 ' i)
not to either:

0. 3332332000000000D0

or: ’

0.3333233333333333D0

Complex operations—In an operation on an expression containing a
complex element, integer elements are converted to real data type,
as previously described, and double-precision elements are converted
to real data type, by rounding the least-significant portion. The real
element obtained is designated as the real part of a complex number;

2-28 Statement Gomponents

the imaginary part is given the value 0, The expression is then
evaluated with complex arithmetic, and the resulting value is complex.

2.1.2 Character Expressions

Character expressions consist of character elements. The evaluation of a
character expression yields a single value of character data type.

/ﬂ‘w A character element can be any one of the following:
A character constant
* A character variable
¢ A character array element
¢ A character substring
A character expression has the form:
character element

and can be enclosed with parentheses.

2.1.3 Relational Expressions

A relational expression consists of two arithmetic expressions separated
by a relational operator. The value of the expression is true if the stated
relationship exists, false if it does not.

A relational operator tests for a relationship between two arithmetic
expressions. These operators are:

Operator Relationship

.LT. Less than

.LE. Less than or equal to
EQ. Equal to

NE. Not equal to

GT. Greater than

.GE. Greater than or equal to

The delimiting periods are a required part of each operator.

Statement Components 2-29

Complex expressions can be related only by the .EQ. and .NE. operators.
Complex entities are equal if their corresponding real and imaginary parts
are both equal.

In an arithmetic relational expression, the arithmetic expressions are
evaluated, and then the resulting values are compared with each other
to determine whether the relationship stated by the operator exists. For
example, the expression

APPLE+PEACH .GT. PEAR+ORANGE

states the relationship: “The sum of the real variables APPLE and PEACH
is greater than the sum of the real variables PEAR and ORANGE.” If this

relationship exists, the value of the expression is true; if not, the value of

the expression is false.

In a character relational expression, the character expressions are eval-
uated and then the resulting values are compared with each other to
determine whether the relationship stated by the operator exists; PDP-11
FORTRAN-77 uses the ASCII collating sequence in comparing character
values. In character relational expressions, “less than” means “precedes in
the ASCII collating sequence,” and “greater than” means “follows in the
ASCII collating sequence.” For example, the expression

'ABZZZ' .LT. ‘'€CCCC!

states that "ABZZZ’ is less than ‘CCCCC’, Because this relationship does
exist, the value of the expression is true. If the relationship stated did not
exist, the value of the expression would be false.

If the two character expressions in a relational expression are not the same
length, the shorter of the two is padded on the right with spaces until the
lengths are equal. For example, in the relational expressions

'ABC* .EQ. 'ABC !
'AB' LT ¢!

the first has a value of true, even though the lengths of the expressions are
not equal; and the second has a value of true even though "AB’ is longer
than 'C’, .

All relational operators have the same precedence; however, the arithmetic
operators have a higher precedence than the relational operators.

2-30 Statement Components

You can use parentheses to alter the order of evaluation of arithmetic ex-

pressions in a relational expression; however, because arithmetic operators
are evaluated before relational operators, you need not enclose the whole

of an arithmetic expression in parentheses,

“ You can compare two numeric expressions of different data types in a
+ relational expression. To make such a comparison, the system converts
the value of the expression with the lower-ranked data type to the data
e type of the expression with the higher-ranked data type.

2.1.4 Logical Expressions

Logical expressions are formed with logical elements and logical operators.
A logical expression yields a single logical value—either true or false.

A logical element can be any of the following:

* An integer or logical constant

* An integer or logical variable

* An integer or logical array element

* A relational expression

* A logical expression enclosed in parentheses
* An integer or logical function reference

The logical operators are:

Operator Example Meaning

JAND. A .AND. B Logical conjunction: The expression is
true if, and only if, both A and B are
true.

OR, A.OR B Logical disjunction (inclusive OR): The
expression is true if either A or B, or
both, is true. -

XOR. A XOR. B Logical exclusive OR: The expression is

true if A is true and B is false, or vice
versa; but the expression is false if both
elements have the same value.

NEQV. A NEQV.B Same as .XOR,

Statement Components 2-31

2-32

Operator Example Meaning

EQV. A EQV.B Logical equivalence: The expression is
true if, and only if, both A and B have
the same logical value, whether true or
false.

NOT. .NOT. A Logical negation: The expression is true
if, and only if, A is false.

The delimiting periods of logical operators are required,

A logical expression is evaluated in accordance with the precedence of the
arithmetic, relational, and logical operators. The following list gives the
order in which the operators in a logical expression are evaluated:

Operator Precedence
. First (Highest)
» and / Second

+ and - Third

"The relational operators Fourth

.NOT. - Fifth

.AND. Sixth

.OR. Seventh
XOR., EQV_,.NEQV. Eighth

Operators of equal rank are evaluated from left to right. For example, in
the expression

A¥B+C+ABC .EQ. X+Y+DM/ZZ .AND. .NOT. K+B .GT. TT
the sequence in which evaluation occurs is:
({(A*B) + {C+ABC)) . EQ. ({(X*Y)+(DM/ZZ))} . AND. (. NOT. ((K*B) .GT.TT))

As in arithmetic expressions, you can use parentheses to alter the normal
sequence of evaluation.

Two consecutive logical operators are not allowed unless the second is
NOT.

Statement Components

1
T

Some logical expressions are evaluated before all their subexpressions are
evaluated, For example, if A is .FALSE. in the expression

A .AND. (F(X,Y) .GT. 2.0) .AND. B

the value of the expression can be determined by testing A without
evaluating F(X,Y); therefore, the function subprogram F is not called
and consequences resulting from a call, such as changing variables in
COMMON, do not occut,

When a logical operator operates on logical elements, the resulting data
type is logical. When a logical operator operates on integer elements,

the logical operation is carried out bit-by-bit on the corresponding bits of
the internal {binary) representation of the integer elements; the resulting
data type is integer. When a logical operator combines integer and logical
values, the logical value is first converted to an integer value and then the
operation is carried out as it would be for any two integer elements; the
resulting data type is integer.

For example, in the sequence

INTEGER I, J, K
I '65'0

J = 1.0R.*100°0
K = T.AND.'23'0

] has the value ‘165’0 and K has the value '21°0.

Statement Comporents 2-33

Chapter 3
Assignment Statements

Assignment statements assign a value to (or “define”) a variable, an array
element, or a character substring; that is, assignment statements evaluate
an expression and assign the resulting value to a specified variable, array
element, or character substring,.

The four kinds of assignment statements are:

s Arithmetic
'Y LO@C&I

» Character
s ASSIGN

3.1 Arithmetic Assignment Statement

An arithmetic assignment statement assigns an arithmetic value to a
variable or array element.

The arithmetic assignment statement has the form:

L -

v
A numeric variable or array element.

e
An arithmetic expression.

Assignment Statements 3-1

The equal sign does not mean “is equal to,” as in mathematics; rather, it
means “is replaced by.” For example, the assignment statement

KOURT = KQUNT + 1

means “Replace the current value of the integer variable KOUNT with the
sum of the current value of KOUNT and the integer constant 1.”

Although the symbolic name to the left of the equal sign can be undefined,
values must have been previously assigned to all symbolic references in
the expression to the right of the equal sign,

The expression must yield a value of the proper size. For example, a real et
expression that produces a value greater than 32767 is invalid if the entity

to the left of the equal sign is an INTEGER*2 variable.

If v and e have the same data types, the statement assigns the value of e
directly to v. If the data types are different, the value of e is converted to
the data type of v before it is assigned. Table 3-1 summarizes the data
conversion rules for assignment statements.

A character element cannot be assigned to a numeric entity.

&

Table 3-1: Conversion Rules for Assignment Statements
Expression (E)
Variable
or Array
Element Integer or '
V) Logical Real Double Precision Complex
Integer or Assign E to V Truncate E to Truncate E to Truncate real part
Logical integer and integer and assign of E to integer
assign to V oV and assign to V; y
imaginary part of E gy
is not used LA
Real Append fraction AssignEto V Assign MSportion Assign real part of E
(0) to E and of Eto V; to V; imaginary part
assign to V LS'portion of E of E is not used
is rounded

MS = most significant (high order); LS = least significant (low order).

i

3.2 Assignment Stetements

Table 3-1 (Cont.): Conversion Rules for Assignment Statements

Expression (E)

Variable
or Array
Element Integer or
(V) Logical Real Double Precision Complex
Double Append frac- Assign E to Assign Eto V Assign real part of E
. Precision tion (.0) to E MS' portion of V; to'MS'portion of V;
A and assign to LS* portion of V LS'portion of V is 0,
MS'portion of V; is 0 imaginary part of E
LS portion of V is not used
is0
Complex Append fraction Asign E to Assign MS'portion Assign E to V
(.0) to E and real part of V; of E to real part
assign to real imaginary part of V; LS'portion
part of V; of Vis 0.0 of E is rounded;
imaginary part imaginary part of V
of Vis 0.0 is 0.0

TMS = most significant (high order); LS = least significant (low order).

Examples of valid and invalid assignment statements are:
Valid

BETA = =1./(2.%X)+A#A/ (4. #(X*X))

PI = 3.141589
SUM = SUM+1,
Invalid

3.14 = A-B (entity op the left must be a variable or
array element)

~J = I#x4 (eptity on the left must be a variable or
array element)

ALPHA = ((X+6)=B+B/(X-Y) {entity on the right is an invalid

expression because the parentheses
are not balanced)

Assignment Statements 3-3

3.2 Logical Assignment Statement

The logical assignment statement assigns a logical value (true or false) to a
variable or array element.

The logical assignment statement has the form:

vT=8

v
A logical variable or array element.

S0

o
A logical expression.

V must be of logical data type and e must yield a logical value; otherwise,
conversions will be made according to Table 3-1 and the resultant values
will not be meaningful.

Values, either numeric or logical, must have been previously assigned to
all variables or array elements in e.

Examples of logical assignment statements are:
Valid

LOGICAL PAGEND, PRNTOK, ABIG

PAGEND = .FALSE.

PRNTOK = LINE .LE. 132 .AND. .NOT. PAGEND

ABIG = A .GT. B .AND. A .GI. C .AND. A .GT. D
Invalid

¥=_TRUE. (entity on the left must be logical) “

3.3 Character Assignment Statement

The character assignment statement assigns the value of a character
expression to a character variable, array element, or substring.

The character assignment statement has the form:

vT=e

3-4 Assignment Stataments

v
A character variable, array element, or substring.

e
A character expression,

If the length of the character expression is greater than the length of the
character variable, array element, or substring, the character expression is
truncated on the right.

if the length of the character expression is less than the length of the
character variable, array element, or substring, the character expression is
filled on the right with spaces.

The expression must be of character data type: you cannot assign a
numeric value to a character variable, array element, or substring.

Note that assigning a value to a character substring does not affect char-
acter positions in the character variable or array element not included in
the substring. If a character position outside of the substring has a value
previously assigned, it remains unchanged; and if the character position is
undefined, it remains undefined.

Examples of valid and invalid character assignment statements follow.
(All variables and arrays in these examples are assumed to be of character

data type.)
Valid
FILE = 'PROG2’
REVOL{1) = 'MARCIA'
LOCA(3:8) = 'PLANTE'
TEXT(I,J+1) (2:N-1) = 'NAMEX®
Invalid

UABCt = CHARS (element on the left must be a character variable, array
element, or substring reference)

CHARS = 25 {expression on the right must be of character data type)

Assignment Statements 3-5

3.4 Assigning Statement Labels

The ASSIGN statement assigns a statement label value to an integer
variable, The variable can then be used to specify a transfer destination in
a subsequent assigned GO TO statement (see Section 4.1.3).

The ASSIGN statement has the form:

ASSIGN s TQ v

s
A label of an executable statement or a FORMAT statement in the same
program unit as the ASSIGN statement.

v
An integer variable.

The ASSIGN statement assigns a statement label to a variable. The
ASBIGN statement is similar to an arithmetic assignment statement

in that it assigns a value to a variable, but differs in that the variable
becomes defined for use as a statement-label reference and undefined as a
variable; that is, the assigned value cannot be used for output or arithmetic
computations.

The statement label must refer to an executable statement or a FORMAT
statement in the same program unit.

The ASSIGN statement must be executed before the assigned GO TO
statement or statements in which the assigned variable is to be used are
executed. The ASSIGN statement and the assigned GO TO statements
must occur in the same program unit.

For example, the statement

ASSIGN 100 TO NUMBER

associates the variable NUMBER with the statement label 100; arithmetic
ations on the variable are now invalid. For example, the variable
NUMBER in the statement

NUMBER = NUMBER+1

is undefined and does not result in a value of 101 being stored in
NUMBER.

3-8 Assignment Statements

T
3

An associated variable can become defined again with an assignment
statement. For example, assigning NUMBER a value with an arithmetic
assignment statement as follows:

NUMBER=10

dissociates the variable from statement 100. The variable now has the
arithmetic value 10 and can no longer be used in an assigned GO TO
statement, but can be used for output and arithmetic computations.

Examples:
Valid

ASSIGN 10 TO NSTART
ASSIGN 99899 TO XSTOP

Invalid

ASSIGN 260 TO ERROR (variable must be integer)

Assignment Statements 3-7

Chapter 4
Control Statements

Statements are normally executed in the order in which they are written.
However, you may use control statements to transfer control to another
point within the same program unit or to another program unit. You can
also use control statements to govern iterative processing, suspension of
program execution, and program termination.

The control statements are as follows:

GO TO statement——transfers control within a program unit

IF statement—conditionally transfers control or conditionally executes
a statement

IF THEN, ELSE IF THEN, ELSE, and END IF statements ~ condition-
ally execute blocks of statements

DO statement—specifies iterative processing of a specified group of
statements a specified number of times.

CONTINUE statement—transfers control to the next executable
statement

CALL statement—iransfers control to a subprogram

RETURN statement-—retums control from a subprogram to the calling
program unit

PAUSE statement—temporarily suspends program execution
STOP statement—terminates program execution
END statement—marks the end of a program unit

The following sections describe these statements.

Contro! Statements 41

4.1 G0 TO Statements

GO TO statements transfer control to a point within the program unit
containing the GO TO statement. The three types of GO TO statements
are:

* Unconditional

* Computed

* Assigned

4.1.1 Unconditional GO TO Statement

The unconditional GO TQ statement transfers control to the same state-
ment every time it is executed.

The unconditional GO TQO statement has the form:
GO TO s

s

A statement label.

The statement identified by s must be an executable statement in the same
program unit as the GO TO statement.

Examples:

GO 10 7734
GO TO 99999

4.1.2 Computed GO TO Statement

The computed GO TO statement transfers control to a statement specified
by the value of an arithmetic expression.

The computed GO TO statement has the form:

G0 TO (elist)[,] e

4-2 Control Statements

slist
A list, called the transfer list, of one or more labels of executable state-
ments, separated by commas.

e
An arithmetic expression whose value is in the range 1 to n, where n is
the number of statement labels in the transfer list.

The computed GO TO statement evaluates e and, if necessary, converts
the result to integer data type. Control is transferred to the statement label
in position e in the transfer list.

If the value of e is less than 1 or greater than the number of labels in the
transfer list, control is transferred to the first executable statement after the
computed GO TO.

Examples:
60 T0 (12,24,36) , INDEX

GD TO (320.330,340,350,360), SITU(J,K)+1

In the first example, if INDEX has a value of 2, execution is transferred
to statement 24. In the second example, if SITU(JK)+1 has a value of 3,
execution is transferred to statement 340.

4.1.3 Assigned GO TO Statement

The assigned GO TO statement transfers control to a statement whose la-
bel has been placed in a variable by an ASSIGN statement. Therefore, the
transfer destination may depend on the most recently executed ASSIGN
statement.

The assigned GO TO statement has the form:

G0 TO wil.}{slist)]

v
An integer variable.

slist ‘
A list of one or more labels of executable statements separated by commas.

The assigned GO TO statement transfers control to the statement whose
label was most recently assigned to the variable v. (See Section 3.4 on the
ASSIGN statement.)

Control Statements 4-3

The GO TO statement, the associated ASSIGN statement or statements,
and the statements to which control is transferred must be executable
statements in the same program unit. If slist is used, the assigned value of
v must be a member of slist,

In PDP-11 FORTRAN-77, if the statement label value of v is not present
in slist (if slist is specified), control is transferred to the next executable
statemnent following the assigned GO TO statement.

Examples of assigned GO TO statements are:

ASSTIGE 200 TO IGO
G0 TO IGO

This example is equivalent to GO TO 200.

ASSIGE 450 TO IBEG
G0 TO IBEG, (300,450,1000,25)

This example is equivalent to GO TO 450.

4.2 IF Statements

An IF statement transfers control or executes a statement (or a block of
statements) if a specified condition is met. The three types of IF statements
are: :

® Arithmetic IF statement

* Logical IF statement

* Block IF statement

The decision to transfer control or to execute a statement is based on the iy
evaluation of an expression contained in the IF statement, CCor

4.2.1 Arithmetic IF Statement

The arithmetic IF statement transfers control to one of three statements,
on the basis of the value of an arithmetic expression.

The arithmetic IF statement has the form:

IF (e) s1, 82, 83

4-4 Control Statements

e
An arithmetic expression.

$1,82,83
Labels of executable statements in the same program unit.

All three labels (51,52,s3) are required; however, they need not refer to
three different statements.

SN The arithmetic IF statement evaluates expression e. If e is-less than zero,
o control passes to label sl; if e is equal to zero, control passes to label s2; if
e is greater than zero, control passes to label s3.

Some examples:

IF (THETA-CHI) 50,850,100

This statement transfers control to statement 50 if the real variable THETA
is less than or equal to the real variable CHI, to statement 100 if THETA is
greater than CHI.

IF {(NUMBER/2+2-NUMBER) 20.40,20

This s‘atement transfers control to statement 40 if the value of the integer
variable NUMBER is even, to statement 20 if the value is odd.

4.2.2 Logical IF Statement

The logical IF statement conditionally executes a single FORTRAN state-
ment on the basis of the evaluation of a logical expression.

e The logical IF statement has the form:
a5 IF {e) st

e
A logical expression.

st

A complete FORTRAN statement. The statement can be any executable
statement except a DO statement, an END statement, a block IF statement,
or another logical IF statement.

Corttrol Statements 4-5

The logical IF statement first evaluates logical expression e. If the value
of the expression is true, statement st is executed. If the value of the
expression is false, control transfers to the next executable statement after
the logical IF, and statement st is not executed. Note that e must yield a
logical value.

Examples of logical IF statements:
IF (J .6T. 4 .OR. J .LT. 1) GO Y0 250
IF (REF(J,K) .NE. HOLD) REF(J,K) = REF(J,K)*(-1.5D0) £

LOGICAL ENDRUN ‘ LR
IF (ENDRUN) CALL EXIT

§.2.3 Block IF Statements

Block IF statements conditionally execute blocks {or groups) of statements.
The four block IF statements are:

=« IF THEN

¢ ELSE IF THEN
e ELSE

e ENDIF

These statements are used in block IF constructs. The block IF construct
has the form:

IF (e) THEN
block

ELSE IF (e) THEN
block

ELSE
block

END IF

T

_4—5 Comrol Statements

e .
A logical expression.

block

A sequence of zero or more complete FORTRAN statements. This se-
quence is called a statement block.

‘Figure 4~1 describes the flow of control for four examples of block IF
constructs.

Each block TF statement, except the END IF statement, has-an associated
statement block. The statement block consists of all the statements
following the block IF statement up to (but not including) the next block
IF statement in the block IF construct. The statement block is conditionally
executed based on the values of logical expressions in the preceding block
IF statements.

The IF THEN statement begins a block IF construct. The block following it
is executed if the value of the logical expression in the [F THEN statement
is true.

The ELSE IF THEN statement is an optional statement within a block IF
construct. The statement instructs the system to execute a statement block
if the value of the logical expression in the ELSE IF THEN statement is
true, and if no preceding statement block in the block IF construct was
executed. A block IF construct can contain any number of ELSE IF THEN
statements.

The ELSE statement is an optional statement within a block IF construct
that specifies a statement block to be executed if no preceding statement
block in the block IF construct was executed. Except for the END IF
statement, no block IF statement can follow the ELSE statement,

The END IF statement terminates the block IF construct.

After the last statement in a statement block is executed, control passes
to the next executable statement following the END IF statement.
Consequently, only one statement block in a block IF construct can be
executed each time an IF THEN statement is executed.

ELSE IF THEN and ELSE statements can have statement labels, but these
labels cannot be referenced. The END IF statement can have a statement
label to which control can be transferred, but control can be transferred
only from within the block IF construct.

Control Statements 4-7

Figure 4~1:

Examples of Block IF Constructs

Construct

Flow of Control

IF [8) THEN
blogk
ENDIF

iF{#) THEN
Blocky
E

biogk;
ENDIF

Falxg

Execute
BiOEk

Exgcute
BhCRy

IF (wy) THEN
lock |

ELSE IF (a) THEN

END IF

Exacute Execuls
k) blatky
*L_ |

IF (my} THEN
leck,
ELSE IF (ez] THEN
bloch,
ELSE IF i63) THEN
[

o
ELSE "
[
END Iﬁm * Exscuie Exatine Eracoiy Erecie
Block, Elotky blocky ook,
% i, I i
2x-200-41

4-8 Control Statements

Section 4.2.3.1 describes restrictions on statements in a statement block.
Section 4.2.3.2 describes examples of block IF constructs. Section 4.2.3.3
describes nested block IF constructs.

4.2.3.1 Statement Blocks

A statement block can contain any executable FORTRAN statement except
an END statement. You can transfer control out of a statement block,
but you cannot transfer control back into the block. You cannot transfer
contro] from one statement block to another.

DO loops cannot partially overlap statement blocks. When a statement
block contains a DO statement, it must also contain the DO loop’s terminal
statement. Conversely, when a statement contains a DO loop’s terminal, it
must also contain the DO statement. If you use DO loops with statement
blocks, each loop must be wholly contained within one statement block.

4.2.3.2 Block IF Examples

The simplest block IF construct consists of the IF THEN and END IF
statements; this construct conditionally executes one statement block. An
example follows:

Form Example
IF (e) THEN IF (ABS(ADJY) .GE.1.OE-6) THEN
block TOTERR=TOTERR+ABS (ADJU)
QUEST=ADJU/FNDVAL
END IF END IF :

The statement block consists of all the statements between the IF THEN
and the END IF statements.

The IF THEN statement first evaluates logical expression e,
ABS(ADJU).GE.1.0E-6. If the value of e is true, the statement block is
executed. If the value of e is false, control transfers to the next executable
statement after the END IF statement; the block is not executed.

Contro Statements 4-9

The following example shows a block IF construct with an ELSE IF THEN
statement:

Form - Example

IF (el) THEN IF (A .GT. B) THEN
blockl D=B
F=A-B
ELSE IF (e2) THEN ELSE IF (A .GT. B/2.) THEN
block2 D = B/2.
F=A-B/2 e

END IF END IF ;‘-

ﬁ g
Blockl consists of all the statements between the IF THEN and the ELSE
iIF THEN statements; block2 consists of all the statements between the
ELSE IF THEN and the END IF statements.

I A is greater than B block1 is executed.
If A is not greater than B but A is greater than B/2, block2 is executed.

-
2

If A is not greater than B and A is not greater than B/2, neither blockl

nor block2 is executed; control transfers directly to the next executable e
statement after the END IF statement. . { Q
The following example shows a block IF construct with an ELSE state- '
ment:

Form Example

IF (e) THEN IF (NAME .LT. 'N') THEX
blockl IFRONT = IFRONT + 1
FRLET (IFRONT)=NAME(1:2)
ELSE ELSE
blockz IBACR=IBACK + 1
eNp IF END IF

Block1 consists of all the statements between the IF THEN and ELSE
statements; block2 consists of all the statements between the ELSE and
the END IF staterments.

If the value of the character variable NAME is less than 'N’, block] is
executed.

If the value of NAME is greater than or equal to ‘N, block2 is executed.

4-18 Contro! Statements

The following example shows a block IF construct with several ELSE IF
THEN statements and an ELSE statement:

Form Example
IF (el) THEN IF (A .GT. B) THEN
blockl D=B
F=A-B
ELSE IF (E2) THEN ELSE IF (A .GT. C) THEN
block2 D=¢C
F=A-C
ELSE IF (e3) THEN ELSE IF (A .GT. Z) THEN
block3 D=2
F=A-2
ELSE : ELSE
blockd D=0.0
F=4a
END IF END IF

The above example contains four statement blocks. Each block consists of
all the statements between the block IF statements listed below.

RN Block Delimiting Block IF Statements

L blockl IF THEN and first ELSE IF THEN
block?2 First ELSE IF THEN and second ELSE IF THEN
block3 " Second ELSE IF THEN and ELSE
block4 ELSE and END IF

If A is greater than B, blockl is executed.

If A is not greater than B but is greater than C, block2 is executed.

If A is not greater than B or C but is greater than Z, block3 is executed.
- If A is not greater than B, C, or Z, block4 is executed.

4.2.3.3 Nested Block IF Constructs

A block IF construct can be included in a statement block of another
block IF construct. But the nested block IF construct must be completely
contained within a statement block; it must not overlap statement blocks.

Control Statements 4-11

The following example contains a nested block IF construct:

Form Example
IF (e) THEN IF (A .LT. 100} THEN
INRAN=INRAN + 1
“IF (e) THEN IF (ABS (A-AVG) .LE. 5.) THEN
blocka INAVG = INAVG + 1
blockl ELSE ELSE
blockb OUTAVG = DUTAVG + 1
END IF END IF .
ELSE FLSE ‘ ol
block2 QUTRAN = QUTRAN « 1 R
END IF END IF s

If A is less than 100, blockl is executed. Blockl contains a nested block
IF construct. If the absolute value of A minus AVG is less than or equal
to 5, blocka is executed. If the absolute value of A minus AVG is greater
than 5, blockb is executed. If A is greater than or equal to 100, block2
is executed; the nested IF construct is not executed because it is not in
block2.

4.3 DO Statement ‘ ff‘

The DO statement specifies iterative processing of a sequence of state-
ments, The sequence of statements is called the range of the DO state-
ment, and the DO statement together with its range is called a DO
loop. : :

The DO statement has the form:
0 8.1 v=ei,e2l,s3]
8

The label of an executable statement. This executable statement must
physically follow the DO statement, in the same program unit.

v
Usually an integer variable but may be a real or double-precision variable.

el,02,e3
Usually integer expressions but may be real or double-precision
expressions.

L

4-12 Control Statements

The variable v is called the control variable; el, e2, and e3 are the initial,
terminal, and increment parameters, respectively. If you omit the incre-
ment paraméter, a default increment value of 1 is used. In FORTRAN-77,
v can be a real or double-precision variable, and el, e2, and e3 can be any
arithmetic expressions. If necessary, evaluated expressions are converted
to the data type of the control variable before they are used. If the data
type of the control variable is real or double-precision, the number of
iterations of the DO range might not be what is expected because of the
effects of floating-point rounding. ‘

The label s identifies the terminal statement of the DO loop. The terminal
statermment must not be:

* AGOTO statement

* An arithmetic IF statement

¢ Any block IF statement

s An END statement

¢ A RETURN statement

* A DO statement

The range of the DO statement consists of all the statements that follow
the DO statement, up to and including the terminal statement.

The DO statement first evaluates the expressions el, e2, and e3 to de-
termine values for the initial, terminal, and increment parameters, re-
spectively. The value of the initial parameter is assigned to the control
variable. The executable statements in the range of the DO loop are then
executed repeatedly. The exact mechanism is explained in Section 4.3.1.

The number of executions of the DO range, called the iteration count, is
given by:

[{e2 - o1 + e3)/e3]
where, letting X represent the above expression, [X] is the largest integer
whose magnitude does not exceed the magnitude of X and whose sign

is the same as the sign of X (for example, [-3.5] = -3). The increment
parameter, e3, cannot be zero.

I the iteration count is zero or negative, the body of the loop is not
executed. If the /NOF77 compiler qualifier is specified and the iteration
count is zero or negative, the body of the loop is executed once.

Control Statements 4-~13

4.3.1 DO Iteration Control

After each execution of the DO range, the following actions are taken:

1. The value of the increment parameter is algebraically added to the
control variable.

2. The iteration count is decremented by 1.

3. N the iteration count is greater than 0, control is transferred to the first
executable statemnent after the DO statement, for another iteration of
the range. '

4, If the iteration count is 0, execution of the DO statement is terminated.

You can also cause execution of a DO statement to be terminated by using
a statement within the range that transfers control outside the loop. If
control is transferred outside the loop, the control variable of the DO
statement remains defined with its current value.

When execution of a DO loop terminates, but other DO loops share this
loop’s terminal statement, control transfers outward to the next DO loop
in the nesting structure (see Section 4.3.2). If no other DO:loop shares
a DO loop’s terminal statement, or if a DO loop is outermost, contro}
transfers to the first executable statement after the terminal statement,

You cannot alter the value of the control variable within the range of the
DO loop; however, you can reference it for purposes other than altering it.

The range of a DO statement can contain other DO statements (nested
DO loops), as long as these DO statements meet certain requirements. See
Section 4.3.2.

You cannot transfer control into the range of a DO loop. Exceptions to
this rule are described in Sections 4.3.3 and 4.3.4.

You can modify variables holding the inital, terminal, or increment
parameters within the loop without affecting the iteration count.

- Examples of DO statements follow.
Valid

DO 100 K=1,50,2

This statement specifies 25 iterations; K=49 during the final iteration.

DO 350 J=50,-2,-2

4-14 Control Statements

This statement specifies 27 iterations; J=-2 during the final iteration.

DO 26 IVAR=1,5

This statement specifies 5 iterations; IVAR=5 during the final iteration.

Invalid
DO NUMBER=E,40,4 {the statement label is missing)
DO 40 ¥=2.10 (a decimal point has been typed for a comma)

Note that in the last invalid example, the statement

DO4ON = 2.10

is an unintentionally valid arithmetic assignment statement.

4.3.2 Nested DO Loops

A DO loop can include one or more complete DO loops called nested
DO loops. The range of a nested DO loop must lie completely within the
range of the next outer loop. Nested loops can share a terminal statement.
Figure 4-2 illustrates nested loops.

Contro! Statements 4-15

Figure 4-2: Nested DO Loops

Correctly Nested

Incorrectly Nested

DO Loops PO Loops
— DO 45 K=1,10 [DO 15 K=1,10
l:: DO 36 £=2,60,2 — DO 25 1L=1,20
35 CONTINUE 15 CONTINUE
- L]
DO 45 M=1,20 DO 30 M=1,15
L 3 *
— 45 CONTINUE .
— 25 CONTINUE
30 CONTINUE

ZK-7629-HC

4.3.3 Control Transfers in DO Loops

Within a nested DO loop, you can transfer control from an inner loop to

an outer loop; however, you cannot transfer control from an outer loop to

an inner loop.

If two or more nested DO loops share the same terminal statement, you
can iransfer control to this shared terminal statement only from within
the range of the innermost loop. Because this shared terminal statement
is part of the innermost loop, any transfer to it from an outer loop is a
transfer from an outer loop to an inner loop, and is therefore invalid.

4-16 Control Statements

434 Extended Range

A DO loop has an extended range if a control statement transfers control
out of the loop and then, after execution of one or more statements,
another control statement returns control into the loop. The range of
this DO loop includes all executable statements between the destination
statement of the first transfer and the statement that returns control to the
loop.

The following rules govern the use of a DO statement with an extended
range:

e A transfer into the range of a DO statement is permitted only from its
extended range.

e Statements in the extended range must not change the control
variable,

Figure 4-3 illustrates valid and invalid extended range control transfers.

Control Statements 4-17

Figure 4-3: Control Transfers and Extende_d Range

Valid
Conrol Transfers

imvalid
Comrol Transfers

jal4]
Loop

Extended
Range

15

&0

20

DO 35 K=1,10
.

DO 15 L=2,20
-

GD TO 20

*
CONTINUE

L]
DO 35 M=1,15

.
GO TO 5O

L]
X=A*»D

-
CONTINUE

.
D = E/F
L

.
G0 10 30

20

40

45

50

GG TO 20

.
DD 50 K=1.1C

A=B+¢C

DO 36 L=2,20

b = E/F

CONTINUE

GO TO 40

DO 45 M=1,15

-

X=A=*D

.
CONTINUE

.
CONTINUE

&0 T0 30

ZK-7628-HC

4.4 CONTINUE Statement

The CONTINUE statement transfers control to the next executable state-
ment. It is primarily used as the terminal statement of a DO loop that
would otherwise end with a prohibited control statement such as a GO
TO or an arithmetic IF.

4-18 Control Statements

3
*
i
o

T
£
£ B

The CONTINUE statement has the form:
CONTINUE

4.5 CALL Statement

The CALL statement executes a SUBROUTINE subprogram or other
external procedure. It can also specify an argument list for the subroutine.
(See Chapter 6 for details on the definition and use of a subroutine.)

The CALL statement has the following formu:
CALL e[([al[.[al]...}]

s

The name of a SUBROUTINE subprogram or other external procedure, or
a dummy argument associated with a SUBROUTINE subprogram or other
external procedure,

a
An actual argument. (Section 6.1 describes actual arguments.)

If you specify an argument list, the CALL statement associates the values
in the list with the dummy arguments in the subroutine. It then transfers
control to the first executable statement of the subroutine.

The arguments in the CALL statement must agree in number, order, and
data type with the dummy arguments in the subroutine. These arguments
can be variables, arrays, array elements, substring references, constants,
expressions, Hollerith constants, character constants, or subprogram
names. An unsubscripted array name in the argument list refers to the
entire array.

Examples of CALL statements are:

CALL CURVE (BASE,3.14159+4X,Y,LIMIT,R{LT+2))
CALL PNTOUT (A.N,'ABCD')
CALL EXIT

Control Statements 4-19

4.6 RETURN Statement

The RETURN statement is used to return control from a subprogram to
the calling program. It has the form: '

RETURN

When a RETURN statement is executed in a function subprogram, control
is returned to the statement that contains the function reference (see
Chapter 6). When a RETURN statement is executed in a subroutine
subprogram, control is returned to the first executable statement following
the CALL statement.

RETURN statement example:

SUBROUTINE SIZCHK (N,K)
IF (N) 10,20.30
10 K=-1
RETURN
26 K=Q
RETURN
30 Keel
RETURN
END

4.7 PAUSE Statement

The PAUSE statement temporarily suspends program execution and
displays a message on the terminal to permit you to take some action.

The PAUSE statement has the form:

PAUSE [disp]

disp
An alphanumeric literal, a decimal digit string of one to five digits, or an
octal constant.

The disp argument is optional. The effect of a PAUSE statement depends
on how your program is being executed. If it is running as a batch job,
the contents of disp are written to the system output file, and the program
is not suspended.

4-20 Control Statements

If the program is running in interactive mode, the contents of disp are
displayed at your terminal, followed by a prompt sequence indicating
that the program is suspended. After you then enter the proper control
command, execution resumes with the first executable statement following
the PAUSE. The proper control command is specific to the operating
system (refer to the PDP-11 FORTRAN-77 User's Guide).

Some examples of PAUSE statements are:

PAUSE 889
PAUSE 'MOUNT NEXT TAPE'

4.8 STOP Statement

The STOP statement terminates program execution and returns control to
the operating system.

TN The STOP statement has the form;

STOP [disp)

disp
A character constant, a decimal digit string of one to five digits, or an octal
constant.

The disp argument, if present, specifies a message to be displayed when
execution stops.

Examples of STOP statements are:
3 STOP 98

STOF 'END OF RUN'
STOP

Control Statements 4-21

4.9 END Statement

The END statement marks the end of a program unit. It must be the last
source line of every program unit.

The END statement has the form:

END
The END statement must not occur on a continuation line and must not {3
itself be continued. N

In a main program, if no STOP statement prevents execution from reach-
ing the END statement, program execution terminates; in a subprogram,
RETURN statement is implicitly executed.

4-22 Contro! Statements

Chapter 5
Specification Statements

s

Specification statements are nonexecutable statements that let you allocate
and initialize variables and arrays, and define other characteristics of the
symbolic names used in the program.

The specification statements are:
LY * IMPLICIT statementoverrides the implied (default) data-typing of
symbolic names

* Type declaration statement—explicitly declares the data type of
specified symbolic names

o DIMENSION statement—declares the number of dimensions in an
array, and the number of elements in each dimension

e COMMON statement—reserves one or more contiguous areas of
storage

s VIRTUAL statement—-reserves space for one or more arrays to be
located outside normal program storage

¢ EQUIVALENCE statement-—associates the same storage location with
two or more entities

® SAVE statement—retains the definition status of an entity after execu-
tion of a RETURN statement in a subprogram

¢ EXTERNAL statement—declares the specified symbolic names to be
external procedure names

* INTRINSIC statement—declares one or more symbolic names to be
FORTRAN intrinsic functions

* DATA statement—assigns initial values to variables, arrays, and array
elements before program execution

* PARAMETER statement—assigns a symbolic name to a constant value

Specification Statements 5-1

* PROGRAM statement—assigns a symbolic name to a main program
unit

* BLOCK DATA statement—establishes a BLOCK DATA program
unit in which initial values may be assigned to entities contained in
common blocks

The following sections describe these statements.

5.1 IMPLICIT Statement

The IMPLICIT statement permits you to change the default data-typing
rules. By default, all names beginning with the letters I through N are
interpreted to be of integer data type, and all names beginning with any
other letter are interpreted to be of real data type; the IMPLICIT statement
allows you to alter these interpretations.

The IMPLICIT statement has one of the following forms:

IMPLICIT typ(al,al...)[.typlal,al...2]...
IMPLICIT NONE

typ
One of the data-type specifiers. (See Table 2-2.)

8 ‘
An alphabetic specification in one of two forms: c or c1-c2, where ¢ is an
alphabetic character. The c1—c2 form specifies a range of letters (from cl
through ¢2), that must occur in alphabetical order.

The IMPLICIT statement assigns the specified data type to all symbolic
names that begin with any of the specified letters and that have no explicit
data-type declaration. Explicit declarations take precedence over implicit
declarations.

The IMPLICIT statement also affects symbolic names defined in a
PARAMETER statement (see Section 53.11).

For exampie, the statements

IMPLICIT INTEGER (T,J,K.L,M.N)
IMPLICIT REAL (A-H, 0-2)

specify the default in the absence of any explicit statement.

§5-2 Specification Statements

The IMPLICIT NONE statement is used to override all implicit defaults.
You must then explicitly declare the data types of all symbolic names in
the program unit. If you specify IMPLICIT NONE, no other IMPLICIT
statement can be included in the program unit.

IMPLICIT statements must precede all other specification statements
except PARAMETER statements, and they must precede all executable
statements,

You can use the IMPLICIT statement to set a default length for the
character data type; simply specify typ as CHARACTER+len, where len is
the default length. Typ must be an unsigned integer constant or a positive
integer constant in parentheses, in the range 1 through 255.

Any data type can be specified in an IMPLICIT statement, as the following
examples demonstrate:

IMPLICIT DOUBLE PRECISION (D)
IMPLICIT COMPLEX (§,Y)}, LOGICAL#1 (L,A-C)

NOTE

The IMPLICIT statement has no effect on default types of
intrinsic functions.

5.2 Type Declaration Statements

Type declaration statements explicitly define the data type of specified
symbolic names. There are two forms of type declaration statements: nu-
meric type declarations (see Section 5.2.1) and character type declarations
(see Section 5.2.2).

The following rules apply to type declaration statements:

* Type declaration statements must precede all executable statements.
* The data type of a symbolic name can be declared only once.

* You can use a type declaration statement to declare:an array by
appending an array declarator (see Section 2.5.1) to an array name,

Specification Statements 5-3

5.2.1 Numeric Type Declaration Statements

Numeric type declaration statements has the form:

typ vl.v]

typ
Any data type specifier (see Table 2-2) except CHARACTER

v
The symbolic name of a variable, array, statement function, function
subprogram, or an array declarator.

A symbolic name can be followed by a data-type length specifier of

the form *s, where s is one of the acceptable lengths for the data type
being declared (see Table 2-2). Such a specification overrides the length
atribute that the statement implies, and assigns a new length to the
specified item. If you specify both a data-type length specifier and an
array declarator, the data type length specifier goes first. Examples of type
declaration statements are as follows.

INTEGER CDUNT, MATRIX(4.4), SUM
REAL MAN, IABS
LOGICAL SWITCH

INTEGER+*2 O, M12#4, IVEC*4(10)
REAL»S WX1, WK3=4, WXE, WEE~8 -

5.2.2 Character Type Declaration Statements

Character type declaration statements have the form:

CHARACTER [+1en(,]] v[+len][,v[*lenl]...

v

The symbolic name of a constant, variable, array, or array declarator.
(You cannot dedlare a function subprogram, a statement function, or a
virtual-array name to be of character data type.)

len

An unsigned integer constant or an integer-constant expression enclosed
in parentheses. The value of len specifies the length of the character data
elements.

5-& Specification Statements

If you specify CHARACTER+len, len becomes the default length specifi-
cation for the specified list. If an item in this list does not have its own
length specification, the item’s length is len. However, if an item does
have its own length specification, this specification overrides the default
length specified in CHARACTERslen.

If you do not specify a length, a length of 1 is assumed. The length
specification must be in the range 1 to 255; a length specification of zero
is invalid. You can use a character type declaration statement to define
arrays by including array declarators (see Section 2.5.1) in the list. If you
specify both an array declarator and a length, the array declarator goes
first (the reverse of the rule for numeric type declarations).

Examples of character type declaration statements follow:
CHARACTER+32 NAMES(100). SOCSEC (100)+9, NAMETY+10

This statement specifies an array NAMES comprising one hundred
32-character elements, an array SOCSEC comprising one hundred
9-character elements, and a variable NAMETY, which is 10 characters
long.

PARAMETER (LENGTH=4)
CHARACTER* (4+LENGTH) LAST, FIRST

The latter statement specifies two 8-character variables, LAST and FIRST.
(The PARAMETER statement is described in Section 5.11.)

CEARACTER LETTER(26)

This statement specifies an array LETTER comprising twenty-six
1-character elements.

CHARACTER#16 BIGCHR*(30000+2) ,QUEST# (S#INT(A))

This statement is invalid; the value specified for BIGCHR is too large, and
the length specifier for QUEST is not an integer constant expression.

5.3 DIMENSION Statement

The DIMENSION statement specifies the number of dimensions in an
array and the number of elements in each dimension.

The DIMENSION statement has the form:

DIMENSION al{d)[,a{d)]...

Specification Statements 5-5

afd)
An array declarator (see Section 2.5.1).

a
The symbolic name of an array.

d
A dimension declarator.

The DIMENSION statement allocates one storage element to each element
in each dimension of an array. The data type of the array determines the
Iength of the storage element. ‘

The total number of storage elements assigned to an array is equal to the
product of the array’s individual dimension declarators. For example, the
statement :

DIMENSION ARRAY(4,4), MATRIX(5.5.5)

defines ARRAY as having 16 (4x4) real elements of 4 bytes each and
defines MATRIX as having 125 (5x5x5) integer elements of 2 bytes each.

In addition to DIMENSION statements, you can use array declarators in
type declaration, COMMON, and VIRTUAL statements. However, within
a program unit, you can use an array name in only one array declarator.

Examples of DIMENSION statements are:
DIMENSION BUD(i2.24,10)

DIMENSION X(5,5,5),Y(4,85),2(100)

DIMENSION MARK(4,4.4.4)

For further information on arrays and on storing array elements, see
Section 2.5.

CONMMON Statement

A COMMON statement reserves one or more contiguous blocks of storage.
A symbolic name is used to identify each contiguous block; however, you
can omit a symbolic name for a blank comimon block in a program unit.
COMMON statements also specify the order of variables and arrays in
each common block. -

The COMMON statement has the form:

COMMOE [/{cbl/] nlist{[,1/0cbl/ nlist)...

6-8 Specification Statements

cb
A symbolic name, called a common block name; cb can be blank. (If the
first cb is blank, you can omit the first pair of slashes.}

nlist
A list of variable names, array names, and array declarators separated by
commas. (You cannot use a virtual-array name in a COMMON statement.)

A common block can have the same name as a variable or an array in
the same executable program. However, it cannot have:the same name
as a function, subroutine, or entry in the same executable program (see
Section 2.1).

When common blocks having the same name but located in separate
programs are made part of the same executable program, the individual
names become associated with the same storage area. Consider the
following example:

PRDCRAM MAIN
COMMON /BLGCK 1/ ICOUN , THOL/BLOCK2/ ICBK(10)

CALL GSUB

ERD

SUBROUTINE GSUB
COMMON/BLOCK2/ JCHK (10) /BLOCK1/ JCOUN , JHOL

END
In this example, BLOCK1 in MAIN and BLOCK1 in GSUB are associated

with the same storage area; likewise, the two BLOCK2s are associated
with a single storage area.

You can have only one blank common block in an executable program,
but you can have up to 250 named common blocks.

Entities are assigned storage in common blocks on a one-for-one basis.
In the above example, ICOUN and JCOUN are associated with the same
storage space in BLOCK]1, because each entity occurs first in its respective
list.

Specification Statements §-7

Entities placed in a one-to-one correspondence in the same common block
should agree in data type. For example, if one program unit contains the
statement '

COMMDN CENTS

and another program unit contains the statement

INTEGER*2 MONEY
COMMON MONEY

incorrect results may occur when these program units are combined,
because the 2-byte integer variable MONEY is made to correspond to the
high-order 2 bytes of the real variable CENTS.

You must not assign LOGICAL=*1 (BYTE) or character variables or arrays
to a common block in such a way that subsequent data of any other type
is allocated on an odd byte boundary. The compiler supplies no filler
space for common blocks; however, all common blocks are begun on a
word (even byte) boundary. In addition, you must not mix character and
numeric data in COMMON blocks. The data in 8 COMMON block must
be entirely of numeric data type or entirely of character data type.

Examples of COMMON statements follow.

Main Program Subprogram
COMMON EEAT,X/BLK1/KIL0,Q SUBROUTINE FIGURE
. COMMOK /BLK{/LIMA,R/ /ALFA, BET
CALL FIGURE :
' RETURN
END

The COMMON statement in the main program puts HEAT and X in a
blank common block, and puts KILO and Q in a named common block,
BLK1. The COMMON statement in the subroutine makes ALFA and BET
correspond to HEAT and X in the blank common block, and makes LIMA
and R correspond to KILO and Q in BLKI1.

Valid _ Invalid
INTEGER CHARS(S) ' CHARACTER CHARS(S)
COMMON/STRING/ILEN , CHARS COMMON/STRING/CHARS, ILEN

5-8 Spacification Statements

3
i

In this example, the integer variable ILEN is allocated on the same block
as a character variable.

BYTE EO,B1
COMMON/STRING/BO, ILEN,B1

In this example, the integer variable ILEN is allocated on an odd byte
address. ‘

5.8 VIRTUAL Statement

RS S

A virtual array is an array whose storage is allocated in physical main
memory outside of the program’s directly addressable main memory. The
use of virtual arrays in a program frees directly addressable memory for
executable code and other data storage.

The VIRTUAL statement names a virtual array and specifies the number
of dimensions and the number of elements in each dimension. The
VIRTUAL statement has the form:

VIRTUAL a(d) [,a(dd?...

a{d)
An array declarator (see Section 2.5.1).

&
The symbolic name of an array.

d
A dimension declarator.

The maximum total directly addressable memory available to user pro-
grams executing on a computer in the PDP-11 family is 64K, or 65,536
bytes. In light of the allowable sizes of PDP-11 FORTRAN-77 arrays, it
is easy to see how quickly directly addressable main memory can be used
up. A numeric array, for instance, can have a maximum of 32,767 ele-
ments of from 1 to 8 bytes in length., Therefore, a maximum LOGICAL=1
array of 1 byte per element would require 32,767 bytes of storage space,
and a maximum COMPLEX array of 8 bytes per element would require
262,136 bytes of storage space, a requirement far beyond the 64K limit on
directly addressable memory.

Specification Statements §-9

NOTE
Virtual arrays are not supported on RSTS/E operating systems.

The data type of a virtual array is specified in the same way that the data
type of any other array is specified, that is, either implicitly by the first
letter of the name, or explicitly, by a type declaration statement.

An example of a VIRTUAL statement follows:
VIRTUAL A{1000). LARG(180,180), Mult (4.4.4.4.4.4.4)

This statement defines a one-dimensional array named A of 1000 ele- Y’
ments, a two-dimensional array named LARG of 32400 elements, and a
seven-dimensional array named MULT of 16384 elements. These arrays

are placed in external main memory and therefore do not significantly

diminish the 64K of directly addressable memory.

For further information concerning arrays and their storage, see
Section 2.5.

5.5.1 Restrictions on Using Virtual Arrays

Virtual arrays and virtual array elements are subject to the following
limitations:

® A virtual array name must not be used in a COMMON statement (see
Section 5.4).

e The name of a virtual array or virtual array element must not be used
in an EQUIVALENCE statement (see Section 5.6).

© A virtual array or virtual array element cannot be assigned an initial
value by a DATA statement (5ee Section 5.10).

e Virtual arrays cannot be used to contain run-time format specifications
(see Section 8.6). The name of a virtual array or virtual array element
must not appear as a format specifier in an I/0 statement.

¢ The name of a virtual array or virtual array element must not be
specified as the buffer argument (third argument inside parentheses)
of an ENCODE or DECODE staternent (see Section A.1).

* The name of a virtual array element must not be used as an actual
argument to a subprogram if the subprogram assigns a value to the
corresponding dummy argument (see Section 6.1).

¢ The name of a virtual array or virtual array element cannot be used to
specify the FILE keyword in an OPEN statement (see Section 9.1.10). ..

5-10 Specification Statements

¢ The name of a virtual array cannot be used to specify a key expression
in a keyed I/O statement.

® A virtual array name must not be of data type character.

Below are examples of valid and invalid use of virtual arrays:
Valid

VIRTUAL A(1000),B(2000)
READC1,%) A
DO 10,%=1,1000
10 B(I)=-A(I)*2
WRITE(2,*) (A(I},I=1,1000}

CALL SUB (A.B)
Invalid

VIRTUAL A(10)

CHARACTER A (declared as type character)

DATA A{1)/2.5/ (uged in DATA statement)

COMMDR /X/ A {used in COMMON statement) .

EQUIVALENCE (A{1).,Y) {used in EQUIVALENCE statement)
e WRITE(L.4) X.Y (used as format specifier)
ENCODE (4,100,A(3)) X,Y (used as ENCODE output buffer)

5.5.2 Virtual Array References in Subpregrams

A dummy argument that is the name of a virtual array can become
associated with an actual argument that is also the name of a virtual array.

An actual argument that is a reference to a virtual array element can
become associated only with a dummy argument that is a simple variable
(see Section 2.4). In effect, an actual argument that is a virtual array
element is treated as if it were an expression.

Furthermore, a value must be assigned to a virtual array element before
this element is used as an actual argument and the subprogram must not
alter the value of the corresponding dummy argument.

Below are examples of valid and invalid virtual array references in
subprograms: : '

Valid Usage

VIRTUAL A(1000),B(1000)
B{3)=0.5

CALL SCALE(A,1000,B(3))
END

Specification Statements 5-11

SUBROUTINE SCALE (X,N,W)
VIRTUAL X(K)
8=0
o0 10, I=1,N
10 S=S+X(I)*W
TYPE *.5
EXD

Invalid Usage

VIRTUAL A(1000Q)
REAL B{4000)

CALL ABC(A.B,A(3))
END

SUBROUTINE ABC{X.Y,Z)

REAL X(1000) - {actval argument is virtual)
VIRTUAL Y{4000} (actual argument is nomvirtual)
2=2.3 (actual argument is virtuel array
EKD element)

5.6 EQUIVALENCE Statement

The EQUIVALENCE staternent partially or totally associates two or more
entities in the same program unit with the same storage location.

The EQUIVALENCE statement has the form;
EQUIVALENCE (nlist) [, {nlimt}]...

nlist

A list of variables, array elements, arrays, or character substring references,
separated by commas. You must specify at least two of these entities in
each list,

The EQUIVALENCE statement allocates storage that begins at the same RS
location to all of the entities in its list.

In an EQUIVALENCE statement, each expression in a subscript or sub-
string reference must be an integer constant or integer constant expression.

Dummy arguments, virtual arrays, and virtual array elements may not be
used in an EQUIVALENCE statement.

5-12 Specification Statements

AT

The entities in nlist must be either entirely of numeric data type or entirely
of character data type: you cannot make numeric entities and character
entities equivalent,

You must not equivalence LOGICAL+1 arrays with other elements in such
a way that subsequent data of any other type is allocated on an odd byte

boundary.

An array name used in an EQUIVALENCE statement refers to the first
element of the array.

You can equivalence variables of different numeric data types; that is,
you can store them such that each entity begins at the same address.
Furthermore, you can store multiple components of one data type with a
single component of a higher-ranked data type. For example, if you make
an integer variable equivalent to a complex variable, the integer variable
shares storage with the real part of the complex variable.

Examples of valid and invalid EQUIVALENCE statements are:
Valid
DOUBLE PRECISION DVAR

INTEGER*2 IARR(4)
EQUIVALENCE (DVAR,IARR(1))

This EQUIVALENCE statement makes the four elements of the integer

array 1ARR occupy the same storage as the double-precision variable
DVAR.

CHARACTER KEY*16, STAR*10
EQUIVALENCE (KEY,STAR}

This EQUIVALENCE statement makes the first character of the character
variables KEY and STAR share the same storage location. The character
variable STAR is equivalent to the substring KEY (1:10).

Invalid

LOGICAL+1 BYTES(10)
EQUIVALENCE (ILEN, BYTES(8))

In this example, the integer variable ILEN is allocated on an odd byte
address.

Specification Statements §-13

5.8.1 Making Arrays Equivalent

When you make an element of one array equivalent to an element of
another array, the EQUIVALENCE statement also sets equivalences
between corresponding elements of the two arrays. Therefore, if the first
elements of two equal-sized arrays are made equivalent, both arrays share
the same storage space. And, for example, if the third element of a
7-element array is made equivalent to the first element of another array,
the last five elements of the first array overlap the first five elements of the
second array.

You must not use the EQUIVALENCE statement to assign the same
storage location to two or more elements of the same array. You also
must not attempt to assign memory locations in a way that is inconsistent
with the normal linear storage of array elements. For example, you cannot
make the first element of one array equivalent to the first element of -
another array and then attempt to set an equivalence between the second
element of the first array and the sixth element of the other array.

Some examples of the use of the EQUIVALENCE statement follow:

DIMENSION TABLE (2,2), TRIPLE (2,2,2)
EQUIVALENCE (TABLE(2,2), TRIPLE(1,2.2))

As a result of these statements, the entire array TABLE shares part of
the storage space allocated to array TRIPLE, Table 5-1 shows how these
statements align the arrays.

5-14 Specification Statements

‘Table 5-1: Equivalence of Array Storage

Array TRIPLE Array TABLE
Element
Array Element Number Array Element Element Number
TRIPLE(1,1,1) 1

TRIPLE(2,1,1) 2

TRIPLE(1,2,1) 3

TRIPLE(2,2,1) 4 TABLE(1,1) 1

TRIPLE(1,1,2) 5 TABLE(2,1) 2

TRIPLE(2,1,2) 6 TABLE(1,2) 3

TRIPLE(1,2,2) 7 TABLE(2,2) 4
8

TRIPLE(2,2,2)

Each of the following statements also aligns the two arrays as shown in
Table 5-1:

EQUIVALENCE (TABLE,TRIPLE(2,2.1))
EQUIVALENCE (TRIPLE(1,1,2), TABLE(2.1))

You can identify an array element in an EQUIVALENCE statement with

a single subscript (that is, with the linear element number), even though
the array is multidimensional. For example, the following statement aligns
arrays TRIPLE and Table 5-1:

EQUIVALENCE (TABLE{4), TRIPLE(7))

Similarly, you can make arrays equivalent with nonunity lower bounds.
For example, an array defined as A(2:3,4) is a sequence of eight values. A
reference to A(2,2) refers to the third element in the sequence. To make
array A(2:3,4) share storage with array B(2:4,4), you can use the statement

EQUIVALENCE (A(3.4}, B(2,4))

The whole of array A now shares part of the storage space allocated to
array B. Table 5-2 shows how the above statement aligns the arrays.

Specification Statements 5-156

Table 5-2: Equivalence of Arrays with Nonunity Lower

Bounds
Array B Array A
Array Array
Element Element Number Element Element Number
B(2,1) 1
- B(3.1) 2
B{4,1} 3 A1 1
B(2,2) 4 A(3,1) 2
B(3,2} 5 A(2,2) 3
B(4,2) 6 A(3,2) 4
B(2,3) 7 A(2,3) 5
B(3.3} 8 A(3.3) 6
B(4,3) g A(24) 7
B(2.4) 10 A(3.4) B
B(3.4) 11
B(4.4) 12

5.8.2 Making Suhstrings Equivalent

When you make one character substring equivalent to another character
substring, the EQUIVALENCE statement also sets equivalences between
the other corresponding characters in the character entities.

For example, as a result of statements

CHARACTER NAME*18, ID*9
EQUIVALENCE (NAME(10:13}, ID{2:5))

the character variables NAME and ID share space as illustrated in
Figure 5-1.

5-16 Specification Statements

i
I3
*

Figure 5—-1: Equivalence of Substrings

NAME
Character
Position
1
2
3
4
5
6
7 ID
: iy
s"-',}'\}:
e 9 1
10 2
11 3
12 4
13 5
14 6
15 7
16 8
9
7K-207-81

Spacification Statements 5§-17

The following statement also aligns arrays NAME and ID as they are
eligned in Figure 5-1:

EQUIVALENCE (NAME(9:9),ID(1:1))

- H the character substring reférences are array elements, the EQUIVALENCE
statement sets equivalences between the other corresponding characters in
the complete arrays.

Character elements of arrays can overlap at any character position. For
example, as a result of statements

CHARACTER FIELDS(100)+*4, STAR(5)B
EQUIVALENCE (FIELDS(1)(2:4), STAR(2)(3:5)}

the character arrays FIELDS and STAR share storage space as shown in
Figure 5-2.

B-18 Specification Statements

Figure 5-2: Equivalence of Character Arrays

STAR
Characier
Positon
1
2
3
4
FIELDS
an £
Subscript Position 1
1 1 2
z 3
3 I3
4 5
2 1 1
2 2
3 3
4 &
3 1 5
2 1
3 2
4 3
4 1 4
2 5
3 1
4 2
5 1 3
2 4
3 5
4
[1
2
3
4
7 1
2
100 1
2
3
4

Subscript
1

IK-208-3%

Specification Statements 519

You cannot use the EQUIVALENCE statement to assign the same storage
Iocation to two or more substrings that start at different character positions
in the same character variable or character array.

You aiso cannot use the EQUIVALENCE statement to assign memory
locations in a way that is inconsistent with the normal linear storage of
character variables and arrays.

The following statements also align the arrays as shown in Table 5-2

EQUIVALENCE (A,B(4.1))
EQUIVALENCE (B{3.2), A(2,2)}

5.6.3 Extending Common Blocks

When you make entities equivalent to entities stored in a common block,
the common block ¢an be extended beyond its original boundaries to
include the entities specified in the EQUIVALENCE statement. However,
you can extend the common block in only one direction. That is, you
can only extend it beyond the last element of the previously established
common block., You cannot place the extended portion before the first
element of the existing common block. The following examples show
valid and invalid extensions of the common block:

5-20 Specification Statements

Figure 5-3: Common Block

Valid
: DIMENSION A(4),B(6) Al1) Al2) 1 AB) 1 A
COMMON A
EQUIVALENCE {A{2),B(1) B(1} B{2) B(3) B4} B{5) B{6)
T s v - ~
S Existing Extended
Common Portion-
ZK-7625-HC
Invalid
DIMENSION A[4},B(6) A L A | AR | AW
COMMON A
EQUIVALENCE {A{2),B(3)) B{1) Bi2) B{3) B14) | B(5) B(6)
S M ——— -~ Y
S Extended Existing Common Extended
it Portion Portion
; ZK-7626-HC

If you assign two entities to common blocks, you cannot make them
equivalent to each other.

5.7 SAVE Statement

The SAVE statement retains the definition status of an entity after execu-
tion of a RETURN or END statement in a subprogram.

The SAVE statement has the formu:

SAVE [al,a]...]

a

A unique common-block name (preceded and followed by a slash), a
variable name, or an array name.

Dummy argument names, procedure names, and names of entities con-
tained in common blocks must not appear in a SAVE statement. If you
violate these restrictions, a multiple definition of the name used illegally
occurs. '

Specification Statements 6-21

An entity contained in a common block specified in a SAVE statement
does not becorme undefined upon execution of a RETURN or END state-
ment contained in the same program unit. However, it may become
undefined (or redefined) in another program unit.

Because a variable, an array element, or a common block contained in one

overlay segment can become undefined when this segment is replaced
by another overlay segment, the SAVE statement can be especially useful
in overlaid programs. To retain the definition of an entity when you are
using overlays, you can simply specify that entity in a SAVE statement,
within the proper program unit.

A SAVE statement that does not explicitly contain a list is treated as
though it contained a list consisting of all allowable items in the program
unit in which the SAVE statement resides.

If a common block name is specified in a SAVE statement within a
subprogram of an executable program, this common block name must be
specified in a SAVE statement in every subprogram in which the common
block appears.

The following example demonstrates use of the SAVE statement:

DIMENSION A{100) :
COMMON /CMN2/B{100),C,D(50)
SAVE A,/CMN2/.E

The SAVE statement in this example preserves the current definitions of
the array A, the named common block CMN2, and the local variable E.

5.8 EXTERNAL Statement

The EXTERNAL statement allows you to use external subprogram names
as arguments to other subprograms.

The subprograms to be used as arguments can never be FORTRAN
intrinsic functions; they can only be user-supplied functions and subrou-

tines. The INTRINSIC statement discussed in Section 5.9 allows intrinsic

function names to be used as arguments.
The EXTERNAL statement has the form:
EXTERNAL v[,v]...

§-22 Specification Statements

T
s T

v
The symbolic name of user-supplied subprogram, or the name of a dummy
argument associated with the name of a subprogram.

The EXTERNAL statement declares each symbolic name incdluded in it to
be the name of an external procedure. This name can then be used as an
actual argument to a subprogram that can use the corresponding dummy
argument in a function reference or a CALL statement.

Note that a complete function reference used as an argument—FUNC(B)
in CALL SUBR (A, FUNC(B}, C), for example—-represents a value, not a
subprogram. A complete function reference is not, therefore, defined in an
EXTERNAL statement.

The interpretation of the EXTERNAL statement described above is differ-
ent from that of earlier versions of DIGITAL FORTRAN. See Appendix A
for the earlier interpretation.

5.9 INTRINSIC Statement

The INTRINSIC statement allows you to use intrinsic function names

as arguments to subprograms. Section C.3 contains the names and de-
scriptions of the individual PDP~11 FORTRAN-77 intrinsic functions; for
further information on intrinsic functions, see Chapter 6,

The INTRINSIC statement has the form:

INTRINSIC vi,v]...

v
The symbolic name of an intrinsic function.

The INTRINSIC statement declares a symbolic name the name of an
intrinsic procedure. This symbolic name can then be passed as an actual
argument to a subprogram, which can use it in a function reference or a
CALL statement.

Specificstion Statements 523

An example of the use of the INTRINSIC statement follows:
Main Program

* EXTERNAL CTN
INTRINSIC SIN, COS

CALL TRIG (ANGLE, SIN, SINE)
CALL TRIG (ANGLE, COS, COSINE)

CALL TRIG (ANGLE, CTN, COTANGENT)

Subprograms

SUBROUTINE TRIG (X.F.Y)
Y=F (X)

RETURN

END

FUNCTION CTN(X)
CTN=COS (X) /SIN(X)
RETURN

END

In this example, when TRIG is called with a second argument of SIN
or COS, the function reference F(X) references the FORTRAN library

functions SIN and COS; but when TRIG is called with a second argument

of CTN, B(X) references the user function CTN.

5.10 DATA Statement

The DATA statement assigns initial values to variables, arrays, and array

elements before program execution.
The DATA statement has the form:

DATA nlist/clist/[{,Inlist/clist/]...

§-28 Specification Statements

Sl

nlist

A list of one or more variable names, array names, array element names,
or character substring names, separated by commas. Subscript expressions
and expressions in substring references must be integer expressions
containing integer constants.

clist

A list of constants, separated by commas, to be assigned to nlist. Clist
constants have one of the following forms:

val
n * val

'

The number of times the same value is to be assigned to successive
entities in the associated nlist. The value of n is a nonzero, unsigned
integer constant or the symbolic name of an integer constant.

Subscript expressions and constant values may be integer constant expres-
sions.

The DATA statement assigns the constant values in each clist to the
entities in the preceding ruist. Values are assigned in the order they
appear, from left to right.

The number of constants must correspond exactly to the number of entities
in the preceding nlist.

When an unsubscripted array name appears in a DATA statement, values
are assigned to every element of that array. The associated constant list
must therefore contain enough values to fill the array. Array elements are
filled in the order of subscript progression,

If both the constant value in the clist and the entity in the nlist have
numeric data types, the conversion is based on the following rules:

* The constant value is converted, if necessary, to the data type of the
variable being initialized.

e When an octal or hexadecimal constant is assigned to a variable or |
array element, the number of digits that can be assigned depends on
the data type of the component. If the constant contains fewer digits
than the capacity of the variable or array element, the constant is
extended on the left with zeros. If the constant contains more digits
than can be stored, the constant is truncated on the left.

Specification Statements 5-25

®* When a Hollerith or character constant is assigned to a numeric
variable or numeric array element, the number of characters that
can be assigned depends on the data type of the component (see
Table 2-2). If the Hollerith or character constant contains fewer
characters than the capacity of the variable or array element, the
constant is extended on the right with spaces. if the constant contains
more characters than can be stored, the constant is truncated on the
right.

If the constant value in the clist and the entity in the nlist are both
character data type, the conversion is based on the following rules:

¢ If the constant contains fewer bytes than the length of the entity, the
rightmost character positions of the entity are initialized with spaces.

* If the constant contains more bytes than the length of the entity, the
character constant is truncated on the right.

If the constant value is numeric data type and the entity in the nlist is
character data type, the constant and the entity must conform to these
restrictions:

® The character entity must have a length of one character. {

® The constant must be an integer, octal, or hexadecimal constant and
must have a value in the range 0 through 255.

When the constant and the entity conform to these restrictions, the entity
is initialized with the character that has the ASCII code specified by the
constant; a character entity, then, can be initialized to any 8-bit ASCII
code. .

Dummy arguments, virtual arrays, and virtual array elements may not be
initialized in DATA statements.

In the example

INTEGER A(iO)
BYTE BELL,TAB,LF,FF,ACHR,ZCHR
DATA A, BELL,TAB,LF,FF,ACHR,ZCHR /10%0,7,9,i0,12,'A*,1HZ/

the DATA statement assigns 0 to all 10 elements of array A, and ASCII
control character codes to byte variables BELL, TAB, LF, and FF. It assigns
values ‘A’ and 1HZ to ACHR and ZCHR, respectively.

§-26 Specification Statements

Some other examples of the DATA statement are included in the following
segment:

CHARACTER+4 STRING

REAL X(8)

COMPLEX 2

DATA X/2%-3,.,4.,2%0.37/,2/(1.0,-3.0)}/
DATA STRING/'ABCD'/

5.11 PARAMETER Statement

The PARAMETER statement assigns a symbeolic name to a constant.
The PARAMETER statement has the form:

PARAMETER (p=c[,p=cl...)

p
A symbolic name.

c

Any valid FORTRAN constant, the symbolic name of any valid FORTRAN
constant, or an integer expression.

Each symbolic name in a PARAMETER statement becomes a constant and
is defined to be the value to which it is equated.

The data type of a symbolic name defined to be a constant is determined
by the same implicit-typing rules that determine the data type of any
other symbolic name, or by a preceding type declaration. Therefore,
MU=1.23 in a PARAMETER statement is interpreted as MU=1, unless the
PARAMETER statement is preceded by an appropriate type declaration or
IMPLICIT statement (for example, REAL#*8 MU).

Once a symbolic name is defined to be a constant, it can appear any place
in a program that an ordinary constant can appear. The effect of using a
symbolic name defined to be a constant is that of using the constant itself.

The symbolic name of a constant cannot appear as part of another con-
stant; however, it can appear as either the real or imaginary part of a
complex constant.

You can use a symbolic name defined to be a constant only within the
program unit containing PARAMETER statement that defined it. Also, a
symbolic name can be defined only once within the same program unit.

Sperification Statements 5-27

The form and the interpretation of the PARAMETER statement described
above are different from the form and interpretation of the PARAMETER
statement provided in earlier versions of DIGITAL FORTRAN. However,
PDP-11 FORTRAN-77 provides both the FORTRAN-77 and the earlier

form of the PARAMETER statement; see Appendix A for information on
the earlier form and interpretation.

The following sequence demonstrates the use of the FORTRAN-77
PARAMETER statement:

INTEGER BYTS1Z, WRDS1Z

REAL+4 PI

REAL+8 DPI

LOGICAL FLAG

CHARACTER#25 LONGNAME

PARAMETER (PI=3.1415927, DPI=3.141592653589793238D0)
PARAMETER (BYTS1Z=2, WRDS1Z=BYTS1Z/2)

PARAMETER (FLAG=.TRUE.,LLNGNAM='A STRING OF 25 CHARACTERS')

5.12 PROGRAM Statement

The PROGRAM statement assigns a symbolic name to a main program
unit. '
The PROGRAM statement has the form:

PROGRAM nam

nam
A symbolic name.

The PROGRAM statement is optional. If you use it, it must be the first
statement in the main program. The symbolic name must not be the name
of any entity within the main program. It also must not be the name of
any subprograrm, entry, or common block in the same executable program
{see Section 2.1).

5-28 Specification Statements

5.13 BLOCK DATA Statement
The BLOCK DATA statement begins a special type of program unit that
declares common blocks and defines data in common blocks.
The BLOCK DATA statement has the form:

BLOCK DATA [nam]

nam
A symbolic name.

You can use only type declaration, IMPLICIT, DIMENSION, COMMON,
EQUIVALENCE, and DATA statements between a BLOCK DATA state-
ment and its terminal statement. The last statement in a BLOCK DATA
program unit must be an END statement.

A BLOCK DATA program unit must not contain any executable statements
and must not have a statement label.

H you initialize any entity in a common block declared in a BLOCK DATA
program unit, you must provide a complete set of data-type specification
statements for all the entities in the block, even though some of the
entities are not assigned an initial value. You can use the same BLOCK
DATA program unit to define initial values for more than one common
block.

An example of a BLOCK DATA program unit follows:

BLOCK DATA BLKDAT

INTEGER §,X

LOGICAL T.W

DOUBLE PRECISION U

DIMENSIDN R(3)

COMMON /AREA1/R,S,T,U/AREAZ/W.X.Y

DATA R/1.0,2¢2.0/,T/.FALSE./,U/0.214537D-7/ W/ .TRUE./,Y/3.5/
END

In this example, enough information is provided to declare explicitly or
implicitly the data type of every variable in the common blocks AREA1
and AREA2. Not all the variables appear in the DATA statement,

Specification Statements 6-29

Chapter 6
Subprograms

A subprogram is a statement or group of statements that defines a com-
puting procedure. A subprogram is invoked with a referencing statement.
This referencing statement can be located either in the same program unit
as the subprogram or in a different program unit.

There are two kinds of subprograms: user written and system supplied.
User-written subprograms consist of statement functions, functions, and
subroutines; system-supplied subprograms consist of intrinsic functions
and generic functions.

In many cases, a program referencing a subprogram passes values, called
actual arguments, to that subprogram for it to use in making computations.
The subprogram specifies entities, called dummy arguments, to receive
these actual arguments,

Section 6.1 describes actual and dummy arguments; Section 6.2 describes
user-written subprograms; and Section 6.3 describes system-supplied
subprograms.

6.1 Subprogram Arguments

A subprogram argument is an entity that passes a value to or from a sub-
program. There are two kinds of arguments: actual and durnmy. Actual
arguments are specified in the statement referencing the subprogram.
Dummy arguments are specified in the definition of the subprogram and,
when control is transferred to the subprogram, are associated with actual
arguments on a one-to-one basis. Each dummy argument takes on the
value of the corresponding actual argument; in turn, any value assigned to
LN the dummy argument in the subprogram is assigned to the corresponding
7 actnal argument. When control is returned to the main program from

Subprogrems §-1

the subprogram, the association of actual and dummy arguments ends:
there is no retention of argument association from one reference of a
subprogram to the next.

If (1,J(3)4)is a hst of actual arguments and (K L, M) is an associated list of
dummy argumenis, K is associated with 1, L is associated with J(3), and M
is assigned a value of 4.

Y

8.1.1 Rules Governing Snbpgnglam Arguments

6-2 Subprograms

Actual argumentsican be constants, variables, expressions, arrays, array
elements, substrings, or subprogram names. Actual arguments must agree
in order, number, and data type with the dummy arguments with which
they are associated.

Dummy arguments are symbolic names that become associated with vari-
ables or arrays, or with subprograms defined or declared in other program
units; they are not in themselves variables or arrays or subprograms. A
dummy argument is undefined if it is not currently associated with an
actual argument.

Although dummy arguments are not variables, arrays, or subprograms, e
each dummy argument may be declared as though it were a variable,

array, or subprogram. Each dummy argument name is declared to have

the attributes of its associated actual argument.

If the actual argument is a constant, an expression, a subprogram name,
or a virtual array element reference, the corresponding dummy argument
may not be modified.

A dummy argument declared to be an array can be associated only with
an actual argument that is an array or array element of the same data
type. If the actual argument is an array, the dummy argument array must
not be larger than the actual argument array; that is, it can be equal to or
smaller than the number of elements in the actual argument.

If an actual argument is an element of an array, this element and suc-
ceeding elements of the array are associated with elements of the cor-
responding dummy argument array. The number of actual argument
array elements associated depends on the size of the dummy argument
array. The dummy argument array must not be larger than the number
of elements in the actual argument array involved in the reference; that
is, it can be equal to or smaller than the number of elements in the actual
argument,

Valid

PROGRAM MAIN

Invalid

PROGRAM MAIN-

DIMENSION A{10), B(5,5) DIMENSION A{10), B(5.5)

CALL X{a,B(1,21})

END END

SUBROUTINE X(Y,Z) SUBRCOUTINE X(C,D)

DIMENSION Y(10}, Z{(5,2} DIMENSION C(12) (dummy array must
END not be larger than
actual array)

DIMENSION D(5,5) (dummy array gsust
not be larger than
number of elements
of actual array
included)

CALL X(A, B(1,21))

8.1.2 Adjustable Arrays

An adjustable array is a dummy argument array, declared in a sub-
program, whose dimensions can be changed, or “adjusted,” to match
the dimensions of an associated actual argument array in a referencing
program. The dimension declaration of a dummy argument array con-
tains one or more integer variables and, optionally, an asterisk. (See
Section 6.1.3 for information on the use of the asterisk.)

The following rules govern the use of adjustable arrays:

* An adjustable array must be a dummy argument.

i | ® An adjustable array must become associated with an actual argument
that is an array.

The size of an adjustable array must be less than or equal to the size
of a corresponding actual array.

® Variables in an adjustable array declarator must be dummy arguments,
and the corresponding actual arguments must have a defined value,

* Variables in an adjustable array declarator must become defined; you
can assign values to these variables through dummy arguments or
through common blocks.

® Variables in an adjustable array declarator may be of any data type;
assigned values of other than integer data type are converted to
integer data type before use,

Subprograms §-3

The following examples demonstrate the use of adjustable arrays:
PROGRAM MAIN .

DIMENSION A1(10,36), A2(3.56)
SUML = SUM(AL,10#35)

BUM2 = SUM(A2,3,56)

SUMZ = sum(m.to%:o)

§

S
END 3
FUNCTION SUMCA,M;K) or FUNCTION SUM(A,M, ¥}
DIMENSION A(M,¥)" DIMENSION A(M,*)
SUM = 0.0 . SUX = 0.0
DO 10 J = L,N DO 10 J = L1,K
DO 10 I = 1,M D010 I =1,M
10 SUM = SUM + A(I.]) 10 SUM = SUM + ACI,J)
RETURN RETURN
END END

In this example, Al and A2 are actual arrays and A is the adjustable array.
The function subprogram computes the sum of specified sections of A1 or
A2. Note that the dummy arguments M and N are used to control the DO
statement iteration as well as to specify the size of A.

For more information on array declarators, see Section 2.5.1.

‘Upper-and lower-bound values can be specified for an adjustable array.
These values do not change during subprogram execution, even if the
values of variables contained in the array declaration are changed. For
example: ‘

DIMENSION ARRAY (11,5)
L=9

M=5

CALL SUB(ARRAY,L,M)
END

SUBROUTINE SUB(X,I.J)
DIMENSION X{-1/2:1/2.3)
J=1

I=2

END

In this example, the adjustable array X is declared to be X(-4:4,5); the
subsequent assignments to I and] do not affect this declaration.

Note that argument association is not retained in the interim between one
reference to a subprogram and the next.

6-4 Subprograms

REAL B
DIMENSION B(10)
CALL §(B,2,3.0)
CALL 81(%5,B,3.2)

SUBROUTINE S(A.I. D)
DIMENSION A(T)
A(I) =3
RETURN
Co ENTRY 81 (I.A.X.L)
o AMID = A + 1
RETURN
END

In this example, B is declared to be a real array with 10 elements by the
statement

DIMEFSION B{10)
The statement
. CALL $(B,2,3)
S sets B(2) = 3; the next statement

CALL 81(5,B,3,2}

increments B(5) by 1, but only because it provides actual argument A,
which was not retained in the subroutine after the first reference.

6.1.3 Assumed-Size Dummy Asrays

AT An assumed-size dummy array is a dummy array {argument) for which
L the upper bound of the last dimension is specified as . For example:

SUBROUTIRE SUB(A,N)
DIMENSION A(N,*)

The size of an assumed-size array and the number of elements that can be
referenced are determined as follows:

» I the actual argument corresponding to the dummy array is a non-
character array name, the size of the dummy array is the size of the
actual argument array.

Subprograms 6-5

¢ If the actual argument corresponding to the dummy argument is a
noncharacter array element name, with a subscript value of s in an
array of size a, the size of the dummy array is a+1-s,

* If the actual argument is a character array name, character array
element name, or character array element substring name, and begins
at character storage unit b of an array with n character storage units,
the size of the dummy array is INT(n+1-b)/y, where y is the length of
an element of the dummy array. ‘

Because the actual size of an assumed-size array is not known, an
assumed-size array name cannot be used as any of the following:

* An array name in the list of an I/O statement

* A unit identifier for an internal file in an I/O statement

¢ A run-time format specifier in an 1/0 statement

* A key specifier in an 1/O statement

o A buffer specifier for ENCODE/DECODE statements

6.2 User-Written Subprograms

A user-written subprogram is a statement or group of statements that
performs a computing procedure. A computing procedure can be a series
of either arithmetic operations or FORTRAN statements.

User-written subprogi'ams are useful in avoiding having to duplicate the
same series of operations or statements in two or more different locations
in a single program.

There are three types of user-written subprograms. Table 6-1 lists each
type, the statements needed to define each type, and the method used to
transfer control to each type.

8-6 Subprograms

Table 6-1: Types of User_Written Subprograms

. Control Transfer
Subprogram Defining Statements Method

Statement function Statement-function Function reference
definition

Function subprogram FUNCTION Function reference
ENTRY
RETURN

Subroutine subprogram SUBROUTINE : CALL statement
ENTRY
RETURN

A function reference (Table 61} consists of a function name and function
arguments, and is used in an expression. The CALL statement is discussed
in Section 4.5.

Function and subroutine subprograms can change the values of their
arguments, and the calling program can use these changed values.

A subprcgram can refer to other subprograms but it cannot, either directly
or indirectly, refer to itself.

8.2.1 Statement Functions E

A statement function is a single-statement computation specified by a
symbolic name. When you reference a statement function name in an
expression, the computation defined by the statement function name
is performed and the value produced is used to replace the statement
function name in the expression. Statement functions are defined and
referenced within a single program umt

A statement function has the form:
f ([pl.p)...1)=e

f
The name of a statement function.

p
A dummy argument.

Subprograms 67

68 Subprograms

* An actual a:gum%-; t.

e .
An expression. |

The expression (e) is an arithmetic or logical expression that defines the

T

When a statemen_l function reference appears in an expression, the values
of the actual arguments are associated with the dummy arguments in
the statement furiction. The expression in the statement function is

then evaluated, and the result is used to complete the evaluation of the
expression containing the reference.

The following rules govern the use of statement functions:

* A statement function may not return a value of type CHARACTER.

* Statement function names must be unique within the same program
unit. :

* A statement function reference must appear in the same program unit
as the statement function.

* Statement functions can include a reference to another statement
function (defined earlier in the same program unit).

* Statement functions must be placed before all executable statements
(see Figure 1-3).

» The data type of a value computed by a statement function is de-
termined either by the first letter of the function name or by a type
declaration statement.

* Statement function dummy arguments serve only to indicate order,
number, and data type of arguments for the statement function.

¢ Names of statement function dummy argumenis must be unique only
within each statement function. Variables or arrays having the same
names as dummy arguments can be declared and used within the
same program unit.

* The data type of statement function dummy arguments is determined
either by the first letter of the argument name or by a type declaration
statement,

* A statement function cannot be used as an EXTERNAL argument in a
subroutine.

Examples of valid and invalid statement functions are:
S Valid
AT VOLUME (RADIUS) = 4.180«RADIUS**3
AVG (A,B,C) = (A+B+C)/3
SINH (X} = (EXP{X) - EXP (-X))*0.5
Invalid

AXG(A,B,C,3.} = (A+B+C)/3 {a constant caunnot be a dummy argument)

The examples of statement function references below refer to the second
valid statement function above.

Valid

GRADE = AVG (TEST1,TEST2,XLAB)
IF (AVG (P,D,Q) .LT.AVG(X,Y,2))30 TO 30Q

Invalid
FINAL = AVG(TEST3,TEST4,LAB2) {LAB2 is integer, but C is real)

6.2.2 Function Subprograms

A function subprogram consists of a FUNCTION statement followed by
a series of statements that make up a computing procedure. It is invoked
with a function reference.

The FUNCTION statement has the following form:

[typ] FUNCTION nam[*m] [([p[.p]}...]1)]

typ
Any data type specifier except CHARACTER (see Table 2-2).

nam
The name of a function.

Subpragrams 6-8

6-18 Subprograms

m ‘
A data type length specifier (see Table 2-2).

p
A dummy argument.

The function reference that invokes, or transfers control to, a function
subprogram has the form:

nap ([af.al...])

nam
The symbolic name of the function.

An actual argument.

When a function r"s_eference in an expression is executed, control is trans-
ferred to the referenced subprogram and the values of the actual argu-
ments (if any) in the function reference are associated with the dummy
arguments in the FUNCTION statement of the subprogram.- The state-
ments in the subpiogram are then executed and a computed value is
assigned to the furktion name (as if this name were a variable). Finally, a
RETURN statement is executed in the function and control is returned to
the calling program unit. (An END statement used in place of a RETURN
acts as an implied RETURN.) The value assigned to the function name

is now used to complete the evaluation of the expression containing the
name. ! .

The following rule_§ govern the use of function subprograms:

* A function may not return a value of type CHARACTER.

s A FUNCTION statement must be the first statement of a function
subprogram.
s A FUNCTION staternent must not have a statement label.

¢ A function subprogram must not contain the following statements:
SUBRQUTINE, BLOCK DATA, or FUNCTION.

s A function subprogram can reference another subprogram, but it
cannot reference itself, either directly or indirectly.

¢ The data type of a function name can be specified either in the
FUNCTION statement or in a type declaration statement,

s A function name must have the same data type in a subprogram as in
a referencing program, and vice versa.

* ENTRY statements can be included in a function subprogram to
provide one or more other entry points to the subprogram (see
Section 6.2.4).

An example of a function subprogram is the function ROOT:

FUNCTION ROOT(A)

=10
2 EX = EXP(X)

EMINX = 1./EX

RODT = ((EX+EMINX)*.5+COS(X)-A)/((EX - ENINX}+.S~SIN(X))
" IF (ABS(X-ROOT).LT.1E-8) RETURN

X = ROOT

G0 T0 2

END

The function in this example uses the Newton-Raphson iteration method
to obtain the root of the following function:

F(X) = cosh(X) + ¢coa(X) ~A =0

e The value of A is passed as an argument. The iteration formula for this
= Toot is:

cosh(Xi)+com(Xi)-A
Xi+l = Xi -~
ginh(Xi)-sin(Xi)

The calculation is repeated until the difference between Xi and Xi+1 is less
than 1.0E-6.

The function uses the FORTRAN library functions EXP, SIN, COS, and
ABS (see Section 6.3).

8.2.3 Subroutine Subprograms

A subroutine subprogram is a computing procedure referenced by a
symbolic name in a CALL statement. A subroutine subprogram consists of
a SUBROUTINE statement followed by a series of statements.

The SUBROUTINE statement has the form:

SUBROUTINE nam [{{p(.pl...1J1

Subprograms 6-11

6-12 Subgprograms

subprogram, andf RETURN statement to return control to the calling
program unit. Segtion 4.5 describes the CALL statement.

ments (if any) in ghe CALL statement are associated with corresponding
dummy arguments in the SUBROUTINE statement. The statements in the
subprogram are t%en executed until a RETURN statement returns control
to the calling program. (An END statement acts as an implied RETURN.}
Unlike a function§a subroutine does not return a value to the referencing
program.

The following rules govern the use of subroutine subprograms:

B
s The SUBROUFINE statement must be the first statement of a subrou-

tine.
* A subroutine Subprogram must not contain a FUNCTION, a BLOCK
DATA, or another SUBROUTINE statement.

.8 ;
¢ A subroutine subprogram can reference another subprogram, but it

cannot refererice itself, either direcily or indirectly.

* ENTRY staten’lents can be included in a subroutine subprogtam

to provide one or more other entry points to the subprogram (see
Section 6.2.4).;

The subroutine in the following example computes the volume of a regular
polyhedron, given the number of faces and the length of one edge. It uses
the computed GO TO statement to determine whether the polyhedron is
a tetrahedron, cube, octahedron, dodecahedron, or icosahedron. The GO
TO statement also transfers control to the proper procedure for calculating
the volume. If the number of faces is not 4, 6, 8, 12, or 20, the subroutine
displays an error message on the user’s terminal.

Example:
Main Program

COMMON NFACES,EDGE, VOLUME
ACCEPT #*, NFACES,EDGE
CALL PLYVOL

TYPE *, 'VOLUME=', VOLUME
STOP

END

e) Subroutine

- SUBROUTINE PLYVOL
COMMON NFACES, EDGE, VOLUME
CUBED = EDGE=+*3
GOTO (6,6,6,1,6,2,6,3,6.6,6,4.6.6,6,5,6,6,6,5) ,NFACES

GOTO 6
1 VOLYME = CUBED » 0.11785
RETURK
2 VOLUME = CUBED
RETURN
3 VOLUME = CUBED * 0.47140
RETURN
T 4 VOLUME = CUBED + 7.66312
o RETURN
et 5 VOLUME = CUBED * 2.18170
RETURN

& TYPE 100, NFACES

100 FORMAT(' NO REGULAR POLYHEDRON HAS ',I3, ' FACES.'/)
VOLUME=0.0
RETURN
END

6.2.4 ENTRY Statement

The ENTRY statement is a nonexecutable statement that provides mul-
tiple entry points to a subprogram. It can appear within a function or
subroutine subprogram after the FUNCTION or SUBROUTINE statement.
Execution in a subprogram containing an ENTRY statement begins with
the first executable statement following the ENTRY statement.

The ENTRY statement has the form: 5
ENTRY nam [({p[,pJ...1)] ‘

Subprograms 6-13

nam 1
The entry name. i

. i
A dummy argument.
CALL statements @re used to refer to entry names within subroutine
Hon references are used to refer to entry names within

govern the use of ENTRY statements:

* Within a fun - subprogram, an entry name can appear in a type

agement.

* You can specify an entry name in an EXTERNAL statement and then
use entry nameé as an actual argument (but not as a dummy argument).

* You must not use an entry name in executable statements (in a
subprogram) tBat precede or follow an ENTRY statement.

* You can use dimmy arguments in ENTRY statéments that differ in
order, numbergtype, and name from the dummy arguments you use
in the FUNCTION, SUBROUTINE, and ENTRY statements in the
same subpro . However, each reference to a function, subrou-
tine, or entry must use an actual argument list that agrees in order,
number, and with the dummy argument list in the corresponding
FUNCTION, SUBROUTINE, or ENTRY statement,

* A dummy argument can be referred to only in the executable state-
ments that follow the first SUBROUTINE, FUNCTION, or ENTRY
statement in which the dummy argument is specified.

* You must not gse an ENTRY statement within a DO loop.

6.2.4.1 ENTRY in Function Subprograms

6-14 Subprograms

The name of a function subprogram and all the entry names contained in
the subprogram are mutually associated; therefore, a value assigned to any
one name is assigned to all the names. However, only names of the same
data type can be mutually defined at any one time, because conversions
between data types are not made.

A referenced enfry name must be assigned a value before control is
transferred back to the calling program. Example 6-1 illustrates the use
of an ENTRY statement in a function subprogram that computes the
hyperbolic functions sinh, cosh, and tanh of a variable x.

g

;
R

Example 6—-1: Multiple Functions in a Function Subprogram

PROGRAM MAIN
EXTERNAL TANH, SINH, COSH

X=24.0
) TANEX = TANE (X)
AT SINEX = SINE (X)
e COSHX = COSH (X)

g

REAL FUNCTION TANH(X)
c
C STATEMENT FUNCTION TO COMPUIE TWICE SINE
¢
TSINH(X} = EXP(X) - EXP (-X}
c
C STATEMENT FUNCTION TO COMPUTE TWICE COSH
c .
TCOSH(X} = EXP(X) + EXP(~X)
c
C COMPUTE TANH
¢
TANH = TSINH(X) / TCOSH(X)
RETURN
c
C COMPUTE SINH
C
ENTRY SINH(X)
SINE = TSINH(X) / 2.0
RETURN
<
C COMPUTE COSH
¢
ENTRY COSH(X)
COSH = TCUSH(X) / 2.0
RETURN
END

Subprograms 6-15

6.2.4.2 ENTRY in Subroutire Subprograms

To reference an entry point in a subroutine, you execute a CALL statement
that includes the eéntry point name, The following example demonstrates
the use of the CAEL statement to reference an entry point

Main Program 4
CALL SUBA(A,B,C)

Subroutine
SUBROUTINE SUB §(X.Y.2)

ENTRY SUBA(Q.RI®)

In this example, CALL is to an entry point (SUBA) within the sub-
routine (SUB). Exegution begins with the first statement following ENTRY
SUBA (Q,R,S), using the actual arguments (A,B,C) passed in the CALL
statement. :

6.3 Intrinsic and Other Library Functions

FORTRAN library %unctions consist of intrinsic functions, provided to
perform commonly; used mathematical computations, and character and
lexical comparisongfunctions. Character and lexical comparison functions
are discussed in Segction 6.3.4.

The FORTRAN infrinsic functions are listed in Appendix C. Function
references to thesetfunctions are written in the same way function refer-
ences to user-defined functions are written. For example, as a result of the
reference to ABS in

R = 3.14159 * ABS(X-1)

the absolute value of X-1 is calculated and multiplied by the constant
3.14159, and the result is assigned to the variable R.

Appendix C gives the data type of each intrinsic function and that of its
actual arguments.

6-16 Subprograms

6.3.1 Intrinsic Function References

Normally, a name in the table of intrinsic function names {Table C-2)

refers to the FORTRAN library function with that name. However, the

name can refer to a user-defined function under any of the following

conditions:

* The name is used in a function reference with arguments of a different
data type from that shown in the table.

* The name appears in an EXTERNAL statement in accordance with the
rules provided in Section 5.8.

Except when they are used in an EXTERNAL statement, intrinsic function
names are local to the program unit that refers to them. Thus, they can be
used for other purposes in other program units. In addition, the data type
of an intrinsic function does not change if you use an IMPLICIT statement
to change the implied data type rules.

You cannot have an intrinsic function and a user-defined function with the
same name in the same program unit.

6.3.2 Generic Function References

Some intrinsic functions perform the same computation but handle differ-
ent data types. These functions are referenced with the same categorical,
or generic, name. A generic function reference refers to the category of
the computation to be performed, not to a specific function within the cat-
egory. The selection of a specific function-—that is, the actual computing
procedure for a specific data type—is left to the compiler, which chooses
a specific function within 2 category on the basis of the data type of the
relevant actual argument. For example, if D is a double-precision variable,
the generic function SIN(D) refers to the double-precision sine function,
not to the real sine function. {Therefore, you need not write DSIN(D).)

Generic function references are independent from one another. Therefore,
you could use both SIN(X) and SIN(D) in the same program unit in the
example in the preceding paragraph.

Table 6-2 lists the generic function names. These names can be used only
with the argument data types shown in the table,

Subprograms 6-17

You cannot use the names in Table 6-2 for generic function selection if
you use them in 2 program unit in either of the following ways:

* As the name jof a statement function
nt name, common biock name, variable name, or

selection does not apply to a generic function name
RNAL statement and used as an actual argument,
because there is #0 argument list on which to base the function selection.
The name is treafed according to the rules for nongeneric FORTRAN
functions described in Section 6.3.1. For example, in

EXTERSAL EXP g
CALL SUB (EXP(D)) °

- EXP(D)isa gen,leric function reference, not a generic function name;

6-18 Subprograms

therefore, generic}function selection applies. However, in

EXTERNAL SQRT
CALL SUB (SQRT)

SQRT is a generi€ function name being used as a nongeneric function;
therefore, genericgfunction selection does not apply.

Generic function names are local to the program unit that references them.
Therefore, they be used for other purposes in other program units.

Table 6-2: Geéneric Function Name Summary

i Data Type Data Type of
Generic Name of Argument Result
ABS Integer Integer
Real Real
Double Double
Complex Real
AINT, ANINT Real Real
Double Double
INT,NINT Real Integer
Double Integer

Table 6-2 {Cont.): Generic Function Name Summary
Data Type Data Type of

Generic Name " of Argument Result
REAL Integer Real
Real Real
Double Real
Complex Real
DBLE ' Integer Double
Real Double
Double Double
MOD, MAX, MIN, SIGN, DIM Integer Integer
Real Real
Double Double
EXP, LOG, SIN COS, SQRT Real . Real
Double Double
Complex Complex
LOG10, TAN, ATAN, ATAN2, ASIN, Real Real
ACOS, 5INH, COSH, TANH Double Double

6.3.3 Intrinsic and Generic Function Usage

Example 6-2 demonstrates the use of intrinsic and generic function names.
In this example, a single executable program uses the name SIN in four

distinct ways:

s As the name of a statement function
* As a generic function name

* As an intrinsic function name

* As a user-defined function

Using the name in these four ways emphasizes the local and global
properties of the name,

In Example 6-2, the parenthetical references are keyed to the notes that
follow the example.

Subprograms 6-19

- Example 6-2: éMultiple Function Name Usage

kS
&

c :
c COMPARE WA%S OF COMPUTING SINE.
¢

PROGRAM SINES
REAL*8 X, PI
PARAMETER (P1 = 3.141552853580793238D0)
COMMON V(3)
c DEFINE SIN AS A STATEMENT FUNCTION (Note 1)
SIN(X) = COS(P1/2-X)
DO 10 X = -PI, PI, 2«P1/100
CALL COMPUT(X)
c REFERENCE THE STATEMENT FUNCTION SIN (Note 2)
10 WRITE(6,100) X.V, SIN(X)

100 FORMAT (5(' ', F10.7))
EXD

c

¢

SUBRGUTINE COMPUT(Y)
REAL#S ¥ :
c USE INTRINSIC FUNCTION SIN AS ACTUAL ARCUMENT (Note 3)
IKTRINSIC SIN
COMMON V(3)
¢ GENERIC REFERENCE T0 DOUELE PRECISION SINE (Note 4)
V(1} = SIN(Y)
INTRINSIC FUNCTION SINE AS ACTUAL ARCUMENT (Note 5)
CALL SUB(REAL(Y), SIN)
END i

Ly]

SUBROUTINE SUB(A,.S)

DECLARE SIN AS NAME OF USER FUNCTION (Note 6).

EXTERNAL SIN

DECLARE SIN AS TYPE BREAL*S (Nute T)

REAL*8 SIN

COMMON V(3)

c EVALUATE INTRINSIC FUNCTION SIN {(Note B)
v(2) = S(A)

c EVALUATE USER DEFINED SIN FUNCTION (Note 9)

v{3} = SIN(A)

END

a o ao

6~20 Subprograms

2

Example 62 (Cont.): Multiple Function Name Usage

oOaa

DEFINE THE USER SIN FUNCTION (Note 10)

REAL*8 FUNCTION SIN{X)

INTEGER FACTOR

SIN = X - X%*3/FACTOR(3) + X=+5/FACTOR(5)
1 = ¥#a7/FACTOR(7)

END

INTEGER FUNCTION FACTOR(N)
FACTOR = 1
DO 10 I=N, 1, -1
10 FACTOR = FACTOR * 1
END

Al S

10.

. A statement function named SIN is defined in terms of the generic

function name COS. Because the argument of COS is double precision,
the double-precision cosine function is evaluated. The statement
function SIN is itself single precision.

The statement function SIN is called.

The name SIN is declared intrinsic so that the single-precision intrinsic
sine function can be passed as an actual argument at 5.

The generic function name SIN is used to refer to the double-precision
sine function.

The single-precision intrinsic sine function is used as an actual argu-
ment,

The name SIN is declared a user-defined function name.
The type of SIN is declared double precision.

The single-precision sine function passed at 5 is evaluated.
The user-defined SIN function is evaluated.

The user-defined SIN function is defined as a simple Taylor series
using user-defined function FACTOR to compute the factorial function.

Subprograms 6-21

8.3.4 Character and Lexical Comparison Library Functions

Character library functions are functions that take character arguments;
lexical comparison library functions are functions that take character
arguments and return Jogical values.

Three character functions are provided with PDP-11 FORTRAN-77, as
follows:

e LEN f

The LEN function returns the length of a character expression. The
LEN function has the form:

LEN(c)

c .
A character expression. The value retumned indicates how many bytes
there are in the expression.

* INDEX

The INDEX function searches for a substring (¢2) in a specified char- |
acter string {c1) and, if it finds the substring, returns the substring’s
starting position. If c2 occurs more than once in cl, the starting posi-
tion of the first (leftmost) occurrence is returned. If c2 does not occur
in cl, the value zero is returned. The INDEX function has the formu:

INDEX (¢, c2)

c1
A character expression specifying the string to be searched for the
substring specified by 2.

c2
A character expression specifying the substring for which the starting
location is to be determined.

* ICHAR

The ICHAR function converts a character expression to its equivalent
ASCII code and returns the ASCII value, ICHAR has the form:

ICHAR (¢)

6-22 . Subprograms

c

The character to be converted to an ASCII code. If ¢ is longer than
one byte, only the value of the first byte is retumed; the remainder is
ignored.

An example illustrating the LEN and INDEX functions follows:

CHARACTER BUFR+80
INTEGER COMPOS, INIPOS
1 COMPOS = INDEX(BUFR(INIPOS:).'.')
IF (LEN(BUFR(INIPOS:COMPOS)) .GT. 8) THEN
TYPE *, 'NAME IS TDO LOKG, IT HAS BEEN TRUNCATED.®
ENDIF

Four lexical comparison functions are provided with PDP-11 FORTRAN-77,
as follows:

* LLT, where LLT(X,Y)} is equivalent to (X .LT. Y)

¢ LLE, where LLE(X,Y) is equivalent to (X .LE. Y)

¢ LGT, where LGT(X,Y) is equivalent to (X .GT. Y)
T * LGE, where LGE(X,Y) is equivalent to (X .GE. Y)

The lexical functions have the form
func(c,c)

func
One of the symbolic names: LLT, LLE, LGT, or LGE.

c
A character expression.

! The lexical library functions are guaranteed to make comparisons ac-
cording to the ASCII collating sequence, even on non-ASCII processors,
On PDP-11 systems, the lexical library functions are identical to the
corresponding character relationais.

An example of the use of the lexical library functions follows:

CHARACTER*10 CH2
IF (LGT(CH2, 'SMITH')}) STOP

The IF statement in this example is equivalent to:
IF (CHZ .GT. 'SNITH') STOP

Subprograms 6-23

Chapter 7

Input/Output Statements

FORTRAN programs use READ and ACCEPT statements for input, and
WRITE, REWRITE, TYPE, and PRINT statements for output.

Some forms of these statements are used with format specifiers that
control the translation and editing of data between internal (binary) form
and external (readable character) form,

The READ and WRITE statements reference a logical unit to or from which
data is to be transferred. The ACCEPT, TYPE and PRINT statenients do
not reference a logical unit; rather, they transfer data between a program
and an implicit logical unit (the user’s terminal for example). Normally
the ACCEPT and TYPE statements are connected to the user’s terminai;
the PRINT statement, to the sysiem line printer.

Input/output (1/0) statements are grouped into four categories:
» Sequential I/O~-~transfers records sequentially to and from files, or to
and from an I/0 device such as a terminal.

* Direct Access I/O—transfers records selected by record number to and
from direct-access files.

e Indexed I/O—transfers records selected by data values contained in
the records to and from indexed files.

¢ Internal I/O-—translates and transfers data between variables and
arrays within a program.

The I/0 statement forms can be classified as formatted, list-directed, or
unformatted.

Formatted 1/0 statements contain explicit format specifiers that are used
to control the translation of data from internal (binary) form within a
program to external (readable character) form in records, or vice versa.

" input/Output Statements 7-1

List-directed I/O statements are similar to formatted statements in func-
tion, but differ in that they use data types instead of explicit format
specifiers to control the translation of data from one form to the other.

Unformatted 1/0 statements do not contain format specifiers of any
kind and therefore are not used to translate data being transferred.
Unformatted I/Q saves execution time, by eliminating data translation;
preserves the precision of external data; and usually conserves file storage
space. Unformatted 1/0 is especially useful when data to be output is
subsequently to be used as input.

Table 71 shows the various I/O statements, by category, that can be used
in PDP-11 FORTRAN-77 programs.

Table 7~1: Available 1/0 Statements
Statement Category

Statement Name Sequential Direct Indexed Internal
FLU FU FU F
READ XXX XX XX X
WRITE XXX X X XX X b u
REWRITE - - - X X -
ACCEPT XX - - - - -
TYPE X X - -- - -
PRINT XX - - - - - -
F—Formatted
L—List-Directed |
U-—Unformatted i
1/0 statements transfer data in units of records (see Section 7.1.1). The el
amount of data that one of these records can contain depends on whether
unformatted or formatted 1/0 is used to transfer the data. With unfor-
matted 1/0, the 1/0 statement alone specifies the amount of data to be
transferred; with formatted 1/0, the I/O statement and its associated
format spedifier jointly determine the amount of data to be transferred,
Normally, the data transferred by an I/O statement is read from or written
to only one record. It is possible, however, for formatted I/O statements
to transfer data from or to more than one record.
o

7-2 input/Qutput Statements

Section 7.1 describes general FORTRAN input/output concepts.

Section 7.2 describes the components of FORTRAN 1/0 statements.
Section 7.3 describes the syntactical rules that govern the I/O statements.
Sections 7.4 through 7.8 describe the individual 1/O statements in detail.

7.1 1/0 Overview

The following sections describe in general terms the characteristics of
FORTRAN 1/0 processing: records, files, internal files, and access
modes. See the PDP-11 FORTRAN-77 User’s Guide for specific detail
on FORTRAN /0O processing.

7.1.1 Records

A record is a collection of data items, called fields, that are logically related
and that are processed as a unit; that is, the I/O statements transfer data
to and from files and internal files in units of records. Normally, each 1/0O
statement processes one record, though formatted 1/0 statements may
transfer more than one record,

If an input statement does not use all the data fields it reads from a record,

the remaining fields are ignored. If an input statement requires more data
fields than the record contains, either an error condition occurs o1, in the
case of formatted input, all fields are read as spaces.

If an output statement attempts to write more data fields than the record
can contain, an error condition occurs. If an output statement transfers
fewer data than required to fill a fixed-length record, the record is filled
with spaces (if a formatted record) or zeros (if an unformatted record).

7.0.2 Files

A file is a collection of logically related records arranged‘__'in a specific
order and treated as a unit. The arrangement or organization of a file is
determined when the file is created.

A file can have one of three possible arrangements or organizations:
sequential, relative, or indexed.

Files are normally stored on disk; however, sequential files may be stored
on magnetic tape. Peripheral devices such as terminals, card readers, and
line printers are treated as sequential files.

Input/Output Statements 7-3

7.1.2.1 Sequential Organization

In a sequential file, records appear in physical sequence. The physical
order in which records appear is always identical to the order in which the
records are written to the file,

7.1.2.2 Relative Organization

A relative file consists of a sequence of fixed-length cells numbered from
1 (the first) to n (the last). A cell’s number represents its location relative
to the beginning of the file. A cell can contain a single record or it can be
empty. The cell number, or record number, is used to refer to a specific
record in a relative file.

7.1.2.23 indexed Organization

Records in an indexed file are ordered—not necessarily in physical
sequence—by fields in the records that have been designated to be keys.

A key is a data field that is contained, in the same relative position, in all
the records in an indexed file. When creating an indexed file, you decide
which data field in the file’s records is to be a key; the contents of this
field in any one record are then used to identify that record for subsequent
processing. The length of a key field, as well as its relative position, is the
same in each of the records in a file.

You must define at least one key for an indexed file. This mandatory key
is the primary key of the file. Optionally, you can define additional keys
called alternate keys. Each alternate key represents an additional field that
is contained in all the records in a file. The key value in any one of these
additional fields can be used to identify the record containing them for
retrieval. More than one record can have the same key value.

7-4 input/Quiput Statements

7.1.3 Internal Files

An internal file is internal storage space that is manipulated to facilitate
internal 1/0.

- An internal file is not a real file; it consists of a character variable, a
character array element, a character array, or a character substring. A
record in an internal file consists of any of the above except a character
array. -

If an internal file is a single character variable, array element, or substring,
this file comprises a single record whose length is the same as the length
of the variable, array element, or substring. If an internal file is a character
array, this file comprises a sequence of records, with each record consisting
of a single array element. The sequence of records in an internal file is
determined by the order of subscript progression.

A record in an internal file can be read only if the character variable, array
element, or substring comprising the record has been defined—that is,
assigned a value.

Prior to data transfer, an internal file is always positioned at the beginning
of the first record.

7.1.4 Access Modes

Access mode is the method a program uses to retrieve and store records in
a file. The access mode is specified as part of each [/O statement. PDP-11
FORTRAN-77 supports three access modes: sequential, direct, and keyed.

Table 7-2 shows the valid access modes for each file organization.

'Tablo 7-2: Access Modes for Each File Organization

Access Mode
File Organization Sequential Direct Keyed
Sequential Yes Yes' No
Relative Yes Yes No
Indexed Yes No Yes

! Records must be fixed length.

Input/Qutput Statements 7--5

7.1.4.1 Sequential Access

Sequential access means that records are processed in physical, numerical,
or chronological order. In a sequential file, this processing order is the
physical sequence of the records; in a relative file, it is the sequence

of ascending cell numbers; and in an indexed file, it is the sequence of
ascending key vajues.

If two records in an indexed file have the same key value, the processing
sequence is the order in which the records were inserted in the file.

7.1.4.2 Direct Access

Direct access means that the record to be processed is specified by a direct
access record number in an 1/0 statement. For records in a sequential file
to be directly accessed, the file must consist wholly of fixed-length records.

7.1.4.3 Keyad Access

Keyed access means that the record to be processed is spemﬁed by a key
specification (Section 7.2.1.5) in an I/O statement.

You can mix in the same program keyed access and sequential access 1/0
statements that reference the same file. Therefore, you can use keyed 1/0
statements to position a file to a particular place and then use sequential
1/0 statements to process successive records.

The key specificaton in an [/O statement may specify an exact match

by providing a complete key value, or it may specify a generic match by
providing a partial key value. In the case of a generic match, the first
record whose leftmost characters match the partial key value is the record
selected.

A match criterion calls for either an exact match or an approximate
match, An approximate match can be either a greater-than match or a
greater-than-or-equal-to match.

RO

7-6 input/Output Statements

1.2 1/0 Statement Components

1/0 statements consist of three basic components: a statement keyword, a
control list, and an 1/0 list.

There are six basic statement keywords: READ, ACCEPT, WRITE,
REWRITE, TYPE, and PRINT. The first two of these represent input
P . operations, the remaining four output operations.

The control list and the 1/0 list are discussed below.

7.2.1 The Control List

The control list of an I/O statement is a list of one or more specifiers that
perform the following functions:
* Specify the logical unit to be acted upon
. * Specify the internal file to be acted upon
& » Specify whether formatting is to be used for data editing and, if it is,
the format specification
¢ Specify the number of a direct access record to be accessed

e Specify the key and key-of-reference of a keyed access record to be
accessed

* Specify where control is to be transfen'ed in the event of an error or
end-of-file condition

The category of a statement can always be determined by the contents of
its control list. For example, the control list of a formatted 1/0 statement
always contains a format specifier (FMT=f or f), and the control list of a
list-directed I1/0O statement always contains an asterisk in place of a format
specifier. ,

The control list has the form:
(l,pl..)

P
A specifier of the form: keyword = value.

The control list specifiers are discussed in the following sections.

lnput/Output Statements 7-7

7.2.1.1

Logicat Unit Specifier

The logical unit specifier specifies the logical unit that is to be accessed. It
has one of the forms:

[UNIT=]0
[UNIT=]»

u

An integer expression, with a value in the range 0 through 99, that refers |

to a specific file or I/O device. If necessary, the value is converted to
integer data type before being used.

. ,
Specifies that the default input or output unit is to be accessed.

The keyword UNIT= is optional only if the logical unit specifier is the first
parameter in the control list.

A logical unit number is connected to a file or device in one of two ways:

* Explicitly, by an OPEN statement (see Section 9.1).

» Implicitly, by the system. The PDP-11 FORTRAN-77 User's Guide
describes the use of implicitly connected logical unit numbers in
greater detail.

7.21.2

Internal File Specifier

An internal file specifier specifies the internal file to be used.
The internal file specifier has the form:

[UNIT=)cv
o :

The name of a character vatiable, character array, character array element,
or character substring.

The logical unit specifier and the mternal file specifier are mutually
exclusive. The keyword UNIT= is optional if the internal file specifier is
the first parameter in the control list.

See Section 7.1.3 for more information on internal files.

7-8 Input/Qutput Stetements

7.2.1.3 Format Specifior

The format specifier specifies whether explicit or list-directed formatting is
to be used and, in the case of explicit formatting, identifies the parameter
that will control the formatting. The format specifier has the form:

[FMT=) £
[FMT=]*

f 7
The statement label of a FORMAT statement, an integer variable that has
been assigned (with an ASSIGN statement) a FORMAT statement-label
value, the name of an array or array element, or a character expression
containing a run-time format.

#*

Specifies list-directed formatting,

The keyword FMT= is optional only if the format specifier is the second
parameter in the control list and the first parameter is a logical unit or
internal file specifier without the optional keyword UNIT=.

Chapter 8 describes FORMAT statements. Section 8.7 describes the
interaction between formats and I/0 statements. ‘

You can use an asterisk in sequential 1/O statements, instead of a format
specifier, to denote list-directed formatting. See Sections 7.4.1.2 and
7.5.1.2 on list-directed 1/0.

7.2.1.4 Record Specifier

The record specifier specifies the number of the direct access record to be
accessed. The record specifier has the forms:

REC= 1
‘r

r

A numeric expression with a value that represents the position, in a direct
access file, of the record to be accessed. The value must be greater than or
equal to 1, and less than or equal to the maximum number of record cells
allowed in the file. If necessary, a record number is converted to integer
data type before being used.

Input/Qutput Statements 7-9

7.2.1.5 Key Specifier

The key specifier specifies the key of an indexed file record to be accessed,
the index in which this key is located, and the match criterion to be used
in a key search.

An indexed file contains an index for each designated key field. In this
index are listed the keys and the locations of the records containing them;
records are ordered sequentiaily in order of increasing key value. Once
supplied with the key of the desired record, the system looks up the key
in the appropriate index and finds the location of the proper record. It
then accesses this record. Using a key to obtain a specific record is called
keyed access (see Section 7.4.1.3).

The indexes of a file are denoted by numbers from 0 to n, where n is the
maximum number of indexes defined for the file. The value of n must
be less than 255. Index number 0 is called the primary index or primary
key. The other indexes are called alternate indexes or alternate keys; for
example, index number 3 specifies the third alternate key.

Keyed access to indexed files is specified by key specifications in READ
statements. 5

%

The key specification of a key specifier has three compenents:

1. A key expression, which specifies the key
2. A key-of-reference specifier, which specifies the index
3. A match criterion, which specifies the selection constraints

A key spedification has the form:

KEY

KEYEQ
KEYGE =ke[,KEYID=kn) §ooow
KEYGT i

ke
A key expression.

kn
An integer expression, the value of which, called the key-of-reference
number, specifies the index to be searched.

7-10 Input/Dutput Statements

The KEY and KEYID parameters may appear in any order, but must follow
the logical unit and format specifiers.

1. Key Expressions—Two types of key expressions are supported:
e Character key expressions
¢ Integer key expressions

Character key expressions must be used with character keys, and inte-
ger key expressions must be used with integer keys. A character key
expression may be specified in one of the following forms:

o (CHARACTER variable or substring

e CHARACTER array element

» CHARACTER constant

° A BYTE (LOGICAL®*1) array name containing Hollerith data

For example, you can now specify keys as follows:

CHARACTER*S CKEY

OPEN (UNIT=3, STATUS='OLD', ACCESS='KEYED'.

1 ORGANIZATION="'INDEED', FORM='UNFORMATTED',
2 KEY=(1:5,18:23))

CKEY="'SMITH"'

READ (3,KEYGE=CKEY) ALPHA,BETA

END

The length of the character key expression is the length of the character
value or the length of the BYTE array. If the length of the key expression
is greater than the length of the key field, an error occurs. If the length of
the key expression is less than the length of the key field, a generic key
search is made rather than an exact key search. (See “Match Criterion”
below.)

An integer key expression is an integer expression. Real, double-precision,
and complex values are not permitted.

The name of a virtual array cannot be used to specify a key expression.

2. Key-of-Reference Specifier—The key-of-reference specifier specifies
the index to be searched for the locations of a record. Its value, or
key-of-reference number, must be an integer in the range 0 to the
maximum number of keys defined for the file. A value of 0 specifies
the primary key; a value of 1 specifies the first alternate key; and so
forth,

Input/Output Statements 7-11

If no key-of-reference specifier is included in a key specification, the
key-of-reference is assumed to be what it was in the specification
given in the last keyed I/O statement for the given logical unit.

3. Match Criterion—The match criterion specifies whether the match
key must be equal to, greater than, or greater than or equal to the key
specified by the key expression,

The match criterion has the forms:

EQ —specifies equal to oo
GT —specifies greater than
GE —specifies greater than or equal to

The match criterion is appended to KEY as follows:

KEY

KEYEQ
KEYGT
KEYGE

For character keys, matching comparisons are made on the basis of the { A
ASCII collating sequence. “t«._/

For integer keys, matching comparisons are made on the basis of the
signed integer sequence.

If no match criterion is specified, equal matching is assumed.

For character keys, either generic matching or exact matching is used.

Generic matching applies if the key expression in the I/O statement is
shorter than the key field in the record. In generic matching, only the
leftmost characters of the key field are used for the match.

For example, if the key expression is 'ABCDY, and the key field is ten
characters long, an equal match is obtained for the first record that
contains ‘ABCD’ as the first four bytes of the key. The remaining six
characters are arbitrary.

Approximate generic matching occurs when approximate matching
(KEYGT or KEYGE) is selected in addition to generic matching. In ap-
proximate generic matching, only the leftmost characters are used for
compatrison.

For example, if the key expréssion is ‘ABCD’, and the key field is five
characters long, and a greater-than match is selected, the value 'ABCDA’
does not match. The value ‘ABCEA’, however, does match.

7-12 Input/Qutput Statements

7.2.1.6 Transfer-of-Control Specifiers

The transfer-of-control specifiers specify a statement to which program
control is to be transferred in the event of an end-of-file condition or an
error condition. The transfer-of-control specifiers have the form:

END=s
ERR=s

PN
Fal)

s
The label of an executable statement.

A READ, WRITE, REWRITE, ENCODE, or DECODE statement can include
either or both of the above specifiers in any order. The transfer-of-control
specifiers must follow the logical unit, record, and format specifiers.

The statement label in a transfer-of-control specifier must refer to an
executable statement that is located within the same program unit as the
1/0 statement.

An end-of-file condition occurs when no more records exist in a sequential
file or when an end-file record produced by the ENDFILE statement (see
Section 9.7) is encountered. If a READ statement encounters an end-of-file
condition during an 1/O operation, it transfers control to the statement
named in the END=s specification. If no END=s specification is present,
an error condition occurs.

If a READ, WRITE, REWRITE, ENCODE or DECODE statement encoun-
ters an error condition during an I/O operation, it transfers control to the
statement whose label appears in the ERR=s specification. If no ERR=s is
present, the /O error terminates program execution.

) An END= specification in a WRITE or REWRITE statement, direct access
READ statement, or keyed access READ statement is ignored. If you
attempt to read or write a record using a record number greater than the
maximum specified for the logical unit, an error condition occurs.

- The PDP-11 FORTRAN-77 User’s Guide describes system subroutines that
you can use to control error processing. These subroutinés can also be
used to obtain information from the I/0 system on errors'that occur,

Gy

Examples of the use of transfer-of-control specifiers in 1/0 statements
follow.

READ (8,END=B680) (MATRIX(K) K=1,100)

Input/Output Statements 7-13

This statement transfers control to statement 550 if an end-of-file condition
occurs on logical unit 8.

WRITE (6,50, ERR=380)

This statement transfers control to statement 390 if an error occurs during
execution.

READ (1,FORN,ERR=150,END=200) ARRAY

This statement transfers control to statement 150 if an error occurs during
execution, and to statement 200 if an end-of-file condition occurs.

722 1/0 List

The 1/0 list in an input or output statement contains the names of
variables, arrays, array elements, and character substrings from which or
to which data is to be transferred. The [/O list in an output statement can
also contain constants and expressions to be output.

An I/0 list has the form:
sl.e]...

s
A simple list or an implied DO list.

The 1/0O statement assigns values to, or transfers values from, the list
elements in the order in which they appear, from left to right.

7.2.2.1 Simple List

7-14

A simple 1/0 list consists of either a simple 1/0 list element or a group
of two or more simple I/O list elements separated by commas. A simple
1/0 list element can be a single variable, an array, an array element, a

_constant, or an expression. For example, in the following statement J,

K(3), 4, (L+4)/2, and N are simple 1/0 list elements.
WRITE (5,100 J, K(3}, 4, (i+4)/2. N

When you use an unsubscripted array name in an 1/0 list, a READ or
ACCEPT statement reads enough data to fill every element of the array; a
WRITE, TYPE, or PRINT statement writes all the values in the array. Data
transfer begins with the initial element of the array and proceeds in the
order of subscript progression, with the leftmost subscript varying most

Input/OQutput Statements

rapidly. For example, the following statement defines a two-dimensional
array:

DIMENSION ARRAY(3,3)

If the name ARRAY, with no subscripts, appears in a READ statement, this
statement assigns values from the input record or records to ARRAY(1,1),
ARRAY(2,1), ARRAY(3,1), ARRAY(1,2), and so on through ARRAY(3,3).

In a READ or ACCEPT statement, variables in the I/O list can be used
in array subscripts later in the list. For example, if you are given the
following statements.

READ (1,1250) J K, ARRAY{J K)
1250 FORMAT (I1,X,I1,X.F6.2)

and an input record that contains the following values.
1.3,721.73

When the READ statement is executed, the first input value is assigned to
J and the second to K; the actual subscript values are now established for
ARRAY(J K). The value 721.73 is then assigned to ARRAY(1,3). Variables
that are to be used as subscripts in this way must appear before (to the lef*
of) their use as the array subscripts in the I/O list.

An output-statement I/O list may contain any valid expression. However,
this expression must not attempt any 1/O operations. For example, an
output statement I/0 list must not contain an expression that refers to a
function subprogram that performs an 1/0 operation.

An input statement I/0O list must not contain an expression used other
than as a subscript expression in an array reference.

7.2.2.2 Implied DO List

B

An implied DO list is an /O list element that functions as if it were a part
of an 1/O statement within a DO loop. Implied DO lists can be used to:

* Specify iteration of part of an 1/0 list
¢ Transfer part of an array

» Transfer array elements in an order that differs from the order of
subscript progression

An implied DO list has the form:

(list,i=e1,e2[,e3])

Input/Qutput Statements 7-15

7-16

fist
An 170 BHst.

-

i
An integer variable.

el.e2,e3
Arithmetic expressions,

The variable i and the parameters el, e2, and €3 have the same forms and (7
functions that they have in the DO statement (see Section 4.3). The list *‘.';,;
immediately preceding the DO loop parameter is the range of the implied

DO loop. Elements in that list can reference i but they must not aiter the

value of i.

For example, the statement
WRITE (3,200) (A.B.C, I=1.3)
behaves as if you had written the statement

WRITE (3,200 A,B,C,A,B,C.A,B,C

In the statement _
WRITE (&) {I.(3,P(I),Q(I,3),J=1,L},I=1,})

the I/0 list consists of an implied DO list that contains another implied
DO list nested within it. The implied DO lists vary the Js for each value
of I and write a total of (1+3+L)*M fields.

In a series of nested implied DO lists, the parentheses indicate the nesting
(see Section 4.3.2). Execution of the innermost list is repeated most often.
In the following example

WRITE (6,150) ({(FORM(X.L), L=1,10), K=1,10,2)
150 FORMAT (F10.2)

because the inner DO loop is executed 10 times for each iteration of the
outer loop, the second subscript advances from 1 through 10 for each
increment of the first subscript—that is, in the reverse of the standard
order of subscript progression. In addition, because K is incremented by 2,
only the odd-numbered rows of the array are output.

The entire list of an implied DQ list is transmitted before the control
variable is incremented. For example, in the statement

READ (5,999) (P(I), (Q(I,J), J=1,10), I=1,5)
P(1), Q(1,1), Q(1,2) ... ,Q(1,10) is read before I is incremented to 2.

Input/Qutput Statements

When processing multidimensional arrays, you can use a combination of
fixed subscripts and subscripts that vary according to an implied DO list.
For example, the statement

READ (3,5566) (BOX(1,)), I=1,10)

assigns input values to BOX(1,1} through BOX(1,10), and then terminates
without affecting any other element of the array.

The value of the control variable can also be output directly. For example,
the statement : :

WRITE (6,1111) (I, I=1,20)

simply prints the integers 1 through 20.

7.3 Syntactical Rules

The FORTRAN 1/0 statements described in Sections 7.4 through 7.8 are
subject to the following syntactical rules.

R * When in keyword form, the control parameters can appear in any
' order in a control list.

* The nonkeyword form of either the logical unit specifier or the internal
file specifier must occupy the first (leftmost) position in a control list.

* When used with a logical unit specifier or internal file specifier, the
nonkeyword form of the format specifier must occupy the second
position in the control list; the unit or internal file specifier must also
be in nonkeyword form (and therefore occupy the first position in the
control list).

» If you use the nonkeyword form of a direct access record specifier,
it must immediately follow a nonkeyword form of the logical unit
specifier.

7.4 The READ Statements

The READ statements transfer input data to internal storage from records
contained in external logical units, or to internal storage from internal files.
There are four categories of READ statements: sequential, direct access,
indexed, and internal.

Input/Qutput Statements 717

1.4.1 The Sequential READ Statements

Sequential READ statements transfer input data to internal storage from
external records accessed under the sequential mode of access, There are
three classes of sequential READ statements: formatted, list-directed, and
unformatted.

The three classes of sequential READ statements have the following forms,
Formatted Sequential READ Statement

READ(exty, fmt [,errl(,endi)[list]
READ £[,1ist]

List-Directed READ Statements

READ (extu, * [,err] [, emdl) [list)
READ #[, list]

Unformatted Sequential READ Statements

READ {extu [,err] [.end]) [list]

extu
A logical unit specifier. See Section 7.2.1.1.

fmt
A format specifier. See Section 7.2.1.3.

f
The nonkeyword form of a format specifier. See fmt, above.

*

Specifies list-directed formatting.

err
end

Transfer-of-control specifiers. See Section 7.2.1.6.

list
An I/0 list. See Section 7.2.2,

Refer to Section 7.3 for the syntactical rules that govern the use of the
above parameters.

7-18 Input/Qutput Statements

7.4.1.1 The Formatted Sequential READ Statement

The formatted sequential READ statement does the following;:
¢ Reads character data from one or more external records accessed under
the sequential or keyed mode of access '

¢ Translates the data from character to binary form using format specifi-
cations to provide editing

* Assigns the translated data to the elements in the 1/0 list, in the
order, from left to right, in which those elements appear in the list

If the number of 1/0 list elements in a statement is less than the number
of fields in an input record, the statement ignores the excess fields.

7.4.1.2 The List-Directed READ Statement
The list-directed READ statement does the following:

¢ Reads character data from records accessed under the sequential mode
of access

¢ Translates the data from external to binary form using the data types
of the elements in the I/O list, and the forms of the data, to provide
editing

* Assigns the translated data to the elements in the 1/0 list in the order,
from left to right, in which those elements appear in the list

The external records from which list-directed READ statements read data
contain a sequence of values and value separators.

A value in one of these records may be any one of the following:

* A constant

¢ A null value

s A repetition of constants in the form r*c
® A repetition of null values in the form r+

Each constant has the form of the corresponding FORTRAN constant,
A complex constant has the form of a pair of real or integer constants
separated by a comma and enclosed in parentheses. Spaces can occur
between the opening parenthesis and the first constant, before and after
the separating comma, and between the second constant and the closing
parenthesis. A logical constant represents true or false values—that is,
.TRUE. or any value beginning with T, .T, t, or .t; or .FALSE. or any

fnput/Output Statements 7-18

value beginning with F, .F, {, or .f. A character constant is delimited by
apostrophes, with an apostrophe that occurs within a character constant
being represented by two consecutive apostrophes. Hollerith, octal, and
hexadecimal constants are not permitted.

A null value is specified by two consecutive comnmas with no interven-
ing constant, or by an initial comma or a trailing comma. Spaces can
occur before or after the commas. A null value either indicates that the
corresponding list element remains unchanged, or it represents an entire
complex constant (but not just one part of a complex constant).

The form r*c specifies r occurrences of ¢, where r is a nonzero, unsigned
integer constant and c is a constant. Spaces are not permitted except
within the constant ¢ as specified above.

The form r* specifies r occurrences of a null value, where r is an unsigned
integer constant.

A value separator in a record may be any one of the following:

* One or more spaces or tabs
¢ A comma, with or without surrounding spaces or tabs
* A slash, with or without surrounding spaces or tabs .

The slash terminates execution of the input statement and processing of
the record; all remaining 1/0 list elements are left unchanged.

When any of the above appear in a character constant, they are considered
part of the constant, not value separators.

The end of a record is equivalent to a space character except when it
occurs in a character constant. When the end of a record occurs in a
character constant, the end of the record is ignored and the character
constant is continued with the next record. That is, the last character in
the previous record is followed immediately by the first character in the
next record.

Spaces at the beginning of a record are ignored unless they are part of
a character constant continued from a previous record. When spaces are
part of a continued character constant, they are considered part of that
constant. :

Input constants can be any of the following data types: integer, real,
logical, complex, and character. The data type of a constant determines
the data type of its value and the translation from external to internal
form.

7-20 Input/TCutput Statements

A numeric list element can correspond only to a numeric constant, and

a character list element can correspond only to a character constant. If
the data types of a numeric list element and its corresponding numeric
constant do not match, conversion is performed according to the rules for
arithmetic assignment (see Table 3-1).

Each input statement reads whatever number of records is required

to satisfy its /0 list. If a slash separator occurs, or if the 1/0 list is
exhausted before all the values in a record are used, the remainder of the
record is ignored. -

An example of the use of list-directed READ statements follows.
A program unit consists of the following:

CHARACTER*14 C

DOUBLE PRECISION T

COMPLEX D,E

LOGICAL LM
READ (1,#) I,R.D.E.L.M.J}K,8,T,C,A,B

And the external record to be read contains:
46.8 (3.4,4.2), (3, 2) . T,F,,3*14.6 ,'ABC,DEF/GHI''JK*/

Upon execution of the program unit, the following values are assigned to
the 1/0 list elements:

1/0 List

Element Value

I 4

R 6.3

D (3.44.2)
E (3.0,2.0)
L .TRUE.
M JFALSE.,
K 14

] 14.6

T 14.6D0
C ABC,DEF/GHY'TK

A, B, and J are unchanged.

Input/Output Statements 7-21

7.4.1.3 The Unformatted Sequential READ Statement

The unformatted sequential READ statement reads an external record
accessed under. the sequential or keyed mode of access. It assigns the
fields of binary data contained in that record to the elements in the I/O
list, in the order, from left to right, in which those elements appear in
the list. The data is not translated. The amount of data assigned to each
element is determined by the element’s data type.

The unformatted sequential READ statement reads exactly one record. If
the 1/0 list does not use all the values in a record—that is, if there are
more values in the record than elements in the list—the remainder of
the record is discarded. If the number of list elements is greater than the
number of values in the record, an error occurs.

If a statement contains no [/O list, it skips over one full record, positioning
the file to read the succeeding record on the next execution of a READ
statement,

The unformatted sequential READ statement can only read records created
by unformatted sequential WRITE statements.

Some examples of the use of the unformatted sequential READ statement
follow.

READ(UNIT=1) FIELD1, FIELD2

In this example, the READ statement reads one record from logical unit 1
and assigns values of binary data to variables FIELD1 and FIELD?2, in the
order indicated.

READ (B)

In this example, the READ statement advances logical unit 8 one record.

7-22 foput/Output Staternents

%
i

FOLY

7.4.2 The Direct Access READ Statements

Direct access READ statements transfer input data to internal storage from
external records accessed under the direct mode of access. There are two
classes: formatted and unformatted.

The two classes of direct access READ statement have the following forms,
AN Formatted Direct Access READ Statements

READ{ extu, rec, fat [,errl)}[list]

Unformatted Direct Access READ Statements

READ{ extu, rec [,err])[list]

exty
A logical unit specifier. See Section 7.2.1.1.

rec
G A record specifier. See Section 7.2.1.4.

fmt
A format specifier. See Section 7.2.1.3.

err
A transfer-of-control specifier. See Section 7.2.1.6.

list
An I1/0 list. See Section 7.2.2.

£ Refer to Section 7.3 for the syntactical rules that govern the use of the
" above parameters.

Input/COutput Statements 7-23

7.4.2.1 The Formatted Direct Access READ Statement

The formatted direct access READ statement does the following:

¢ Reads character data from one or more external records accessed under
the direct mode of access

* Translates the data from character to binary form using format specifi-
cations to provide editing

¢ Assigns the translated data to the elements in the 1/0 list, in the
order, from left to right, in which those elements appear in the list

If the 1/0O list and formatting do not use all the characters in a record, the
remainder of the record is discarded; if the I/O list and the formatting
require more characters than are contained in the record, the remaining
fields are read as spaces.

An example of the use of the formatted direct access READ statement
follows:

READ (2, REC=35, FMT=10) (¥UM(K), K=1,10)
10 FORMAT (10I2)

Irr this example, the READ and FORMAT statements read the first ten
fields from record 35 in logical unit 2, translate the values to binary form,
and then assign the translated values to the internal storage locations of
the ten elements of the array NUM.

7.4.2.2 The Unformatted Direct Access READ Statement

The unformatted direct access READ statement reads an external record
accessed under the direct mode of access and assigns the fields of binary
data contained in this record to the elements in the 1/0 list, in the order,
from left to right, in which those elements appear in the list. The data is
not translated. The amount of data assigned to each element is determined
by that element’s data type.

The unformatted direct access READ statement reads exactly one record.
If this record contains more fields than there are elements in the I/O list of
the statement, the unused fields are discarded; if there are more elements
than fields, an error occurs.

Examples of the use of unformatted direct access READ statements follow.
READ (1'10) LIST(i), LIST(8)

7-24 [nput/Output Statements

In this example, the READ statement reads record 10 in logical unit 1 and
assigns binary integer values to elements 1 and 8 of the array LIST.

READ (4, REC=BS, ERR=500) (RHO(N), N=1,5)

In this example, the READ statement reads record 58 in logical unit 4 and
assigns binary values to 5 elements of the array RHO.

“7% 7.3 The indexed READ Statsments

The indexed READ statement transfers input data to internal storage from
external records accessed under the keyed mode of access. There are two
classes: formatted and unformatted.

A series of records in an indexed file may be read in key-of-reference
sequence by using a sequential READ statement in conjunction with an
indexed READ statement. The first record in the sequence is found using
the indexed statement, the rest using sequential statements.

Ty The two classes of indexed READ statement have the following forms.
Formatted Indexed READ Statement

READ(extu, fmt, kxey f,keyidl [.err])(list]
Unformatted Indexed READ Statement

READ(extu. key [,keyid] [,err]){list}

exiu
A logical unit specifier. See Section 7.2.1.1.

S fmt
""" A format specifier. See Section 7.2.1.3.

key
A key specifier. See Section 7.2.1.5.

keyid
A key-of-reference specifier. See Section 7.2.1.5 (2).

err
end
Transfer-of-control specifiers. See Section 7.2.1.6.

Input/Qutput Statements 7-25

list
An [/0 list. See Secton 7.2.2.

Refer to Section 7.3 for the syntactlcal rules that govern the use of the
above parameters.

7.4.3.1 The Formatted Indexed READ Statement
The formatted indexed READ statement does the following:

© Reads character data from one or more external records accessed under
the keyed mode of access

e Translates the data from character to binary form using format specifi-
cations to provide editing

@ Assigns the translated values to the elements in the I/0 list, in the
order, from left to right, in which they appear in the list

The formatted indexed READ statement may only be used on indexed
files. 1f the 1/0 list and format specifications specify that additional
records are to be read, the statement reads those additional records
sequentially, using the current key-of-reference value.

If the KEYID parameter is omitted, the key-of-reference remains un-
changed from the most recent specification.

If the specified key value is shorter than the key field referred to, the key
value is matched against the leftmost characters of the appropriate key
field until a match is found; the record supplying the match is then read.
If the key value is longer than the key field referred to, an error occurs.

An example of the use of the formatted indexed READ statement follows:
READ(3,KAT, KEY='ABCD') A,B,C.D

In this éxample the READ statement retrieves a record with the value of
'ABCD’ in the primary key, and then uses the format contained in the
array KAT to read the first four fields from the record into variables A,B,C,
and D.

7-26 Input/Output Statements

7.4.2.2 The Unformatted Indexsd READ Statement

The unformatted indexed READ statement reads an external record
accessed under the keyed mode of access and assigns the fields of binary
data contained in that record to the elements in the 1/0O list, in the order,

- from left to right, in which those elements appear in the list. The data is
not translated. The amount of data assigned to each element is determined
by the element’s data type.

The unformatted indexed READ staternent reads exactly one record and

N can be used only on indexed files. If the number of I/0O list elements is
iess than the number of fields in the record being read, the unused fields
in the record are discarded. If the number of I/O list elements is greater
than the number of fields, an error occurs.

If a specified key value is shorter than the key field referred to, the key
value is matched against the leftmost characters of the appropriate key
field until a match is found; the record supplying the match is then read.
If the specified key value is longer than the key field referred to, an error

occurs.
ST
R Some examples of the use of the unformatted indexed READ statement
o follow.
OPEN (UNIT=3, STATUS='OLD-,
1 ACCESS="KEYED', DRGANIZATION=*INDEXED',
2 FORM='UNFORMATTED" ,
3 KEY=(1:6, 30:37, 18:23))

READ (3,KEY='SMITH'} ALPHA,BETA

In this example, the READ statement reads from the file connected to
logical 1init 3 and retrieves the record with the value 'SMITH' in the
ST primary key field (bytes 1 to 5). The first two fields of the record retrieved
Ll are placed in variables ALPHA and BETA, respectively.

[
it

READ (3,XEYGE='XYZDEF' KEYID=2,ERR=99) IKEY

In this example, the READ statement retrieves the first record having a
value equal to or greater than ‘XYZDEF' in the second alternate key field

(bytes 18 to 23), The first field of that record is placed in the variable
IKEY.

input/Output Statements 7-27

7.4.4 The Internal READ Statement

7-28

The internal READ statement transfers input data to internal storage from
an internal file.

The DECODE statement discussed in Appendix A may be used as an
alternative to the internal READ statement.

The internal READ statement is always formatted and has the form:

READ (intu, fmt[,err][,end])[list]

intu ‘ ‘
An internal file specifier. See Section 7.2,1.2.

fmt
A format specifier. See Section 7.2.1.3.

err
end
Transfer-of-control specifiers. See Section 7.2.1.6.

list
An 1/0 list, See Section 7.2.2.

Refer to Section 7.3 for the syntactical rules that govern the use of the
above parameters,

The internal READ statement does the following:

* Reads character data from an internal file
* Translates the data from character to binary form using format specifi-
cations to provide editing

* Assigns the translated data to the elements in the I/0 list, in the
order, from left to right, in which those elements appear in the list

Refer to Section 7.1.3 for information on the characteristics and use of
internal files.

The following program segments demonstrate the use of internal file
reads:

CHARACTER+80 BUFFER
ACCEPT =, BUFFER
READ(BUFFER, '(14.4)')1

input/Output Statements

This segment reads the first four characters in the variable BUFFER as an
integer and assigns this integer value to the variable [.

INTEGER IVAL
CHARACTER TYPE, RECORD*80
CHARACTER=S AFMT, IFMT, DFNT, ZFMT
PARAMETER [AFMT='{Q,A)", IFMT= '(I10)®, OFMT= '(011}°,
i ZFMI= '(Z8)")
ACCEPT AFMT, ILEN, RECORD
e TYPE= RECDRD (1:1)
L IF (TYPE .EQ. 'D') THEN
READ (RECORD (2:MIN(ILEN, 11)), IFMT)IVAL
ELSEIF (TYPE .EQ. '0') THEN
READ (RECORD (2:MIN{ILEN, 12)}, DFMT)IVAL
ELSEIF (TYPE .EQ. 'X') THEN
READ (RECORD (2:MIN(ILEN, S5)),ZFMT)IVAL
ELSE
PRINT *, 'ERROR'
ENDIF
END

This program segment reads a record and examines the first character to
determine whether the remaining data should be interpreted as decimal,
octal, or hexadecimal. It then uses internal file reads to make appropriate
conversions from character string representations to binary.

1.5 The WRITE Statements

The WRITE statements transfer output data from internal storage to
records contained in user-specified external logical units, or from internal
storage to internal files. There are four categories of WRITE statements:
sequential, direct access, indexed, and internal.

. WRITE statements cannot write to existing records in an indexed file. For
L ‘ statements that can perform this function, refer to the REWRITE statement
' discussed in Section 7.6.

Input/Output Statements 7-29

7.5.1 The Sequential WRITE Statements

Sequential WRITE statements transfer output data from internal storage to
external records accessed under the sequential mode of access. There are
three classes of sequential WRITE statements: formatted, list directed, and
unformatted.

The three classes of sequential WRITE statement have the forms:
Formatted Sequential WRITE Statements

WRITE(extu,fmt {,err]) [list]

List-Directed WRITE Statements

WRITE(extu, * [,errl) (list]

Unformatted Sequential WRITE Statement

YRITE(extu [,err]) [list]

extu ATy
A logical unit specifier. See Section 7.2.1.1. o
fmt

A format specifier. See Section 7.2.1.3.

err)

A transfer-of-control specifier. See Section 7.2.1.6.

list

An I/0 list. See Section 7.2.2.
Refer to Section 7.3 for the syntactical rules that govern the use of the ‘

above parameters.

7-38 Inpat/Output Statements

7.5.1.1 The Formatted Sequential WRITE Statement
The formatted sequential WRITE statement does the following:

® Reads specified data from internal storage

» Translates the data from binary to character form using format specifi-
cations to provide editing

* Writes the iranslated values to an extemnal record accessed under the
sequential mode of access

The length of the records written to a user-specified output device (for
example, a line printer) must not exceed the maximum record length that
this device can process. In the case of a line printer, the maximum record
length is usually 132 characters.

Using an appropriate format specification, a2 formatted sequential WRITE
statement can write more than one record.

Because numeric data transferred by formatted output statements is
always rounded during its conversion from binary to character form, a
loss of precision may result if this data is subsequently used as input. It
is recommended, therefore, that whenever numeric output is to be used
subsequently as input, unformatted output and input statements be used
for data transfer.

Some examples of the use of formatted sequential WRITE statements
follow

WRITE (6,650)
650 FORMAT (' HELLO THERE')

In this example, the WRITE statement writes one record, consisting of the

contents of the character constant in the format statement, to logical unit
6.

WRITE (1,95) AYE,BEE,CEE
o5 FORMAT (3F8.5)

In this example, the WRITE statement writes one record consisting of
fields AYE, BEE, and CEE to logical unit 1.

WRITE (1,900} DEE,EEE,EFF
90Q FORMAT (F8.5)

In this example, the WRITE statement writes three separate records to
logical unit 1; each record consists of only one field.

input/Output Statements 7-31

7.5.1.2 The List-Directed WRITE Statement _
The list-directed WRITE staternent does the following:

* Retrieves specified data from internal storage

* Translates that data from binary to character form using the data type
of the elements in the I/0 list to provide editing

s Writes the translated values to an external record accessed under the
sequential mode of access

The values transferred as output by the list-directed WRITE statement
have the same forms as the constant values transferred as input by the
list-directed READ and ACCEPT statements, with the following exception:
Character constants are transferred without delimiting apostrophes, and
each internal apostrophe is represented by only one apostrophe instead of
two. As a consequence of this exception, records containing list-directed
character output data can be printed but cannot be used for list~directed
input. (Refer to Section 7.4.1.2 for a full discussion on list-directed value
forms.)

Table 7-3 below shows the default output formats for each-data type.

Table 7-3: List-Directed Output Formats

Data Type Output Formats

LOGICALx1 I5

LOGICAL=2 L2

LOGICAL~4 L2

INTEGER«2 17

INTEGER»4 Iz

REAL=4 1PG15.7

REAL*S 1PG25.16

COMPLEX»8 1X,'(",1PG14.7, *,', 1PG14.7,"Y

CHARACTER 1X, An (where n is the length of the character expression)

Note the following:

* List-directed output statements do not produce octal values, hex-
adecimal values, null values, slash separators, or repeated forms of
values.

7-32 Input/Output Statements

e List-directed output removes from a complex value any embedded
spaces. ‘

* Each output record begins with a space for carriage control.
e Each output statement writes one or more complete records.

! * Each individual output value is contained within a single record, with
; the exception of character constants longer than one record length,
and complex constants that can be split after the comma.

An example of the use of the list-directed WRITE statement follows:

DIMENSION A(4)
DATA A/4+3.4/
WRITE(1,*) 'ARRAY VALUES FOLLOW'
WRITE(1.*) A.4

In this example, the WRITE statements write the following records to
logical unit 1:

ARRAY VALUES FOLLOW
3.400000 3.400000 3.400000 3.400000 4

7.5.1.3 The Unformatted Sequential WRITE Statement

The sequential unformatted WRITE statement transfers specified bi-
nary data from internat storage to an external record accessed under the
sequential mode of access. The data are not translated.

The sequential unformatted WRITE statement writes exactly one record; if
there is no I/O list, the statement writes one null record.

Some examples of the use of the unformatted sequential WRITE statement
follow.

WRITE(1) (LIST(K).K=1,5)

In this example, the WRITE statement writes to logical unit 1 a record
containing the values, in binary form, of elements 1 through 5 of the array
LIST.

WRITE(4)

In this example, the WRITE statement writes one null record to logical
unit 4.

Input/Output Statemants 7-33

1.5.2 The Direct Access WRITE Statements

Direct access WRITE statements transfer output data from internal storage
to external records accessed under the direct mode of access. There are
two classes of direct access WRITE statements: formatted and unformat-
ted.

Using an OPEN statement is one method of establishing attributes of a
direct access file.

The two classes of direct access WRITE statement have the forms:
Formatted Direct Access WRITE Statements

WRITE(extu, rec, fmt [,erx])[list]

Unformatted Direct Access WRITE Statements

WRITE(extu. rec [,err])[list]

extu .
A logical unit specifier. See Section 7.2.1.1. S0y
rec :

A record specifier. See Section 7.2.1.4.

fmt

A format specifier. See Section 7.2.1.3.

err |

A transfer-of-control specifier. See Section 7.2.1.6.

list S
An I/0 list. See Section 7.2.2. B

Refer to Section 7.3 for the syntactical rules that govern the use of the
above parameters.

7-34 nput/Output Statements

7.5.2.1 The Formatted Direct Access WRITE Statement
The formatted direct access WRITE statement does the following;:

¢ Retrieves binary values from internal storage

e Translates those values to character form using format specifications to
provide editing

s Writes the translated data to a user-specified external record accessed
under the direct mode of access

If the values specified by the 1/0 list and formatting do not fill the output
record being written, the unused portion of the record is filled with space
characters. If the values overfill the record, an error occurs.

7.5.2.2 The Unformatted Direct Access WRITE Statement

The unformatted direct access WRITE statement retrieves binary values
from internal storage and writes those values to a user-specified external
e record accessed under the direct mode of access. The values are not

o translated. '

If the values specified by the I/O list do not fill the output record being
written, the unused portion of the record is filled with zeros. If the values
do not fit in the record, an error occurs.

Y
L7

7.8.2 The indexed WRIVE Statements

The indexed WRITE statements transfer output data from internal storage
to external records accessed under the keyed mode of access. There are
two classes of indexed WRITE statements: formatted and unformatted.

The indexed WRITE statement always writes a new record. The REWRITE
statement discussed in Section 7.6 is used {o update an existing record,

Using an OPEN statement is one method of establishing the attributes of
an indexed file.

The syntactical form of the indexed WRITE statement is identical to that
of the sequential WRITE statement; the two statements differ only in that
the indexed WRITE statement refers to a logical unit connected to an
indexed file, whereas the sequential WRITE statement refers to a logical
unit connected to a sequential file.

Input/Outpet Statermsnts 7-35

The two dasses of indexed WRITE statement have the forms:
Formatted Indexed WRITE Statements
WRITE(extu, fmt [,errl)[list]
Unformatted Indexed WRITE Statements

WRITE(extu [.err])[1ist]

extu
A logical unit specifier. See Section 7.2.1.1,

fmt
A format specifier. See Section 7.2.1.3.

err
A transfer-of-control specifier. See Section 7.2.1.6.

list
An I/0 list. See Section 7.2.2.

Refer to Section 7.3 for the syntactical rules that govern the use of the
above parameters.

Y

7.5.3.1 The Formatted indexed WRITE Statement
The formatted indexed WRITE statement does the following:

¢ Retrieves binary values from internal storage

® Translates those values to character form using format specifications to
provide editing

© Writes the translated data to one or more external records accessed
under the keyed mode of access

No key parameters are required in the list of control parameters, because
all necessary key information is contained in the output record.

If the values specified by the I/O list and formatting do not fill a fixed-
length record being written, the unused portion of the record is filled with
space characters. Hf additional records are specified, these are inserted in
the file logically according to the key values contained in each record.

7-36 Ingut/Output Statements

An example of the use of formatted indexed WRITE statement follows:

WRITE (4,100) KEYVAL, (RDATA (I), I=1,20)
100 FORMAT (A10,20F15.7)

In this example, the WRITE statement writes the translated values of
KEYVAL and each of the 20 elements of the array RDATA to a new
formatted record in the indexed file connected to logical unit 4.

© 0 7.5.3.2 The Unformatied indexed WRITE Statement
The unformatted indexed WRITE statement retrieves binary values from
internal storage and writes those values to an external record accessed
under the keyed mode of access. The values are not translated.

No key parameters are required in the list of control parameters because
all necessary key information is contained in the output record.

If the values specified by the I/0 list do not fill a fixed-length record being
written, the unused portion of the record is filled with zeros; if the values
— specified overfill the record, an error occurs,

1.5.4 The Internal WRITE Statement

The internal WRITE statement transfers output data from internal storage
to an internal file.

You can alse use the ENCODE statement discussed in Appendix A to
control internal output.

The internal WRITE staternent is always formatted and has the form:

WRITE (intu, fmtl[,err])(list]

intu
An internal file specifier. See Section 7.2.1.2.

fmt
A format specifier. See Section 7.2.1.3.

err

A transfer-of-control specifier. See Section 7.2.1.6.
list

An 1/0 list, See Section 7.2.2,

Input/Output Statements 7-37

Refer to Section 7.3 for the syntactical rules that govern the use of the
above parameters.

The internal WRITE statement does the following:

* Retrieves data from internal storage

» Translates this data from binary to character form using format
specifications to provide editing

* Writes the translated values to an internal file

Refer to Section 7.1.3 for information on the characteristics and use of
internal files.

The following example demonstrates the use of the internal WRITE
statement:

CHARACTER*80 BUFFER

ACCEPT *,1 :

WRITE(BUFFER, ' (I4.4)'}1 ! Start buffer with 4 digits from input
END

7.6 The REWRITE Statement

The REWRITE statement transfers output data from internal storage to the
current record in an indexed file, There is only one category of REWRITE
statement: indexed.

78.1 The Indened REWRITE Statement

The indexed REWRITE statement transfers output data from internal stor-
age to the last record in an indexed file to be accessed by a READ state-
ment. There are two classes of indexed REWRITE statements: formatted
and unformatted.

The OPEN statement is used to establish the attributes of an indexed file.
The two classes of indexed REWRITE statement have the foyms:
Formatied Indexed REWRITE Statement

REWRITE(extu,fmt [,err]) [list]

N

7-38 Input/Output Statements

Unformatted Indexed REWRITE Statement
REWRITE(extu [,err])[list]
where extu, fmt, err, and list are defined as they are for the indexed

WRITE statements discussed in Section 7.5.3. Refer to Section 7.3 for
applicable syntactical rules.

7.6.7.9 The Formatisd indexed REWRITE Statement
The formatted indexed REWRITE statement does the following:

e Retrieves binary values from internal storage

@ Translates those values to character form using format sp'ecifiers to
provide editing

® Writes the translated data to an existing record in an indexed file
The record written to is the current record in the file—that is, the last

record to be accessed by a preceding indexed or sequential READ state-
ment.

Changing the primary key value resuits in an error, and attempting to
rewrite more than one record causes an error. Any unused space in a
rewritten fixed-length record is filled with spaces; if the record is too long,
an error OCCUurs.

An example of the use of a formatted indexed REWRITE statement
follows:

REWRITE(3, 1{, ERR=99) NAME, AGE, BIRTH
10 FORMAT (A16, I2, 48)

In this example, the REWRITE statement updates the current record
contained in the indexed file connected to logical unit 3 with the values
represented by NAME, AGE, and BIRTH.

Input/Gutput Statements 7-38

7.8.1.2 The Unformatted indexed REWRITE Statement

The unformatted indexed REWRITE statement retrieves binary values from
internal storage and writes those values to an existing record in an indexed
file. The values are not {ranslated.

The record written to is the current record in the file—that is, the last
record to be accessed by a preceding indexed or sequential READ state-
ment.

Changing the primary key value results in an error. Any unused space
in a rewritten, fixed-length record is filled with zeros; if the record is too
long, an error occurs.

1.7 The ACCEPT Statoment

The ACCEPT statement transfers input data to internal storage from
external records accessed under the sequential mode of access.

ACCEPT statements can only be used on implicitly connected logical
units.
The ACCEPT statement has the forms:

ACCEPT £[,1ist]
ACCEPT #[,liat]

f
The nonkeyword form of a format specifier. See Section 7.2.1.3.

W
Specifies list-directed formatting.

fist
An I/0 list. See Section 7.2.2.

The ACCEPT statement functions exactly as the formatted sequential
READ statement discussed in Section 7.4.1.1, with one important excep-
tion: The ACCEPT statement can never be connected to user-specified
logical units.

7-40 Input/Output Statements

An example of the use of the formatted ACCEPT statement follows:

CHARACTER *10 CHARAR(E)
ACCEPT 200, CHARAR
200 FORMAT (5A10)

In this example, the ACCEPT statement reads character data from the
implicit unit and assigns binary values to each of the five elements of the
array CHARAR.

7.8 The TYPE and PRINT Statements

The TYPE and PRINT statements transfer output data from internal
storage to external records accessed under the sequential mode of access.

TYPE and PRINT statements have the forms:

TYPE £[,1list]
PRINT £ [.list]

TYPE * [, list)
PRINT * [, list]

f
The nonkeyword form of a format specifier. See Section 7.2.1.3.

L
Specifies list-directed formatting.

list
An I/O list. See Section 7.2.2,

TYPE and PRINT statements function exactly as the formatted sequential
WRITE statement discussed in Section 7.5.1.1, with one important excep-
tion: The formatted sequential TYPE and PRINT statements can never be
used to transfer data to user-specified logical units.

An example of the use of a formatted sequential PRINT statement follows:

CHARACTER*16 NAME, JOB
PRINT 400, NAME, JOB
400 FORMAT ('NAME=', A, 'JOB=', A)

In this example, the PRINT statement writes one record to the implicit
output device; the record consists of four fields of character data.

Input/Output Statements 7-41

o

Chapter 8
Format Statements

FORMAT statements are nonexecutable statements used with formatted
1/0 statements (and with ENCODE and DECODE statements) to describe
the format in which data is to be transferred, and to specify the kind of
conversion and the editing required to achieve this format.

Throughout this chapter a distinction is made between “external form”
and “internal form.” “External form” refers to the ASCII characters in
a data field of a formatted record; “internal form” refers to the binary
representation of a data value.

FORMAT statements have the form;
FORMAT (q1f1s1£282 ... fuqn)

q .
Zero or more slash { /) record terminators.

f

A field or edit descriptor, or a group of field or edit descriptors enclosed in
parentheses.

s
A field separator.

The entire list of field and edit descriptors, field separators, and record
terminators, including the enclosing parentheses (which must be present),
is called the format specification,

The field separators are the comma and the slash. The slash is also a
record terminator. Section 8.5 describes in detail the functions of the fieid
separators.

Format Statements 8-%

The field and edit descriptors have the forms:

frlc[wl.d[Eell]l . [rlcw.m

r

The number of times the field or edit descriptor is to be repeated (repeat
count). If you omit r, it is assumed to be 1.

c
A field or edit descriptor code (S, 5P, 55,1, 0, Z, F,E, D, G, L A, H, X, T,
P, Q. §. BN, BZ, TL, or TR).

w .
The external field width, in characters.

d
The number of characters to the right of the decimal point,

E
In this context, identifies an exponent field.

e
The number of characters in the exponent.

m
The minimum number of characters that must appear within the field
(including leading zeros).

The terms r, w, m, and d must all be unsigned integer constants; 1, w, m,
d, and e must be less than or equal to 255, and r and w must be nonzero.
The r term is always an optional element in those descriptors in which it

can be used. The d and e terms are required in some field descriptors and
are invalid in others.

You are not allowed to use parameter constants for the terms r, w, m, d,
ore,

The field and edit descriptors are:
* Integer field—Iw, Ow, Zw, Iw.m, Ow.m, Zw.m
¢ Logical field—Lw

* Real, double-precision, and complex field—Fw.d, Ew.d, Dw.d, Gw.d,
Ew.dEe, Gw.dEe

¢ Character field—Aw

8-2 Format Statements

* Edit (and control)—BN, BZ, SP, SS, 5, nX, Tn, TLn, TRn, nP, Q, §, :
(where n is a number of characters or character positions)

¢ Character and Hollerith constant field—nH, ' ...’

Section 8.1 describes each field and edit descriptor in detail.

The first character in an output record generally contains carriage-control
information (see Section 8.3).

RN
RO During data transfers, the format specification is scanned from left to
right and the elements in the I/O list are correlated one-for-one with
corresponding field descriptors in the specification, except in the case of
edit descriptors and character- and Hollerith-constant field descriptors,
which do not require corresponding 1/0 list elements.

Section 8.7 describes in detail the interaction between format specifiers
and the I/0 list.

You use an [, O, Z, or L field descriptor to process integer and logical
data. Youuse an F, E, D, G, O, or Z field descriptor to process real,
\ double-precision, and complex data.

You use an A, O, or Z field descriptor to process character data.

You can create a format specification before program execution with
the FORMAT statement. Section 8.8 summarizes the rules for writing
FORMAT statements. You can create a format during program execution
by using a run-time format instead of a FORMAT statement. Section 8.6
describes run-time formats.

8.1 Field and Edit Descriptors

A field descriptor describes the size and format of a data item or items.

o (Data items in an external medium are called external fields.) An edit
descriptor specifies an editing function to be performed on a data item or
items. (Some edit descriptors, such as the Scale Factor P, actually perform
control functions but are included among the edit descriptors for the sake
of simplicity.)

The numeric field descriptors ignore leading spaces in the external field;

however, they treat embedded and trailing spaces as zeros unless the BN
edit descriptor is in effect, or unless BLANK = ‘NULL' is in effect for the
logical unit, in which case all spaces are ignored.

Format Statements B8-3

. At the beginning of the execution of each formatted input statement, the
BLANK attribute for the unit determines the interpretation of spaces; the
PDP-11 FORTRAN-77 defaults are BLANK = 'NULL’ when an OPEN
statement has been executed, and BLANK= "ZERQ’ when no OPEN
statement has been executed. During the execution of a formatted input
statement, the interpretation of spaces may be controlied by BN and BZ
edit descriptors—that is, the default interpretation may be superseded by
either of these. The BN and BZ edit descriptors affect only the formatted
I/O statement of which they are a part.

The field and edit descriptors are described in detail in Sections 8.1.1
through 8.1.23. Sections 8.1.24, 8.1.25, and 8.1.26 discuss complex-data
editing, repeat counts, and default descriptors, respectively.

8.1.1 BN Edit Descripter

The BN edit descriptor causes the processor to ignore all the embedded
and trailing blanks it encounters within a numeric input field. It has the
form:

EN

The effect is that of actually removing the blanks and right-justifying the
remainder of the field. A field of all blanks is treated as zero. The BN
descriptor affects only I, O, Z, F, E, D, and G editing, anid only upon the
execution of an input statement.

8.1.2 BZ Edit Descriptor

The BZ edit descriptor causes the processor to treat all the embedded and
trailing blanks it encounters within a numeric input field as zeros. It has
the formu:

BZ

The BZ descriptor affects only 1, O, Z, F, E, D, and G editing, and Only
upon the execution of an input statement.

8-4 Format Statements

Foos
g, &
W

8.1.3 SP Edit Descriptor

The SP edit descriptor causes the processor to produce a plus character in
any position where this character would otherwise be optional. It has the
form:

8P

The SP descriptor affects only LEE D and G edmng, and only upon the
execution of an output statement.

8.1.4 SS Edit Descriptor

The SS edit descriptor causes the processor to suppress a leading plus
character from any position where this character would normally be
produced as an optional character; it has the opposite effect of the SP field
descriptor described above. The SS descriptor has the form:

83

The SS descriptor affects only I, F, E, D, and G editing, and only upon
execution of an output statement.

8.1.5 S Edit Descriptor

The S edit descriptor reinvokes optional plus characters (+) in numeric
output fields. It has the form:

s

The S descriptor counters the action of either the 5P or S5 descriptor by
restoring to the processor the decision-making ability to produce plus
characters on an optional basis.

The same restrictions apply as for the SP and SS descriptors.

Format Statements 8-6

8.1.6 1 Field Descriptor

The I field descriptor specifies decimal integer values. It has the form:
In[.n] '

The corresponding [/O list element must be of either integer or logical
data type.

Rules in Effect for Data Input

The I field descriptor specifies that w characters are to be read from an
external field, interpreted as a decimal integer value, and assigned to
the corresponding I/0 list element.

The external data value must be an integer constant it cannot contain
a decimal point or an exponent field.

If the external value exceeds the maximum allowed magnitude of the
corresponding list element, an error occurs.

If the first nonblank character of the external field is a minus sign, the
field is treated as a negative value,

If the first nonblank character is a plus sign, or if no sign appears in
the field, the field is treated as a positive value,

An all-blank field is treated as a value of 0.

" "..__‘

input Examples

Format External Field Internal Value

14 2788 2788
13 -26 =26
I9 312 312

Rules in Effact for Data Qutput

8-6 Format Statements

The I field descriptor specifies that the value of the corresponding I/0
list element is to be transferred as a decimal value, right justified, to
an external field w characters long.

If m is present, the external field consists of at least m digits; if
necessary, zeros are added on the left to bring the total digits to m.

If the value exceeds the field width, the entire field is filled with
asterisks.

If the value of the list element is negative, the field will have a minus
sign as its leftmost, nonblank character, provided the term w is large

enough.
Plus signs are suppressed, unless SP is specified.

Output Examples

Format Internal Value External Representation
I3 284 284

I4 ~284 ~284

I5 174 An174

12 3244 -~

I3 ~473 bl

7 29.812 Not permitted: error
14.2 1 aa01

14.4 1 0001

8.1.7 O Field Descripter

The O field descriptor specifies octal integer values, It has the form:

Owl.m]

The corresponding 1/0 list element can be any data type.

Rules in Effect for Data input

The O field descriptor specifies that w characters are to be read from
an external field, interpreted as an octal value, and assigned to the
corresponding 1/O list element,

The external field can contain only the numerals § through 7; it cannot
contain a sign, a decimal point, or an exponent field,

An all-blank field is treated as a value of 0.

If the value of the external data exceeds the allowed size of the
corresponding list element, an error occurs.

Format Statements 8-7

Input Examples

Format External Field - Internal Decimal Value
05 77777 32767

04 31274 1623

06 15 53248

03 97 Not permitted: error

Rules in Effect for Data Quiput

-}

The O field descriptor specifies that the octal value of the correspond-
ing I/0 list element is to be transferred as an octal integer, right
justified, to an external field w characters long.

No signs are output; a negative value is transmitted in its octal (two’s
complement) form.

If the value does not fill the field, leading spaces are inserted.

If the value exceeds the field width, the entire field is filled with
asterisks.

If m is present, the external field consists of at least m digits; if
necessary, zeros are added on the left to bring the total digits to m.

Qutput Examples

Format Internal (Decimal) Value External (Octal) Representation

06 32767 a77777

06 ~-32767 100001

02 14261 e

04 27 AA33 :
011 1352 12173041130
04.2 7 AMGT7

O4.4 7 0007

8.1.8 Z Field Descripter

The Z field descriptor specifies hexadecimal (base 16) values, It has the
form:

Zw [.m}

8-8 Format Statements

The Z field descriptor can be used with a corresponding 1/0 list element
of any data type.

Rules in Effect for Data input

-]

The Z field descriptor specifies that w characters are to be read from
an external field, interpreted as a hexadecimal value, and assigned to
the corresponding I/0 list element.

The external field can contain only the numerals 0 through 9 and the
letters A (or a) through F (or f); it cannot contain a sign, a decimal
point, or an exponent field.

An all-blank field is treated as a value of zero.

If the value of the external field exceeds the range of the correspond-
ing list element, an error occurs.

input Examples

Format External Field Internal Hexadecimal Value
Z3 A94 A9%4

Z5 A23DEF A23DE

Z5 95.AF2 Not permitted: error

Rules in Effect for Deta Output

[

The Z field descriptor specifies that the value of the corresponding 1/0
list element is to be transferred as a hexadecimal value, right justified,
to an external field w characters long.

No signs are output.

A negative value is transferred in its hexadecimal (two’s complement)
form.

If the value does not fill the external field, leading spaces are inserted;
if the value exceeds the field, the entire field is filled with asterisks.

If m is present, the external field consists of at least m digits; if
necessary, the field is zero filled on the left.

Format Statements 8-9

Output Examples

Format Internal (Decimal} Value External Representation
Z4 32767 7FFF

Z5 ~32767 43001

z2 16 10

74 -10.5 C228

Z3.3 2708 A94

Z6.4 2708 AADAD4

Note that if m is zero, and the internal representation is zero, the external
field is blank filled. ‘

8.1.9 F Field Descriptor

The

F field descriptor specifies real or double-precision values. It has the

form:

Fw.d

The

corresponding 1/0 list element must be of real or doﬁble-precision

data type, or it must be either the real or the imaginary part of a complex
data type.

Rules in Effect for Data Input

8-18 Format Statements

The F field descriptor specifies that w characters are to be read from
an external field, interpreted as a real or double-precision value, and
assigned to the corresponding 1/0 list element. Any decimal point,
signs, or exponent field present in the external field are included in the
w count, and d is part of w.

If the w characters include a decimal point, the position of the decimal
point is used. If the w characters do not include a decimal point, the
decimal point is placed before the rightmost d digits of w.

If the w characters include an exponent field (see Section 2.3.2 for real
constant exponents and Section 2,3.3 for double-precision constant
exponents), the exponent is used to evaluate the number’s magnitude
before the decimal point position is determined.

If the first nonblank character of the external field is a minus sign, the
field is treated as a negative value,

If the first nonblank character is a plus sign, or if no sign appears in
the field, the field is treated as a positive value.

An all-blank field is treated as a value of 0.
The term w must be greater than or equal to d+1.

input Examples

Format External Field Internal Value
F85 123456789 123.45678
F8.5 ~1234.567 ~1234.56

F8.5 24.77E+2 2477.0

F5.2 123456789 123.45

Rules in Effect for Data Qutput

The F field descnptor specifies that the value of the corresponding 1/0
list element is to be transferred as a real or double-precision value,
rounded to d decimal positions and right justified, to an external field
w characters long.

If the value does not fill the field, leading spaces are inserted.

If the value exceeds the field width, the entire field is filled with
asterisks.

Plus signs are suppressed, unless SP is specified.

The term w must be greater than or equal to d+I; however, the field
width should be large enough to contain the number of digits after the
decimal point, plus 1 for the decimal point, plus the number of digits
to the left of the decimal point, plus 1 for a possible negative sign.

Output Examples

Format Intermal Value External Representation
F8.5 2.3547188 A2.35472

F9.3 8789.7361 AB789.736

F2.1 51.44 .

F10.4 -23.24352 a88-23.2435

F5.2 325.013 sauns

F5.2 -2 -0.20

Format Statements 8-11

8.1.10 E Field Descriptor

The E field descriptor specifies real or double -precision values in exponen-
tial form. It has the form:

Ew.d[Ee]

The corresponding I/O list element must be of real or double-precision
data type, or it must be either the real or the imaginary part of a complex
data type.

Rules in Effect for Input
On input, the E field descriptor does not differ from the F field descriptor.

Input Examples

Format External Field Internal Value
E9.3 73443283 0.734432E+6
EFl24 1022.43E-6 0.102243E-2
E15.3 52.3759663 0.523759E+2
E125 210.5271D+10 0.2105271E+13

In the last example, note that the E field descriptor treats the D exponent
field indicator as an E indicator if the I/0 list element is single precision.

Rules in Effect for Qutput

* The E field descriptor specifies that the value of the corresponding 1/0
list element is to be transferred as a real or double-precision value in
exponential form, rounded to d decimal digits and right justified, to an
external field w characters long.

s If the value does not fill the w characters, leading spaces are inserted,

e If the value exceeds the w characters, the entire field is filled with
asterisks.

* Qutput is in a standard form; that is, it has a minus sign if the value
is negative, an optional 0, a decimal point, d digits to the right of the
decimal point, and an e+2 character exponent in one of the forms:

8-12 Format Statements

E+nn

Ew.d (for exponent < 99)
E-nan
E+n{(1)n(2)...nle)

Ew.dEe
E-n(1)n{2)...2(e)

n
A digijt of an integer.

* The exponent field width specification is optional; if it is omitted, the
value of e defaults to 2. If the exponent value is too large to be output
in one of the above forms, an error occurs.

* The d digits to the right of the decimal point represent the entire
value, scaled to a decimal fraction.

» Plus signs are suppressed, unless SP is specified.

* The tenm w must be large enough to include: a minus sign when
necessary (plus signs are optional); a zero; a decimal point; d digits;
and an exponent. Therefore, w must be greater than or equal to d+7,
or to d+e+5 if e is present.

Output Examples

Format Internai Value External Representation
ES.2 475867.222 A0.48E+06

E12.5 475867222 A0.47587E+06

E12.3 0.00069 2540.690E~03

E10.3 -0.5555 -(.556E+00

E5.3 56.12 P

El14.5E4 -1.001 -0,10010E+0001

E14.3E6 £.000123 A0123E-000003

8.1.11 D Field Descriptor

The D field descriptor specifies with a D instead of an E real or double-
precision values in exponential form. It has the form:

Dw.d
The corresponding 1/0 list element must be of real or double-precision

data type, or it must be either the real or the imaginary part of a complex
data type.

Formet Statements B8-13

Rules in Effect for Input

On input, the D field descriptor does not differ from the F or E field
descriptors.

Input Examples

Format External Field Internal Value
D10.2 12345 0.1234500000D+8
D10.2 123.45 0.1234500000D+3

D153 367.4981763D--04 0.3674981763D-1

Rules in Effect for Qutput

There is only one difference between the D and E descriptors on output:
If you use the D descriptor, the letter D is output instead of the letter E.

Output Examples

Format Internal Value External Value S
D14.3 0.0363 854440.363D-01 LR
D23.12 5413.87625793 AsAAAD.541387625793D+04

D98 1.2 rp——

8.1.12 G Field Descriptor

The G field descriptor specifies real or double-precision values, combining
E- or F-type formats according to the size of the number being output. It
has the form:

Gw.d[Eel

The corresponding I/O list element must be of real or double-precision
data type, or it must be either the real or the imaginary part of a complex
data type.

Rules in Effect for Input

On input, the G field descnptor does not differ from the F, E, or D
descriptors.

8-14 Fformat Statemsnts

Rules in Effect for Output

» The G field descriptor specifies that the value of the corresponding
1/0 list element is to be transferred as a real or double-precision
value in either exponential or fixed-point form, rounded to d decimal
positions and right justified, to an external field w characters long.

e The form in which the value is written is a function of the magnitude
of the value, as described in Table 8-1.

Table 8-1: Effect of Data Magnitude on G Formats

Data Magnitude Effective Format
m < 0.1 Ew.d[Ee]
01 <m <10 Fiw-4)d,’ '
10 <m < 100 Fw—-4).d-1), " '
,"_/—:\\
N 10d-2 <m < 10d-1 Fw-4).1, "
10d-1 <m < 10d Fw-4).0, " '
m > 10d Ew.d[Ee]

Note: The * * in the second column of Table 8-1 specifies that four spaces
are to follow the numeric data representation.

® Plus signs are suppressed,

¢ The term w must be large enough to include: a minus sign when
necessary (plus signs are optional); a decimal point; d digits to the
right of the decimal point; and either a 4-character or an {e+2)-
character exponent. Therefore, w must be greater than or equal to d+7
or d+5+e,

Output Examples

Format Internal Value External Representation
Gl3.6 0.01234567 80.123457E-01
Gl13.6 -0.12345678 ~0,123457s8484
G13.6 1.23456789 541.234578844

Format Statements 8-1B

Format Internal Value External Representation
G13.6 12.3456789%0 A812.3457a444
G13.6 123.45678901 4A123.457A004
G13.6 -1234.56789012 4-1234.57a808
Gl3.6 1234567890123 8A12345.7a048
G13.6 123456.75901234 AA123457 anAA
G13.6 -1234567.89012345 -0.123457E+07

Compare the above examples with the following examples, which show
the same values output with an equivalent F field descriptor.

Format Internal Value External Representation
F13.6 0.01234567 444400012346

F13.6 -0.12345678 AAAA-0.123457

F13.6 1.23456789 4AALA1.234568

F13.6 12.34567890 44A812.345679

F13.6 123.45678%01 484123.456789

F13.6 -1234.56789012 4-1234.567890

F13.6 12345.67890123 412345.678901

F13.6 123456.78901234 123456.789012

F13.6 ~1234567.89012345 SEEEARRATARES

8.1.13 L Field Descriptor

The L field descriptor specifies logical data. It has the form:

Lw

The corresponding 1/0 list element must be of either

data type.

8-16 Format Statements

integer or logical

Rules in Effect for Input
» The L field descriptor specifies that w characters are to be read from
the external field.

» If the first nonblank character of the field is the letter T, t, .T, or .t, the
value .TRUE. is assigned to the corresponding 1/0 list element.

* If the first nonblank character of the field is the letter F, f, .F, or .f, or
if the entire field is blank, the value .FALSE. is assigned.

* Any other value in the external field produces an error.

Rules in Effect for Qutput

* The L field descriptor specifies that either the letter T (if the value
of the corresponding 1/0 list element is .TRUE.) or the letter F (if
the value of the corresponding 1/0 list element is .FALSE.) is to be
transferred to an external field w characters long.

» letter T or F is in the rightmost position of the field, preceded by w-1

spaces.
T Output Examples
o Format Internal Value External Representation
LS TRUE. AAAAT
11 FALSE. 3
8.1.14 A Field Descriptor
AT The A field descriptor specifies character or Hollerith values. It has the
£ form;
Alw)
The corresponding I/0O list element can be of any data type, because
variables of any data type can be used to store Hollerith data.
The value of w must be less than or equal to 255.

Format Statements B8-17

Rules in Effect for Input

B-18 Format Statements

The A field descriptor transfers w characters from the external record
and assigns them to the corresponding I/0 list element.

The maximum number of characters that can be stored depends on
the size of the 1/0 list element.

The size of a character I/O list element is the length of the character
variable, character substring reference, or character array element
that makes up the element. The size of a numeric I/O list element
depends on the data type of the elerent, as follows:

1/0 List Element Maximum Number of Characters

BYTE
LOGICAL=1
LOGICALs2
LOGICAL*4
INTEGER+2
INTEGER»4
REAL
REAL+8

DOUBLE
PRECISION

COMPLEX
CHARACTER*n n

L N N N

o]

If w is greater than the maximum number of characters that can

be stored in the corresponding 1/O list element, only the rightmost
characters are assigned to the element. Leftmost excess characters are
ignored.

If w is less than the number of characters that can be stored, w
characters are assigned to the list element, left justified, and trailing
spaces are added to fill the element.

input Examples

Format External Field Internal Representation

A6 PAGEa# # (CHARACTER=1)

A6 PAGEa# Ea# (CHARACTER®3)

A6 PAGEs# PAGEM# (CHARACTER»6)

A6 PAGEM# PAGEA#84 (CHARACTER»8)

A6 PAGEa# % (LOGICAL~1)

A6 PAGEs# At (INTEGER*2)

A6 PAGEa# GE# (REAL)

A6 PAGEs# PAGEA#A4 (DOUBLE PRECISION)

Rules in Effect for Output

e The A field descriptor specifies that the contents of the corresponding
1/0 list element are to be transferred to an external field w characters
long.

e If w is greater than the size of the list element, the data appears in the
field, right justified, with leading spaces.

* If w is less than the size of the list element, only the leftmost w
characters are transferred.

Output Examples

Format Internal Value External Representation
A5 OHMS AQHMS

AB VOLTS VOLTS

AS AMPERES AMPER

. If you omit w in an A field descriptor, a default value is supplied. If the
170 list element is of character data type, the default value is the length of
the I/0 list element. If the 1/O list element is of numeric data type, the
default value is the maximum number of characters that can be stored in a
variable of that data type.

Format Statemants 8-19

8.1.15 H Field Descriptor

The H field descriptor specifies that data is to be transferred between an
external record and the storage location of the H field descriptor itself. It
has the form (of a Hollerith constant):

nHelc2¢3 ... ¢n

n
The number of characters to be transferred.

c
An ASCII character.

Rule in Effect for Input

» The H field descriptor specifies that n characters be accepted from
an external field and assigned to the same storage location as the
characters of the H descriptor. The characters of the H descriptor are
overlaid by the input data, character for character.

Rule in Effect for Output

* The H field descriptor specifies that n characters following the letter H
be transferred to the external field.

An example of H field-descriptor usage follows.

TYPE 100

100 FORMAT (41H ENTER PROGRAM TITLE, UP TO 20 CHARACTERS)
ACCEPT 200

200 FORMAT (20H TITLE GDES HERE)

The TYPE statement transfers the characters from the H field descriptor
in statement 100 to the user’s terminal. The ACCEPT statement accepts
the response from the keyboard and places the input data in the H field
descriptor in statement 200. The new characters replace the words TITLE
GOES HERE. If the user enters fewer than 20 characters, the remainder of
the H field descriptor is filled with spaces to the right.

You can use a character constant instead of an H field descriptor. Both
types of format specifier function identically.

8-20 Format Statements

In a character constant, the apostrophe is written as two apostrophes. For
example:

80 FORMAT ('TODAY''S DATE IS: ',Iz,'/'.12,'/',12)

A pair of apostrophes used in this way is considered a single character.

8.1.16 X Edit Descriptor

The X edit descriptor specifies that a number of character posiﬁbns be
skipped. It has the form:

nX
The term n specifies the number of character positions to be skipped. The

value of n must be greater than or equal to 1, and less than or equal to
255.

Rule in Effect for Input

& The X edit descriptor specifies that the next n characters in the input
record are to be skipped.

Rule in Effect for Output

* The X edit descriptor tabs right n spaces; it does not write over
anything already written. For example, the WRITE statement in:

WRITE (6,90) NPAGE
90 FORMAT (13HAPAGE NUMBER ,IZ,16X,23HGRAPHIC ANALYSIS, CONT.)

Pl prints a record similar to the following:

PRy PAGE NUMEER nn GRAPHIC ANALYSIS, CONT.

where nn is the current value of the variable NPAGE. Note that the
numeral 1 in the first H field descriptor is not printed but is used to
advance the printer paper to the top of a new page. (Section 8.3 describes
printer carriage control.)

Format Statements 8-21

8.1.17 T Edit Descriptor -
The T edit descriptor specifies the position, relative to the start of an
external record, of the next character to be processed. It has the form:
Tn
where the term n indicates the position in the external record of the next

character to be processed. The value of n must be greater than or equal to
1, but not greater than the number of characters allowed in the record.

Rule in Effect for input

* In an input statement, the T field descriptor specifies that data starting
with the nth character position is to be transferred as input. For
example, the statements

READ (5,10) I.X
10 FDRMAT (T7,A3,T1.A3)

specify that a 3-character string starting at character position 7 in the
external record is to be read first, followed by a 3-character string
starting at character position 1.

Rule in Effect for Output

* In an output statement, the T field descriptor specifies that data output
is to begin at the nth character position of the external record. For
example, the statements

PRINT 25 -
25 FORMAT (T50,'COLUMN 2',T20,COLUMN 1')

print “COLUMN 1“ at position 20 and “COLUMN 2” at position 50.
The remainder of the line contains blank characters,

8-22 Format Statements

8.1.18 TL Edit Descriptor

The TL edit descriptor is a relative tabulation specifier for tabbing to the
left. It has the form:

Tlon

The term n specifies that the next character to be transferred from or to a
record is the nth character to the left of the current character. The value
of n must be greater than or equal to 1. If the value of n is greater than or
equal to the current character position, the first character in the record is
specified.

8.1.18 TR Edit Descriptos

The TR edit descriptor is a relative tabulation specifier for tabbing to the
right. It has the form:

TRn

The term n indicates that the next character to be transferred from or to a
record is the nth character to the right of the current character. The value
of n must be greater than or equal to 1.

2.1.26 @ Edit Bescripter

The Q edit descriptor specifies that the count of the characters (not the
characters themselves) remaining in a record being read are to be assigned
to a corresponding variable in an 1/0 list. It has the form:

Q

A corresponding 1/0 list element must be of integer or logical data type.
For example, the input statements

READ (4,1000) XRAY KK, NCHRS, (ICHR(I),I=1,NCHRS)
1000 FORMAT (E15.7,14,Q,8041)

read two fields into the variables XRAY and KK. The count of the char-

acters remaining in the record is then stored in NCHRS, and exactly this
number of characters is read into the array ICHR. By placing the Q de-

scriptor in the first position in a format specification, you can determine
the actual iength of an input record.

Format Statements 8-23

In an output specification, the Q edit descriptor has no effect except to
cause a corresponding 1/0 list element to be skipped.

8.1.21 Dollar Sign Edit Descriptor

In an output specification, the dollar sign ($) edit descriptor suppresses
a carriage return at the end of a line whose first character is a space

or a plus sign (see Section 8.3 on carriage control characters). In an
input specification, the dollar sign descriptor is ignored. The dollar sign
descriptor is intended primarily for interactive I/0; it leaves the terminal
print position at the end of the output text (rather than returning it to the
left margin) so that a response can be typed immediately after the text.

For example, the statements

TYPE 100

100 FORMAT (' ENTER RADIUS VALUE: '.$)
ACCEPT 200

200 FORMAT (F6.2)

will produce the message

ENTER -RADIUS VALUE:
on your terminal.

Your response (say, in this case, it is 12.0) can then go on the same line,
as follows:

ENTER RADIUS VALUE:12.0

‘Note that the dollar sign descriptor used as a carriage control character
instead of as a field descriptor accomplishes the same result. The following
two formats are equivalent:

200 FORMAT (1iH SICN HERE:.$)
200 FORMAT (11H$SIGN HERE:}

8-24 Fomat Statements

8.1.22 Colon Edit Descriptor

The colon (:) edit descriptor terminates format control if no more items
are in an 1/O list. The colon descriptor has no effect if /O list items
remain. For example, the statements

PRINT 100,3

PRINT 200,4
100 FORMAT{' I=',I2, ' J=' ,I2}
200 FORMAT{' ¥=',I2,:,' L=" ,i2)

print the two lines:

I= 3 J=
K= 4

Section 8.7 describes format control in detail.

8.1.23 Scale Factor

A scale factor is a value used in a format specifier that determines the
location of the decimal point in real, double precisicn, or complex values.

The scale factor has the form:

nP

n

A signed or unsigned integer constant in the range —-127 through +127.
This integer constant specifies the number of positions to the left or right
that the decimal point is to move.

L Rules in Effect for Both Input and OQutput
¢ If you do not use a scale factor, a default scale factor of OP applies.

® The scale factor is set to OP at the start of every 1/0 statement.

¢ A scale factor applies to ali subsequent F, E, D, or G field descriptors
until a new scale factor is specified.

¢ The scale factor can appear as a field descriptor. For example, in the
statement

10 FORMAT (X, 14, E6.3, 3P, 248, 212, 2F5.3, E8.5)

the 3P applies to the 2F5.3 descriptor and to the EB.5 descriptor, but
not to the E6.3 descriptor or to the X, I, or A descriptors.

Format Statements 8-25

A scale factor can appear as a prefix to an F, E, D or G field descriptor.
For example, in the statement

10 FORMAT (3P2F5.3, EB.5)

3P applies both to 2F5.3 and to E8.5.

Format reversion (see Section 8.7) has no effect on the scale factor.
For example, given the statement

10 FORMAT (X, F3.2, E3.2, 2PE4.2, F4.2, 3PE4.2)

suppoese two records are read, with reversion occurring to the start
of the format. In the second record, the active scale factor 3P now
applies to F3.2.

A scale factor of OP can be reinstated only by an explicit 0P specifica-
tion in the format.

Additional Rules in Effect for Input

If the external fieid contains an exponent, the scale factor has no
effect,

If the external field does not contain an exponent, the:scale factor
specifies multiplication of the value by 10**~-n and assignment of the
result to the corresponding 1/0 list element, =

For example, a 2P scale factor multiplies an input value by .01, moving
the decimal point two places to the left. A 2P scale factor multiplies
an input value by 100, moving the decimal point two places to the
Tight.

Input Examples

Format External Field Internal Value
3PE10.5 37.614 037614
3PE105 37.614E2 3761.4
-3PE10.5 37.614 37614.0

Additional Rules in Effect for Output

8-26 Format Statements

Scale factors apply only to data output. The values of the [/O list
variables do not change.

For the F field descriptor, the value of the I/O list element is multi-
plied by 10#*n before this value is transferred to the external record.
Therefore, a positive scale factor moves the decimal point to the right,
and a negative scale factor moves the decimal point to the left.

l‘.

- <

¢ For the E or D field descriptor, the basic real constant part of the value
{see Section 2.3.2) is multiplied by 10**n, and n is subtracted from the
exponent. Therefore, a positive scale factor moves the decimal point
to the right and decreases the exponent, and a negative scale factor
moves the decimal point to the left and increases the exponent.

* Because the G field descriptor supplies its own scaling function, a scale
factor has no effect on a G field descriptor when the magnitude of the
data to be output is within the effective range of the descriptor. When
the magnitude of the data value is outside the range of the G field
descriptor, the G field descriptor functions as an E field descriptor;
therefore, the scale factor has the same effect as it does for the E field
descriptor.

Output Examples

Format Internal Value External Representation
1PE12.3 -270.139 84-2.701E+02
1PE12.2 -270.139 AAA-2.70E+02

. ~1PE12.2 -270.139 AAA~0.03E+04

8.1.24 Complex Data Editing

Input and output of complex values is governed by pairs of successive
real field descriptors that use any combination of the forms Fw.d, Ew.dEe,
Dw.d, or Gw.dEe.

Rule in Effect for Input

¢ During input, the two successive fields comprising a complex value are
read under the control of repeated or successive real field descriptors
and assigned to a complex [/O list element as the value’s real and

imaginary parts, respectively.
Input Examples
Format External Field Internal Value
F8.5,F8.5 1234567812345.67 123.45678, 12345.67
E9.1,F9.3 734.432E8123456789 734.432E8, 123456.789

Format Statements 8-27

Rules in Effect for Qutput

* During output, the two parts of a complex value are transferred to
an external record under the control of repeated or successive field
descriptors.

e The two parts are transferred consecutively, without punctuation or
spacing, unless the format specifier states otherwise.

Qutput Examples

Format Internal Value External Representation
2F8.5 2.3547188, 3.456732 42.35472 43.45673

E9.2,'4,4’,E5.3 47587222, 56.123 80.48E+064,avsx0x

8.1.25 Repeat Counts and Group Repeat Counts

You can apply any field descriptor except H, T, P, or X to a number of
successive data fields by preceding the field descriptor with an unsigned
nonzero integer constant that specifies the number of applications, or
repetitions, desired. This integer constant is called a repeat count. For
example, the following two statements are equivalent:

20 FORMAT (E12.4,E12.4,E12.4,15,15,15,15)
20 FORMAT (3E12.4,415)

Similarly, you can apply a group of field descriptors repeatedly by enclos-
ing the group in parentheses and preceding it with an unsigned nonzero
integer constant. This integer constant is called a group repeat count. For
example, the following two statements are equivalent:

50 FORMAT (218,3(F8.3,E15.7))

80 FORMAT (I8,I€,F8.3,E15.7,F8.3,E45.7,F8.3,E16.T)
N/ NS A/
1 2 3

To repeat an H or X field specification (for example, 20H), 3;0\1 can enclose
it in parentheses and treat it as a group repeat specification (for example,

5(20H)).
If you do not specify a group repeat count, a default count of 1 is assumed.

8-28 Format Statements

wl

s

PR

8.1.26 Default Field Descriptors

If you write the field descriptors [, O, Z, L, F, E, D, G, or A without

specifying a field width value, default values for w, d, and e are supplied
s on the basis of the data type of the I/O list element. Note that for F.E D,
- and G, you must specify w.d[Ee] or nothing,

Table 8-2 lists the default values for w, d, and e. Notice that for the A
field descriptor, the defauit for w is the length of the correspondmg I/0
list element.

Table 8-2: Default Fieid Widths

Field
Descriptor List Element Data Type w d e
LOZ INTEGER=*2 7
LOZ INTEGER*4 12
02 CHARACTER*n (see
Note)
0, Z LOGICAL~1, BYTE 7
0,z REAL 12
0 Z DOUBLE PRECISION 23
L LOGICAL 2
F.E,G D REAL, COMPLEX 15 7
FEGD DCUBLE PRECISION 25 16
A LOGICAL»*! or BYTE Al
A LOGICAL=2,INTEGER»2 A2
A LOGICAL#4,INTEGER*4 a4
A REAL, COMPLEX A4
A DOUBLE PRECISION 48
A CHARACTER*n An

Note: The default value of w is:

(n*8)/3+1 if (n*8 MOD 3) =0
(n=8)/3+2 otherwise

Format Statements 8-29

8.2 Vgriable FORMAT Expressions

You can use an expression in a FORMAT statement any place you can use
an integer {except in the specification of the number of characters in the H
field), by enclosing it in angle brackets. For example, the statement

FORMAT (I<J+1>)

performs an [(integer) data transfer with a field width one greater than the
value of | at the time the format is scanned. The expression is reevaluated
each time it is encountered in a normal format scan. If the expression

is not of integer data type, its evaluated result is converted to integer
data type before it is used. You can use any valid FORTRAN expression,
including function calls and references to dummy arguments.

The value of a variable format expression must obey the same restrictions
on magnitude that apply to an integer constant in a format, or an error
occurs.

The following example shows a variable format expression.

DIMENSION A(S)
DATA A/1.,2.,3..4.,5./

00101 =1,10

WRITE (6,100) I
100 FORMAT(I<MAX(I,5)>)
10 CONTINUE

P0201I=1,5

WRITE (6,101) (A(I),J=1,1)
101 FORMAT (<I>F10.<I~-13)
20 CONTINUE

END

8-30 Formst Statements

On execution, these statements produce the following output:

1
2
3
4
5
)
7
8
9
10
1.
2.0 2.0
3.00 3.00 3.00
4.000 4.000 4.000 4.000
5.0000 5.0000 3.0000 5.0000 5.0000

8.3 Carriage Contral Characters

The first character of every record transferred to a printer is assumed by
the system to be a carriage control character (except when overridden

by the OPEN statement specification CARRIAGECONTROCL = 'LIST’

or 'NONE'); this character is not printed. The FORTRAN I/O system
recognizes certain characters as carriage control characters. Table 8-3 lists
these characters and their effects,

Format Statements 8-31

Table 8-3: Carriage Control Characters

Character Effect

4 (space) Advances one line

0 (zero) Advances two lines

1 (one) Advances to top of the next page

+ (plus) Does not advance (allows overprinting)

$ (dollar sign) Advances one line before printing and suppresses carriage

return at the end of the record

Any character other than those listed in Table 8-3 is treated as a space
and is deleted from the print line. Note that if you accidentally omit the
carriage control character, the first character of the record is not printed.

8.4 Format Specification Separators

When the next value in an 1/O list is to be transferred to or from the cur-

rent record, you use a comma to separate the relevant field descriptor from .

the preceding one. However, when the next value is to be transferred
to or from the next succeeding record, you use a slash (/) to separate
the relevant field descriptor from the preceding one. For example, the
statements

WRITE (6.40) X,L,M.N,0,P
40 FORMAT (306/16,2F8.4)

are equivalent to the following:

WRITE (6.40) K,L .M
40 FORMAT (306)

WRITE ¢6,50) N.D.P
S0 FDRMAT (IS, 2F8.4}

You can use multiple slashes to bypass input records or to output blank
records. If n consecutive slashes appear between two field descriptors,
{n—1) records are skipped on input or (n—1) blank records are output. The
first slash terminates the current record; the second slash terminates the
first skipped or blank record; and so on.

However, n slashes at the beginning or end of a format specification
result in n skipped or blank records, because the opening and closing
parentheses of the format specification are themselves a record initiator
and terminator, respectively. For example, the statements

8-32 Format Statements

WRITE (6,99)
99 FORMAT ('1',7T51, 'HEADING LINE'//TS1,'SUBHEADING LINE'//)

produce the following output:

Column B0, top of page

HEADING LINE
{blank line)

SUBHEADING LINE
(blank line)
(blank line)

8.5 External Field Separators

A field descriptor such as Fw.d specifies that an input statement is to
read w characters from an external record. If the data field in the exter-
nal record contains fewer than w characters, the input statement reads
characters from the next data field in the external record, unless you have
padded the short field with leading zeros or spaces. When the field de-
scriptor is numeric, you can avoid having to pad the input field by using
a comma to terminate the field; the comma overrides the field descriptor’s
field-width specification. Using a comma to override a field descriptor’s
field-width specification is called short field termination and is particularly
useful when you are entering data from a terminal keyboard. You can use
it with the I, O, Z, F, E, D, G, and L field descriptors. For example, if the
statements

READ {5,100) I,J.A.B
100 FORMAT (2I6.2F10.2)

read the record

1,-2.1.0,35

the following assignments occur:
=1

= -2

=1.0

0.35

tH > o H

The physical end of the record also serves as a field terminator.

Note that the d part of a w.d specification is not affected by an external
field separator. Therefore, you should always include an explicit decimal
point in an external field for E, E, D, and G field descriptors.

Format Statements 8--33

You can use a comma to terminate fields only when those fields are less
than w characters long. If a comma follows a field of w characters or
more, the comma is considered part of the next field.

Two successive comunas, or a comma after a field of exactly w characters,
constitutes a null (zero-length} field. Depending on the field descriptor
specified, the resulting value assigned is 0, 0.0, 0.D0, or .FALSE..

You cannot use a comma to terminate a fleld that is controlled by an A,
H, or alphanumeric-literal field descriptor. However, if a record being
read under the control of an A, H, or alphanumeric-literal field descriptor
reaches its physical end before w characters are read, short-field termi-
nation occurs and the characters that have been read are successfully
assigned. Trailing spaces are appended as required by the corresponding
[/0O list element or the field descriptor.

8.6 Run-Time Formats

You can store format specifications in arrays (numeric or character), array
elements, character variables, and character substrings to use at run
time. These format specifications are called run-time formats and can be
constructed or altered during program execution. :

Virtual arrays must not be used for storing specifications for run-time
formats.

A run-time format in an array has the same form as that of a FORMAT
statement, without the word FORMAT and the statement label. The

opening and closing parentheses are required. Variable format expressions -
are not permitted.

Run-time formats are especially useful when you cannot know before
execution time exactly which field descriptors will be required. To solve
this problem, you can write a program to create a format with field
descriptors that depend on the attributes of the relevant data.

The following example demonstrates the use of run-time formats:

8-34 Format Statements

REAL TABLE(10,5)
CHARACTER*26 FMT
CHARACTER*S FBIG,FMED,FSML
DATA FMI(1:1)/1("/ FNT(26:26)/')'/
DATA
FMT(6:6) /', '/ FMT(31:11) /", 1/ FNT(16:16) /¢, / FMT(21:21) /' ,'/
DATA FBIG,FMED,FSML/'F8.2'.'F3.4",'FO.6'/
DO 10 I=1,10
Do 15 J=1,6
TABLE(I,J)=100.
15 CONTINUE
10 CONTINUE
DD 20 I=1,10
DD 18 J=1.B
TF (TABLE(I,J).GE.100) THEN
FMT(5#{J-1)+2:54(J-1)+5=FBIG
ELSEIF(TABLE(I,J).LE.0.1) THEN
FMT(5+{J-1)+2:6%(J-1)+B)=FMED
ELSE
FMT(5+(J-1)+2:5+(J-1)+5)=FSML
ENDIF
18 CONTINUE
. TYPE =, FMT
WRITE(6,FMT) (TABLE(I,)), J=1,8)
20 CONTINUE
END

In the above example, the given data is stored in the real array TABLE.
The magnitudes of the data stored in the elements of TABLE will not be
known until just before output. The format specification is stored in the
character variable FMT. A left parenthesis is stored in the first character
of FMT, and a right parenthesis is stored in the last character of FMT.
A selection of field descriptors is stored in the character variables FBIG,
FMED, FSML. The choice of field descriptors to be assigned to FMT is
made to depend on the magnitudes of the data in TABLE, Finally, the
output statement references FMT instead of a format statement label.

Each time an 1/0 statement referencing a run-time format is executed, the
format is compiled (or recompiled) and assigned a storage location. Data
read into that location through use of the H field descriptor is not stored
in the array holding the format. At the end of the I/O statement, the data
is lost.

Format Statements .0—35

8.7 Format Control Interaction with Input/Output Lists

Format control begins with execution of a formatted I/O statement.
During format control, the action taken depends on information provided
jointly by the next element of the I/O list (if one exists} and the next
field descriptor of the format specification. The 1/0 list and the format
specification are correlated from left to right, except when repeat counts
are specified.

If the /0O statement contains an 1/0 list, you must specify at least one
LO, ZFED,QGLA, or Q field descriptor in the format, or an error
occurs.

On execution, a formatted input statement reads one record from the
specified unit and initiates format control. Thereafter, additional records
can be read as indicated by the format specification. Format control
requires that a new record be read when a slash occurs in a format
specification, or when the last closing parenthesis of a format specification
is reached before all the elements in the corresponding 1/0 list have been
assigned values. When this new record is read, any remaining characters
read from the current record are discarded.

A formatted output statement transmits a record to the specified unit as
format control terminates. Records can also be written during format
control if a slash appears in the controlling format specification, or if the
last closing parenthesis in the controlling format specification is reached
and more I/O list elements remain to be transferred.

EachL, 0, Z, F, E D, G, L, A, and Q field descriptor corresponds to one
element in an I/O list. No list element corresponds to an H, X, P, T, BN,
BZ, $,:, TL, TR, S, SP, SS, or field descriptor. In H and character-constant
field descriptors, data transfer occurs directly between an external record
and the storage location of the format specification.

In format control, whenan 1, O, Z, F, E, D, G, L, A, or Q field descrip-
tor is encountered, the I/0 list is checked for a corresponding element.
If a corresponding element is found, data is transferred and, if appro-
priate, translated between the external record and the list element. If a
corresponding element is not found, format control terminates.

When the last closing parenthesis of the format specification is reached,
format control determines whether there are any more I/0 list elements
remaining to be processed. If there are no more, format control terminates.
However, if additional list elements remain, part or all of the format
specification is reused in a process called format reversion.

8-36 Format Statements

Format reversion consists of the termination of the current record and

the starting of a new record. Format control reverts to the group repeat
specification whose left parenthesis is complemented by the next-to-last
right parenthesis of the format specification. If the format does not contain
a group repeat specification, format control returns to the beginning of the
format specification.

Examples of format reversion follow.

¥ READ (I,100) A. B, C, D, E, F
. 100 FORMAT (FB.3, F8.3)

In this example, three records containing two fields are read. The first
record assigns values to A and B; the second to C and D; and the third to
E and F.

READ (4,200) ¥, A, It, I3, I2, 34, I1i, 113, I12, T14
200 FORMAT (I2, F8.3,2(I2, I4))

In this example, format control reverts to the group repeat specification
- 2(12, 14), and 1/O list elements 111, 113, 112, and 114 are assigned values
NN from the next record.

DIMENSION A(5,5) ,B(5)
WRITE (6,10)0X,(I,B(I),(A(L,J),J=1,6),1=1.,5)
10 FORMAT (E10.3/(16,E10.3, 5(F8.5)))

In this example, format reversion returns to the group repeat specification
that begins with I5.

8.8 Summary of Rules for Format Statements

The following sections summarize the rules for constructing and using the
format specifications and their components, and for constructing external
fields and records. Table 8-4 summarizes the FORMAT codes.

Table 8—4: Summary of FORMAT Codes
Code Form Effect

i Iw[.m] Specifies fransfer of decimal integer values
o Ow[.m] Specifies transfer of octal integer values
Z Zwi.m] Specifies transfer of hexadecimal integer values

" Format Statements 8-37

Table 8—4 {Cont.:: Summary of FORMAT Codes

Effect

Code Form

F Fw.d

E Ew.d[Ee]
D Dwd

G Gw.diEe)
L Lw

A Alw]

H nHe ...

C

X nXx

) S

SP SpP
.88 S5

T Tn

TL TLn

TR TRn

Q Q

$ $

BN BN

BZ BZ

Specifies transfer of real or double-precision values in basic
rea) form

Specifies transfer of real or double-precision values in expo-
nential form

Specifies transfer of real or double-precision values in double-
precision exponential form with a D instead of an E

Specifies transfer of real or double-precision values: on input,
acts like F code; on output, acts like E code or F code

Specifies transfer of logical data: on input, transfers T, 1, .T, .t,
E, £, .E, or .f; on output, transfers T or F

Specifies transfer of character or Hollerith values

Specifies transfer of Hollerith values between an external
record and the format storage location

Specifies that n characters are to be skipped on input or that
n spaces are to be skipped on output

Reinvokes optional plus characters in numeric output fields:
counters the action of SP and 55

Writes plus characters that would otherwise be optional into
numeric output fields

Suppresses optional plus characters in numeric output fields

Specifies the position, in the external record, of the next
character to be processed

Relative tabulation specifier (left)
Relative tabulation specifier (right)

Specifies the number of characters remaining to be transterred
in an input record S

Suppresses carriage return during interactive [;O
Terminates format control if the [/O list is exhausted

Specifies that embedded and trailing blanks in 2 numeric
input field are to be ignored

Specifies that embedded and trailing blanks in a numeric
input field are t0 be treated as zeros

8-38 Format Statements

* A FORMAT statement must always be labeled.

* In a field descriptor such as rlw or nX, the terms r, w, m, and n must
be unsigned integer constants greater than 0. (They cannot be names
assigned to constants in PARAMETER statements.) You can omit the
repeat count and field width specification.

* In a field descriptor such as Fw.d, the term d must be an unsigned
integer constant. If w is specified, then you must specify din F, E, D,
and G field descriptors even if it is 0; and the field width specification
{w) must be greater than or equal to d. The decimal point is also
required. You must either specify both w and d or omit them both. In
a field descriptor such as Ew.dEe, the term e must also be an unsigned
integer constant.

* In a field descriptor such as nHclc2 ... cn, exactly n characters must
follow the H format code. You can use any printing ASCII character
in this field descriptor.

T

£ * In a scale factor of the form nP, n must be a sighed or unsigned
LR integer constant in the range -127 through 127 inclus've. The scale
o factor affects the F, E, D, and G field descriptors only. Once you
specify a scale factor, it applies to all subsequent F, E, D, and G
field descriptors in that format specification until another scale factor
appears. You must explicitly specify OP to reinstate a scale factor of
zero. Format reversion does not affect the scale factor,

* No repeat count is permitted for BN, BZ, §, ;, H, X, T, TR, TL, S, SP,
88, or character constant field descriptors, unless these descriptors are
enclosed in parentheses and treated as a group repeat specification.

TN * If the associated [/O statement contains an I/O list, the format
RS specification must contain at least one field descriptor other than H, X,
e P, T, or a character constant.

* A run-time format specification must be constructed in the same
way as a format specification in a FORMAT statement, including
the opening and closing parentheses. The word FORMAT and the
statement label only are omitted.

* If a character-constant format includes apostrophes, those apostrophes
must be represented by double apostrophes.

Format Statements 8-39

8.8.2 (Input RBules'

L 4

A minus sign must precede a negative value in an external input field;
a plus sign is optional before a positive value.

On input, an external field under 1 field descriptor control must be an
integer constant. It cannot contain a decimal point or an exponent. An
external field under O field descriptor control must contain only the
numerals 0 through 7. An external field input under Z field descriptor
control must contain only the numerals 0 through 9 and the letters

. A(a) through F(f). An external field under O or Z field descriptor

8-40 Format Statements

control must not contain a sign, a decimal point, or an exponent. You
cannot use octal and hexadecimal constants in the form ‘777'Q or
'AF9'X in external records.

On input, an external field under F, E, D, or G field descriptor control
must be an integer constant or a real or double-precision constant. It
can contain a decimal point and/or an E or D exponent field.

If an external field contains a decimal point, the actual size of the

fractional part of the field, as indicated by that decimal point, overrides .-,
the d spedification of the corresponding real or double-precision field . J
descriptor.

If an external field contains an exponent, the scale factor {(if any) of the
corresponding field descriptor has no effect on the conversion of that
field. ,

The field width specification must be large enough to accommodate
both the numeric character string of the external field and any other
characters that are allowed (algebraic sign, decimal point, and/or
exponent).

A comma is the only character you can use as an external field
separator. It terminates input of numeric fields that are shorter than
the number of characters expected. It also designates null (zero-length)
fields. '

8.8.3 Output Rules

* A format specification cannot specify more output characters than the
external record can contain. For example, a line printer record cannot
contain more than 133 characters, including the carriage control
character,

e, * The field width specification (w) must be large enough to accommo-
S date all characters that the data transfer can generate, including an
algebraic sign, decimal point, and exponent. For example, the field
width specification in an E field descriptor should be large enough to
contain d+7 characters.

* The first character of a record output to a line printer or terminai is
used for carriage control; it is not printed. The first character of such a
record should be a space, 0, 1, §, or +. Any other character is treated
as a space and is deleted from the record.

Format Statements B-41

¥

Chapter 9

) ~ Auxiliary Input/Output Statements

The auxiliary input/output statements perform file management functions.
The auxiliary 1/0 staternents and their respective functions are as follows:

OPEN—establishes a connection between a logical unit and 2 file
or device, and specifies the attributes required for read and write
operations

CLOSE—terminates the connection between a logical unit and a file
or device

REWIND and BACKSPACE—perform file-positioning functions
DELETE—deletes records in a relative or indexed file

UNLOCK—frees locked records for other users in a shared-file envi-
ronment

ENDFILE—writes a special record that causes an end-of-file condition
(and an END= transfer) when an input statement reads the record

See Section 7.2 for a definition of the I/O components of these statements.

9.1 OPEN Statement

An OPEN statement either connects an existing file to a logical unit

or creates a new file and connects this new file to a logical unit. In
addition, OPEN can specify file attributes that control file creation and/or
subsequent processing,.

The OPEN statement has the form:

OPEN{par([,par]...)

Auxifiary Input/Output Statements 9-1

par
A parameter, or keyword specification, in one of the forms:

Tewd
kwd = value

kwd
A keyword, as described below.

value
Depends on the keyword, as described below.

Keywords are divided into the following functional categories.

Keywords that identify the unit and file:

UNIT - logical unit number to be used
FILE or NAME - file name specification for the file
STATUS or TYPE ~ file existence status at OPEN
DISPOSE - file existence status after CLOSE

Keywords that describe the file processing to be performed:

ACCESS - FORTRAN access method to be used
ORGANIZATION -~ logical file structure
READONLY =~ write protection

Keywords that describe the records in the file:

BLOCKSIZE - size of I/O transfer buffer
CARRIAGECONTROL -~ type of printer control

FORM ~ type of FORTRAN record formatting
RECL or RECORDSIZE -~ logical record length

RECORDTYPE - logical record structure

BLANK ~ blank interpretation for numeric input
KEY ~ key field definition

Keywords that describe file storage allocation when a file is created:

INITIALSIZE ~ initial file storage allocation
EXTENDSIZE ~ file storage allocation increment size

8-2 Awdliary input/Dutput Statements

¢ Keywords that provide additional capability for direct access 1/0:

ASSOCIATEVARIABLE - variable holding the next direct access
record number

MAXREC — maximumn direct access record number

* Optional keywords that provide improved performance or special

capabilities:

ERR - statement to which control is transferred
if an error occurs during execution of the
OPEN statement

BUFFERCOUNT - number of [/O buffers to use

NOSPANBLOCKS — records are not to be split across physical
blocks

SHARED — other programs can simultaneously access
the file

USEROPEN — option to provide a user-written external
function that controls the opening of the file
NOTE

Not all PDP-11 operating systems support all keywords and
options. Consult the PDP-11 FORTRAN-77 User's Guide for
information on system-specific restrictions.

Table 9~1 lists in alphabetical order the keywords and their possible
associated values, including default values.

Auxiliary input/Qutput Statements 9-3

Table 9-1: OPEN Statement Keyword Values

Keyword Values' Function Default
ACCESS 'SEQUENTIAL’ Access method 'SEQUENTIAL’
DIRECT'
'‘APPENDY
"KEYED'
ASSQCIATEVARIABLE v Next record No associate variable
number in direct
access
BLANK ‘NULL' Interpretation of ‘NULL
'ZERO’ blanks {(/F77)
BLOCKSIZE e Size of 1/0 buffer System default
BUFFERCOUNT e Number of 1/O System default
buffers
CARRIAGECONTROL 'FORTRAN' Print control 'FORTRAN'
'LIST (formatted)
‘NONE’ 'NONE'
(unformatted)
DISPOSE 'SAVE’ or File disposition at ~ ‘SAVE'
DISP ‘KEEP close
‘PRINT'
‘DELETE’
ERR s Error transfer label No error transfer
EXTENDSIZE e File storage alloca- Volume or system default
tion increment
FILE c File name specifi- Depends on unit and
NAME cation system
FORM 'FORMATTED' Format type Depends on ACCESS
‘UNFORMATTED' keyword
INITIALSIZE e File storage alloca- No allocation

tion

1

data type before i is used.
k is a key specification.

p is an external function,
s is a statement label,

v is an integer variable name.

9-4 Auwxiliary Input/Cutput Statements

¢ is a character constant, array name, variable name, array element name, or a character substring reference.
e is an integer, real, or double-precision expression. The value of this expression is converted to the integer

Table 9-1 (Cont.):

OPEN Statement Keyword Values

Keyword Values' Function Default
KEY (k[kl...) Indexed file key No default
fields
MAXREC e Maximum record No maximum
number in direct
access
NOSPANBLOCKS - Records do not Records can span blocks
span blocks
ORGANIZATION 'SEQUENTIAL' File structure 'SEQUENTIAL’
‘RELATIVE'
'INDEXED’
READONLY - Write protection No write protection
RECL e Record length Depends on TYPE,
RECORDSIZE ORGANIZATION, and
RECORDTYPE keywords
RECORDTYPE '"FIXED' Record structure Depends on ACCESS and
‘'VARIABLE' FORM keywords
'‘SEGMENTEL’
SHARED - File sharing File sharing not allowed
allowed
STATUS 'OLD* File status at open ‘"UNKNOWN' {/F77)
TYPE NEW'
'‘SCRATCH'
TUNKNOWN'
UNIT e Logical unit No default
number
USEROPEN P User program No option

opticn

¢ is a character constant, array name, variable name, array element name, or a character substring reference.
e is an integer, real, or double-precision expression. The value of this expression is converted to the integer

data type before it is used,

k is a key specification.
p is an external function.
s is a statement label.

v is an integer variable name.

Keyword specifications can appear in any order. Determining whether
they are optional and which ones are required depends upon the type of

Aﬁxiliary Input/Qutput Statements 8-5

file you are establishing or have established, and upon what you plan to
do with it.

Some examples follow.
OPEN (UNIT=1, ERR=100)

This example creates a new sequential formatted file on unit 1 with the
default file name.

OPEN (UNIT=3, STATUS='SCRAICH', ACCESS='DIRECT’,
INITIALSIZE=50, RECL=64)

This example creates a 50-block sequential file to be used with direct
access. The file is deleted at program termination.

OPEN (UNIT=I, FILE='MTO: MYDATA.DAT' , BLOCKSIZE=8192,
STATUS="HEW', ERR=14, RECL-1024, RECORDTYPE='FIXED')

This example creates a file on magnetic tape with a large block size for
efficient processing.

OPEN (UNIT=I, FIL£='MTO:MYDATA.DAT'. READONLY, STATUS='QLD',
RECL=1024, RECORDIYPE='FIXED', BLOCKSIZE=81iS2)

This example opens the file created in the previous example for input.
Example:
OPEN (UNIT=1,STATUS='NEW', ORGANIZATION='INDEXED',
RECL=60 , FORM=* UNFORMATTED ' .
KEY= (1:20, 30:33:INTEGER, 46:67), ACCESS='KEYED')

This statement creates a new indexed file specifying three keys: The
primary key will be from byte 1 to 20; the first alternate key will be an

integer key from byte 30 to 33; and the second alternate key will be from

byte 46 to 57.

Sections 9.1.1 through 9.1.26 describe the OPEN statement keywords in
detail,

9-8 Aupiliary Input/Output Statements

8.1.1 ACCESS

ACCESS specifies the method of locating, reading, or writing records.

There are three access methods: sequential, direct, and, keyed. If

you specify 'DIRECT’, the file is accessed directly. If you specify
'SEQUENTIAL', the file is accessed sequentially. If you specify 'KEYED',
the file is accessed by a specified key. ‘APPEND implies sequential
access and positioning after the last record of the file. The default is
‘SEQUENTIAL".

An ACCESS specification has the form:

ACCESS= ace

acc

One of the character constants ‘SEQUENTIAL’, 'DIRECT’, 'KEYED' or
'APPENDY.

If no ACCESS is specified, the default is DEQUENTIAL'.

Table 9-2 shows the valid combinations of ACCESS values and file
organizations:

Table 9-2: Allowed Combinations of ACCESS Values and
File Organizations

ACCESS Value

File Organization SEQUENTIAL DIRECT KEYED APPEND
Sequential Yes Yes' No Yes
Relative Yes Yes No No
Indexed Yes No Yes No

1Direct access to a sequential file requires that the records in the file be fixed length (see
Section 9.1.19).

In sequential access, you must read or write records in sequence from the
beginning of the file. (See Section 7.1.4.1.)

In direct access, you specify in an 1/O statement the record number of the
desired record, and the system selects that record. (See Section 7.1.4.2))

et

Awdliery input/Qutput Stetements 9-7

In keyed access, you specify in an {/O statement the key value of the
desired record, and the system selects the record having a matching key.
(See Section 7.1.4.3.)

8.1.2 ASSOGCIATEVARIABLE

ASSOCIATEVARIABLE specifies the integer variable that, after each direct
access [/Q operation, contains the record number of the next sequential
record in a file. This specifier is ignored for sequential access or keyed
access.

An ASSOCIATEVARIABLE specification has the form:

ASSGCIATEVARIABLE = asv

asv
An integer variable.

8.13 BLANK

BLANK specifies either that all blanks in a numeric input field are to be
ignored (except if the field is all blanks, in which case it is treated as zero),
or that all blanks other than leading blanks are to be treated as zeros. The
default value is 'NULL',

BLANK has the form:
BLANK = blnk
bink
A character constant having a value equal to either 'NULL' or 'ZERO".

If the /NOF77 compiler command qualifier is specified, the default value
is 'ZEROQ",

9-8 Auxiligry Inpest/Output Statements

8.1.4 BLOCKSIZE

BLOCKSIZE specifies the size {in bytes} of the 1/O transfer buffer.

I/0 statements appear to transfer records directly between a file and the
entities specified in the 1/O list; however, the system actually transfers
records between a file and an intermediate I/O buffer. BLOCKSIZE affects
the size of this buffer.

A BLOCKSIZE specification has the formu:

BLOCKSIZE = bke

bks
An integer expression.

For sequential files, BLOCKSIZE determines the number of disk blocks to
transfer {for disk files), or the physical blocking factor (for magtape files).
The default is the system default for the device.

For relative and indexed files, BLOCKSIZE détermines a file's bucket size.
A bucket is the number of disk blocks used as the unit of I/O transfer
and as the unit of locking and control irformation. Each bucket contains
control information as well as data. '

See the PDP-11 FORTRAN-77 User's Guide for more information.

9.1.5 BUFFERCOUNT

BUFFERCOUNT specifies the number of buffers to be associated with a
logical unit for multibuffered 1/0, BLOCKSIZE, discussed in the previous
section, specifies the size of each of these buffers. If you do not specify
BUFFERCOUNT, or if you specify 0, the system default is used.

A BUFFERCOUNT specification has the form:
BUFFERCOUNT = bc
be
An integer expression.
A specification of BUFFERCOUNT= -1 opens a file for block I/0.

Auxiliary Input/Output Statements 9-9

8.1.6 CARRIAGECONTROL

CARRIAGECONTROL determines the kind of carriage control to be used
when, a file is printed. The default for formatted files is 'FORTRAN'; the
default for unformatted files is 'NONE'. 'FORTRAN' specifies normal
FORTRAN interpretation of the first character (see Section 8.3); 'LIST'
specifies single spacing between records; and 'NONE' specifies no implied
carriage control,

A CARRIAGECONTROL specification has the form:

CARRIAGECONTROL = cc

cc .
The character constant 'FORTRAN', ‘'LIST’, or ‘'NONE'.

9.1.7 DISPOSE

DISPOSE determines the disposition of a file connected to a unit when
that unit is closed. If you specify ‘SAVE' or 'KEEF, the file is retained after
the unit is closed; file retention is the default operation. If you specify
‘PRINT’, the file is submitted to the system line printer spooler. (On some
systems, the file is deleted after printing.) If you specify 'DELETE’, the
file is deleted. A read-only file (see Section 9.1.18) cannot be printed or
deleted, and a scratch file (see Section 9.1.23) cannot be saved or printed.

A DISPOSE specification has the forms:

DISPOSE = dis
DISP = dis
dis
The character constant ‘SAVE’, ‘'KEEP, 'PRINT’, or 'DELETE'.

§9-10 Auxiliary Input/Output Ststements

9.1.8 ERR

ERR transfers control to a specified executable statement if an error
occurs during execution of the OPEN statement containing it. The ERR
specification applies only to the OPEN statement containing the ERR
keyword, not to subsequent I/O operations on the specified unit. If an
error does occur, no file is opened or created.

An ERR specification has the form:
ERR= &

8
The label of an executable statement.

8.1.2 EXTENDSIZE

EXTENDSIZE specifies the number of blocks a disk file is to be ex-
A tended when additional file storage is allocated. If you do not specify
R EXTENDSIZE, or if you specify 0, the system default for the devize is
used.

An EXTENDSIZE specification has the form:

EXTENDSIZE = es

es
An integer expression.

L} eato FRE

FILE specifies the name of the file to be connected to a unit. The name can
be any file specification accepted by the operating system. The PDP-11
FORTRAN-77 User's Guide describes default file name conventions.

If the file name is stored in a numeric variable, numeric array, or numeric
array element, the name must consist of ASCII characters terminated by
an ASCII null character (zero byte). However, if the file name is stored in
a character variable, character array, or character array element, it must
not contain a zero byte.

Auxiliary Input/Cutput Statements 9-11

A FILE specification has the form:

FILE = fln

fin

An array name, variable name, array ¢lement name, character constant,
or a character substring reference. You cannot use the name of a virtual
array or virtual array element,

9.1.11 FORM

FORM specifies whether the file being opened is to be read from and
written to with formatted or with unformatted I/O statements. For
sequential access, 'FORMATTEL is the default. For direct or keyed
access, 'UNFORMATTED' is the default. You must not mix formatted and
unformatted I/C statements on the same unit.

A FORM specification has the form:

FORM = £t

ft
The character constant 'FORMATTED" or 'UNFORMATTED".

8.1.12 IRETIALSHZE

INITIALSIZE specifies the number of blocks allocated for a new file on
a disk. If you do not specify INITIALSIZE, or if you specify 0, no initial
allocation is made.

An INITIALSIZE specification has the form:

IRITIALBIZE = insz

insz
An integer expression.

8-12 Awiiliary leput/Output Statements

8.1.13 HEY

KEY designates fields to be used as key fields in an indexed file. These
designated key fields must be included in an OPEN statement when an
indexed file is created. Thereafter, all key information is available from
‘the file itself. If key parameters are specified for an existing file, they must
match the parameters of the existing file or an error occurs.

A KEY specification has the form:

KEY = (kepec [,kspec]...)

where each kspec has the form:

el : e2 [:dtn]

e’
The first byte position of the key.

e2
£ The last byte position of the key.

dtn
The data type of the key.

ef.e2
Integer expressions.

dtn

One of the following data-type names:
T INTEGER—Integer key
7 CHARACTER—Character key

If din is omitted, the key data type is character.

The key starts at position el in a record and has a length of e2-el+1. The
values of el and e2 must be such that:

1 .LE. (ef) .LE. <{(e2) .LE. record-length
1 .LE. (e2-el+1) .LE. 265

Awxiliary Input/Qutput Statements 9-13

If the key type is INTEGER, the key length must be 2 or 4. There must
be at least one key specification following KEY=; but there may be up
to 255 key specifications. Each key specification defines a key field. The
first key specification, kspec 0, defines the primary key. The second key
specification, kspec 1, defines the first alternate key, and so on.

The order of a key specification in a list of key specifications (in a KEY
specification) determines the key-of-reference number for that key (the key
number to be used in subsequent I/O statements). Each key in a file must
be specified in a key specification list.

Up to 254 alternate keys may be specified in a key specification list;
however, at least one key—the primary key—must be specified.

9.1.14 MAXREC

MAXREC specifies the maximum number of records permitted in a direct
access file. The default is no maximum number of records. MAXREC is
ignored for other types of files.

A MAXREC specification has the form: . ;‘;J;.‘{.. f
MAXREC = mr
mr

An integer expression.

9.1.15 NAME

NAME is a nonstandard synonym for FILE. See Section 9.1.10.

9.1.16 NOSPANBLOCKS

- NOSPANBLOCKS specifies that records are not to cross disk block
boundaries; it is used only for sequential files stored on disk. If any record
exceeds the size of a disk block, an error occurs.

A NOSPANBLOCKS specification has the form:

NOSPANBLOCKS

89-14 Auxilisry Input/Dutput Statements

8.1.17 ORGARIZATICN

ORGANIZATION specifies the internal s@cﬁre of a file. The default
organization is ‘SEQUENTIAL". The organization of the file must always
be specified for relative and indexed files.

An ORGANIZATION specification has the form:

CRGANIZATION= org

org
The character constant 'SEQUENTIAL’, ‘RELATIVE', or TINDEXED".

In sequential files, records are stored in the order in which they are
written. In relative files, records are stored in fixed-length cells identified
by an integer number. In indexed files, records are stored in a system-
defined order; indexes or directories are maintained to locate records based
on character strings or integer values, called keys, contained in the record.

Table 9-3 shows the valid combinations of ORGANIZATION keywords
and access modes:

Table 9-3: Valid Access Modes for ORGAMIZATION

Keywords
Access Mode
File Organizaticn Sequential Direct Keyed Append
SEQUENTIAL Yes Yes' No Yes N
RELATIVE Yes Yes No No

T INDEXED Yes No Yes No

e "Direct access to a sequential file requires that the records in the file be fixed length (see
Section 9.1.18).

For addifional information, see the PDP-11 FORTRAN—??ster's Guide.

Auxiiary Input/Output Statements 9-15

§.1.18 READONLY

READONLY prohibits a program from writing to a file.
A READONLY specification has the form:

READONLY

9.1.19 RECL

RECL specifies the logical record length.

If a file contains fixed-length records, RECL specifies the size of each
record. 1f a file contains variable-length records, RECL specifies the
maximum length for any record.

You must specify RECL when you create a file that is to have fixed-length
records or that is to have relative organization.

A RECL specification has the form: _
RECL = rl N

ol

An integer expression.

The value of 11 depends on the value of FORM (see Section 9.1.11). If
the records are formatted, the length is the number of characters; if the
records are unformatted, the length is the number of numeric storage units
{four bytes).

For existing files, the defauit is the existing record size.

8.1.20 RETCORDSIZE

RECORDSIZE is a nonstandard synonym for RECL. See Section 9.1.19.

9-18 Awiliary Input/Output Statements

8.1.271 RELORDTVPE

RECORDTYPE specifies whether a file has fixed-length records, variable-
length records, or segmented records. When you create a file, the default
record types for the various file types are as follows:

File Type Default Record Type
Relative organization "FIXED'
Indexed organization ‘FIXED'
Direct access files 'FIXEDY
Formatted sequential access files 'VARIABLE'
[Fflnformatted sequential access ‘SEGMENTED'

es

Segmented records consist of one or more variable-length records and al-
low a FORTRAN logical record to span several physical records. However,
they can only be used in sequential access, unformatted files with sequen-
tial organization. You cannot specify 'SEGMENTED’ for any other file
type. :

NOTE

ASCIZ stream files are not directly supported by PDP-11
FORTRAN-77. ‘

A RECORDTYPE specification has the form:

RECORDTYPE = typ

fo) typ
. - The character constant 'FIXED', 'VARIABLE', or ‘SEGMENTED'.

If you do not specify RECORDTYPE when you access an existing file,
the record type of the file is used, unless the file is a sequential access,
unformatted file with sequential organization; this file has a default of
'SEGMENTED'.

if you specify RECORDTYPE, typ must match the record type of the
existing file.

In fixed-length record files, if an output statement does not specify a full
record, the record is filled with spaces (for a formatted file) or zeros (for an
unformatted file).

Audiliary Input/Output Statements 9-17

8.1.22 SHARED

SHARED specifies that a file is to be opened for shared access by more
than one program executing simultaneously.

Sequential files may only be shared if they are stored on disk, and only
one program may have write access.

Relative and indexed files may be shared with multiple programs having
write access.

A SHARED specification has the form:
SHARED

See the PDP-11 FORTRAN-77 User's Guide for additional information on
this keyword.

9.1.23 STATUS

STATUS specifies the status of file to be opened. If you specify ‘OLDY, the
file must already exist. If you specify 'NEW’, a new file is created. If you
specify ‘SCRATCH', a new file is created and then is deleted when the file
is closed. If you specify 'UNKNOWN', the system will first try ‘OLD’; if
the file is not found, the system will assume 'NEW’ and therefore create a
new file. The default is ‘'UNKINOWN". '

A STATUS specification has the form:

STATUS = sta

sta
The character constant 'OLDY, 'NEW’, ‘SCRATCH’, or 'UNKNOWN',

If the /NOF77 compiler command qualifier is specified, the default value
is 'NEW'. '

You cannot specify STATUS='SCRATCH' for a file on magnetic tape. If
you do, at run time your program will terminate with no error message
when it encounters the OPEN statement.

NOTE

STATUS is also used in CLOSE statements to specify the status
of a file after the file is closed; however, the values it uses are
different from those used in OPEN statements.

8-18 Awdliary Input/Output Statements

2.1.24 TYPE

TYPE is a nonstandard synonym for STATUS. See Section 9.1.23.

9.1.25 UNIT

UNIT specifies the logical unit to which a file is to be connected. The
UNIT keyword must appear in any OPEN keyword list. When an OPEN
statement is executed, another file cannot be connected to the logical unit
specified by the UNIT keyword in the OPEN statement.

There must not be a file converted to the logical unit at the time the OPEN
statement is executed.

A UNIT specification has the form:
[UNIT] = u

u

An integer expression,

The optional character string UNIT= can be omitted only when the value
of u will occupy the first position in the keyword list containing it.

8.1.26 USEROPEN

USEROPEN specifies a user-written external function that is to be invoked
to control the opening of the specified file. USEROPEN allows knowl-
edgeable users to employ features of the file management system not
directly available from FORTRAN, yet retain the convenience of writing
programs in FORTRAN.

A USEROPEN specification has the form:

USERJPEN = p

P
An external function name.

The external function name must be declared in an EXTERNAL statement
in the program unit.

Consult the PDP-11 FORTRAN-77 User's Guide for information on using
the USEROPEN keyword,

Auxiliary input/Output Statements 9-19

9.2 CLOSE Statement

The CLOSE statement disconnects a file from a unit.
The CLOSE statement has the form:

STATUS
CLOSE ([ONIT=]u , [DISPOSE = p} L[.ERR=a]}
DISP

u
A logical unit number.

p
A character constant that determines the disposition of the file; its values
are 'SAVE’, 'KEEP’, 'DELETE’, and 'PRINT’.

s
The label of an executable statement.

If you specify either ‘SAVE' or 'KEEF, the file is retained after the unit

is closed. If you specify ‘PRINT, the file is submittea to the line printer
spooler. (On some systems, the file is deleted after printing.) If you
specify ‘DELETE', the file is deleted. For scratch files, the default is
'‘DELETE’; for all other files, the default is 'SAVE'. The disposition specified
in a CLOSE statement supersedes the disposition specified in a preceding
OPEN statement; however, a file opened as a scratch file cannot be saved
or printed, and a file opened for read-only access cannot be printed or
deleted.

For example, the statement
CLOSE(UNIT=1,DISPOSE="PRINT")

closes the file on unit 1 and submits the file for printing. And the
statement

CLOSE(UNIT=J,DISPOSE='DELETE' , ERR=99)

closes the file on unit J and deletes it.

9-20 Auxiliary Input/Output Statements

9.3 REWIND Statement

The REWIND statement repositions to the beginning of the file a sequen-
tial file currently open for sequential or append access.

The REWIND statement has the forms:

REWIND u
REWIND ([UNIT=]ul,.ERR=8])

u
A logical unit number.

s
The label of an executable statement.

The unit number must refer to an open sequential file on disk or magnetic
tape.

For example, the statement
REWIND 3
repositions logical unit 3 to the beginning of a currently open file.

You must not issue a REWIND statement for a file that is open for direct
or keyed access or for a relative or indexed file.

9.4 BACKSPACE Statement

The BACKSPACE statement repositions an open sequential file to the
beginning of the preceding record. When the next 1/O statement for the
unit is executed, this preceding record is the one processed.

The BACKSPACE statement has the forms:

BACKSPACE u
BACKSPACE ([UNIT=]u[.ERR=sl)

Auxiliary Input/Qutput Statements 9-21

u
A logical unit number,

s
The label of an executable statement.

The unit number must refer to an open sequential file on disk or magnetic
tape.

For example, the statement

BACKSPACE 4

repositions the open file on logical unit 4 to the beginning of the preceding
record. '

You must not issue a BACKSPACE statement for a file that' is open for
direct, keyed, or append access, or for a relative or indexed file.

8.5 DELETE Statement

The DELETE statement deletes records in relative files and in indexed
files. Specificaily, this cause a record to be marked as deleted; records so
marked are not accessible to subsequent READ or REWRITE staternents.

The DELETE statement cannot be used with a sequential file.
There are two kinds of DELETE statement: sequential and direct.

9.5.1 Sequential DELETE Statement

The sequential DELETE statement deletes the last record that was read \a
from a logical unit by a READ statement.

The sequential DELETE statement has the form:

DELETE {([UNIT=]u[.ERR=s])

u
A logical unit number.

8
The label of an executable statement.

9-22 Auxiliary Input/Qutpyt Statements

For example, the statement
DELETE (11)

deletes the last record read from the file connected to logical unit 11,

9.5.2 Direct DELETE Statement

The direct DELETE statement deletes a record specified 5y a record
number,

The direct DELETE statement has the forms:

DELETE (u'r[,ERR=s])
DELETE ([UNIT=]u,REC=r{,ERR=s])

u
A logical unit number.

r
The direct access record number.

s
The label of an executable statement.

For example, the statement
DELETE (1'1)

deletes the record specified by the value of L, located in the file connected
to logical unit 1. ‘

8.6 URLDCK Statement

The UNLOCK statement unlocks records in a relative or indexed file.
When a record is “locked,” it cannot be accessed by any other program or
logical unit,

A record accessed in a shared-file environment is automatically locked
when a READ statement selects the record. The record is unlocked either
when another I/0 statement is executed on the same logical unit or when
an UNLOCK statement is executed.

Attempts to access a locked record result in error messages.

Awiiliary input/Output Statements 9-23

The UNLOCK statement is used in place of an otherwise unnecessary I/0
operation. : .

The UNLOCK statement has the forms:

UNLOCK u
UNLOCK ([UNIT=]u [.ERR=sl)

u
A logical unit number.

s
The label of an executable statement.

The UNLOCK statemnent frees the locked records on the specified logical
unit. If no record is locked, the statement has no effect. Records in a
sequential file cannot be locked.

You must not issue an UNLOCK statement on a sequential file.

Consult the PDP-11 FORTRAN-77 User's Guide for information on file
sharing and record locking,

9.7 ENDFILE Statement
The ENDFILE statement writes an end-file record to the specified unit.
- The ENDFILE statement has the forms:

ENDFILE u
ENDFILE ([UNIT=]lu [,ERR=s])

u S
A logical unit number. RN

s
The label of an executable statement.

You can write an end-file record only to sequentially accessed sequential
files that contain variable-length or segmented records.

For example, the statement
ENDFILE 2

outputs an end-file record to logical unit 2.

8-24 Ailiary [nput/Output Statements

Appendix A
uage Elements

Additienal Lang

For the purpose of facilitating compatibility with other versions of PDP-11
FORTRAN, PDP-11 FORTRAN-77 includes the statements ENCODE,
DECODE, DEFINE FILE, and FIND, and offers alternative syntax for the
PARAMETER statement and octal constants. These language elements are
discussed in Sections A.1 through Section A.5.

Section A.6 describes the interpretation of the EXTERNAL statement

that applies when the /NOF77 compiler command qualifier is used. The
FORTRAN-77 interpretation of the EXTERNAL statement (see Section 5.8)
is incompatible with the previous ANSI standard and with previous
DIGITAL FORTRAN implementations.

A.1 The ERCODE and PECODE Statements

— The ENCODE and DECODE statements transfer data between variables or

fron arrays in internal storage and translate that data from internal to character

R form, or from character to internal form, according to format specifiers.
Similar results can be accomplished using internal files with formatted
sequential WRITE and READ statements.

The ENCODE and DECODE statements have the forms:

ENCODE(c,f,b [,ERR=s])[liat]
DECODE(c.f.b [,ERR=8]) [list]

Additional Language Elements A-1

c

An integer expression. (In the ENCODE statement, c is the number of
characters (bytes) to be translated to character form. In the DECODE
statement, ¢ is the number of characters to be iranslated to internal form.)

f
A format identifier. (If more than one record is specified, an error occurs.)

b

The name of an array, array element, variable, or character substring
reference. You cannot use the name of a virtual array or virtual array
element. (In the ENCODE statement, b receives the characters after
transiation to external form, In the DECODE staterment, b contains the
characters to be translated to internal form.)

8
The label of an executable statement.

list

An I/0 list. {In the ENCODE statement, the 1/0 list contains the data
to be translated to character form. In the DECODE statement, the list
receives the data after translation to internal form.)

The ENCODE statement translates the list elements to character form
according to the format specifier and stores the characters in b, as does a
WRITE statement. If fewer than c characters are ransmitted, the remain-
ing character positions are filled with spaces.

The DECODE statement translates the character data in b to internal
(binary) form according to the format specifier and stores the elements in
the list, as does a READ statement.

If b is an array, its elements are processed in the order of subscript
progression.

The number of characters that the ENCODE or DECODE statement can
process depends on the data type of b in that statement. For example,
an INTEGER»2 array can contain two characters per element, so that
the maximum number of characters is twice the number of elements in
that array. A character variable or character array element can contain
characters equal in number to its length. A character array can contain
characters equal in number to the length of each element muitiplied by
the number of elements.

The interaction between the format specifier and the I/O list is the same
as for a formatted /O statement,

A-2 Additional Language Elements

An example of the ENCODE and DECODE statements follows:

DIMENSION K(3)
CHARACTER*12 A, B
DATA A /'123456789012'/
DECODE (12,100,A} K
100 FORMAT (314)
ENCODE (12,100,B) K{(3), K(2), K{1)

The DECODE statement translates the 12 characters in A to integer form
(specified by statement 100) and stores them in array X, as follows:

K{1) = 1234
K(2) = 6678
XK{3) = 9012

The ENCODE statement translates the values K(3), K(2), and K(1) to
character form and stores the characters in the character variable B as
follows:

B = '901266751234'

A2 DEFINE FILE Statement

The DEFINE FILE statement describes direct access sequential files that
are associated with a logical unit number. However, the OPEN statement
(Section 9.1) can alsc be used to describe direct access sequential files, and
is the preferred instrument.

The DEFINE FILE statement establishes the size and structure of a direct
access file. :

The DEFINE FILE statement has the form:

DEFINE FILE uw {m,n,U,asv) [,u{m.n,U.2sv)] ...

u
An integer constant or integer variable that specifies the logical unit
number. .

m

An integer constant or integer variable that specifies the number of records
in the file.

Additional Language Elements A-3

n
An integer constant or integer variable that specifies the length, in 16-bit
words (2 bytes), of each record.

u
Specifies that the file is unformatted (binary); this is the only acceptable
entry in thjs position. '

asy :

An integer variable, called the associated variable of the file. At the
end of each direct access 1/0 operation, the record number of the next
higher-numbered record in the file is assigned to asv.

DEFINE FILE specifies that a file containing m fixed-length records of n
16-bit words each exists, or is to exist, on logical unit u. The records in
the file are numbered sequentially from 1 through m.

DEFINE FILE must be executed before the first direct access 1/0 statement
that refers to the specified file.

DEFINE FILE also establishes the integer variable asv as the associated
variable of the file. At the end of each direct access I/O operation, the 3
FORTRAN I/Q system places in asv the record number of the record N
immediately following the one just read or written. Because the associated
variable always points to the next sequential record in the file (unless it

is redefined by an assignment, input, or FIND statement), direct access

1/0 statements can perform sequential processing of the file by using the
associated variable of the file as the record number specifier.

For example, the statement
DEFINE FILE 3 (1000,48,U,NREC)

specifies that logical unit 3 is to be connected to a file of 1000 fixed-length
records; each record is forty-eight 16-bit words long. The records are
numbered sequentially from 1 through 1000 and are unformatted. After
each direct access I/0 operation on this file, the integer variable NREC
will contain the record number of the record immediately following the
record just processed.

A-4 Additional Language Elements

A3 FIND Statement
The FIND statement positions a direct access file on a specified unit to a
particular record. No data transfer takes place.
The FIND statement has the forms:

FIND (u'r[,ERR=g))
FIND ([UNIT=]u{,REC=r][,ERR=g])

&
A logical unit number.

r
The direct access record number.

s
The label of an executable statement.

TR The record number cannot be less than 1 or greater than the number of
Voo records defined for the file.

The associated variable of the file, if specified, is set to the direct access
record number.

For a relative organization file, the record is locked.
For example, the statement

FIND {1'1)

positions logical unit 1 to the first record of the file; the file's associated
variable is set to 1. And the statement

FIND {(4'INDX)

positions the file to the record identified by the content of INDX; the file's
associated variable is set to the value of INDX.

Additiona! Language Elements A-b

A4 PARAPIETER Statement

This statement assigns a symbolic name to a constant, as does the
PARAMETER statement discussed in Section 5.11. However, it differs
from the PARAMETER statement discussed in Section 5.11 in that its list
is not bounded with parentheses and the form of the constant (rather than
the typing of the symbolic name) determines the data type of the variable.

The PARAMETER statement has the following form: e

PARAMETER p=c [.p=c] ... -
P
A symbpolic name.
c
An integer expression.
Each symbolic name (p) becomes a constant and is defined by the value
of the constant (¢); ¢ can be any valid FORTRAN constant. Ty
Once a symbolic name is defined to be a constant, it can appear any place K‘w

in a program that a constant is allowable. The effect of using a symbolic
name defined to be a constant is the same as if the constant were being
used.

The symbolic name of a constant cannot appear as part of another con-
stant; however, it can appear as a real or imaginary part of a complex
constant.

The PARAMETER statement applies only to the program unit in which
it appears. A symbolic name can appear only once in a PARAMETER
statement in the same program unit.

The constant assigned to the symbolic name determines its data type.
The initial letter of the constant’s name does not affect its type. You
cannot specify the constant’s type by using the name in an explicit type
declaration statement.

Examples of valid PARAMETER statements are:

PARAMETER PI=3.1415927, DPI=3.14159265358979323800
PARAMETER FLAG=.TRUE., LONGNAME='A STRING OF 26 CHRARACTERS'

A-6 Additional Language Elements

A5 Qectal Forms of integer Constants

Octal forms of integer constants are provided for compatibility with
PDP-11 FORTRAN IV-PLUS V3.0. The octal form of an integer constant
is:

llnn

e
A string of digits in the range 0 to 7.

An octal integer constant cannot be negative or greater than "37777777777.

Examples of valid and invalid octal integer constants are:

Valid Invalid Explanation
“107 "108 Contains a digit outside the allowed range
177777 "1377. Decimal point not allowed

"17777" Trailing quotation mark not allowed

Note that these octal forms are not the same as the typeless octal constants
discussed in Section 2.3.5. Integer constants in octal form have integer
data type and are treated as integers.

AB /HOF77 interpretation of the EXTERMAL Statement

The /NOF77 interpretation of the EXTERNAL statement combines the
function of the INTRINSIC staternent with that of the EXTERNAL state-

ment discussed in Section 5.8. It is available only if the /NOF77 compiler
command qualifier is present.

The /NOF77 EXTERNAL statement allows the programrmer to use sub-
programs as arguments to other subprograms.

The subprograms to be used as arguments can be either user-supplied
procedures or FORTRAN library functions.

The /NOF77 EXTERNAL statement has the form:

EXTERNAL [+1v [, [#]v]...

Additional Language Elements A-7

v
The symbolic name of a subprogram, or the name of a dummy argument
associated with the symbolic name of a subprogram.

"

Specifies that a user-supplied function is to be used instead of 4 FORTRAN
library function having the same name, See Section 6.3 for information on
FORTRAN library functions.

The EXTERNAL statement declares that each name in the list is an
external procedure name. Such a name can then appear as an actual
argument to a subprogram; the subprogram can use the associated dummy
argument name in-a function reference or CALL statement.

Note, however, that a complete function reference used as an argument
(for example, SQRT(B) in CALL SUBR(A,SQRT(B),C)) represents a value,
not a subprogram name. The function name need not be defined in an
EXTERNAL statement.

An example of the EXTERNAL statement is:

Main Program Subprograms G
EXTERNAL SIN,COS,SINDEG SUBROUTINE TRIG (X,F,Y) g
' EXTERNAL F
¥ = F{X)
RETURN

CALL TRIG (ANGLE,SIN,SINE) END
CALL TRIG (ANGLE,C0S,COSINE)

CALL TRIG (ANGLE,SINDEG,SINE)
. FENCTION SINDEG(X)

SINDEG = SIN (X=3.14159/180) ; :

RETURN L

END

In the example, SIN and COS are trigonometric functions supplied in

- the FORTRAN library, and SINDEG is a user-supplied function. The
CALL statements pass the name of a function to the subroutine TRIG. The
function reference F(X) subsequently invokes the function in the second
statement of TRIG. Depending on which CALL statement invoked TRIG,
the second statement is equivalent to one of the following:

Y
Y
X

SIN(X)
cOs(x)
STNDEG (X}

nwwn

A-8 Additional Language Elements

An asterisk (*) may precede a name in the list; the name then identifies a
user-supplied function or subprogram, not a FORTRAN library function.
Use the asterisk only when a user-supplied function or subprogram has
the same name as that of a FORTRAN library function. (See Section 6.3
for additional information on FORTRAN library functions.)

For example, the statement:
EXTERNAL *SIN, *COS

identifies the names SIN and COS as user-supplied subprograms and not
the FORTRAN library functions for the sine and cosine.

Additional Language Elements A-9

Appendix B

Character Sets

B.1 FORTRAN charau;‘tﬂ Set

The FORTRAN character set consists of:

» The letters A through Z and a through z
® The numerals 0 through 9
¢ The following special characters:

Character Name Character Name

A Space or tab ! Apostrophe

= Equal sign " Quotation mark

+ Plus sign $ Dollar sign

- Minus sign , Comma

. Asterisk ! Exclamation point

/ Slash Colon

{ Left parenthesis < Left angle bracket

} Right parenthesis > Right angle bracket
Period

Other printing characters can appear in a FORTRAN statement only
as part of a Hollerith constant. Any printing character can appear in a
comment, See Table B-1.

Character Sets B-1

B.2 ASCII Character Set

Table B-1 is a table representing the ASCII character set. At the top

of the table are hexadecimal digits (0 to 7), and to the left of the table
are hexadecimal digits (0 to F). To determine the hexadecimal value of
an ASCII character, locate the ASCIH character in the table, use the row
number as the unit's position digit, and use the column number as the
16’s position digit. For example, the hexadecimal value of the equal sign

(=})is 3D.
Table B-1: ASCII Character Set
COLUMNS

0 1 2 3 4 5 6 7
0 NUL DLE SP 0 @ P P
1 SOH DC1 ! 1 A Q a q
2 STX DC2 ¥ 2 B R b b4
3 ETX DC3 # 3 C S ¢ s
4 EOT DC4 4 D T d t
5 ENQ NAK % 5 E u e u
6 ACK SYN & 6 F v f v
7 BEL ETB ' 7 G W g w
8 BS CAN (8 H X h x
9 HT EM) 9 I Y i y
A LF SUB =] z j z
B VI ESC + ; K [k
C FF FS5 . < L \ 1
D CR G5 - - M] m
E SO RS . > N - n
F Sl us / ? o] - o DEL

8-2 Character Sets

Table B-1 (Cont.): ASCH Character Set

COLUMNS
0 1 2 3 4 5 6 7

NUL Null DLE Data Link Escape

SOH Start of Heading DC1 Device Control 1
P STX Start of Text DC2 Device Control 2
D ETX End of Text DC3 Device Control 3

EOT End of Transmission DC4 Device Control 4

ENQ Enquiry NAK Nepgative Acknowledge

ACK Acknowledge SYN Synchronous Idle

BEL Bell ETB End of Transmission Block

BS Backspace CAN Cancel

-HT Horizontal Tabulation EM End of Medium

LF Line Feed SUB Substitute

vT Vertical Tab ESC Escape

FF Form Feed FS File Separator

CR Carriage Return GS Group Separator

50 Shift Cut RS Record Separator

SI Shift In uUs Unit Separator

1 Space . DEL Delete

B.2 RADIX-50 Constants and Character Set

Radix~50 is a special character data representation in which up to 3 char-
acters can be encoded and packed into 16 bits. The Radix-50 character set
is a subset of the ASCII character set.

Character Sets B-3

B-4 Character Sets

The Radix—50 characters and their corresponding code values are:

ASCII Octal

Character Equivalent Radix-50 Value (Octal)
Space 40 0
A-Z 101 - 132 1-232
$ 44 33
56 34
(Unassigned) 35

0-9 60 - 71 36 - 47

Radix~50 values are stored, up to 3 characters per word, by packing them
into single numeric values according to the formula:

({i #» B0 + j) * 50 + k)
where i, j, and k represent the code values of three Radix~50 characters.
Thus, the maximum Radix—50 value is:
AT*50%50 + 4AT+50 + 47 = 174777
A Radix-50 constant has the form:

nRcic2. . .¢n

n
An unsigned, nonzero integer constant that states the number of characters
to follow.

[
A character from the Radix-50 character set.

The maximum number of characters is 12. The character count must
include any spaces that appear in the character string (the space character
is a valid Radix~50 character). You can use Radix~50 constants only in
DATA statements.

Examples of valid and invalid Radix~50 constants are:

Valid Invalid
4RABCD 4RDKO:
6R TO

When a Radix-50 constant is assigned to a numeric variable or array
element, the number of bytes that can be assigned depends on the data
type of the component (see Table 2-2). If the Radix~50 constant contains
fewer bytes than the length of the component, ASCII null characters (0
bytes) are appended on the right. If the constant contairis more bytes than
the length of the component, the rightmost characters are not used.

Character Sets B-5

Appendix C

Language Summary

C.1 Expression Operators

Table C-1 lists the expression operators in each data type in order of
descending precedence,

Table C-1: Expression Operators

Data Type Operator Operation Operates upon:
Arithmetic i Exponentiation Arithmetic expressions
*/ Multiplication, division
e Addition, subtraction, unary plus
and minus
Relational .GT. Greater than Arithmetic, logical, or charac-
.GE. Greater than or equal to ter expressions (all relational
operators have equal priority)
LT. Less than
.LE. Less than or equal to
EQ. Equal to
.NE. Not equal to
Logical NOT. .NOT. A is true if and only if A Logical or integer expressions
is false
.AND. A .AND. B is true if and only if A

and B are both true

Languege Surmmary £-1

Table C-1 (Cont.):

Expression Operators

Data Type Operator Operation Operates upon:

.OR. A .OR. B is true if either A or B
or both are true

EQV. A EQV.Bistrueif and only f A EQV. and .XOR. have equal
and B are both true, or Aand B priority
are both false

XOR. A XOR. B is true if and only if A
is true and B is false, or B is true
and A is false

NEQV. Same as XOR.

C.2 Statements

Table C-2 summarizes the statements available in the PDP-11
FORTRAN-77 language, including the general form of each statement,
The statements are listed alphabetically for ease of reference. The “Manual

Section” column indicates the section of the manual that describes each
statement in detail.

Table C-2: Statements

Manual
Form Effect Section
ACCEPT See READ
Arithmetic/Logical /Character Assignment 31,32,33 S
vme
v is a variable name, an array element name, or a
character substring name.
e is an expression.
Assigns the value of the arithmetic, logical, or character
expression to the variable.

C-2 Language Summary

Table C-2 {Cont.): Statements

Manual
Form Effect Section
Statement Function 6.2.1
f(plLp] . - Dre
f is a symbolic name (not data type character).
P P is a symbolic name.
) e is an expression, _ :
Creates a user-defined function having the variable p as
a dummy argument. When referred to, the expression
is evaluated using the actual arguments in the function
call.
ASSIGN s TO v 34
s is a label of an executable statement or a FORMAT
statement.
v is an integer variable name.
Associates the statement label s with the integer variable
v for later use in an assigned GO TO statement or as a
format specifier.
BACKSPACE u 9.4
BACKSPACE ([UNIT=1u[, ERR=s])
u is an integer expression.
s is a label of an executable statement.
Backspaces one record the currently open file on logical
unit u.
BLOCK DATA [nam] 5.13
nam is a symbolic name.

Specifies the subprogram that follows as a BLOCK
DATA subprogram.

Language Summary C-3

Table C-2 (Cont.):

Statements

Form

Effect

Manual
Section

CALL fl(all{a}} - - .)}

is a subprogram name or entry point.
is an expression, an array name, or a procedure name.

Calls the subroutine subprogram with the name speci-
fied by f, passing the actual arguments a to replace the
dummy arguments in the subroutine definition.

CLOSE ([UNIT=Jul,p){.ERR=s])

P

is one of the following forms:

STATUS ‘SAVE'

DISPQOSE = 'KEEP’

DISP 'DELETE’
‘PRINT’

is an integer expression.
is a label of an executable statement.

Closes the specified file. DISPOSE can be abbreviated
DISP.

COMMON [/[cb)/] nlist [[,]/fcb}/nlist] . . .

cb
nlist

CONTINUE

is a2 common block name,

is a list of one or more variable names, array names, or
array declarators separated by commas.

Reserves one or more blocks of storage space under the
name specified to contain the variables associated with
that block name.

Causes no processing.

DATA nlist/clist/[[,] nlist/clist/] ...

C—4 tenguage Summary

4.5
6.2

9.2

54

4.4

5.10

Table C~2 [Cont.): Statements

Manual
Form _ Effect Section

nlist is a list of one or more variable names, array names,
array element names, or character substring refer-
ences, separated by commas. Subscript and subsiring
expressions must be constant.

ST, | clist is a list of one or more constants separated by commas,
. each optionally preceded by j*, where | is a nonzero,
unsigned integer constant.

Initially stores elements of clist in the corresponding
elements of nlist.

DECODE (c,f,b[ERR=s]){list] Al
< is an integer expression.
f is a format specifier.

b is a variable name, artay name, array element name, or
character substring reference,

$ is a label of an executable statement.
list is an I/0O list.

Reads ¢ characters from buffer b and assigns values to
the elements in the list, converted according to format
specification f.

DEFINE FILE u(mn,UvfumnUv)] ... A2
u is an integer variable or integer constant.

m is an integer variable or integer constant.
n is an integer variable or integer constant.
v is an integer variable name.

Defines the record structure of a direct access file where
u is the logical unit number, m is the number of fixed-
length records in the file, n is the length in words of

a single record, U is a fixed argument, and v is the
associated variable.

DELETE ([UNIT=Ju[,REC=r] ERR=s]) 9.5

Language Sumwmary C-5

Table €C-2 (Cont.): Statements

Manual
Form Effect : Section
DELETE (u'r [ERR=s})

u is an integer expression.

T is an integer expression.

s is a label of an executable statement, P
Deletes the record on unit u that is specified by r, or the P‘iua
most recently accessed record.

DIMENSION a(d){,a{d)] . . . 5.3

a(d) is an array declarator.

Specifies storage space requirements for arrays.
DO s [|] v = ele2[e3] 4.3

]
v

eie2,e3

-6 Language Summary

is a label of an executable statement.

is a variable name,
are numeric expressions.
Executes. the DO loop by performing the following

steps:

1. Evaluates cnt= INT({e2-el+e3)/e3)

2. Sets v=el

3. If ent is less than or equal to zero, does not execute
the loop

4, If cnt is greater than zero, then
a. Executes the statements in the body of the loop
b. Evaluates v=v+e3

¢. Decrements the loop count (ent=ent-1). I cnt
is greater than zero, repeats the loop

Table C-2 (Cont.): Statements

Manual
Form Effect Section
ELSE 4.23
Defines a block of statements to be executed if logical
expressions in previous IF THEN and ELSE IF THEN
statements have values of false. See IF THEN. _
AT
s ELSE IF (e) THEN 423
e - is a logical expression.
Defines a block of statements to be executed if log-
ical expressions in previous IF THEN and ELSE IF .
THEN statements have values of false, and the logical
expression e has a value of true. See IF THEN,
ENCODE (c,{,b[, ERR=s}}list} Al
< is an integer expression.
f is a format specifier.
b is 2 variable name, array name, atray element name, or
character substring reference.
s is a label of an executable statement.
List is an I/O list.
Writes ¢ characters into buffer b, which contains the
values of the elements of the list, converted according
to format specification f.
END 49
; Delimits a program unit.
i ENDFILE u 9.7
ENDFILE ([UNIT=ju,{ ERR=s}])
u is an integer expression.
s is a label of an executable statement.

Writes an end-file record on logical unit u.

END IF
Terminates block IF construct. See IF THEN.

Language Summeary C-7

Table C-2 {Cont.); Statements

Manual -
Form Effect Section
END=s,ERR~s 7216
5 is a label of an executable statement.
Transfers control on end-of-file or error condition. This
is an optional element in each type of 1/O statement
and allows the program to transfer to statement number
s when an end-of-file (END=) or error (ERR=) condition
occurs. .
ENTRY nam [([p[.p] ...] 6.2.4
nam is a subprogram name.
p is a symbolic name.
Defines an alternative entry point within a subroutine
or function subprogram.
EQUIVALENCE (nlist)[,(nlist)] . . . 5.6
nlist is a list of two or more variable names, array names,
array element names, or character substring names
separated by commas. Subscript expressions must be
constants.
Assigns each of the names in nlist the same storage
location.
EXTERNAL v{,v] ...
v is a subprogram naine.
Defines the names specified as subprograms.
EXTERNAL »vj*v] ... 5.8
v is a subprogram name.
Defines the names specified a5 user-defined subpro-
grams.
FIND (u'r[,ERR=s}) A3

C-8 Lsnguage Summary

;
\

Table C-2 (Cont.): Statements

Manual
Form Effect Section
FIND ((UNIT=}ua,REC~r[, ERR=s]}
u is an integer expression,
r is an integer expression.
Eosit‘ions the file on logical unit u to the record specified
y T.
FORMAT (field specification, ...) 8.1-88
Describes the format in which one or more records are
to be transmitted; a statement label must be present.
[typ] FUNCTION nami*n][{[p[p] . .. D] 6.2.2
typ is a data type specifier.
nam is a symbolic name.
*n is a data type length specifier,
P is a symbolic name.
Begins a function subprogram, indicating the program
name and any dummy argument names (p). An
optional type specification can be included.
GO TOs , 4.1.1
8 is a label of an executable statement.
Transfers control to statement number s.
GO TO (slist)[.] e 412
slist is a list of one or more statement labels separated by
commas.
T e is an integer expression.

Lenpuape Summary C-9

Table C-2 (Cont.): Statements

Manual
Form Effect Section
Transfers control to the statement specified by the value
of e (if e=1, control transfers to the first statement label;
if e=2, control transfers to the second statement label,
and so forth). If e is less than 1 or greater than the
number of statement labels present, no transfer takes
place.
GO TO v [[)(slist)] 413
v is an integer variable name.
slist is a list of one or more statement labels separated by
commas.
Transfers control to the statement most recently associ-
ated with v by an ASSIGN statement.
IF {e) s1,52,53 421
e is an expression,
s is a label of an executable staiement.
Transfers control to statement si depending on the value
of e (if e is less than 0, control transfers to sl; if e
equals 0, control ansfers to s2; if e is greater than 0,
control transfers to s3).
IF (e) st 422
e is an expression.
st is any executable statement except a DO, END, block
IF, or logical IF.
Executes the statement if the logical expression has a
value of true.
IF {(e1) THEN ' 423
block
ELSE IF {e2) THEN
block
ELSE

£-10 Languege Summary

Tahle C-2 (Cont.): Statements

Manual
Form _ Effect Section

block |
ENDIF *
el.e2 are logical expressions.
KN block is a series of zero or more FORTRAN statements.

Defines blocks of statements and conditionally executes
them. If the logical expression in the IF THEN state-
ment has a value of true, the first block is executed and
control transfers to the first executable statement after
the END IF statement,

If the logical expression has a value of false, the process
is repeated for the next ELSE IF THEN statement. If all
logical expressions have values of false, the ELSE block

is executed. If there is no ELSE block, control transfers

to the next executable statement following END IF.

IMPLICIT typ {al.a] ...) typ(ala] ...) ... 5.1
typ is a data type specifier.

a is either a single letter or two letiers in alphabetical
order separated by a hyphen (i.e., X-Y).

The element a represents a single (or a range of} letter(s)
whose presence as the initial letter of a variable specifies
the variable to be of that data type.

IMPLICIT NONE 5.1

Overrides all implicit defaults. if IMPLICIT NONE is
specified, no other IMPLICIT statement can be included
in the program unit.

INCLUDE ‘filespec’ 15
‘filespec’ is a character constant.

Includes the source statements in the compilation from
the file specified.

Language Swemery C-11

Table C-2 (Cont.): Statements

Manual
Form Effect Section
INTRINSIC func],fund] ... 5.9
func is an intrinsic function name.
Designates symbolic names as intrinsic functions and
allows those names to be used as actual arguments.
OPEN(par|,par] .. .) 9.1

par is a keyword specification in one of the following forms:
kwd
kwd = value
kwd is a keyword, as described below.,
value depends on the keyword, as described
below,
Keyword Values
ACCESS 'SEQUENTIAL'
'DIRECT’
'APPEND’
'KEYED'
ASSOCIATEVARIABLE v
BLOCKSIZE e
BLANK 'NULL
'ZERCY
BUFFERCOUNT e
CARRIAGECONTROL 'FORTRAN'
‘LIST’
‘NONE'
DISPOSE 'SAVE' or 'KEEP'

DISP ‘PRINT'

C-12 Lenguage Summary

o

Table C-2 (Cont.): Statements
Manual
Form Effect Section
Keyword Values
‘DELETE’
ERR s
EXTENDSIZE e
FILE c
FORM ‘FORMATTED'
‘UNFORMATTED
INITIALSIZE e
KEY (k[Lk}...)
MAXREC e
NAME {same as FILE)
NOSPANBLOCKS -
ORGANIZATION 'SEQUENTIAL’
‘RELATIVE’
‘INDEXED'
READONLY -
RECL e
RECORDSIZE {same as RECL})
RECORDTYPE ‘FIXED’
‘VARIABLE'
'SEGMENTED”
SHARED -
STATUS '‘OLD’
NEW'
'SCRATCH’
'UNKNOWN'
TYPE (same as STATUS)
UNIT e
USEROPEN

i

Languege Summary

C-13

Table C~2 {Cont.): Statements

Manual
Form Effect Section.
c is an array name, variable name, array element name,
or character constant.
e is a numeric expression.
|3 is a key specification.
P is a program unit name.
s is a label of an executable statement.
v is an integer variable name, _
Opens a file on the specified logical unit according to
the parameters specified by the keywords,
PARAMETER (p=c [.p=c] ...) ' 5.11
PARAMETER p=c [,p=(] . . . Ad
P is a symbolic name.
< is a constant.
Defines a symbolic name for a constant.
PAUSE [disp] 4.7
disp is a decimal digit string containing one to five digits, an
octal constant, or an alphanumeric literal.
Suspends program execution and prints the display, if
one is specified.
PRINT See WRITE
PROGRAM nam ' 5.12
nam is a symbolic name,
Specifies a name for the main program.
READ ([UNIT=]u,[FMT=}f[, END=s][ERR=s]}{list] 74.1.1
READ f[list] 7.4.1.1
ACCEPT f],list] 7.7

C-14 Language Summary

Table C-2 {Cont.): Statements

Manual
Form Effect Section
u is an integer expression.
f is a format specifier.
s is a label of an executable statement,
e list is an [/O list.
;_‘ i Reads one or more logical records from unit u and
' assigns values o the elements in the list. The values
are converted according to format specification f.
READ (JUNIT=Ju,REC=r,[FMT=|f[. ERR=s]){list] 7421
READ (u'r,[FMT=]f[, ERR=s])]list]
'3 is an integer expression.
T is an integer expression..
f _ is a format specifier.
5 is a label of an executable statement.
list is an I/O list,
Reads records starting at record r from logical unit u
and assigns values to the elements in the list. The
values are converted according to format specification f.
READ([UNIT~Ju[,END=s][,ERR=s])[list] 7.4.1.3
u is an integer expression.
s is a label of an executable statement.
list is an I/O list,
Reads one unformatted record from logical unit u and
assigns values to the elements in the list.
READ(UNIT=]u,REC=r[, ERR=s])jlist]
READ(u'r{ ERR=s])flist] 7.42.2
u is an integer expression.
r is an integer expression.
L

Language Summary C-15

Table C-2 {Cont.): Statements

Manual
Form Effect Section
s is a label of an executable statement.
list is an [/O list.
Reads record r from logical unit u and assigns values to
the elements in the list.
READ([UNIT=]u,[FMT=}s[END=s], ERR=s])[list] ;:%g
READ =,list] 7.7
ACCEPT [list}
u is an integer expression,
. denotes list-directed formatting.
] is a label of an executable statement.
list is an 1/Q list.
Reads one or more records from logical unit u and
assigns values to the elements in the list. The values
are converted according to the data type of the list
element.
KEY 7.4.3.2
READ ([UNIT=]u, g}%‘é kv, KEYID=kn][,ERR=s])[list]
KEYGT
u is an integer expression.
kv is a key expression.
kn is an integer expression.
] is a label of an executable statement.
list is an I/0 list,

Reads the record on logical unit u described by the key
expression kv and key-of-reference number kn. The
values in the record are assigned to the elements in the
list.

C-16 Language Summary

Table C-2 {(Cont.): Statements
Manual
Form Effect Section
KEY 7.4.3.1
READ ([UNIT=}u,{FMT=Jf, gzg% =kv{,KEYID=kn][,ERR=s])[tist]
KEYGT
u is an integer expression.
£ is a format specifier.
kv is a key expression.
kn is an integer expression.
s is a label of an executable statement.
list is an I/O list.
Reads the record on logical unit u described by the key
expression kv and key-of-reference number kn. The
values in the record are converted according to format
specification f and assigned to the elements in the list.

READ (JUNIT=]c,[FMT=Jf[ERR=s][, END=s])list] 7.4.4

c is an internal file specifier,

f is a format specifier.

s is the label of an executable statement.

list is an 1/0 list. '
Reads one or more internal records inte the I/O list in
accordance with the format specification.

RETURN 4.6
Returns control to the calling program from the current
subprogram.

REWIND u 9.3

REWIND ([UNIT=Ju[,ERR=s])

u
5

is an integer expression.
is a label of an executable statement.

Language Summary C-17

Table C-2 (Cont.): Statements
Manual
Form Effect Section
Repositions logical unit u to the beginning of the
currently opened file.
REWRITE ([UNIT=ju, [FMT=}[,ERR=s]) [list] 7.6.1.1
a is an integer expression.
£ is a format specifier,
s is a label of an executable statement.
list is an 1/O list.
Rewrites the current record on logical unit u, containing
the values of the elements of the list. The values are
translated according to format specification £,
REWRITE (JUNIT=Ju], ERR=s]) list] 7612
u is an integer expression.
s is a label of an executable statement.
list is an 1/0 list.
Rewrites the current record on logical unit u, containing
the values of the elements of the list.
SAVE{[ala] ...] 5.7
a is a named common block enclosed in slashes, a
variable name, or an array name.
Retains the definition status of an entity after the execu-
tion of a RETURN or END statement in a subprogram.
STOP [disp] 4.8
disp is a decimal digit string containing one to five digits, an

C-18 Language Summary

octal constant, or an alphanumeric literal.

Terminates program execution and prints the display, if
one is specified.

Table C—-2 (Cont.): Statements

Manual
Form Effect Section

SUBROUTINE nam{([pl.p] . . . DI 6.2.3
nam is a symbolic name.

P is a symbolic name.

Begins a subroutine subprogram, indicating the program
name and any dummy argument names (p).

TYPE See WRITE, Formatted Sequential. 7.8
See WRITE, List-Directed. '

Type Declaration 5.2

typvl,v] ...
typ is one of the following data types:

BYTE

LOGICAL
LOGICAL*]
LOGICAL-2
LOGICAL=4
INTEGER
INTEGER»2
INTEGER»4
REAL

REAL»4

REAL=8

DOUBLE PRECISION
COMPLEX
COMPLEX»8
CHARACTER
CHARACTERslen

v is a variable name, array name, function or function
entry name, or an array declarator. The name can
optionally be followed by a data type length specifier
{*n).

For character entities, the length specifier can be *len.

Language Summary C-19

Table C-2 {Cont.): Statements

Manual

Form Effect Section
The symbolic names (v) are assigned the specified data
type.
UNLOCK u 9.6
UNLOCK (JUNIT=]ul, ERR=s])
u is an integer expression.
s is a label of an executable statement.
Unlocks all records currently locked on logical unit u.
VIRTUAL a{d)a(d}] . . . 5.5
a(d) is an array declarator.
Specifies storage space for arrays outside normal
program address space.
WRITE ([UNIT=]u,[FMT]=f[ERR=s])list] 7.5.1.1
PRINT f] list] 7.8
TYPE ffJist] 7.8
u is an integer expression.
£ is a format specifier.
s is a label of an executable statement.
list is an 1/0 list.
Wiites one or more records to logical unit u, containing
the values of the elements in the list. The values are
converted according to format specification f.
WRITE({UNIT=}u,REC=r,[FMT=]f, ERR=s])[list]
WRITE (u'rt,[FMT=){[ERR=s]){list] 7.5.2.1
u " is an integer expression.
T is an integer expression.
f is a format specifier.

C-20 \Languape Summaty

Table C-2 (Cont.): Statements

Manual
Form Effect Section
s is a label of an executable statement.
list is an I/0O list.
Writes one or more records on logical unit u, contain-
ing the values of the elements of the list starting at
record 1. The values are converted according to format
specification f.
WRITE ([UNIT=Juj, ERR=s]){list] 7.5.1.3
u is an integer expression.
s is a label of an executable statement label.
list is an /0 list.
Writes one unformatted record to logical unit u contain-
ing the values of the elements in the list.
WRITE ([UNIT=ju, REC=1[,ERR=s])[list]
WRITE (u'r{, ERR=s]) [list] 7522
u is an integer expression.
r is an integer expression.
s is a label of an executable statement label,
list is an 1/0 list.
Writes record r to logical unit u containing the values of
the elements in the list.
"WRITE([UNIT=Ju [FMT=]+{ ERR=s]}{list] ;.3.1.2
PRINT + list] - 7.8
TYPE = list]
u is an integer expression,
» denotes list-directed formatting.
s is & label of an executable statement.

Language Summary C-21

Table C-2 (Cont.): Statements

Manuat

Form Effect Section.
list is an /0O list. '
Writes one or more logical records to logical unit u
containing the values of the elements in the list. The
values are converted according to the data type of the
list element.
WRITE ([UNIT=|c,[FMT=|f [ERR=s]){List] 754
c is an internal file specifier.
£ _ is a format specifier.
s is the label of an executable statement.
tist is an 1/O list.

Writes elements in the list to the internal file specified
by the unit, converting to character strings in accordance
with the format specification.

C.3 Library Functions

Table C-3 lists the PDP-11 FORTRAN-77 generic functions and intrinsic
functions (listed in the column headed “Specific Name”). Superscripts in
the table refer to notes that follow the table,

€-22 Language Summary

Table C-3: Generic and Intrinsic Functions

Number of Generic Specific Type of Type of
Functions Arguments Name Name Argument Result
Square root’ 1 SQRT SQRT Real Real
: DSQRT Double Double
2(1/2) .. CSQRT Complex Complex
Natural logarithm? 1 LOG ALOG Real Real
DLOG Double Double
Log(e)a CLOG Complex Complex
Common logarithm2 1 LOG10 ALOGI10 Real Real
DLOG10 Double Double
Log(10)a
Exponential 1 EXP EXP Real Real
efa) DEXP Double Double
) CEXP Complex Complex
Sine® 1 SIN SIN Real Reat
DSIN Double Double
) Sin a CSIN Complex Complex
Cosine® 1 Cos COS Real Real
E DCOS Double Double
Cos a CCos Complex Complex
Tangent® 1 TAN TAN Real Real
DTAN Double Double
Tan a
Arc sine*? 1 ASIN ASIN Real Real
DASIN Pouble Double
Arc sin a
Arc cosine®” 1 ACOS ACOS Real Real
DACOS Double Double
Arc cos a

!The argument of SQRT and DSQRT must be greater than or equal to 0. The result of CSQRT is the principal
value with the real part greater than or equal to 0. When the real part is 0, the result is the principal value
with the imaginary part greater than or equal to 0.

*The argument of ALOG, DLOG, ALOGI10, and DLOG10 must be greater than 0. The argument of CLOG
must not be (0,,0.).

*The argument of SIN, DSIN, COS, DCOS, TAN, and DTAN must be in radians. The argument is treated
modulo 2%pi.

“The absolute value of the argument of ASIN, DASIN, ACOS, and DACOS must be less than or equal to 1.
5The result of ASIN, DASIN, ACOS, DACOS, ATAN, DATAN, ATAN2, and DATAN? is in radians.

Language Summery €-23

Table C-3 {Cont.): Generic and Intrinsic Functions

Number of Generic Specific Type. of Type of
Functions Arguments Name Name Argument Result
Arc tangent’ 1 ATAN ATAN Real Real
DATAN Double Double
Arc tan a
Arc tangent™® 2 ATAN2 ATAN?2 Real Real
DATAN2Z Double Double
Arc tan a(l)
/a(2)
Hyperbolic sine 1 SINH SINH Real Real
DSINH Double Double
Sinh a
Hyperbolic cosine 1 COSH COSH Real Real
' DCOsH Double Double
Cosh a
Hyperbolic tangent 1 TANH TANH Real Real
DTANH Double Double
Tanh a
Absolute value” 1 ABS ABS Real Real
DABS Double Double
[a] CABS Complex Real
IIA BS Integers2 Integer*2®
JTABS Integer=4 Integer»4®
IABS HABS Integers2 Integer2®
JIABS Integers4 Integer+4®
Truncation® 1 INT IINT Real Integer+2®
JINT Real Integer+4
fa] IIDINT Double Integer«2®
JIDINT Double Integer+4®

5The result of ASIN, DASIN, ACOS, DACOS, ATAN, DATAN, ATAN2, and DATAN? is in radians,

5The result of ATANZ and DATAN2 is 0 or positive when a(2) is less than or equal to 0. The result is
undefined if both arguments are 0.

"The absolute value of a complex number, {X,Y), is the real value: (X(2WY(2}}1/2).

®Integer results are selected by compiler switch 12/14, rather than argument type. For more information, see
Section 4.2.4 of the PDP-11 FORTRAN-77 User’s Guide.

%[x] is defined as the largest integer whose magnitude does not exceed the magnitude of x and whose sign is
the same as that of x. For example [5.7] equals 5. and [-5.7] equals -5.

C-24 language Summary

{ o
Gy

o

Table C-3 (Cont.}: Generic and Intrinsic Functions

Number of Generic Specific Type of Type of
Functions Arguments Name Name Argument Result
' IDINT IIDINT Double Integers2®
JIDINT Double Integer=4®
AINT AINT Real Real
DINT Double Double
Nearest integer’ 1 NINT ININT Real Integers2®
JNINT Real Integer=4®
[a+5+sign(a)] IIDNNT Double Integer+2®
JIDNNT Double Integer=4®
IDNINT HDNNT Double Integer«2®
JIDNNT Double Integer+4®
ANINT ANINT Real Real
DNINT Double Double
Fix'? 1 IFIX IIFIX Real Integer=2°
(real-to-integer con- JIFXT Real Integers4®
P version)
©"." Float" 1 FLOAT FLOATI Integers2 Real
(integer-to-real con- FLOAT] Integer*4 Real
version}
Double-Precision 1 DFLOAT DFLOTI Integer*2 Double
float'® DFLOT] Integersd Double
{integer-to-double
conversion)
Conversion to single 1 SNGL - Real Real
precision’® SNGL Double Real
FLOATI Integer>2 Real
FLOAT] Integer*4 Real

Bh'eteger resudts are selected by compiler switch [2/14, rather than argument type. For more irformation, see

Section 4.2.4 of the PDP-11 FORTRAN-77 User's Guide.

g[x] is defined as the largest integer whose magnitude does not exceed the magnitude of x and whose sign is

the same as that of x. For example {5.7] equals 5. and [-5.7] equals -5.

1%Functions that cause conversion of one data type to anothet type provide the same effect as the implied
conversion in assignment statements. The function SNGL with a real argument and the function DBLE with a
double-precision argument return the value of the argument without conversion.

Language Summary C-25

Table C-3 (Cont.):

Generic and Intrinsic Functions

Number of Generic Specific Type of Type of
Functions Arguments Name Name Argument Result
Conversion to double- I DBLE DBLE Real Double
precision!? - Double Double
- Complex Double
DFLOTI] Integers2 Double
DFLOT] Integers4 Double
Real part of complex 1 REAL REAL Complex Real
or conversion to FLOAT1 Integer=2 Double
single precision’® FLOAT] Integer~4
SNGL
SNGL
Imaginary part of 1 - AIMAC Complex Real
complex
Complex from two 2 - CMPLX Real Complex
reals
Conversion to com- CMPLX - Integer«2 Complex
plex or complex from - Integer*4 Complex
two arguments - Real Complex
CMPLX Real Complex
- Double Complex
- Complex Complex
Complex conjugate 1 - CONIG Complex Complex
(if a~(X,Y)
CONJG (a)~(X.Y)
Double product of 2 - DPROD Real Double
reals a(1)*a(2)
Maximum - n MAX AMAX1 Real Real
DMAX1 Double Double
max (a(1).a{2), . .. IMAX0 Integers2 Integers2®
a(n)) (returns the JMAX0 Integers4 Integer=4°®

maximum value from
among the argument
list; there must be at

least two arguments)

Sinteger results are selected by compiler switch 12/14, rather than argument type. For more information, see
Section 4.2.4 of the PDP-11 FORTRAN-77 Liser’s Guide.

WEunctions that cause conversion of one data type to another type provide the same effect as the implied
conversion in assignment statements. The function SNGL with a real argument and the function DBLE with a

double-precision argument return the value of the argument without conversion,

C-26 Language Summary

N
Y
o

Table C-3 {Cont.): Generic and Intrinsic Functions

Number of Generic Specific Type of Type of
Functions Arguments Name Name "~ Argument Result
MAX0 IMAX0 Integers2 Integer-2°
IMAX0 Integer~4 Integer+4®
MAX1 IMAX1 Real Integer*ZB
MAX] Real Integer*4®
AMXAO AIMAXO0 Integer*2 Real
AJMAXO Integer+4 Real
Minimum n MIN AMIN1 Real Real
DMIN1 Double Double
min(a(1},a(2}), . . . IMINO Integers2 Integer*Z
a(n)) JMINO Integers4 Integers4®
(returns the minimum
value among the
argument list; there
must be at least two
argurments)
MINO IMINO Integers2 Integer*Zs
JMIND Integer=4 integer*ti
MIN1 IMIN1 Real lnteger*ﬂz
JMIN1 Real Integers4®
AMIND AIMINO Integers2 Real
AJMINO Integers4 Real
Positive difference 2 DIM DM Real Real
DDIM Double Double
a(1{minfa(1,.a(2)) IIDIM Integers2 Integertzs
(retwrns the first ar- JIDIM Integere4 Integers4®
gument minus the
minimum of the two
arguments)
IDIM IDIM Integer=2 ln’ns:ger="23
JIDIM Integer*4 Integer+4’

®Integer results are selected by compiler switch 12/14, rather than argument type. For more information, see
Section 4.2.4 of the PDP-11 FORTRAN-77 Lser's Guide.

Language Summary C-27

Table C-3 (Cont.): Generic and Intrinsic Functions

Number of Generic Specific Typeof Type of
Functions Arguments Name " Name Argument Result
Remainder 2 MOD AMOD Real Real
DMOD Double Double
a(1)-a(2)*[a(1)/a(2)) IMOD Integers2 Integer=2®
(returmns the remain- JMOD Integers4 Integer»4®
der
when the first argu-
ment is divided by
the second)
Transfer of sign 2 SIGN SIGN Real
DSIGN Double
1a(1)*Sign a(2) IISIGN Integem2
JISIGN Integers4
\Real :
Double
Integer»2
Integers4)
ISIGN IISIGN Integer*2 Integers2®
JISIGN Integers4 Integer»4®
Bitwise AND 2 IAND IIAND Integers2 Integers2®
(performs a logical JIAND Integers4 Integers4®
AND on correspond-
ing bits)
Bitwise OR (performs 2 IOR HOR Integer*2 Integers2®
an inclusive OR on JIOR Integer*4 Integer*é8
corresponding bits)
Bitwise exclusive OR 2 1EOR [IEOR Integers2 Integer2®
{performs an exclusive JIEOR integers4 Integer+4®
OR on corresponding
bits)
Bitwise complement 1 NOT INOT Integers2 Integers2®
{complements each JNOT Integer*4 Integer»4®
bit)
Bitwise shift 2 ISHFT OSHFT Integers2 Integers2’
NSHET Integersd Integers4®

(a(1) logically shifted
left a(2) bits}

i‘lnteger results are selected by compiler switch 12/14, rather than argument type. For more information, see

Section 4.2.4 of the PDP-11 FORTRAN-77 User’s Guide.

C-28 Language Summary

Table C-3 (Cont.): Generic and Intrinsic Functions

Number of Generic Specific Type of Type of
Functions Arguments Name Name Argument Resuit
Random number! 1 - ‘RAN Integer*d Real
(returns the next
number from a Integers2
sequence of pseudo- 2 - RAN Real

random numbers of
uniform distribution
over the range 0 to 1)

Length 1 - LEN Character Integers2
(returns length of the
character expression)

Index (C(1),C(2)) 2 - INDEX Character Integer*2
{returns the position

of the substring

cf2) in the character

expression c(1))

ASCII Value 1 - ICHAR Character Integer»2
{returns the ASCIl

value of the argu-

ment; the argument

must be a character

expression that has a

length of 1)

Character relationals 2 - LLT Character Logical*2

(ASCII coliating 2 - LLE Character Logicals2

sequence) 2 - LGT Character Logicale2
2 - LGE Character Logical*2

'The argument for this function must be an integer variable or integer array element. The argument should
initially be set to 0. The RAN function stores a value in the argument that it later uses to calculate the next
random number, Resetting the argument to 0 regenerates the sequence. Alternate starting values generate
different random-number sequences.

Language Summary C-29

A

See Subtraction or unary minus operator
See Exclamation point
Saee Dollar sign

See Asterisk

e

See Exponentigtion operator
See Addition or unary plus operator

See Colon

See Division operator

A

ACCEPT statement® 7-40 to 7-41
ACCESS methods®*9-7 10 98-8
DIRECT » 9-7
KEYED *9-7
SEQUENTIAL®S-7
Access modes ® 7--5
direct® 7-5
OPEN staterment keywords ® 8-1
keyed®7-5
ORGANIZATION®8-15
sequential® 7-5
Addition operator (+)® 2-25, 2-32
Adjustable arrays®*6-3 to 6-5

A field descriptor®*8-17 to B-19
AHocation
file storage allocation
OPEN statement kevwords *9-—1
ANSI standard
PDP-11 FORTRAN-77 axtensions of ® 1-1
Arguments
general description®6-1 10 6-6
adjustable arrays ®* 6-3 10 6-5
arrays *6-2 to 6-3
assumed-size dummy arrays® 6-5 to 6--6
Arguments, actual and dummy
associating variabies with® 2-15
Arithmetic assignment statement® 3—1 10 3-3
Arithmetic expressions® 2—24 10 2-33
use in relational expressions ® 2-29
Arithmetic IF statement®4-4 t0o 4-5
Arithmatic operators ® 2—25§ ?
Array declarators ® 2-18
Array elements
defining®3-1
Arrays
adjustable ® 2-22
assigning values to
with DATA statemnents ®5-24 10 5-27
bounds ® 218
data type ¢ 2-22
definition® 217 to 2-22
dimensions ¢ 218
dummy argements ¢ 2—-19
general description ® 2-1
making arrays equivalent®*5—14 1o 5-18
Storage ® 2-20
subseripts ® 2-20
virtual®*5-8 to 5-12

ASCIl character set® B—2
Assigned GO TO statement®4-3tc 4—4
Assignment statements

arithmatic® 3—1 10 3-3

character®3-4 10 3-5

logical ® 3—4
ASSIGN statement®* 3-6 to 3-7
ASSOCIATEVARIABLE ® 9-8
Assumed-size dummy arrays ®*6-5 10 6-6
Asterick {*)

used to indicate comment line% 1-9
Asterisk {*}

cormment line indicator® 1-4

format specifier

in list-directed 1/O®7-9
mutltiplication operator® 2-25, 2-32

BACKSPACE statement

general description® 9-21
BLANK*9-8
8lank common blocks ® 5—6
Blank line

used as a comment line® 1-9
Biock data prograr unit ® 5-29
BLOCK DATA statement® 5—-29
Block IF constructs ®*4-—-6 to 4-12
BLOCKSIZE®* 99 .
BN edit descriptor ® 8-4
8Bounds

adjustabie arrays ®6—4
BUFFERCOUNT * 9-8
BYTC '

as a data type ®2-5
BZ edit descriptor ® 8—4

c

c

used to indicate comment line ® 1-8
CALL statement®*4—-19

use with ENTRY statermnent® 6-14

use with EXTERNAL statement® 6-14

use with SUBROUTINE statement®

6-111t0 6-13

CARRIAGECONTROL # 910

2-lndox

Carriage control characters® 8--31

~ Carriage controi editing ® 8—31

C comment indicator ® 1-4
CHARACTER
constants
genaral description® 2-12
data type
definition® 2-12
storage requirement ® 2-5
Character assignment statemsnt®*3-4 to 3-5
Character comparison library functions
LEN, INDEX, ICHAR, CHAR® §-22 to 6-23
Character constants
use of upper and lower case letters in® 1-10
Character editing (A, H)*8-17 to 8-21
Character expressions ® 2-29
Character set
supported by PDP-11 FORTRAN-77¢1-5
Character sets
ASCli®B-2
FORTRAN®B-—1
RADIX-50*B-3
Character substrings
definition® 2—-23 to 2-24
establishing equivalence among* 6516
Charactar type declaration statement
general description®5-4 to 5-5
Character variables
declaring ® 5-4
CHAR function®6-22 to 6-23
CLOSE statement
general description ® 9-20
Coding form® 1-6
Colon(:}
adit descriptor ® 8—-25
Column(s)
one
comment indicator® 1—4
one through five
statement label field® 1-9
seven through 72
statement field® 1-4, 1-6
SIX
continuation indicator® 1-10
Comment* 1-9
allowable characters in® 1-4
Comment line indicators ® 1-4
Din column 1#1-9

Comment line indicators {cont’d.)
general description® 1-4
Common block names
use in COMMON statement ® 5-6
Common blocks
COMMON and EQUIVALENCE interaction ®
5-20
establishing order of contents ®5—6 to 5-9
initializing values in® 5-29
COMMON statement
establishing arrays with® 2-18
establishing variables with®2-15
general description®5-6 to 5-9
interaction with EQUIVALENCE ® 6-20
use of unsubscripted arrays with ® 2-22
Complex constants ® 2-9
Complex data editing ® 8—-27 to 8-28
Computed GO TO statement®4-2 to 4-3
Constants
assigning symbolic names
by means of PARAMETER statement ®
5-27 10 5-28
character® 2—12
complex ® 2~9
data types of ® 2—4
method of specifying®2—4 to 2-15
definition ® 2-4
double-precision® 2-8
general description ® 2—1
hexadecimal® 2-G to 2~-12
Hollerith® 2-13 to 2-156
logical®2-12
octai®2-8 10 2—12
real®2-6 to 2-8
Continuation indicator field® 1-8, 1-10
Continuation line ® 16
CONTINUE statement®4-18 to 4~19
Control list parameters
general description®7-7 to 7-14
Control statements, FORTRAN®4-1to 4-22
see also CALL, RETURN ®4-1
Control transfer
FORTRAN control statements®4—1 to 4-22
Controi transfers in
DO loops ®*4-16
Conversion
of data types
in arithmetic assignment staternents ® 3—2

Conversion {cont’d.)

with FORMAT statements ® 8—1
COS function® 6-21

Data
editing
with FORMAT statements ® 8—1

retaining after END or RETURN®5-21 to 5-22

Data items
defining ® 3—1
DATA statement
general description ® 5-24 10 5-27
use of unsubscripted arrays with ® 2-22
use to define arrays and elements® 2-156
Data type declaration statemaent
general descriptions®5-3 to 5-5
use 1o establish arrays ® 2~22
use to establish variables ® 2-15
Data types
conversion rules
for arithmetic assignment staterments ®
3-2
default deta types
of undeclared symbolic names #5-2
definition of different types® 2-3,
2—4to 2-1%
general description®2-3 to 2-4
length specifiers® 2—4
method of specifying
of constants ®2—4 to 2-15
variables® 2—-15
storage requirements®2—4 to 2-5
Data typing by implication® 2~17
Data typing by specification ® 2—-16
D debugging statement indicator
use in column 19 1-2
Debugging statement indicator ® 1-10
Debugging stataments
in source code® 1-2
DECODE statement ® A-1t0 A-3
Default field descriptors ® 8-29
Defaults
data type defauits ® 5-2
DEFINE FILE statement® A-3 to A-4

Index-3

DELETE
file digposition® 9-20
DELETE statament
direct®9-23
general description ® 9-22
saquential ®* 8-22
D field descriptor*8-13
Dimensions
array limits ®*2-22
DIMENSION statement
establishing arrays with® 2-18
general description®5-5 to 5-6
Direct access ® 7-5, 7-6, 9-7
'READ statements ® 7-23 to 7-25
WRITE statements ® 7-34 to 7-35
Diract access FIND statements® A-5
DISPOSE*3-10
Division operator (/) ® 2-25, 2-32
Doliar sign {$} ‘
edit descriptor ® 8-24
DO statements®4-12 to 4~18B
Double-precision constanis® 2-8 to 2-9
Dummy arguments
EXTERNAL statement® A-8
Dummy arrays *6-5 to 6-6

Edit descriptors

summary ®8-2 to 8-3
E field descriptor®8-12
ELSE IF THEN statement

block IF constructs ® 4-6 to 4—12
ELSE statement

block IF constructs ® 46 to 4-12
ENCODE statement® A-1t0 A-3
ENDFILE statement®9-24
END IF stetement

block IF constructs ®* 4-6 1o 4-12
End-of-file condition

transferring control with END specifier® 7-13
End-of-file record

ENDFILE statement ® 9—24
END specifior

in I/O statements * 7—-13
END statemant

general description ® 4-22

&-Index

END statemant (cont'd.)

with BLOCK DATA statement ®5-29

with FUNCTION statement *6-10

with SUBROUTINE statement®6—12
ENTRY statement®6—13 to 6-14

unsubscripted array names®2-22

use with FUNCTION statement®* 6-11
use with SUBROUTINE statement® 6-12

EQ.
See relational operators N
EQUIVALENCE statement Lo
establishing variables with® 2-15 o

general description®5—12 to 5-21
interaction with COMMON ®*5-20
use of unsubscripted arrays with® 2-22
ERR®9-11
110 statement specifier* 7—-13
Error condition
trangferring control with END specifier® 7--13
Exclarnation point {i}
comment indicator® 1-4
used to indicate comment line® 1-8
Executable stataments A
definition® 1-4 Sz’
list of ® 1-11
Execution, program
PAUSE statement®4-20 to 4-21
STOP statement®4-21
Explicit formatting
1/0 statement specifior® 7-9
Exponentiation operator {++}*2-32
Expression
data type* 2-27
Expressions
character® 2-28 Lo
definition® 2-24 to 2-33 R
general description® 2~1
logical ® 2—31
relational ® 2-29
Expressions, FORTRAN
definition of # 2-24
Extended range
DO loops®*4-17 to 4-18
EXTENDSIZE®9-11
External fiald separators ® 8-33
External procedure names
duplicating intrinsic function names # 5-22
use as arguments ¥ 5-22 to 5-23

FORMAT statements (cont'd.}

external field separators * 8-33
field and edit descriptors
summary of #8--2 to0 8-3
format specification separators ® 8-32
general rules * 8-37 10 8-39
F : 1/0 lists, interaction with® 8-36 1o 8-37
input rules * 8-40
output ruies * 8-38, 8-41
run-time formats *8-34 1o 8--35
syntax ® 8—1 ’

External procedures
invoking with CALL®4-19
EXTERNAL statement®5-22 10 5-23
dummy arguments * A-8
/NOF77 implementation® A-7 to A-9, A-9

F fieid descriptor® 8—10
Field descriptors
default* 8-29
Formatted {/O statements
summary ®8-2 to 8-3 READ statements
Field separators, external ® 8-33 direct access ¢ 7—23, 7-24
File indexed ® 7-26
sequentiat® 718, 7—19
REWRITE statement® 7-39
WRITE statements

repositioning
BACKSPACE statement ® 9-.21
REWIND statement * 9-21

FILE®9-11 direct access ® 735
File-handling commands indexed ® 7-36
FORTRAN staternents sequential ® 731
OPEN statement ® 9—1 4
FORTRAN

: "»\ Files ® 7-3 o character sets ® B—1

L access modes® 7-5 PDP—11 FORTRAN-77 extensions of ® 1-1
combining files at compilation® 1-12 t0 1-14 FORTRAN-77 statements
,IN:LUSE 2Ie; *1-1210 1-14 executable/nonexecutable ® T—4
inclexe Tt general description ® 1-4
internat ® 7-5 ordering requirements® 1—13
relative ® 7-3 FORTRAN statements
;equemna! 7.": 5 assignment statements ® 3—7

Ex‘f :;:Le::es';;ci ﬁ; control statements® 4—1 to 4-22

in 17O stat 15 7-9 see also CALL, RETURN® 4—1
in 1/Q statements /O statements®7-110 7—41

tab format® 1—8
run-time ®8-34 to 8-35
Format specification separators ® 8-32
Format specifier
control list parameter
in 1/0 statements® 7-9
FORMAT statemerits
description of use® 8—1

N rona3-12 10 statements, auxiliary ® 91 to 9-24
expressions ® 9-30 specification statements ® 5-~1 10 5-29
' FORMAT codes supplemental statements® A—~1 10 A-9
summary ® 8-37 Function references
Formats general description ® 2—1, -9 t0 6-11
coding Functions

See also Built-in functions

See also Intrinsic functions, system supplied

See also Statement functions

FUNCTION statement*6-9 1o 6—11

unsubscripted array names ® 2—-22

" Function subprograms ®*6-9 10 6-11

Index-5

.GE.
See relational operators
Generic function references ®*6-17 to 6—19
Generic references
to intrinsic function names®*6-16 to 621
G field descriptor® 8—14
GO TO statements
general descriptions
assigned GO TO*4-3 to 4-4
computed GO TO®4-2 10 4-3
unconditional GO TO*4-2
Group repeat counts ® 828
GT.
See relational operators

Hexadecimal constants ® 2-9 to 2--12
data type assignments ® 2-.9 to 2-12
H field descriptor ¢ §--20
Hollerith
constants ® 213, 2--14
data type
definition * 2—13
Holierith constants

use of upper and iower case letters in® 1—10

I
field descriptor® 8—6 to 8-7
I/O statement components
control list parameters ®*7-7 10 7-14
format specifier® 7-$
intarnal file specifier® 7-8
key-field value specifier® 7-10
key-of-reference specifiere 7-11
logical unit specifier® 7.7
rules for specifying® 7—-14
transfer-of-control specifier® 7—13
110 list parameter® 7—14
implied-DO lists®7-15t0 7-17
simple list elements * 7-14

6-Index

1/0 statements
categories ® 7-1
classifications ®*7-1 10 7-2
list of @ 77
OPEN statement interdependsncies
logical unit specifier » 7-8
overview®*7-3 to 7-6
specifiers
See 1/0 statement components
syntactical rules® 717
ICHAR function®6~22 to 6-23
IF statements *4—4 to 4-12
general descriptions
arithmetic F*4—4 10 4-5
block Fe*4-6to 4-12
logical IF®4-5 10 4-6
[F THEN statement
block IF constructs ® 4-6 to 4-12
IMPLICIT NONE® 5-2
IMPLICIT statement
data types® 2-4
data typing variables with® 2—-15, 2-16
general description®5-2 to 5-3
Implied-DO list
See herative /0
INCLUDE statement .
statarnem definition® 1-12 1o 1-14
Indexed 1/0 statements
READ statements® 7-25 t0 7-27
Indexed WRITE statements ® 7--35 10 7-38
INDEX function® 5-22 to 6~-23
INITIALSIZE*9-12
Integer
data type
definition® 2-§
storege requirements ® 2-5
default of undeclared symbolic names ® 5-3
integer editing (1,0,Z)*8-8 to 8—10
Internal file specifier
control list pararmeter
in 1/0 statemenis ® 7-8
internai 1/0O statements
ENCODE and DECODE statements ®
A-11t0 A-3
READ statements ® 7-28 to 7-29
WRITE statements ® 7-37 10 7—38
internal WRITE stataments® 7-37 to 7-38

Intrinsic functions

description of types®6—1

usage®6-19 to 6-21
Intrinsic functions, system-supplied®

6-19 10 6-21
character comparison functions ®
6-22 to 6-23

lexical comparison functions ® 6-22 to 6-23

references, generic®*6~16 to 6-21
INTRINSIC statement

general description® 5-23 to 5-24
terative 1/0

implied-DO list*7-16 10 7-17

iterative count controls ® 4~14 1o 4-15
lterative processing controls

Ses DO statements

KEEP

file disposition*® 9-20
KEY *9-13
Keyed access® 7-5, 7-8, 8-7
KEYEQ keyword* 7-10
Key-field value specifier

in 170 statements ® 710
KEYGE keyword®7-10
KEYGT keyword® 7-10
KEYID specifier

see key-of-reference specifier®7-11
Key-of-reference speacifier

in 170 statements®7-11
KEY specifier® 7—-10

in 1/0 statements ® 7-10

L

Labels
See statement labeis
LE.
See relational operators
L edit descriptor® 8-16
LEN function® 6-22 10 6-23
Length
specifier in data type declarations ® 2--4
Lexical comparison library functions
LLT, LLE, LGT, LGE®*6-22 to 6-23

LGE function® 6—-23
LGT function® 6-23
Ltine
blank used as comment line® 1-8
Lines
as a physical section of statements® 14
Lines, FORTRAN-77 source code
entry methods
fixed format® 1-6
tab formate 1-8
List-directed formatting ;
1/0 statement specifier ® 7-9
List-directed i/O statements
READ statements
sequantial READ® 7-19 to 7-22
WRITE statements
sequential WRITE® 7-32
List elements, simpile
1/O list parameter
in 1O statements® 7—14
JLIST qualifier® 1-13
LLE function®6—23
LLT function® 623
Locked records
freeing locked records
UNLOCK statament®9-23
Logical
constants
storage requirernant ¥ 2-5
.TRUE. and .FALSE. *2-12
data type
definition®2-12
Logical assignment statement ® 3—4
Logical editing {L) *8-16
Logical expressions ® 2—-31
Logica! IF statement® 4-5 10 4-6
Logical unit specifier
control list parameter
in 170 statements ® 7-7
Loops, DO :
DO siatements*#4-12 10 418
Lowercase characters
in character and Hollerith constants ® 1-6
supported by PDP-11 FORTRAN-77*1-5
LT.
See relational operators

Indox-7

Main program

as a program unit* 1-3
MAXREC*9-14
Messages

sending to terminal

Saa PAUSE statement

Minus operator {(-}* 2.32
Multiplication operator (=) #2-32

Order
required statement order® 1-7
ORGANIZATION® 9-15

NAME® g-14
Named common blocks
establishing order of contents ® 5.6 to 5-9
initializing values in* 5-29
.NE.
See relational operators
Nested DO loops ® 4—15 10 4—16
Nonexecutable statements
definition® 1-4
NOSPANBLOCKS *9-14
Numerals
supported by PDP-11 FORTRAN-77#¢ 1-5
Numeric type declarations
general dascription® 5—4

p

PARAMETER statement® A-6 to A—7
general description®5-27 to 5-28
Parentheses
use of ® 2-.26, 2-31
PAUSE staternent® 4-20 to 4-21
POP--11 FORTRAN-77
extensions to ANSI standard® 1-1
Plus operator (+}® 2-32
Positional editing (X,T,TL,TR)*8-21 10 8-23
Precedence, operator® 2-32
PRINT
file disposition ® 9-20
PRINT statement® 7-41
Program execution
PAUSE statement ®* 4—20to 421
STOP statement®4-2 1
PROGRAM statement
general description ®* 5—28
Program unit
assigning symbolic name
to main program unit® 5-28
block data program unit ® 5-29
dsfinition of ® 1-3
Program unit structure® 1—11

o
field descriptor® 8-7
Octal constants®*2-9 10 2-12
data type assignments*2-9 to 2-12
Cctal forms of integer constants ® A—7
Octal values
170 transfers
by O field descriptor®8-7
OPEN statement
exarmples ® 9—6
general description®9—-1 to 9-19
keywords®* 9-3 to 9-5
Operators
See also arithmetic operators, refational
operators
precedence in arithmetic expressions ® 2-32

8-Index

Q
edit descriptor ® 8-23

RADIX-50 constants *B--3
READONLY *9-18
READ statements
direct access READ® 7~-23 to 7-25
formatted ® 7-24
unformatted® 7-24
indexed READ ® 7-25 to 7-27
formatted ® 7-26

READ statements
indexed READ (cont’d.)
unformatted ® 7~-27
internal READ® 7-28 to 7-29
sequential READ ®7-17 to 7-22
formatteg® 7-18, 7-19
list-chirected® 7-18, 7-18 10 7-22
unformatted ® 7-22
Real
data type
definition * 2—-6
REAL+4
data type
storage requirements * 2-5
REAL*8
data type
storage requirement ® 2-5
Real editing (F.E.D.G)®*8~10 to 8-16
RECL®*9-18
Records
general description ® 7-3
RECQRDSIZE®* 9-16
Record specifier
control list parametar
in 1/O statements * 7-9
RECORDTYPE*9-17
REC specifier
in 1/Q statements ® 7-9
Relational expressions ® 2-29, 2-31
Relational operators ® 229
Repeat counts ® 8-28
RETURN statement
general description® 4-20
use with FUNCTION statement ® 6—10
use with SUBROUTINE statemant®6-12,
6-13
REWIND statement
generai description® 9-21
REWRITE statements® 7-38 to 7-40
Run-time formats ® 8-34 to 8-35

S

s

edit descriptor® 8-5
SAVE

file disposition® 9-20

SAVE statement
general description ® 5-21 10 5-22
use of unsubscripted arrays with® 2-22
Scale factor® 8-25 to 8-27
field descriptor ® 8-256
Separstors
extarnal field separators ® §~33
format specification separators ¢ 8-32
Sequence number field® 1-6, 1-11
Sequential
files® 7-3 -
Sequential access® 75, 7-6, 9-7
Sequential |/O statements
READ statements® 7-18 ta 7--22
WRITE statements ® 7-29 to 7-31
SHARED#9-18
Sign control editing ® 8-5
Simple list elements
170 list parameter
in 1/ staternents * 7-14
SIN function®6~-21
Slash (/)
division operator ® 2—-32
record terminators
in FORMAT statements ® 8—1
Source code
" aflowable characters® 1-5
commants ® 1-3
debugging statements in® 1-10
format requirements
fixed-format lines ® 1-6
tab-format lines ® 1-8
Source programs
compile options
0 incolumn 1® 1-10
program unit defined ® 1-3
statement order® 1-12
SP
edit descriptor ® 8-5
Space characters
in statement label fields® 1-9
Spacial characters ‘
supported by PDP-11 FORTRAN-77*1-5
Specification statements #5-1 to 6-29
Ss
edit descriptor ¥ 8-5
Statement field * 1--6, 1--10
Statement functions ®6-6 to 8-16

index-8

Statement fabel field® 16, 1-9
Staterment Iabel references
symbolic® 3-6 to 3-7
use in FORMAT and GOTO statements ® 3-7
Statement labels
‘assigning symbols to®3-6 to 3-7
rules governing use® 1-6, 1-9
Statement order, FORTRAN-77
requirements ¢ 1-7
Statements, FORTRAN-77
See FORTRAN-77 statements
STATUS*9-18
STOP statement
general description®4-21
Storage
arrays ® 2--20
Subprogram arguments
general description
assumed-size arrays ®* 51
character arrays ® 65 to 6—6
Subprograms
effect of END statement® 4-22
ENTRY statement®*6—13 to 6-14
SUBROUTINE statement®6-11to 613
use of RETURN statement®4-20
user-written subprograms
general description®6-6 to 6-16
statement functions ®*6-6 to 6-16
Subroutine arguments
" see subprogram arguments
SUBROUTINE statemeni®*6—111t0 6-13
.see also subprograms
unsubscripted array names® 2-22
Subscripts
arrays ® 2-20
Substring equivalence *5-16 to 5-20
Substrings, character
definition ® 2-23
Subtraction operator (—)® 2-25, 2-32
Symbolic names* 2-1t0 2-3
assigning to constants
with PARAMETER statement ®
5-27 to 528
assigning to main program unit® 5-28
data types ® 2-2
default data types assigned ® 5-2
definition ¢ 2-2

10-Index

Symbolic names {cont'd.)

external procedure names ® 522 1o 5-23
of constants ® 527
unique ® 2-3
use with variables® 2-1, 2-15
Symbolic statemant iabels
how to estabiish® 3-6 to 3-7
use in formatied |/O statements ® 3—-6
use in GOTO statements ® 3—6 to 3-7

T

Tab formatting

general description® 1-8
T edit descriptor ®*8-22
Text file libraries

accessing {INCLUDE)® 1-12 to 1-14
TL edit descriptor® 8-23
Transfer, control

See Control transfer
Transfer-of-control specifier

control list parameter

in /O statements® 7—-13

TR edit descriptor®*8-23
TYPE®*9-19
TYPE statement® 741

Unary plus and minus operators {(+ and -} *2-25,
232
Unconditional GO TO statement ® 42
Undeclared symbolic names -
default data types®5-2
Unformatted 1/O statements
READ statements
direct access® 7-24
indexed® 7-27
sequential ® 7-22
REWRITE statements ® 7—40
WHRITE statements
direct access ® 7--35
indexed®7-37
sequential ® 7-33
UNIT*3-19
specifier in 1/O statements ® 7-8
UNLOCK statement ®9-23

Uppercase characters
in character and Hollerith constants® 1-6
supported by PDP~11 FORTRAN-77#1-5
USEROPEN®9-19

v

Variabla FORMAT expressions® 8-30
Variables
assigning values to
with DATA statements ®5~-24 to 5-27
data typing of
by implication ® 2—17
defining ® 3—1
definition®2—16 to 2-17
general description ® 2—1
initializing variables
with DATA statements®5-24 to 5-27
Virtual arrays *5—% to 5-12
VIRTUAL statement
establishing arrays with®2-18
general description®* 5~8 to 5-10
references in subprogams*5-11 to 5~12
restrictions®*5-10 to 5-11

WRITE statements® 7-29 to 7-38

direct access WRITE® 7-34 to 7-35
formatted ® 7-35
unformatted ®* 7-35

indexed WRITE® 7-35 to 7-38
formetted ® 7-36
unformatted ® 7-37

imernal WRITE® 737 to 7-38

sequential WRITE® 7-30 to 7-33
formatied® 7-314
list-directed ® 7--32
unformatted ®* 7-33

X

X edit descriptor®8-21, 8-21

Z field descriptor® 8—-8

Index-11

Reader’s Comments PDP-11 FORTRAN-77
Language Reference Manual
AA-V193B-TK

Please use this postage-paid form to comment on this manual, If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
{SPR) service, submit your comments on an SPR form.

Thank you for your assistance,

I rate this manual’s: Excellent Good Fair Poor

Accuracy (software works as manual says)
Completeness (enough information) '

Clarity (easy to understand)

Organization (structure of subject matter)

Figures (useful)

Examples (useful)

Index (ability to find topic)

Page layout (easy to find information)

gooogoooo
oooopooo
oooocood
goponoaaaon

I would like to see more/less

What 1 like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Additional comments or suggestions to improve this manuatl:

{ am using Version of the software this manual describes.

Name/Tite Dept.

Company Date
Mailing Address

Phone

Do Not Tear - Fold Here and Tape gy —— —_
— No Postage
dlijo]i1a 8 ” Moy | 1
if Mailed
. in tha i
United States
]
: :
- []
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. —
I
POSTAGE WILL BE PAID BY ADDRESSEE [
]
]
DIGITAL EQUIPMENT CORPORATION _

Corporate User Publications—-Spit Brook : 1
ZK01-3/J35 |
110 SPIT BROOK ROAD

NASHUA, NH 03062-3987

Do Not Tear - Fold Here . o v . s e o e .

Cut Along Dotted Line

Reader's Comments PDP-11 FORTRAN-77
Language Reference Manual
AA-V193B-TK

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report

(SPR) service, submit your comments on an SPR form.
Thank you for your assistance.

1 rate this manual’s: : | Excellent Good

Accuracy (software works as manual says)
Completeness (enough information)
Clarity {easy to understand}

COrganization (structure of subject matter)
Figures {useful)

Examples (useful)

Index (ability to find topic)

Page layout (easy to find information)

aooogooo
ooooooon

Fair

oo

oogooaoad

Poor

ogoooogooo

1 would like to see more/less

What 1 like best about this manual is

What 1 like least about fhis manual is

I found the following errors in this manual:
Page Description

Additional comments or suggestions to improve this manual:

I am using Version of the software this manual describes,

Name/Title Dept.

Company

Mailing Address

Date

Phone

-~ Do Not Tear - Fold Here and Tape —— " —

dlilgliltali g

— Do Not Tear - Fold Here

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications-—Spit Brook
ZKO%1.3/J356

110 SPIT BROOK ROAD

NASHUA, NH 03062-9987

l"lllll"l"Illl"llll'l"l!llllllllllll!lllll"lll

No Postage
Necessary
if Mailed
in the
United States

R
|
L]
L]
]
]
]
]
|
L]

Cut Alo;;l*D:tCr'-? T ine

3
13

O

