PDP-11 FORTRAN-77
User’s Guide

Order Number; AA-V194B-TK

August 1988

This documaent contains the information necessary to create, link, and execute
PDP-11 FORTRAN--77 programs on & PDP—11 processcr. Programming -
information is provided for the RSX~-11M/M-PLUS, RSTS/E, and VMS
operating systems.

Revision/Updete Information: This revised document supersedes PDP-11
FORTRAN-77 User's Guide,
AA-V194A-TK.

Operating System and Version: RSX~11M Version 4.4
RSX~11M/M-PLUS Version 4.1
RSTS/E Version 9.6
VAX/VMS Version 4.7

Software Version: FORTRAN-77 Version 5.3

digital equipment corporation
maynard. massachusetts

First Printing, August 1983
Second Printing, August 1988

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumnes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-
maent that is not supplied by Digital Equipment Corporatien or its affiliated
companies,

Copyright ©1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request
the user’s critical evaluation to assist in preparing future documentation,

The following are trademarks of Digital Equipment Corporation;

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECrnet MASSBUS VMS

" DECsystem~10 ~ PDP VT
DECSYSTEM-20 PDT

DECerier R digtiall e

ZK4338

Contents

PREFACE xvii
CHAPTER 1 USING PDP—-11 FORTRAN-77 _ 1-1
1.1 OVERVIEW 1-1
1.2 USING FORTRAN-77 ON RSX--11 SYSTEMS 1-3
1.2.1 RSX-11 File Specifications 1=-3
1.2.2 Command Switches 1-5
1.2.3 Compiting a FORTRAN—-77 Program with MCR 1-6
1.2.3.1 Compiling with DCL * 1-8 ‘
1.2.4 Compiler Switches 1-10
1.25 Task-Building a FORTRAN-77 Program _____ .. 1-15
1.2.5.1 Using the MCR Command TKB » 1-16
1.2.5.2 Task Buiider Options ®* 118
1.2.6.3 Library Usage on RSX~11 Systems ¢ 1-25
1.2.6 Executing a FORTRAN-77 Program 1-26
1.2.7 Examples of FORTRAN-77 Command Sequences . 1-27
1.3 USING FORTRAN~77 ON RSTS/E SYSTEMS 1-28
1.3.1 " RSTS/E File Specifications 1-28
1.3.2 Command Switches 1-30
1.33 Compiling 2 FORTRAN-77 Program on RSTS/E
Systems 1-30
134 Task-Building a FORTRAN-77 Program on RSTS/E
Systems 1-32
1.3.4.1 Using the Task Builder on RSTS/E Systerns ¢ 1-32
1.3.4.2 Task Builder Options ¢ 134
1.3.4.3 Library Usage on RSTS/E Systems ® 1-35
1.35 Executing a FORTRAN—77 Program on RSTS/E
Systems 1-36
1.3.6 Examples of FORTRAN-77 Job Command
Sequences 1-36
1.3.7 Programming Considerations for RSTS/E Users ___ 1-38

14

USING FORTRAN-77 ON VMS UNDER VAX~11/RSX
1.4.1 VMS File Specifications

1.4.2 Command Switches

1.4.3 Compiling a FORTRAN-77 Program

144 Task-Building a FORTRAN--77 Program
1441 Using the MCR Command TKB * 1-44
1.4.4.2 Task Builder Options * 1-47
1.4.43 Library Usage on VMS Systems ¢ 1-60

1-39
1-39
1-41
1-42
1-44

145 Executing a FORTRAN~77 Program 1-61 ;.
14.6 Exampies of FORTRAN-77 Command Sequences __ 1-52 &
1.5 OVERLAYS 1-53
1.6.1 introduction to the Overlay Description Language . 1-54
1.5.2 Building Overlaid FORTRAN-77 Programs 1-56
1.6 DEBUGGING A FORTRAN-77 PROGRAM 1-59
CHAPTER 2 FORTRAN-77 INPUT/QUTPUT
2.1 FORTRAN-77 1/O CONVENTIONS 2-1
211 Device and File Name Conventions 21
2.1.2 implied-Unit Number Conventions 2-3
21.3 ‘Mapping FORTRAN-77 Logical Unit 0 to a System
Unit 2-3
2.2 FILES AND RECORDS

2.2.1 File Structure

2.2.1.1 Sequential Organization * 2-5

2.2.1.2 Reiative Organization ® 2-5

2.2.1.3 Indexed Organization ®* 26
222 Access 1o Records

22.21 Sequential Access * 2-8

2.2.2.2 Direct Access * 2-9

2.2.2.3 Keyed Access * 29
223 Record Formats

2.2.3.1 Fixed-Length Records » 2—-10
2.2.3.2 Variable-Length Records * 2-11
2.2.3.3 Segmented Records * 2—-11

2-10

2.3 OPEN STATEMENT KEYWORDS : 2-12

2.3.1 BLANK 2-12
2.3.2 BLOCKSIZE 2-13
233 BUFFERCOUNT 2-14
234 DISPOSE 2-14
2.35 INITIALSIZE and EXTENDSIZE 2-15
2386 KEY 2-15
2.3.7 ORGANIZATION 2-16
238 READONLY ' 2-17
2.3.9 RECL {Recordsize} : 2-17
2.3.10 RECORDTYPE 2-19
2.3.11 SHARED 2-19
2.3.12 USEROPEN 2-20
24 BACKSPACE AND ENDFILE IMPLICATIONS 2-20

2.5 FORTRAN-77 INPUT/OUTPUT USING FILE CONTROL

SERVICES (FCS) 2-21
2.5.1 OTS/FCS Record Transactions 2-21
252 OTS/FCS File Open Conventions 2-21
25.3 FCS implications of FIND and REWIND ____ = 2-22
254 FCS File Sharing 2-22

2.6 FORTRAN-77 INPUT/OUTPUT USING RECORD MANAGEMENT

SERVICES (RMS} 2-23
2.6.1 OTS/RMS Record Transactions 2-23
2.6.2 OTS/RMS File Open Conventions 2-23
2.6.3 RMS Implications of FIND, REWIND, UNLOCK 2-24
264 RMS File Sharing 2-24

265 Task Building with RMS 2-25

. CHAPTER 3 PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

3.1

3.2

3.3

34

3.5

3.6

3.7

FORTRAN-77 OBJECT TIME SYSTEM

FORTRAN-77 CALLING SEQUENCE CONVENTION
3.2 The Cali Site

3.2.2 Return

323 Return Value Transmission
3.24 Reagister Usage Conventions
3.2.5 Nonreentrant Example

3.2.6 Reentrant Example
3.2.7 Null Arguments

PROGRAM SECTIONS
3.3.1 Compiled-Code PSECT Usage

3.3.2 FORTRAN COMMON and RSX-11 System
Common

3.3.3 OTS PSECT Usage

0TS AND RESIDENT {SHAREABLE) LIBRARIES

QTS ERROR PROCESSING

3.5.1 Recovering from OTS-Detected Errors
3511 Using ERR= and END= Transfers * 3- 14
3.5.1.2 Using the ERRSNS Subroutine * 3—15
3.5.1.3 Using the ERRSET Subroutine ® 3—16

FORTRAN-77 COMPILER LISTING FORMAT
3.6.1 Source Listing '

3.6.2 Generated Code Listing

3.6.3 Storage Map Listing

VIRTUAL ARRAY OPTIONS
3.71 Limits on VIRTUAL Elements

3.7.1.1 VIRTUAL and DIMENSION Statements ® 3—-28
3.7.1.2 Memory Allocation for VIRTUAL Arrays ¢ 3-28

3.7.1.3 Execution Time of Virtual Arrays » 3—-29
3.7.2 Converting a Program to VIRTUAL Array Usage

3-2
3-2

3-5
3-7

3-7
3-8

3-9
31

3-13

3-13
3-14

3-22
3-22
3~-23
3-24

3-27
3-28

3-30

CHAPTER 4 PDP~-11 FORTRAN-77 IMPLEMENTATION CONCEPTS 4-1

4.1 INTRINSIC FUNCTIONS 4--1

4.1.1 Using EXTERNAL and INTRINSIC Statements ... 4-2

41.2 Generic Function References 4-2

4.2 INTEGER+*2 AND INTEGER+»4 4-11
4.2.1 Representation and Relationship of INTEGER+*2 and

INTEGER+4 Values = 4-11

4,2.2 Integer Constant Typing _ 4-12

423 Octal Constant Typing 4-12

424 Integer-Valued Intrinsic Functions 4-14

4.25 Implementation-Dependent Integer Typing . 4-14

4.3 BYTE (LOGICAL+1) DATA TYPE 4-15

4.4 ITERATION COUNT MODEL FOR DO LOOPS 4-16

441 Cautions Concerning Program Interchange . 4-16

4.4.2 Iteration Count Computation 4-17

4.5 USING EQUIVALENCE WITH MIXED DATA TYPES 4-18

4.6 EQUIVALENCE, BYTE DATA, AND STORAGE ALIGNMENT 4-19

4.7 ENTRY STATEMENT ARGUMENTS _ 4-19

CHAPTER 5 PDP-11 FORTRAN-77 PROGRAMMING

CONSIDERATIONS 5-1
5.1 CREATING EFFICIENT SOURCE PROGRAMS ' 5-1
5.1.1 PARAMETER Statement 5-2
5.1.2 INCLUDE Statement 5-2
513 OPEN and CLOSE Statements 5-3
5.1.4 INTEGER+2 and INTEGER+*4 5-4

5.2 COMPILER OPTIMIZATIONS 5-b

5.2.1 Characteristics of Optimized Programs 5-6
5.2.2 Compile-Time Operations on Constants 5-7
523 Source Program Blocks 5-8
5.2.4 Eliminating Common Subexpressions ______ 5-9
-5.2.5 Removing Invariant Computations from loops __ __ §5-11
53 RUN-TIME i’ROGRAMMING CONSIDERATIONS 5-11
54 FORTRAN-77 OPTIONAL CAPABILITIES 5-~12
54.1 Non-FPP Operation {F77EIS.0BJ)} 5-13
5.4.2 RSX—-11S Support (F77118.0B.)) 5-13
5.4.3 Optional OTS Error Reporting (F77NER.OBJ) 5-13
544 Short Error Text (SHORT.OBJ) 5-14
545 Intrinsic Function Name Mapping (F77TMAP.OLB) __ 5-14
5.4.6 Floating Point Output Conversion (F77CVF.0OBJ) __. 5-15
5.4.7 OTS Resident Libraries 5-15
548 OTS Overlay Files 5~15
55 RAMS—-11 LINK AND RUN-TIME CONSIDERATIONS 5-16
56 FCS LINK AND RUN-TIME CONSIDERATIONS 5-17
CHAPTER 6 USING CHARACTER DATA 6-1
6.1 CHARACTER SUBSTRINGS 6-1
6.2 CHARACTER CONSTANTS 6-2
6.3 DECLARING CHARACTER DATA 6-3
6.3.1 Character String Declaration 63
6.3.2 Character Array Declaration 64
6.3.3 Character String Reference 6-5
6.34 Character Array Reference 66
6.3.5 Error 21 and Program Corrections 6~7

6.4 INITIALIZING CHARACTER VARIABLES 6-8

TN,
Ko

6.5 CHARACTER DATA EXAMPLES 6-8
6.6 CHARACTER LIBRARY FUNCTIONS 6-8
6.6.1 ICHAR Function 6-9

6.6.2 INDEX Function 6-10

8.6.3 LEN Function 6-11

6.6.4 LGE, LGT, LLE, and LLT Functions 612

8.7 CHARACTER INPUT/OUTPUT 6-12
CHAPTER 7 USING INDEXED FILES 7-1
7.1 ACCESSING INDEXED FILES 7-1
7.2 CREATING AN INDEXED FILE 7-2
7.3 CURRENT-RECORD AND NEXT-RECORD POINTERS 7-3
7.4 WRITING TO INDEXED FILES 7-4
7.4.1 Duplicate Keys 7-4

7.4.2 Omitting Alternate Keys 7-5

7.5 READING FROM INDEXED FILES 7-6
7.6 UPDATING RECORDS 7-7
7.7 DELETING RECORDS 7-8
7.8 USING INTEGER KEYS 7-8
7.9 ERROR CONDITIONS 7-10

APPENDIX A FORTRAN-77 DATA REPRESENTATION A-1
A1 INTEGER FORMATS A-1
A1 INTEGER+2 Format A-1
A 1.2 INTEGER»4 Format A-2
A2 FLOATING POINT FORMATS A-2
A2.1 Real (REAL*»4) Format {2-Word Floating Point} A-3

A22 Double-Pracision {(REAL=8) Format (4-Word Floating
Point) A-4
A23 Complex Format A-5
A.3 LOGICAL»1 |BYTE) FORMAT A-5
A.4 LOGICAL FORMATS A-B
A.B CHARACTER REPRESENTATION A-7
A.6 HOLLERITH FORMAT A8
A7 RADIX-50 FORMAT A-9
APPENDIX B ALGORITHMS FOR APPROXIMATION PROCEDURES B8-1
B.1 REAL-VALUE PROCEDURES B-1
B.1.1 ACOS-—Real Floating Point, Arc Cosine B8-1

B.1.2 DACOS—Double-Precision Floating Point Arc

Cosine B-2
813 ASIN—Real Floating Point Arc Sine B-2
B1.4 DASIN—Double-Precision Floating Point Arc Sme —_ B-2
B.1.5 ATAN—Real Floating Point Arc Tangent ____ B-3

8.1.6 ATAN2—Real Floating Point Are Tangent with Two
Parameters B84

B.1.7 DATAN—-Double-Precision Floating Point Arc

Tangent B-4

B.2

8.3

B.1.8 DATAN2—Double-Precision Floating Point Arc
Tangent with Two Parameters
B.1.9 ALOG190—Real Floating Point Common Logerithm __
B.1.10 DLOG10—Double-Precision Floating Point Common
Logarithm
B.1.11 COS—Real Floating Point Cosine
B.1.12 DCOS—Double-Precision Floating Poimt Cosine ____
B.1.13 EXP—Real Floating Point Exponential
B.1.14 DEXP—Double-Precision Floating Point Exponential .
B.1.15 COSH—Real Floating Point Hyperbolic Cosine
B.1.16 DCOSH—Double Floating Point Hyperbolic Cosine _
B.1.17 SINH—Real Floating Point Hyperbolic Sine
B.1.18 DSINH-—Double-Precision Floating Point Hyperbolic
Sine
B.1.19 TANH—Real Floating Point Hyperbolic Tangent ___
B.1.20 DTANH—Double-Precision Floating Point Hyperbolic
Tangent
B.1.21 ALOG-—Real Floating Point Natural Logarithm _____
B.1.22 DLOG—Double-Precision Floating Point Natural
Logarithm
B.1.23 SIN—Real Floating Point Sine
B.1.24 DSIN—Double-Precision Floating Point Sine
B.1.25 SQRT—Real Floating Point Square Root
B.1.26 DSQRT—Double-Precision Floating Point Square
Root - :
B.1.27 TAN—Real Floating Point Tangent
B.1.28 DTAN—Double-Precision Floating Point Tangent ___

COMPLEX-VALUED PROCEDURES
B.2.1 CSQRT—Complex Square Root Function
B.2.2 CSIN—Complex Sine
B.2.3 CCOS~—~Complex Cosine
B.2.4 CLOG—Complex Logarithm
B.2.5 CEXP—Complex Exponentia

RANDOM NUMBER GENERATOR
B.3.1 RANDOM—Uniform Pseudorandom Number
Geherator

B.3.2 F77RAN - Optional Uniform Pseudorandom Number
Generator

B-5
8-5

B-8

B-7
B-7
B-7

B-9
B-9

B-10
B-10
B-11
B-12

B-13
B-14
B-15

8-15
B-15
B~15
B-16
B-16
B-16

B-16
B-17

8-18

APPENDIX C DIAGNOSTIC MESSAGES C-1
c.1 DIAGNOSTIC MESSAGE OVERVIEW C-1
C.2 COMPILER DIAGNOSTIC MESSAGES C-1

c.2.1 Source Program Diagnostic Messages c-2
c22 Compiler — Fatal Diagnostic Messages c-20
€23 Compiler Limits c-22
c.3 OBJECT TIME SYSTEM DIAGNOSTIC MESSAGES €-23
c.3.1. Object Time System Diagnostic Message Format ... C-23
c.3.2 Object Time System Error Codes C-26
c4 OPERATING SYSTEM AND FiLE SYSTEM ERROR CODES C-37
c.4.1 Operating System Error Codes c-37
c4.2 Summary of FCS-11 Error Codes c-38
C.4.3 Summary of RMS-11 Error Codes c—41

APPENDIX D SYSTEM SUBROUTINES D-1
D.1 SYSTEM SUBROUTINE SUMMARY D-1
D.2 ASSIGN D-3
D.3 CLOSE D4
D4 DATE D4
D.5 IDATE D-5
D.6 ERRSET D-5
D.7 ERRSNS D-6
D.8 ERRTST D-7

xii

?', B
5,

P

D.9 EXIT : D=8
D.10 USEREX D-9
D11 FDBSET D-9
D.12 IRADS0 ' D-10
D.13 RADSO _ D-11
D.14 RSO0ASC D-12
D.156 SECNDS D-12
D16 TIME D-13
APPENDIX E COMPATIBILITY: PDP-11 FORTRAN-77 AND PDP-11

FORTRAN IV-PLUS E-1
E.1 DO LOOP MINIMUM ITERATION COUNT E~-2
E.2 EXTERNAL STATEMENT E~-3
E.3 OPEN STATEMENT BLANK KEYWORD DEFAULT _ E-3
E4 OPEN STATEMENT STATUS KEYWORD DEFAULT E-4
E.5 BLANK COMMON BLOCK PSECT {.$$$$.) E-5
E.8 X FORMAT EDIT DESCRIPTOR E~-5

B

APPENDIX F

COMPATIBILITY: PDP—-11 FORTRAN-77, PDP-11

FORTRAN IV, VAX FORTRAN F-1

F.1 LANGUAGE DIFFERENCES F~-2
F.1.% Logical Tests F-2

F.1.2 Floating-Point Resuits F-3

F.1.3 Logical Unit Numbers F-3

F.1.4 Assigned GO TO Label List F-3

F.1.5 DISPOSE = 'Print’ Specification F-4

F.1.8 integer Computations F-4

F.1.7 Defauit Record Buffer Size F-4

F.2 RUN-TIME SUPPORT DIFFERENCES F4
F.2.1 Unformatted Data Transfer F-4

F.2.2 Error Handling and Reporting F-5

APPENDIX G PDP-11 FORTRAN~77 EXTENSIONS TO ANS|

STANDARD {X3.9-1978} FORTRAN G-1

G.1 STATEMENT EXTENSIONS G-1
G.2 STATEMENT SYNTAX EXTENSIONS G-1
G.2.1 Specification Statement G-2

G.2.2 Format Statements G-2

G.2.3 Control Statements G-2

G.2.4 1/O Statements G-2

G.2.5 Miscellanecus Syntax Extensions G-3

G.3 KEYWORD AND K.EYWORD VALUE EXTENSIONS G-3
G.3.1 OPEN Statement Keyword Extensions G-3

G.3.2 OPEN Staterment Keyword Value Extensions G~3

G.3.3 CLOSE Statement Keyword Extensions G4

G.3.4 CLOSE Statement Keyword Value Extensions G-4

G.3.5 READ Statement Keyword Extensions G4

G4 LEXICAL EXTENSIONS G4

APPENDIX H SOFTWARE PERFORMANCE REPORTS H-1

EXAMPLES ‘

3-1 Call Sequence Conventions: Nonreentrant Example 3-5

3-2 Call Sequence Convention: Reentrant Example 3-6

. 3-3 Establishing 8 FORTRAN COMMON Area and Assembly
Sy Language Subroutine CALL 3-11
e 3-4 Use of FORTRAN COMMON Area by Assembly Language

Subroutine 3-12

4-1 EQUIVALENCE Using Mixed Data Types 4-18

5-1 Effects of Optimization on Error Reporting 5-6

6—1 Character Data Usage 6-9

6—2 Output Generated by Example Program 6-11

C-1 Sample Diagnostic Messages (Terminal Format) c-3

py C-2 Sample Diagnostic Messages {Listing Format) c-4

1';"’5 C-3 Sample of Object Time System Diagnostic Messages Cc-25
FIGURES

1-1 Preparing a FORTRAN-77 Pregram for Execution 1-2

1-2 Simple Overlay Structure 1-55

1-3 Overlay Structure 1-57

31 Storage Map Exampie 3-25

H-1 Software Performance Report (SPR) Form H-3
TABLES

1-1 RSX~—11 File Specification Defaults 1-5

1-2 DCL Qualifiers and Switch Equivalents 1-8

1-3 RSTS/E File Specification Defaults 1-29

1-4 VMS File Specification Defaults 1-40

2-1 FORTRAN-77 Default Logical Device Assignments 2-2

2-2 Implied Unit Numbers 2-3

2-3 Availability of File Organization 2-5

2-4 Access Modes Per File Organization 2-8

RECL Value Limits

Default RECL Values

RMS File System Libraries

Program Saction Attributes
Initial Error Control Bit Settings
Generic and Intrinsic Functions
Compiler Limits

Detault Logical Unit Numbers

2-18
2-18
2-26

3-17
4-3
c-22
F-3

This manual will help programmers create, link, and execute PDP~11
FORTRAN-77 programs under the R6X-11M, RSX-11M/M-PLUS,
RSTS/E, and VMS {under AME) operating systems. These operating
systems must run on a machine with & Floating Point Processor or a
floating-point microcode option.

The PDP~11 FORTRAN-77 language elements are described in the
PDP-11 FORTRAN-77 Language Reference Manual.

Iintended Audience

This manual is intended for programmers who know the fundamental
elements and interrelationships of the FORTRAN programming language;
a detailed knowledge of the PDP-11 FORTRAN-77 version of FORTRAN
is not essential. A detailed knowledge of the host operating system is not
essential, but some familiarity is recommended. Whenever a thorough
understanding of a specific aspect of an operating system is necessary,
you are directed to the appropriate manual for the required additional
mformation.

Structure of This Document

This manual is organized as follows:

* Chapter 1 contains the necessary information to compile, link, and
execute a PDP-11 FORTRAN-77 program on RSX-11M/M-PLUS,
RSTS/E, and VMS operating systems.

* Chapter 2 provides information about PDP-11 FORTRAN-77
input/output, including details on file characteristics, record structure,
and the use of certain OPEN statement keywords.

* Chapter 3 describes the PDP-11 FORTRAN-77 run-time environment,
including the calling conventions, error processing, and program
section usage.

* Chapter 4 describes PDP-11 FORTRAN-77 implementation concepts,
with particular emphasis on data types, generic functions, DO loops,
and floating-point data representation,

* Chapter 5 covers programming considerations relevant to typical
PDP-11 FORTRAN-77 applications.

* Chapter 6 discusses the use of character data, 1nc1udmg character 1/0
and the character library functions.

* Chapter 7 discusses the use of indexed files and ISAM an extended
example is included.

. * Appendixes A through G summarize internal data representation,
diagnostic messages, system-supplied functions, compatibility between
PDP~11 FORTRAN-77 and other DIGITAL FORTRAN implementa-
tions, and language extensions incorporated in PDP-11 FORTRAN--77.
Appendix H covers the procedures for reporting software problems.

Associated Documents

The following documents are relevant to FORTRAN-77 programming:

s PDP-11 FORTRAN-77 Language Reference Manual

* PDP-11 FORTRAN-77 Object Time System Reference Manual
e PDP-11 FORTRAN-77 Installation Guide/Release Notes

¢ RMS-11 User’s Guide

* RMS-11 MACRO Reference Manual

® RSX-1IM/M-PLLIS Guide to Program Development

RSX-11M/M-~PLUS Task Builder Manual
RSX-11M/M~PLUS Executive Reference Manual
RSTS/E System Manager's Guide

RSTS/E System User's Guide

RSTS/E Task Builder Reference Manual

RSTS/E Programmer’s Utilities Manual
VAX-11/RSX-11M Liser’s Guide
VAX-11/RSX-11 Programmer’s Reference Manual

For a complete list of software documents, see the host operating system
documentation directory.

Conventions Used in this Document

The following syntactic conventions are used in this manual:

All references to FORTRAN-77 denote PDP-11 FORTRAN-77, unless
otherwise specified.

Uppercase type is used in text to indicate system commands and
command options.

Lowercase letters are used in syntax specifications and examples

to indicate variables; anything that is not a variable (for example,
statement names and keywords) appears in uppercase.

Brackets {[]) indicate optional elements within statements.

Braces ({}) are used to enclose lists from which one element is to be
chosen.

Horizontal ellipses (...) indicate that the preceding item(s} can be
repeated one or more times.

“Real” (lowercase) is used to refer to the REAL»4 (REAL), REAL*8 data
types as a group; likewise, “complex” (lowercase) is used to refer to
COMPLEX*8; “Jogical” (lowercase) is used to refer to the LOGICAL»2
and LOGICAL+4 data types as a group; and “integer” (lowercase)

is used to refer to the INTEGER»2 and INTEGER=*4 data types as a
group.

RSX-11 is used as a generic term for the RSX-11M and RSX-11M
/M~-PLUS operating systems.

* The term FORTRAN-77 in this manual denotes PDP-11 FORTRAN-77. -

RSX-11 in this manual refers to the RSX-11M and RSX-11M
/M-PLUS operating systems.

NOTE
In addition, the following notations denote special nonprinting
characters:
Tab character <TAB>

Space character #

T

Tl

Chapter 1

Using PDP-11 FORTRAN-77

DIGITAL’s PDP-11 FORTRAN-77 consists of two main parts:

* A FORTRAN-77 compiler, that translates a source program into object
code.

* A collection of routines (facilities and services) that a program may
need while it is executing. This collection of routines is called the
Object Time System (OTS).

PDP-11 FORTRAN-77 operates on the RSX-11M, RSX—IIM/M—PLUS,
RSTS/E, and VMS operating systems.

1.1 Overview

To transform a FORTRAN-77 source program into an executing task,
perform these three steps:

1. Compile the program to create a relocatable object module.

2. Task-build the program to link the object module with necessary
external routines,

3. Execute the program (and debug it if necessary).

To compile a program, invoke the FORTRAN-77 compiler and specify the
source files to be processed; then, task-build it into an executable form
called a task image by invoking your system’s Task Builder and specifying
the object module to be processed. Finally, execute the task image by
using the appropriate program execution command for your system.

Using PDP-11 FORTRAN-77 1-1

Figure 1-1:

Figure 1-1 illustrates the process of transforming a FORTRAN-77 source
program into an executing task.

Preparing a FORTRAN-77 Program for Execution

SYSTEM
LIBRARIES

SOURCE
PADGRAM

_ OBJECT | TASK] EXECUTING
COMPILER MOOULE BUILDER TASK

m &

224181

You invoke the compiler or the Task Builder by entering a cornmand line
that specifies the desired function, the input files, the output files, and any
desired command options, Command lines are written in one of these
command languages: MCR, DCL, or CCL.

You specify input files and output files in command lines using file
specifications. File specifications for RSX-11 and VMS system programs
differ from those for RSTS/E system programs. \‘__, i
You specify optional command inputs with special cormmand mnemonics

called switches, Switches are appended to command words and file
specifications.

To efficiently enter a sequence of commmands, especially a sequence that is
used often, place the sequence in an indirect command file and then type
the file name of the indirect command file, preceded by an AT sign (@).

1-2 Using PDP-11 FORTRAN-77

1.2 Using FORTRAN-77 on RSX-11 Systems

The following sections contain information to compile, task-build, and
execute a PDP-11 FORTRAN-77 program on an R8X-11M or R5X~11M
/M-PLUS system. See Section 1.3 for information on using FORTRAN-77
on RSTS/E systems.

RN Specifically, the following sections describe how to:

B o Write RSX-11 file specifications

* Use command switches

e Use the FORTRAN-77 compiler to create an object module

* Use your system’s Task Builder fo create a task image
» Execute a task image

1.2.1 RSX-11 File Specifications

For each RSX-11 system program, you must specify the input files to
be processed and (optionally for the FORTRAN-77 compiler and your
system’s Task Builder) the output files to be produced.

The format of a file specification for an RSX-11 system program is as
follows:

device: [g,m]filename,.filetype;version

device
AT The device on which a file is stored or is to be written.

[g.m]

The user identification code (UIC) associated with the user file directory
containing the desired file. This code consists of a group number (g) and a
member number (m). Both g and m are octal numbers. The default value
for the UIC is the identification code under which you logged in or where
you set your default directory. -

[named]

Named directories are supported on RSX-11M and RSX-11M/M-PLUS
systems,

filename
The file by its name. A filename value can be up to nine characters long,

Using PDP-11 FORTRAN-77 1-3

filetype

The kind of data in the file. A filetype value can be up to three characters
long.

version

The version of the file that is desired. Versions are identified by an octal
or decimal number, which is incremented by 1 each time a new version of
a file is created.

You need not explicitly state all the elements of a file specification each
time you compile, task-build, or execute a program. The only part of a file
specification usually required is the file name. If you omit any other part
of the file specification, a default value is used. Table 1-1 summarizes the
file specification default values.

If you request compilation of a source program specified only by a file
name, the compiler searches for a file with the specified file name that:

¢ Is stored on the default device
¢ Is cataloged under the current default UIC
* Has a file type of .FIN

If more than one file meets these three conditions, the compiler chooses
the file with the highest version number.

For example, assume that your default device is DKO, that your default
UIC is [200,200), and that you supply the following input or output file
specification to the compiler:

CIRCLE

For input, the compiler searches device DKO in directory [200,200] for the
highest version of CIRCLE.FIN. For output, the compiler generates the file
CIRCLE.OB], stores it on device DKO in directory [200,200), and assigns

it a version that is higher by 1 than any other version of ACIRCLE.OB]
currently cataloged in directory [200,200] on DKO.

(

1-4 Using POP-11 FORTRAN-77

Table 1-1: RSX-11 File Specification Defaults

Optional

Element Default Vaiue

device User’s current default device

{g.m] User’s current default UIC

filetype Depends on usage:
Command file CMD
Input to compiler FIN
Qutput from compiler . OBl
Input to Task Builder L OB
Qutput from Task Builder TSK
Input to RUN command TSK
Compiler source listing LST
Task Builder map listing MAP
Task Builder library input OLB
Task Builder overlay description ODL
Input to executing program DAT
OCutput from executing program DAT

version Input: highest existing version

Output: highest existing version plus 1

1.2.2 Command Switches

Command switches are devices you can use in command lines to specify
optional command instructions or inputs—for example, to specify that the
compiler compile all lines with a D in column 1.

Command switches are appended to other entities in a command line and
have the form:

fawitceh[:vall

switch

A mnemonic that specifies a certam instruction to the compiler or Task
Builder.

val

A parameter consisting of an octal or decimal nurnber, or a string of
characters.

Using PDP-11 FORTRAN-77 1-5

Many switches have a negative form that negates the action specified by
the positive form. You can obtain the negative form by following the
required slash with a minus sign or the characters NO. For example, /-SP
or /NOSP prevents automatic spooling of a program listing.

1.2.3 Compiling a FORTRAN-77 Program with MCR

The PDP-11 FORTRAN-77 compiler is a system program that produces
relocatable object modules from FORTRAN-77 source code.

You invoke the FORTRAN-77 compiler with the MCR command F77 as
follows:

F7T [obj-file] [,list-file] = infiles-list

obj-file

The file specification of the object-code output file, You can omit this file
specification, if no object file is desired. If it is entered, only a file name
value is required. A file type value of OBJ is assumed by default if no file
type is specified. Therefore, the following commands are equivalent:

F77 FILE1=FILE1
F77 FILE1.OBJ=FILE1

Note, that no listing file is created in either case,

list-file

The file specification of the listing output file. You may omit this file
specification, if no listing file is wanted. If it is entered, only a file name
value is required; a file type value of LST is assumed by default if no file
type is specified. Under RSX-11M, the listing file is saved on disk and
automatically spooled to the line printer.

infiles-list

The list of input files that contain the source programs. In many cases,
this list contains only one file specification; however, when there is more
than one, you must separate the individual specifications with commas.
Only a file name is normally required; a file type value of FIN is assumed
if no file type is specified.

1-6 Usiag POP-11 FORTRAN-77

For example, to compile three source programs called WINKN, BLINKN,
and NOD into an object module called SINGLE, you would enter:

F77 GSINGLE, SINGLE = WINKN, BLINKN, NOD
or, if you wish:
F77 SINGLE.OBJ,SINGLE.LST=WINKN.FTN,BLINKN.FIN NOD.FTN

A F77 command line can also contain one or more of the compiler
switches listed and described in Section 1.2.4.

You can also use the F77 command in interactive mode, which permits
you to enter multiple compilation commands (lines). To invoke the
interactive mode (if you have installed the image of the FORTRAN-77
compiler as F77), you type:

Fr7 [RET]

Regardless of the name under which the PDP-11 FORTRAN-77 compiler
is installed, the compiler displays the following prompt:

F77>

To enter a succession of compilation commands under interactive mode,
type one command line after each prumpt, followed by a carriage return,
until all the commands are entered. Each command line must specify
the appropriate input and output files for the program module to be
compiled, and any optional switches desired. You then type CTRL/Z.
For example, if you want the FORTRAN programs WINKN, BLINKN,
and NOD compiled into separate object modules, enter a succession of
commands as follows:

F77 [RET]

FT7>WINKN, WINKN/SP=WINKN
F77>BLINKY , BLINKN/SP=BLINKN
F77>NOD, NoD/SP=N0D [RET]
F77>"2

Note that the compiler displays the F77> prompt each time you enter a
command until you type CTRL/Z ("Z) to return system control to MCR,

You can enter the name of an indirect command file in response to the
F77> prompt. For example, assume the file COMPILE.CMD contains:

WINKN, WINKN/SP=WINKN

BLINKN, BLINKN/SP=BLINKN
¥OD, NOD/SP=NOD

Using PDP-11 FORTRAN-77 1-7

The following commands are equivalent to the previous example:

Fr7>¢COMPILE [REY] -
F17>"2Z

1.2.3.1 Compiling with DCL

You invoke the FORTRAN-77 compiler with the DCL command
FORTRAN as follows:

FORTRAN [/qualifiers] infiles-lisat

/qualifiers _ -
Optionally included to control the output files and the compiler.

infiles-list
The list of input files containing the source programs to be concatenated
and compiled.

/F77
On systems supporting FORTRAN-77 and FORTRAN IV, use the /F77
qualifier to specify FORTRAN-77.

The following DCL qualifiers have no MCR switch equivalents. The
remaining DCL qualifiers have effects that are equivalent to the effects of
the switches described in Section 1.2.4. Table 1-2 lists the DCL qualifiers
and their switch equivalents. :

/LIST] filespec]
Produces a listing file using the file specification provided.

/DS
Generates I- and D-space code. This qualifier does not have an equivalent
DCL command.

1-8 Using PDP-11 FORTRAN-77

Table 1-2: DCL Qualifiers and Switch Equivailents

DCL Qualifier Equivalent Switch
/INOJCHECK /[INOICK
JCONTINUATIONS:n /COn
/INOJDEBUG /[NOJDB
/[NOJDLINES /[NOJDE
none /DS
/[NOJEXTEND /INOIEX
/INOJF77 /INOIF77
/IDENTIFICATION /ID
/[NOJI4 /INOlI4
JINO]LIST: filespec none
/INOIMACHINE _CODE JLI:3
/[INOMAP JLE2
/INOJOBJECT:filespec none
/[NOJOPTIMIZE /[NOJOF
/[NOISHAREABLE /INOJRO
/[NOJSOURCE /LI:2
' /[NOJSTANDARD{:arg) /[NO]ST:00x
ALL ALL
NONE NONE
SOURCE SOURCE
SYNTAX SYNTAX
/[NOITRACEBACK:[arg] JINOJTR:xxx
ALL ALL
BLOCKS BLOCKS
LINES LINES
NAMES NAMES
NONE NONE
J[NOIJWARNINGS J/INOJWR
/JWORK_FILES:n /WE:n

Using PDP-11 FORTRAN-77 1-9

/NOLIST
Does not produce a listing file.

/OBJECT]:filespec]
Produces an object file using the file specification provided.

/NOQBJECT
Does not produce an abject file,

1.2.4 Compiler Switches

You use compiler switches to specify optional instructions to the compiler
or to specify special attributes for input or output files. A compiler switch
consists of a slash followed by a 2-character ASCII name, and has two
forms: a positive form and a negative form. For example, if the compiler
switch designator is SW, then:

/SW sets an action;
/NOSW or /-SW negates that action.

Some compiler switches may also be followed by a value. The permitted
values are character strings, octal numbers, and decimal numbers. The
default radix for a numeric value is decimal. Decimal values may end with
a decimal point; octal values always begin with a number sign (#). Some
examples of valid compiler switches are:

/14
/TRINAMES
/CO:25
/CO:#23

Append switches that affect listings (for example, /SP, /LLn) to the
specification for the input or output file they will affect. Append all other
switches to the FORTRAN-77 command line. Unless the /LA switch is
set, all the switches in the following list are initialized to their default
values before each compilation.

The compiler switches and their meanings are as follows,

1-10 Using PDP-11 FORTRAN-77

%.

Switch

Description

/CK

/COmn

/DB

/DE

/DS

JEX

Specifies that array references are to be checked to ensure that
they are within the array address boundaries specified. However,
array upper bounds checking is not performed for arrays that are
dummy arguments if the last dimension bound is specified as *
or 1. For example:

DIMENSION B(0:10,0:%)
or

DIMENSION A(1)
The default setting is /NOCK.

Specifies that the compiler accepts at least n continuation lines.
(You may have fewer than n continuation lines.) The value of n
may range from ¢ to 99; the defauit value is 19. Each leve] of
nesting of an INCLUDE statement costs two continuation lines.

Specifies that the compiler is to provide symbol table information
for use by the PDP-11 FORTRAN-77 symbolic debugger. When
you use the /DB qualifier, you should also use the /NOOP
qualifier. Specify the TKB switch /DA when building a program
task for debugging,.

‘The default setting is /NODB.

Requests compilation of lines with 2 D in column one. These
lines are treated as comment lines by the default /NODE (see
the PDP-11 FORTRAN-77 Language Reference Manual for more
information).

Overrides the default compiler’s provisions for I~ and D—space.
These provisions date from installation, when the decision for

in-line or I- and D-space code generation was made. (I- and

D-space code generation functioned as the default.}

When the default compiler generates in-line code, the /DS .
switch forces I- and D-space code generation. When the default
compiler generates I~ and D-space code, the /-DS switch forces
in-line code generation.

Specifies that the compiler compile FORTRAN source text that
extends up to and includes column 132 of an input recozd.

If /EX is specified, then the ANSI standard extension flagger
invoked by the command switch /ST:SOURCE issues an infor-
mational diagnostic (one per record) for source lines extending
beyond column 72.

The default setting is INDEX.

Using PDP-11 FORTRAN-77 1-11

Switch

Description

JF77

/1D

/14

JLA

/ln

JOP

1-12 Using PDP-11 FORTRAN-77

Specifies an ANSI X3.9-1978 interpretation at compile time
of syntactic and semantic features that have a different inter-
pretation in PDP-11 FORTRAN IV-PLUS Version 3.0. See
Appendix E for a detailed discussion of the incompatibili-
ties between PDP-11 FORTRAN-77 and PDP-11 FORTRAN
IV-PLUS.

The default setting is /F77.

Types the FORTRAN-77 compiler identification and version
number on your terminal.

/NOID is the default setting.

Allocates two words for the default length of integer and
logical variables, Normally, single storage words are the default
aljocation for all integer or logical variables not given an explicit
length definition (such as INTEGER»2, LOGICAL+4). /NOI4 is
the defauit setting. See Section 4.2 for more information.

Causes the current switch settings to be retained {latched) for
subsequent compilations in MCR interactive mode. Normally,
switch settings are restored to their default values before process-
ing each command line. This switch is convenient for compiling
a series of programs in MCR interactive mode with the same
switch settings.

/NOLA is the default setting.

Specifies listing options. The value of n may range from 0 to 3.

The meaning of each value is as follows:

n=} Minimal listing file: diagnostic messages and program
section summary only

n=1 Source listing and program section summary

n=% Source listing, program section summary, and storage
map (default)

n=3 Source listing, assembly code, program section summary,
and storage map

The default setting is /LI:2, See Section 3.6 for a detailed
description of the listing format; also refer to the PDP-11
FORTRAN-77 Object Time System Reference Manual.

Directs the compiler to produce optimized code. The negative
form, /NOOP, is recommended when /DB is specified.

The default setting is /OP.

:‘:' Sl

Switch

Description

/RO

/SP

/STxxx

Directs the compiler to specify pure code and pure data sections
as read-only in order to take advantage of code sharing in
multiuser tasks. See Section 3.3 for a description of program
section attributes.

/NORO is the default setting.

Requests automatic spooling of the listing file. The default is to
spool {/SP).

Directs the compiler to look in your source code for extensions
to ANSI standard (X3.9-1978) FORTRAN at the full-language
level. If the compiler finds extensions, it flags them and produces
informational diagnostics about them. (To receive informational
diagnostics, set the warning switch /WR.)

Although PDP-11 FORTRAN-77 conforms to the ANSI
FORTRAN standard at the subset level, the compiler flags
only those features that are extensions to the full language, See
Appendix G for a list of the flagged extensions.

The /ST:xxx switch can take the following forms:

/5T Informational diagnostics for syntax exten-
sions .

/ST:ALL Informational diagnostics for all detected
extensions

/ST:NONE No informational diagnostics

/ST:SOURCE Informational diagnostics for lowercase
letters and tab characters in source code

/ST:SYNTAX Same as /ST

/NOST Same as /ST:NONE

The default value is /ST:NONE.
See Section C.2 for a list of compiler diagnostic messages.

Using PDP-11 FORTRAN-77 1-13

Switch

Description

/TR:xxx

/WEF:n

JWR

Controls the amount of extra code included in the compiled
output for use by the OTS during error traceback. This code
is used in producing diagnostic information and in identifying
which statement in the source program caused an error during
execution. /TR:xxx can have the following forms:

JIR Same as /TR:ALL.

/TR:ALL Error traceback information is compiled
for all spurce staternents and function and
subroutine endries.

/TR:LINES Same as /TRIALL,

/TR:BLOCKS Traceback information is compiled for
subroutine and function entries and for
selected source statements. The source
statements selected by the compiler are
initial statements in sequences called blocks
(see Section 5.2.3 for the definition of a

block).
JTR:NAMES Traceback information is compiled only for
subroutine and function entries.
/TRINONE No traceback information is produced.
/NOTR Same as /TRINONE.

The default value is /TR:BLOCKS.

Use the setting /TR during program development and testing,
Use the default setting /TR:BLOCKS for most programs in
regular use. The setting /NOTR may be used for fast execution
and minimal code, but it provides no information to the OTS for
diagnostic message traceback.

Determines the number of temporary disk work files to be used
during compilation. From one to three files cart be used; the
default value of n is 2. Increasing the number of files increases
the size of the largest program that can be compiled, but may
decrease compilation speed,

Enables compiler warning diagnostics (W-class messages; see
Section C.2.1). If /NOWR is set, no warning messages are issued
by the compiler. The default setting is /WR.

1-14 ising PDP-11 FORTRAN-77

5
»

1.2.5 Task-Building a FORTRAN-77 Program

The Task Builder is a system program that links relocatable object modules
to form an executable task image. You invoke the Task Builder by entering
the MCR command TKB. TKB is described in Section 1.2.5.1.

The object modules to be linked can come from user-specified input files,
user libraries, or system libraries. The Task Builder resolves references
T to symbols defined in one module and referred to in other modules.
R Should any symbols remain undefined after all user-specified input files
are processed, the Task Builder automatically searches the system object
library LB:[1,1]SYSLIB.OLB to resolve them.

The default FORTRAN-77 object time system library normally ei-

ther is patt of the system object library or is separate object library
LB:[1,1]JF77FCS.0OLB or LB:[1,1]JF77RMS.0LB. Consult your system man-
ager to determine whether the FORTRAN-77 object time system (OTS) is
part of SYSLIB.OLB or is a separate library.

Two versions of the OTS 1/0 support modules for FORTRAN-77 are dis-
AT tributed. One version uses File Control Services (FCS-11), which supports
£ sequential and direct access to sequential files. The other version of the
OTS I/0 support library uses Record Management Services (RMS-11),
which supports sequential, direct, and keyed access to sequential, relative,
and indexed files. Consult your system manager to determine which ver-
sion of the I/O support library is the default on your system and where
the other version of the I/O support library is maintained, should you
need it.

The FCS-11 file system is always contained in the system object li-
brary (that is, in LB:[1,1]SYSLIB.OLB); the RMS-11 file system is always
contained in a separate object library (that is, LB:[1,1]RMSLIB.OLB).

The Task Builder also resolves references to resident common blocks and
resident libraries; the task image produced, therefore, is ready to be run
under the operating system.

You can also use the Task Builder to build tasks with overlay structures.
For additional information about the Task Builder and Task Builder
options, refer to the Task Builder manual for your operating system.

Using PDP-11 FORTRAN-77 1-1§

1.2.5.1 Using the MCR Command TKB

You use the MCR command TKB to invoke the Task Builder.
The TKB command line has the format:

TKE [task-file] /FP{,map-file] = infiles-list

task-file

The file specification of the task-image output file. This file specification
may be omitted if no task-image file is desired. If a specification is entered,
only a file name is required; a file type value of TSK is assumed if no file
type is specified. Therefore, the commands

TKB FILEL/FP=FILE1

and

TKE FILEL.TSK/FP=FILEL

are equivalent, Note, however, that no map file is created in either case.

The following switches may be applied to the task-image file:

/FP
Specifies that the task use the Floating Point Processor (FP11) or
floating-point microcode option (KEF11A}).

NOTE

You must include the /FP switch when you build a task; if you
do not, the task will exit with the FORTRAN run-time message:
“TASK INITIALIZATION FAILURE.” (Refer to Section 5.4.1 for
the one exception to this rule.)

/DA
Specifies that the system debugging aid ODT is to be included in the
task. '

/iD

Specifies that the task use I- and D-space. You can build an I-
and D-space task on RSX~11M/M-PLUS (Version 2.0 or higher),
Micro/RSX (Version 3.0 or higher), RSTS/E (Version 9.0 or higher),
and

Micro/RSTS (Version 2.0 or higher).

The default FORTRAN-77 compiler supports I- and D-space. This
may cause some tasks to grow slightly.

1-16 Using PDP-11 FORTRAN-T7

The RSX-11M/M-PLUS and RSTS/E systems allow you to turn off
this support. (The Micro systems do not provide this option.) To
turn off I- and D-space support, edit the configuration file during
installation. Change the DSPACE parameter in this file to 0.

Then re-task-build the compiler, following. the instructions listed in
the PDP-11 FORTRAN-77 Installation Guide.

/My
Specifies that multiple versions of the task may be run simultaneously.
The read-only portions of the task are shared.

map-file

The file specification of the map output file. This file specification may be
omitted if no task-image map file is desired. If a specification is entered,
only a file name is required; a file type value of MAP is assumed if no file
type is specified. The map file is automatically spooled to the line printer.
On some operating systems, the map file is automatically deleted after

it is printed.

The following switches may be applied to the map file.

/CR
Specifies that a global cross-reference listing is to be appended to the
map file.

/SP
Specifies that the map file is to be spoocled to the line printer.

infiles-list

The list of input files that contain compiled FORTRAN-77 object modules.
{This list may also contain compiled or assembled libraries and modules
that were written in a language other than FORTRAN, such as MACRO.)
In many cases, this list contains only one file specification; however, when
there is more than one specification, you must separate the individual
specifications with commas. Only a file name is normaily required; a file
type value of OBJ is assumed.

The following switches may be applied to input files.

Using PDP-11 FORTRAN-77 1-17

/L8
Specifies that the input file is to be a library file. See Section 1.2.5.3.

/MP
Specifies that the input file is an overlay description file. See
Section 1.5.

For example, to build a task image for the object file SINGLE, created
in Section 1.2.3, when the FORTRAN-77 OTS is included in the system
object library (SYSLIB.OLB), you enter:

TKE SINGLE/FP,SINGLE=SINGLE
or, if you wish:
TKB SINGLE.TSK/FP,SINGLE.MAP=SINGLE.DBJ

Note that under RSX-11 the map file created by these commands is both
saved on disk and spooled to the line printer.

If the FORTRAN-77 OTS routines are contained in a separate library, this
library must be explicitly specified in the Task Builder command line.
For example:

TKB SINGLE/FP,SINGLE=EINGLE,LR: {1,1]F77FCS/LE

NOTE

When using a separate FORTRAN-77 library, take particular
care that object modules from other PDP-11 FORTRAN com-

- pilers and OTS routines are not accidentally included in a task
being built from FORTRAN-77 object modules. Object mod-
ules produced by different PDP-11 FORTRAN compilers must
not be combined in a single task.

If the default I/O support library on your system is RMS~11, you must
explicitly reference RMSLIB in the task-build command line. The previous
example then becomes:

TKE SINGLE/FP,SINCLE=SINCLE,LB:({1,1]F77RMS/LB.LB: [1,{1RMSLIB/LB

You can also use the TKB command in interactive mode, which permits
you to enter multiple-line commands. To enter interactive mode, you

simply type:
ks [RET]

118 Using POP-11 FORTRAN-77

The Task Builder then displays the following prompt:

TKE>

You may now enter a single command line that indentifies all the input
files you want to use to begin the task build, followed by a carriage return.
Or you may enter additional input files on as many subsequent lines as
you need. When you have entered all your input files, you must type a
final line consisting of two slash characters (//), followed by a carriage
return {see Section 1.2.5.2 if you are entering any Task Builder options).
The double slash signals the Task Builder to begin processing.

1.2.5.2 Task Builder Options

The Task Builder allows numerous options to be specified. Several of
these are of particular interest to the FORTRAN-77 user.

To specify options in the MCR command TKB, you must use the Task
Builder in interactive mode, and you must terminate command input
with a line consisting of a single slash (/) (rather than the double slash
described in Section 1.2.5.1). The single slash signals the Task Builder to
prompt you, as follows, for option information:

ENTER OPTIONS:
TKB>

At this point, you can enter as many Task Builder options as you need,
one option per line. After you enter each option, the Task Builder auto-
matically prompts you for the next option until you enter a single slash
(/) to signal no more options. The Task Builder then proceeds to build
the task and to produce any requested output. To exit interactive mode in
TKB, enter two slashes (//).

The Task Builder options considered useful to you as a FORTRAN-77
programmer are described below.

ACTFIL—You can declare the total number of input and output files that
a task can open simultaneously, and allocate the proper number of buffers,
by entering:

ACTFIL = n

Using PDP-11 FORTRAN-77 1-18

n
The number, in decimal, of files that can be opened simultaneously and
the buffers needed to accommodate them. The default value is 4,

Any attempt to open a file or use a logical unit when space is not available
for at least one buffer will cause an error at run-time.

The value n includes both explicitly and implicitly opened files.

ASG—You can assign 10g1ca1 unit numbers to physical devices by entering
the following:

ASG = devl:nt:n2:.. ., dev2:ml:m2:...

dev
A physical device name.

n
A valid logical unit number.

m
A valid logicai unit number.

The default device assignments are as follows:
ASG = 8Y0:1:2:3:4,TI0:5,CLO:6

You can build a cluster library for the FORTRAN-77 OTS on RSX~11M
Version 4.1, RSX-11M/M-PLUS Version 2.1, and RSTS/E Versiorn 8.0.
Both the FCS and RMS versions of the FORTRAN-~77 QTS can be built as
a cluster library. See the Task Builder manual for your particular operating
system for more information on how to build a cluster library for the
FORTRAN-77 OTS.

To use the FORTRAN-77 QTS cluster library, use the TKB option CLSTR
as shown in the following example:

TXB>PROG/FP=PROG,LB: [1,1)F77FCS/LB: FT7VEC, FT7FCS/LB

TKB>/ '

ENTER OPTIONS:

TKB>CLSTR=F7FCLS, FCSRES:RD (for FCS cluatared-resident library)
TRB>//

RMSRES is the FORTRAN-77 RMS OTS resident library; F7FCLS is the
FORTRAN-77 FCS OTS resident library.

t-20 Using PDP-11 FORTRAN-77

To save space, you may link to several shared resident libraries by sharing
the same cluster, in the following way:

CLSTR=name,name,name:acceas [:apr]

name
The library’s symbolic name.

access
Either RO for read-only or RW for read-write.

apr ' :
An integer from 1 through 7 that specifies the first active page register into
which the resident library is to be linked.

The F77 resident library can now cluster with either the FCS or RMS
resident library, FCSCLS or RMSRES, respectively.

COMMON—H a program is to reference a system global common block,
you must declare this intention by specifying:

COMMON = neme:accessi:aprl

name
The symbolic name associated with the system global common block.

access
Either RO for read-only or RW for read /write.

apr

An integer from 1 through 7 that specifies the first Active Page Register
into which the resident library is to be linked. You can specify apr
only when the resident library consists of position-independent code.
(FORTRAN-77 resident libraries do not consist of position-independent
code.)

The FORTRAN COMMON block with the same name is used to reference
the data in the system global common. :

EXTTSK—You can aliocate additional buffer space for RMS-11
input/output by using the option:

EXTTSK = n

Using PDP-11 FORTRAN-77 1-21

n

The number, in decimal, of words to allocate. The value assigned by this
option may be overridden by the /INC option on the RUN command (see
Section 1.2.6).

For information on how to determine the amount of buffer space a
program may need, refer to the RM5-11 MACRO-11 Reference Manual.

On RSTS/E systems, you can use the EXTTSK option to allocate up to
31K words of memory to a task image (if you have the RSX Emulator in
the monitor and your default run-time system is R5X).

The EXTTSK option is more efficient than the ACTFIL option because:

* The amount of space can be more accurately specified.

+ The space allocated by EXTTSK does not require disk space in the
task-image file.

When you use an operating system that supports the Extend Task system
directive, the RMS-11 version of the OTS attempts to extend the buffer
space dynamically.

FMTBUF-—The default size of the buffer used to contain the internally vz
compiled form of a format specification stored in an array is 64 bytes. You
can increase the size of this buffer by entering:

nﬁmm =n
n . .
The decimal size, in bytes, of the run-time format compilation buffer.

The total size needed for format compilation is equal to the largest run-

time format specification used by the program. For information on how to
determine the amount of space needed to store a given format, refer to the .2
PDP-11 FORTRAN-77 Object Time System Reference Manual. RNy

GBLPAT—To patch FORTRAN logical unit 0 to a valid system logical
unit, use the option:

GBLPAT= main-prog:$LUNO:n

main-prog
The name of your main program segment.

n
A system logical unit number in the range 1 through 99 (see Section . 2.1.3). ..

1-22 Using PDP-11 FORTRAN-77

LIBR—If a program is to reference a system-shared library, you must
specify:
LIBR = name:accesa[:apr]

name
The library’s symbolic name.

access
Either RO for read-only or RW for read/write.

apr

An integer from 1 through 7 that specifies the first Active Page Register
into which the resident library is to be linked. You can specify apr only
when the resident library consists of position-independent code (PIC).
(FORTRAN-77 resident libraries do not consist of position-independent
code.) Libraries are discussed in more detail in Section 1.2.5.3.

MAXBUF—The default maximum record size for input/output is set at
133 (decimal) bytes. You can increase this record size by entering:

MAXBUF = 2
n
The number of bytes {in decimat).

The default generally is adequate for sequential input/output. If sequen-
tial, direct, or keyed access operations are performed with records larger
than 133 bytes, you must use this option, as follows, to specify the size of
the largest record you intend to process.

For formatted records:
MAXBUF = RECL

For unformatted records:
MAXBUF = 4+RECL

For segmented records (see Section 2.2.3.3 for a definition of segmented
records):

MAXBUF = (4»RECL)+2

The two extra bytes for segmented records are the segment control bytes
{see Section 2.2.3.3).

Using PDP-11 FORTRAN-77 1-23

RESLIB—If a program references a user-shared library, you must specify:

RESLIB= file-spec/access[:apr]

file-spec
The file specification of the shared-library task image and symbol-table
files.

access
Either RO for read-only or RW for read/write.

apr

An integer from 1 through 7 that specifies the first Active Page Register
into which the resident library is to be linked. You can specify apr only
when the resident library consists of position-independent code (PIC).
(FORTRAN-77 resident libraries do not consist of position-independent
code.} Libraries are discussed in more detail in Section 1.2,5.3.

UNITS—The default number of logical units available to a program is 6
(logical units 1 through 6, inclusive). You can set this number smaller or
larger at task-build time by entering:

UKITS = n

n .
The number, in decimal, of logical units desired, from 0 to 99.

However, you should be aware that increasing the number of default units
available will increase task size. (On RSTS/E systems, you can specify
only up to 14 logical units: from 1 through 14.)

The default device and file name associated with a logical-unit number are
discussed in Section 2.1.1.

When you need to assign devices to the units you have specified with the
UNITS option, use the ASG option discussed earlier in this section. If you
need more units than the six provided as the default, you must enter the
UNITS option before you make any assignments with ASG.

1-2§4 Using PDP-11 FORTRAN-77

1.2.5.3 Library Usage on RS§X-11 Systems

There are two types of RSX-11 libraries, each of which consists of a
collection of object modules: relocatable and resident. A relocatable
library is one that the Task Builder can make a physical part of a task
image. A resident library is one that the Task Builder can make a logical
part of a task image but not a physical part; that is, the Task Builder can
link it to a task image but cannot copy it to a task image.

Relocatable Libraries—Relocatable libraries are stored in files on disk.
From these libraries, the Task Builder copies object modules into the task
image of each task that references those modules. You must tell the Task
Builder that an input file is contained in a relocatable library by attaching
the switch /LB to the input file specification of the file. If you do not
include an extension with the file name of such a specification, the Task
Builder assumes .OLB as a default. When the Task Builder encounters

a library specification, it includes in the task image being built those
modules in the specified library that contain definitions of any currently
undefined global symbols.

Resident Libraries—Resident libraries are located in main memory and
are shareable: that is, a single copy of each library is used by all tasks
that refer to it. You gain access to a resident library by using the LIBR or
common option, as described in Section 1.2.5.2,

System Libraries—Each RSX-11 system has a system relocatable library
and, in addition, has availabie to it four system resident libraries.

The system relocatable library is as follows:
LB: [1,1)SYSLIB.OLB

The Task Builder automatically searches the system relocatable library to

see if any undefined global references remain after all the input files have
been processed. If the definition of one of these undefined global symbols
is found, the appropriate object module is included in the task being built.

Four system resident libraries may be available for use with MCR. Consult
your system manager to determine which of the following system resident
libraries are available on your system.

* FCSRES—A shared library of commonly used FCS-11 input/output
routines.

¢ RMSRES—A shared library of RMS-11 input/output routines can be
built in supervisor mode on RMS~11/M-PLUS systems.

* FCSFSL——A supervisor-mode FCS library.

Using PDP-11 FORTRAN-77 1-25

These system resident libraries are linked to a task by using the Task
Builder option, as follows:

LIBR = FCSRES:RJO

or

LIBR = RMSRES:R0O or RESSIUP=RMSRES/SV
or

RESSUP=FCSFSL/8V

User Libraries—Using the Librarian Utility, you can construct your own
FORTRAN-77 or assembly language relocatable libraries. You then access
these libraries by using the appropriate library switch, as described in
preceding sections. Consult the IAS/RSX-11 Utilities Procedures Manual
for further information on the Librarian Utility.

For example, if MATRIXLIB.OLB is a relocatable library containing ma-
trix manipulation routines and PROG is the object file of a compiled
FORTRAN-77 program that calls the matrix routines, you could enter the
following command line for the Task Builder:

TKB PROG/FP=PROG,MATRIXLIB/LB

1.2.6 Executing a FORTRAN-77 Program

To begin task execution once you have buiit a task image, you enter a
RUN command of the form:

RUE filespec[/INC=z]

filespec
The file specification of the file containing the task image.

n

The number, in decimal, of words of additional buffer space to allocate for
the OTS and file-system buffers. {For information on how to determine
the proper size of n, refer to the RMS-11 Macro Reference Manual.)

You can end a task before its normal completion by typing CTRL/C (°C),
followed by the ABORT command, or you can end execution with a STOP
statement, When the STOP statement is executed, the OTS will type a line
with the fask name and the contents of the display text following STOP.

1-26 Using PDP-11 FORTRAN-77

A task that terminates as a result of a CALL EXIT statement or of reaching
the end of the main program does not produce any output to indicate that
it is terminating.

1.2.7 Examples of FORTRAN-77 Command Sequences

For a FORTRAN-77 task consisting of:

¢ The main program MAIN.FTN
¢ The subroutine SUBR1.FTN
* Several subprograms in the file UTILITY.FTN

you can use the following sequence of commands for compiling, linking,
and executing:

F77 30B,J0B= MAIN,SUBR1,UTILITY
TKB JOB/FP=JOB,LB:[1,1]1F77FCS/LB
RUN Jo [RET)

[For a more complex task that uses the same FORTRAN-77 source pro-
' grams but includes the following options:
* A system global common block named PARM
* An increase in the user record-buffer size
* Subroutines in the object module library MATLIB.OLB
e The FORTRAN-77 OTS in library LB:[1,1}F77FCS.OLB
* Array bounds checking in the compiled code

you can use the following sequence of commands:

F77 JOB, JOB=MAIN,SUBRL,UTILITY/CK {RET]

TKB

TKD>JOB/FP=JOB, MATLIB/LB, LB: [1,1]F77FCs/iB [RET)
Tre>/ [BETY

ENTER DPTICNS:

TKB>CDMMON=PARM: RW

TKB>MAXBUF =266

TKB>//

RUN m%l

You can also run this procedure by using indirect command files. For
example, suppose the file COMPILE.CMD contains:

JOB, JOB=MAIN ,SUBR1,UTILITY/CK

Using POP-11 FCGRTRAN-77 1-27

and the file LINK.CMD contains:

JOB/FP=J0B,MATLIB/LB,LB: [1,1]F77FCS/LB
/

COMMON=PARM : RW

MAXBUF =266

/

1.3 Using FORTRAN-77 on RSTS/E Systems

This section contains information for the user who wants to compile,
task-build, and execute 2 FORTRAN-77 program on a RSTS/E system.
Specifically, it describes how to:

s Invoke the FORTRAN-77 compiler and the RSTS/E Task Builder

(with RUN commands or with Concise Command Language (CCL)!
commands)

» Write RSTS/E file specifications
* Use command

¢ Use the FORTRAN-77 compiler
¢ Use the RSTS/E Task Builder

* Execute a task image |

1.3.1 RSTS/E File Specifications

For each RSTS/E system program you use, you must specify the input
files to be processed and (optionally for the FORTRAN-77 compiler and
the Task Builder) the output files to be produced.

The format of a file specification for a RSTS/E system program is as
follows:

dev: [p.pnlfilename.typ

1 Refer to the PDP-11 FORTRAN-77 Installation Guide for information on how to install FORTRAN-77 as a
CCIL, command.

1-28 Using PDP-11 FORTRAN-77

4

[
%

dev

The device on which the file is stored or is to be written. You designate
the device type by specifying a 2-character device code and, optionally, a
unit number. You may also use a logical device name consisting of one to
six alphanumeric characters. The device element must be followed by

a colon.

{p.pn] :
The user account containing the requested file. This account number
consists of a project number and a programmer number, each in decimal.

filename
One to six alphanumeric characters. There is no default value for filename.

typ
One to three alphanumeric characters describing the type of data in the
file.

You need not explicitly state all the elements of a file specification each
time you compile, link, or execute a program. In most cases, when you
omit any part of a file specification, a default value is used. Table 1-3
summarizes the applicable default values.

Table 1-3: RSTS/E File Specification Defaults

Optional

Element Default Value

dev: SY

p.pn} User’s current default PPN (project number,
programmer number)

typ Depends on usage:

Command file CMD
Input to the FORTRAN-77 compiler FIN
Cutput from FORTRAN-77 compiler OBl
Source listing from FORTRAN-77 compiler LST
Input to Task Builder OB]
Output from Task Builder TSK
Map listing from Task Builder MAP
Library input to Task Builder OLB
Overlay description input to Task Builder ODL
Input to executing program DAT
Output from executing program DAT

Using PDP-11 FORTRAN-77 1-28

Refer to the RSTS/E System User’s Guide for a complete discussion on
RSTS/E file specifications.

1.3.2 Command Switches

See Section 1.2.2.

Note that the DCL qualifier /STANDARD=NONE does not work on
RSTS/E systems.

1.3.3 Compiling a FORTRAN-77 Program on RSTS/E Systems

The FORTRAN-77 compiler is a system program that produces relocatable
object modules from FORTRAN-77 source code.

To invoke the FORTRAN-77 compiler, you type the command line:
rRU¥ $F77 [RET]

Oy, if the system manager has instalied F77 as a CCL command, you can
type:
#77 [RET]

In either case, after you press the RETURN key, the compiler issues the
prompt:

F77>

You respond to the F77> prompt by entering input and output file
specifications (see Table 1-2) as follows:

[obj-file] [,list-file] = infiles-list

obj-file

The file specification of the object code file to be created by the compiler.
I you do not give a file type in this specification, .OB) is supplied as a
default. This is the default file type expected by the Task Builder when
you link the compiled object modules to make an executable file. If you
do not want an object file, omit this file specification from the command
line.

1-39 Using PDP-11 FORTRAN-77

list-file

The file specification of the listing file created by the compiler. If you do
not include a file type in this specification, the compiler supplies .LST as
the default. If you do not want a listing file, omit this file specification
from the command line. When you include a listing file name, the com-
piler saves the listing file on disk; you can then print the listing file using
the RSTS/E QUE program after the compilation is done. Refer to the
RSTS/E System User’s Guide for a description of the QUE program., The
following example shows how to create an object file (OBJECT.OB]) and a
listing file (LISTF1.LST) on disk from an input source file (INPUTF.FTN):

F77> DBJECT,LISTFi=INPUTF

If you specify a listing file without an object file, you must precede the
listing file with a comma to indicate the absence of the object file. For
example:

F77> ,LISTF1=INPUTF

infiles-list

A list of the file specifications of the files that contain the FORTRAN-77
source programs. You can specify more than one input source file in a
command line; however, you generally specify only one. When you have
multiple specifications, separate them with commas. If you do not provide
a file type with this specification, the compiler assumes a default file type
of .FTN. For example, to compile three source programs called FILE1,
FILE2, and FILE3 into an object module called SINGLE, you enter:

F77> SINGLE,SINGLE=FILE1,FILE2,FILE3
You can also include the file types, as follows:
F77> SINGLE.OBJ,SINGLE.LST=FILE1.FTN,FILE2 FIN FILE3.FIN

You may append to these file specifications any of the compiler command
switches listed and described in Section 1.2.4, except the ones noted.

When the compilation is done, the compiler prints another F77> prompt. ;
You can perform as many compilations as you wish before you return to '
system command level. To exit to the keyboard monitor, type CTRL/Z or
CTRL/C. :

If F77 has been installed as a CCL command, you can type the entire
specification on one line, as follows:

F77 [obj-file] [,list-file]l = infiles-list

Again, you may include any of the switches listed in Section 1.2.4, except
the ones noted.

Using PDP-11 FORTRAN-77 1-31

A
}

1.3.4 Task-Building a FORTRAN-27 Program on RSTS/E Systems

The Task Builder is a system program that links relocatable object modutles
to form an executable task image. The RSTS/E Task Builder Reference
Manual describes the Task Builder in detail.

1.3.4.1 Using the Task Builder on RSTS/E Systems

You can load the Task Builder into memory by typing a RUN command in
the following format:

RUN $TRR [RET]

Or, if your system manager has installed TKB as a CCL command, you
can type:
T8 [RET]
In either case, after you press the RETURN key, the Task Builder prints

the TKB> prompt. You then enter a command line to identify the files to
be used, as follows:

TKB> [task-filel { ,map-file] = infiles-list

After you press the RETURN key, the Task Builder prints another TKB>
prompt. You then:
» Enter additional input files, if any.'

* Type a line containing only two slashes(//) to tell the Task Builder to
create.a task image and to exit with no TKB> prompt.

* Press the RETURN key. (See Section 1.2.5.2 if you are entering any
Task Builder options.)

If TKB has been installed as a CCL command, and you want to perform
one task-build operation, you can type the whole request on one line, as
follows:

TKE [taak-file]l [,map-file]l = infiles-list

After you press the RETURN key, the Task Builder processes the com-
mand line. It then returns you to the keyboard monitor,

The parameters task-file, map-file, and infiles-list use the standard RSTS/E
file specification format described in Table 1-2.

The elements in the Task Builder command line are as follows:

1-32 Using PDP-11 FORTRAN-77

1
i

task-file ,
The file specification of the task-image output file created by the Task
Builder. If you do not provide a file type in the task-file name, the Task
Builder supplies .TSK as a default. Therefore, the following commands
are equivalent:

TKB FILE1/FP=FILE1
TKB FILE1.TSK/FP=FILE1

The task-file specification may be omitted if no task-image file is desired.

map-file

The file specification of the map output file. The map file contains infor-
mation about the size and location of routines and global symbols within
the task image. If you do not provide a file type in the map-file name, the
Task Builder supplies .MAP as a default. When you specify a file name,
the Task Builder saves the map output on disk. If you do not specify

a task-image file specification in the command line, you must precede
the map-file name with a comma to indicate the intended absence of the
specification. The map-file specification may be omitted if no task-image
map file is desired.

infiles-list :

The list of input files that contain compiled FORTRAN-77 object modules.
You can specify as many input files as can fit in 80 columns in the
command line; however, you can place additional input files on additional
lines, as long as each specification is contained wholly on one line (not
split between or among lines). When you specify multiple object files or
libraries, separate them with commas. If you do not give a file type, .OB]
is assumed as a default. For input library files, you must specify the /LB
switch following the input file name.

For example, to build a task image for the object-file SINGLE created in
Section 1.3.3, when the FORTRAN-77 OTS is included in the system
object library (LB:SYSLIB.OLB), you enter:

TKB SINGLE/FP,SINGLE=SINGLE
Or, if you prefer to include the file types, you enter:
TKB SINGLE.TSK/FP,SINGLE.MAP=SINGLE. CBJ

Both of these command lines save a copy of the map file (SINGLE.MAP)
on disk.

Using POP-11 FORTRAN-77 1-33

If a separate library contains the FORTRAN-77 OTS routines, you must
specify the library name in the Task Builder command line, as shown in
the following example:

TKR SINGLE/FP,SINGLE=SINGLE,18:F77FCS/LB

If you are using RMS, you must explicitly include a reference to the RMS
library in the task-build command line. The previous example would
then become:

TKB SINGLE/FP STNGLE=SINGLE,LB:FTTRME/LB LB :RMSLIB/LE

When building a task image with object modules produced by
FORTRAN-77, you cannot include in the task object modules from other
PDP-11 compilers and OTS routines. Also, you must not combine in a
single task object modules created by different PDP-11 compilers.

In addition, a Task Builder command line can contain switches that specify
optional file-controlling actions. For example, when you attach the /DA
{Debugging Aid) switch to the task image file specification, the Task
Builder automatically includes system on-line debugging aid LB:ODT.OBJ
in the task image. To negate the /DA switch, you can type either /-DA or
/NODA. See Section 1.2.5.1 for the switches that apply to the

RSTS/E Task Builder; the RSTS/E Task Builder command switches are
also described in the RSTS/E Task Builder Manual.

NOTE

You must include the /FP switch when you build a task. (Refer
to Section 5.4.1 for the exception to this rule.) This switch
instructs the Task Builder to reserve an area into which the
intermediate results of floating-point computations can be
placed when job rescheduling occurs. If you omit the /FP
switch, you may receive unreliable results.

1.3.4.2 Task Builder Options
See Section 1.2,5.2,

1-34 Using PDP-11 FORTRAN-77

L

«""3\

-

1.3.4.3 Library Usage on RSTS/E Systems

A library can be relocatable or resident. A relocatable library is one that
the Task Builder can make a physical part of a task image. A resident
library is one that the Task Builder can make a logical part —but not a
physical part— of a task image; that is, the Task Builder can link it to the
task image but cannot copy it into the task image.

Relocatable Libraries—Relocatable libraries reside in files on disk. From
these libraries, the Task Builder copies object modules into the task image
of each task that references those modules. You must tell the Task Builder
that an input file is contained in a relocatable library by appending the
switch /LB to the input file specification of that file. If you do not include
a file type with the file name of such a file specification, the Task Builder
assumes .OLB as a default. When the Task Builder encounters a library
file specification, it includes in the task image being built those modules
in the library that contain definitions of any currently undefined global
symbols. The system relocatable library and user relocatable libraries are
described below.

Resident Libraries—Resident libraries reside in memory, where they are
accessed, but not copied, by the tasks that need them. A task may refer-
ence one or more resident libraries. You tell the task program to access a
resident library by specifying the LIBR or RESLIB option. Section 1.2.5.2
describes these two options.

System Libraries—RSTS/E has a system relocatable library called
LB:SYSLIB.OLB and, in addition, has available to it three system resident
libraries pertinent to FORTRAN-77.

The Task Builder searches the system relocatable library if any undefined
global references are left after it has processed all the input files, If the
Task Builder finds the definition of one of these global symbois in the
system relocatable library, it includes the appropriate object module in
the task.

A system resident library may be available for use with RSTS/E:
RMSRES - A resident library of RMS-11 input/output routines.

Ask your system manager if this library is available to you; your system
might not have enough memory to support them.

One or two of the following Task Builder options may link the system
libraries to your task:

LIBR = RMSRES:RO

Using PDP-11 FORTRAN-77 1-3%

or &
TKB> PROG/FP=PRUC, MTAL1B/LS,LB:F77RMS/LB, LB:RNSLIB/LB

User Libraries—Using the Librarian Utility, you can create your own
FORTRAN-77 (or assembly language) relocatable libraries. You then
access these libraries by using the /LB switch after the appropriate
library name. Refer to the RSTS/E Programmer’s Utilities Manual for more
information on the Librarian Utility.

1.3.5 Executing a FORTRAN-77 Program on RSTS/E Systems

To execute a task, you use a RUN command as follows:
RUN filespec

filespec

A file specification of the form described in Section 1.3.1.

Generally, you do not need to include all the elements in a file specifi-
cation. For example, to execute a task file (TASK01.TSK) located in your
account on the public disk structure, you type:

RUN TASKO1.TSK

The system assumes SY: as the default device and your account as the
default project-programmer number.

1.3.6 Examples of FORTRAN-77 Joh Cemmand Sequences

For a FORTRAN-77 task image consisting of:

¢ The main program MAIN.FTN

* The subroutine SUBRTN.FTN

® Several subprograms in the file SUBPRG.FTN

you can use the following sequence of commands for compiling, task-
building, and executing the image:

F77 JOB,JOB = MAIN,SUBRTN,SUBFRG
TKB JOB/FP = JOB,LB:FT7RMS/LB,LB:RNSLIB/LB [RETY] .
RUN JoB [RET]

1~36 Using PDP-11 FORTRAN-77

For a more complex task that uses the same FORTRAN-77 source pro-
grams but includes the following options:

® A system global common block named PARAM

* An increase in the user record-buffer size

* Subroutines in the object-module library MATLIB.OLB

¢ The FORTRAN-77 OTS in separate library LB:F77RMS.OLB
® Array bounds-checking in the compiled code

you use a sequence of commands as follows:

F77 JOB, JOB=MAIN,SUBRTN,SUBPRG/CX [RET]

TkB

TKB>JOB/FP=JOB,MATLIB/LE LB :F77RNS, LB: RMSLIB/LB [RET]
TkE>/ [RET]

ENTER OPTIONS:

TKE>COMMON=PARAM:RW [RET]

TKB>NAXBUF=256

xs>// [RET]
i RuxN JoB [RET]

You can also run the above procedure using indirect command files. For
example, if the file COMPIL.CMD contains:

JOB, JOB=MAIN ,SUBRTN , SUBPRG/CK
and the file LINK.CMD contains:

JOB/FP=JOB,MATLIB/LB,LB:F77RMS LB :RMSLIB/LE
/

COMMOR=PARAM: RW

MAXBUF=2E6

r/

then the following sequence is equivalent to the previous example:

F77 QCOMPIL
TKB @LINK
RUN JOB

Using PDP-11 FORTRAN-77 1-37

1.3.7 Programming Considerations for RSTS/E Users

You should note the following programming considerations and
restrictions:

The RSX emulator restricts the use of the memory management
(PLAS) directives to resident libraries only; consequently, the use of
virtual arrays is not supported.

RSTS/E does not provide an interface for the set of FORTRAN-77 g
process-control routines or RSX system directives. VIR

You cannot extend an existing contiguous file under RSTS/E; you
must instead allocate an adequate amount of space when you create a
contiguous file under RSTS/E.

A FORTRAN-77 program must load into no more than 28K words.
However, if the RSX emulator support has been added to the system
monitor, a program may extend to 31K words. In addition, a program
may use up to 32K words if resident libraries are supported.

The UNITS option for TKB is restricted to the range 1-14 on RSTS/E
systems. ¢

NOTE

You will not receive an error message from the Task Builder
if your program exceeds 28K words. However, if your
program does surpass the prescribed maximum size, you
will receive the run-time error message, “?Illegal byte count
for [/0O.”

The OTS does not let you supersede an existing file. If you do attempt
to create a new file with the same name as that of an existing file, you
will receive error number 30: “Open failure,”

A contiguous file cannot be extended on RSTS/E. The initial size of a

contiguous file is also the maximum size.

You can read past EOF records on interactive devices.

Refer to the RMS-11 User’s Guide for a list of RSTS/E restrictions on
RMS-11.

1-38 lUsing PDP-11 FORTRAN-77

1.4 Using FORTRAN-77 on VMS Under VAX-11/RSX

This section contains information for the user who wants to compile,
task-build, and execute a PDP-11 FORTRAN-77 program on a VMS
system.

Specifically, this section describes how to:

* Write VMS file specifications

* Lllse command switches

* Use the FORTRAN-77 compiler to create an object module
* Use your system’s Task Builder to create a task image

* Execute a task image

For more information on using VMS AME, consult the VAX-11/RSX-11M
User's Guide and the VAX-11/RSX-11M Programmer’s Reference Manual.

1.4.1 VMS File Specifications

For each VMS system program you use, you must specify the input files
to be processed and (optionally for the FORTRAN-77 compiler and your
system’s Task Builder) the output files to be produced,

The format of a file specification for a VMS system program is as follows:

device: [directorylfilename.filetype;version

device
The device on which a file is stored or is to be written,

[directory]
The named directory containing the desired file,

filename _ :
The file by its name. A filename value can be up to nine characters long.

filetype
The kind of data in the file. A filetype value can be up to three characters
long.

Usmg PDP-11 FORTRAN-77 1-39

version :
The version of the file that is desired. Versions are identified by a decimal
number, which is incremented by 1 each time a new version of a file is
created.

You need not explicitly state all the elements of a file specification each
time you compile, task-build, or execute a program. The only part of a file
specification that is usually required is the file name. If you omit any other
part of the file specification, a default value is used. Table 1-4 summarizes
the file specification default values.

Table 1-4; VMS File Specification Defaults

Optional
Element Default Value
device User's current default device
[directory] User's current default directory
filetype Depends on usage:
Commanad file CMD
Input to compiler FIN .,
Output from compiler OB] W
Input to Task Builder OBJ e
Qutput from Task Builder EXE
Input to RUN command EXE
Compiler source listing LST
Task Builder map listing MAP
Task Builder library input OLB
Task Builder overlay description ODL
Input to executing program DAT
Output from executing program DAT
version Input: highest existing version

Output: highest existing version plus 1

If you request compilation of a source program specified only by a file
name, the compiler searches for a file with the specified file name that:
* Is stored on the default device

* s cataloged under the current default directory

s Has a file type of FIN

If more than one file meets these three conditions, the compiler chooses
the file with the highest version number.

1-40 Using POP-11 FORTRAN-77

For example, assume that your default device is DKO, that your default
directory is [SMITH], and that you supply the following input or output
file specification to the compiler:

CIRCLE

For input, the compiler searches device DKO in directory [SMITH] for the
highest version of CIRCLE.FTN. For output, the compiler generates the
file CIRCLE.OB]J, stores it on device DKO in directory [SMITH], and assigns
it a version that is higher by 1 than any other version of CIRCLE.OB}
currently cataloged in directory [SMITH] on DKO.

1.4.2 Command Switches

Command switches are devices you can use in command lines to specify
optional command instructions or inputs: for example, to specify that the
compiler compile all lines with a D in column 1.

Command switches are appended to other entities in a command kine and
have the form:

/ewitch[;vall

switch

A mnemonic that specifies a certain instruction to the compiler or Task
Builder.

val
A parameter consisting of an octal or decimal number, or a string of
characters.

Many switches have a negative form that negates the action specified
by the positive form. You can obtain the negative form generally by
following the required slash with a minus sign or the characters NO.
For example, /-SP or /NOSP prevents automatic spooling of 2 program
listing.

Using PDP-11 FORTRAN-77 1-41

1.4.3 Compiling a FORTRAN-77 Program

The PDP-11 FORTRAN-77 compiler is a system program that produces
relocatable object modules from FORTRAN-77 source code.

You invoke the FORTRAN-77 compiler with the MCR command F77 as
follows:

MCR F77 [obj-file] [,list-file) = infiles-list

obj-file

The file specification of the object code output file. This file specification
may be omitted if no object file is desired. If it is entered, only a file name
value is required; a file type value of OB] is assumed by default if no file
type is specified. Therefore, the following commands are equivalent:

MCR F77 FILE1=FILE1
MCR F77 FILE1.0BJ=FILE1

- Note, however, that no listing file is created in either case.

list-file

The file specification of the listing output file. This file specification may
be omitted if no Usting file is wanted. If it is entered, only a file name
value is required; a file type value of LST is assumed by default if no file
type is specified. The listing file is saved on disk.

infiles-list

The list of input files that contain the source programs. In many cases,
this list contains only one file specification; however, when there is more
than one, you mhust separate the individual specifications with commas.
Only a file name is normally required; a file type value of FIN is assumed
if no file type is specified.

For example, to compile three source programs called WINKN, BLINKN,
and NOD into an object module called SINGLE, you would enter:

MCR F77 SINGLE, SINGLE = WINKN, BLINKN, NOD
of, if you wish:
MCR F77 SINGLE.OBJ,SINGLE.LST=WINKN.FTN,BLINKN.FTN,NOD.FIN

In addition, an F77 command line can contain one or more of the compiler
switches listed and described in Section 1.2.4.

1-82 \Using PDP-11 PORTRAN-77

You can also use the F77 command in interactive mode, which permits
you to enter multiple compilation commands (lines). To invoke the
interactive mode (if you have installed the image of the FORTRAN-77
compiler as F77), you simply type:

ucr ¥r7 [RET)

Regardless of the name under which the PDP-11 FORTRAN-~77 compiler
is installed, the compiler displays the following prompt:

F7T>

To enter a succession of compilation commands under interactive mode,
you type one command line after each prompt, followed by a carriage
return, until all commands are entered. Each command line must specify
the appropriate input and output files for the program module to be
compiled, and any optional switches desired. You then type CTRL/Z. For
example, if you want the FORTRAN programs WINKN, BLINKN, and
NOD compiled into separate object modules, you can enter a succession
of commands as follows:

ucr F77 [RET]

From this point on, the compiler issues the F77> prompt.

FTT>WINKR, WINKN/SP=WINKN
F77>BLINKN, BLINKN/SP=BLINKN
FTT>NOD, NOD/SP=NOD

FT7>

Note that the compiler types the ¥77> prompt each time you enter a
command, until you type CTRL/Z ("Z) to return system control to MCR.

You can also enter the name of an indirect command file in response to
the F77> prompt. For example, if the file COMPILE.CMD contains:

WINKN, WINKN/SP=WINKN
BLINKK, BLIKKN/SP=BLINKN
HOD, NCD/SP=NOD

then the commands

FT7T>@COMPILE
77> [CTRL/Z]

are equivalent to the previous example.

Using PDP-11 FORTRAN-77 1-43

1.4.4 Task-Building a FORTRAN-77 Program

The Task Builder is a system program that links relocatable object modules
to form an executable task image. You invoke the Task Builder by entering
the MCR command TKB. TKB is described in Section 1.2.5.1.

The object modules to be linked can come from user-specified input files,
user libraries, or system libraries. The Task Builder resolves references
to symbols defined in one module and referred to in other modules.
Should any symbols remain undefined after all user-specified input files
are processed, the Task Builder automatically searches the system object
Iibrary LB:[1,1]SYSLIB.OLB to resolve them.

The default FORTRAN-77 object time system library normally is object
library LB:{1,1jF77FCS.OLB, or LB:{1,1JF77RMS.0OLB.

Two versions of the QTS I/0 support modules for FORTRAN-77 are dis-
tributed. One version uses File Control Services (FCS-11), which supports
sequential and direct access to sequential files. The other version of the
OTS I/0 support library uses Record Management Services (RM5-11),
which supports sequential, direct, and keyed access to sequential, relative,
and indexed files.

The FCS-11 file system is always contained in the systemn object
library (that is, in LB:(1,1]SYSLIB.OLB); the RMS-11 file system is always
contained in a separate object library (that is, LB:[1,1JRMSLIB.OLB).

The Task Builder also resolves references to resident common blocks and
resident libraries; the task image produced, therefore, is ready to be run
under the operating system.

You can also use the Task Builder to build tasks with overlay structures.

1.4.4.1 Using the MCR Command TKB
You use the MCR command TKB to invoke the Task Builder.

The TKB command line has the format:

MCR TKB [task-filel/FP[map-file] = infiles-liat

1-48 Using POP-11 FORTRAN-77

task-file

The file specification of the task-image output file. This file specification
may be omitted if no task-image file is desired. If a specification is
entered, only a file name is required; a filetype value of TSK is assumed if
no filetype is specified. Therefore, the commands:

MCR TKB FILE$/FP=FILE1
and
MCR TKB FILEl.TSK/FP=FILEl

are equivalent. Note, however, that no map file is created in either case.

The following switches may be applied to the task-image file:

/FP

Specifies that the task use the Floating Point Processor {(FP11) or
floating-peint microcode option (KEF11A).

NOTE

You must include the /FP switch when you build a task; if
you do not, the task will exit with the FORTRAN run-time
message: “TASK INITIALIZATION FAILURE.” (Refer to
Section 5.4.1 for the one exception to this rule.)

/DA

Specifies that the system debugging aid ODT is to be included in
the task.

/MU

Specifies that multiple versions of the task may be run simultaneously.
The read-only portions of the task are shared.

map-file

The file specification of the map output file. This file specification may be
omitted if no task-image map file is desired. If a specification is entered,
only a file name is required; a file type value of MAP is assumed if no file
type is specified. The map file is automatically spooled to the line printer.

On some operating systems, the map file is automatically deleted after it is
printed.

The following switches may be applied to the map file:

Using POP-11 FORTRAN-77 1-45

/CR
Specifies that a global cross-reference listing is to be appended to the
map file.

/8P
Specifies that the map file is to be spooled to the line printer.

infiles-list

The list of input files that contain compiled FORTRAN-77 object modules.
{This list may also contain compiled or assembled libraries and modules
that were written in a language other than FORTRAN, such as MACRO.)
In many cases, this list contains only one file specification; however, when
there is more than one specification, you must separate the individual
specifications with commas. Only a file name is normally required; a file
type value of OB] is assumed.

The following switches may be applied to input files:

/LB
Specifies that the input file is to be a library file, See Section 1.2.5.3.

/MP :
Specifies that the input file is an overlay description file. See
Section 1.4.

For example, to build a task image for the object file SINGLE, created in
Section 1.4.3, enter the following:

MCR TKB SINGLE/FP,SINGLE=SINGLE.LB:{1.1]F77FCS/LB

If the default I/O support library on your system is RMS-11, you must
explicitly reference RMSLIB in the task-build command line. The previous
example then becomes:

MCR TKE SINGLE/FP,SINGLE=SINGLE,LB: {1, 1]F77RMS/LB,LB: [1,1]RMSLIB/LB

You can also use the TKB command in interactive mode, which permits
you to enter multiple-line commands. To enter interactive mode, you

simply type:
Mcr T8 (RET]
The Task Builder then displays the following prompt:

MCR TKB>

1-46 Using PDP-11 FORTRAN-77

P
Y

You may now enter a single command line that identifies all the input files
you want to use to begin the task build, followed by a carriage return. Or
you may enter additional input files on as many subsequent lines as you
need. When you have entered all your input files, you must type a final
line consisting of two slash characters (//), followed by a carriage retum
(see Section 1,3.4.2 if you are entering any Task Builder options). The
double slash signals the Task Builder to begin processing.

77 1.4.4.2 Task Builder Options _
e The Task Builder allows numerous options to be specified. Several of
these are of particular interest to the FORTRAN-77 user.

To specify options in the MCR command TKB, you must use the Task
Builder in interactive mode, and you must terminate command input
with a line consisting of a single slash (/) (rather than the double slash
described in Section 1.2.5.1). The single slash signals the Task Builder to
prompt you, as follows, for option information:

ENTER OPTIONS:
TKB>

At this point, you can enter as many Task Builder options as you need,
one option per line. After you enter each option, the Task Builder auto-
matically prompts you for the next option until you enter a single slash
(/) to signal no more options. The Task Builder then proceeds to build
the task and to produce any requested output. To exit interactive mode in
TKB, enter two slashes (//).

The following Task Builder options can be useful to you as a
FORTRAN-77 programmer.

ACTFIL—You can declare the total number of input and output files that
a task can open simultaneously, and allocate the proper number of buffers,

by entering:
ACTFIL = n
n

The number, in decimal, of files that can be opened simultaneously and
the buffers needed to accommodate them, The default value is 4.

Any attempt to open a file or use a logical unit when space is not available
for at least one buffer will cause an error at run time,

The value n includes both explicitly and implicitly opened files.

Using POP-11 FORTRAN-77 1-47

ASG—You can assign logical unit numbers to physical devices by entering
the following.:

ASG = devi:ni:n2: ... ,devZ:mi:m2:. ..

dev _
A physical device name.

n
A valid logical unit number.

m
A valid logical unit number.

The default device assignments are as follows:
ABG = 5¥0:1:2:3:4,Ti0:5.CLO:6

EXTTSK—You can allocate additional buffer space for RMS-11
input/output by using the option

EXTISK = n

n

The number, in decimal, of words to allocate. The value assigned by this
option may be overridden by the /INC option on the RUN command (see
Section 1.2.6). '

For information on how to determine the amount of buffer space a
program may need, refer to the RMS~-11 MACRO-11 Reference Manual.

The EXTTSK option is more efficient than the ACTFIL option because:

» The amount of space can be more accurately specified.

¢ The space allocated by EXTTSK does not require disk space in the
task-image file.

When you use an operating system that supports the Extend Task system
directive, the RMS~11 version of the OTS attempts to extend the buffer
space dynamically.

FMTBUF—The default size of the buffer used to contain the internally
compiled form of a format specification stored in an array is 64 bytes. You
can increase the size of this buffer by entering:

FMIBUF = n

1-48 Using PDP-11 FORTRAN-77

n
The decimal size, in bytes, of the run-time format compilation buffer.

The total size needed for format compilation is equal to the largest run-
time format specification used by the program. For information on how to
determine the amount of space needed to store a given format, refer to the
PDP-11 FORTRAN-77 QObject Time System Reference Manual.

GBLPAT—To patch FORTRAN logical unit 0 to a valid system logical
unit, use the option

GBLPAT= main-prog:$LUNO:n

main-prog
The name of your main program segment,

n
A system logical unit number in the range 1 through 99 (see Section 2.1.3).

MAXBUF—The default maximum record size for input/output is set at
133 (decimal) bytes. You can increase this record size by entering:

MAXBUF = n
n
The number of bytes (in decimal).

The default generally is adequate for sequential input/output. If sequen-
tial, direct, or keyed access operations are performed with records larger
than 133 bytes, you must use this option, as follows, to specify the size of
the largest record you intend to process.

For formatted records:
MAXBUF = RECL

For unformatted records: -
MAXBUF = 4+RECL

For segmented records (see Section 2.2.3.3 for a definition of segmented
records):

MAXBUF = (4*RECL)}+2

The two extra bytes for segmented records are the segment control bytes
{see Section 2,.2.3.3).

Using PDP-11 FORTRAN-77 1-48

UNITS—The default number of logical units available to a program is 6
(logical units 1 through 6, inclusive). You can set this number smaller or
larger at task-build time by entering:

UNITS = n

n .
The number, in decimal, of logical units desired, from 0@ to 99.

However, you should be aware that increasing the number of default units
available will increase task size.

The default device and file name associated with a logical-unit number are
discussed in Section 2.1.1.

When you need to assign devices to the units you have specified with the
UNITS option, use the ASG option discussed earlier in this section. If you
need more units than the six provided as the default, you must enter the
UNITS option before you make any assignments with ASG.

1.4.4.3 Library Usage on VMS Systems

There is only one type of VMS library: relocatable. A relocatable library
is a collection of object modules that the Task Builder can make a physical
part of a task image.

Relocatable Libraries—Relocatable libraries are stored in files on disk.
From these libraries, the Task Builder copies object modules into the task
image of each task that references those modules. You must tell the Task
Builder that an input file is contained in a relocatable library by attaching
the switch /LB to the input file specification of the file. If you do not
include an extension with the file name of such a specification, the Task
Builder assumes .OLB as a default. When the Task Builder encounters

a library specification, it includes in the task image being built those
modules in the specified library that contain definitions of any currently
undefined global symbols.

System Libraries—Each VMS system has a system relocatable library,
which follows:

LB:[1,1]5YSLIE.OLB

The Task Builder automatically searches the system relocatable library to

see if any undefined globa] references remain after all the input files have
been processed. If the definition of one of these undefined global symbols
is found, the appropriate object module is included in the task being built.

1-50 Using PDP-11 FORTRAN-77

User Libraries—Using the Librarian Utility, you can construct your own
FORTRAN-77 (or assembly language) relocatable libraries. You then
access these libraries by using the appropriate library switch, as described
in preceding sections. Consult the VAX-11/RSX-11M User’s Guide for
further information on the Librarian Utility,

For example, if MATRIXLIB.OLB is a relocatable library containing ma-
trix manipulation routines and PROG is the object file of a compiled
FORTRAN-77 program that calls the matrix routines, you could enter the
following command line for the Task Builder:

MCR TKB PROG/FP=PROG,MATRIXLIB/LE

1.4.5 Executing a FORTRAN-77 Program

To begin task execution once you have built a task image, you enter a
RUN command of the form:

RUN filespec

filespec
The file specification of the file containing the task image.

You can end a task before its normal completion by typing CTRL/C (*C).

You should not suspend task execution with a PAUSE statement under
VMS. There is no way to resume execution once the task has paused.

In batch mode, the PAUSE statement types the display to the log file, but
the program does not pause.

A task that terminates as a result of a CALL EXIT statement or of reaching
the end of the main program does not produce any output to indicate that
it is terminating.

Using PDP-11 FORTRAN-77 1-51

1.4.6 Examples of FORTRAN-77 Command Sequences

For a FORTRAN-77 task consisting of:

¢ The main program MAIN.FTN
* The subroutine SUBR1.FTN
* Several subprograms in the file UTILITY.FTN

you can use the following sequence of commands for compiling, linking,
and executing:

MCR F77 JOB,JOB= MAIN,SUBR,UTILITY
MCR TKB JOB/FP=JOB,LB:[1,1}F77FCS/LB
Run Jop [RET]

For a more complex task that uses the same FORTRAN-77 source pro-
grams but includes the following options:

s An increase in the user record-buffer size
» Subroutines in the object module library MATLIB.OLB

* The FORTRAN-77 OTS in separate library LB:{1,1jF77FCS.OLB or
LB:[1,1]F77RMS.OLB

* Array bounds checking in the compiled code

you can use the following sequence of commands:

MCR F77 JOB,JOB=MAIN,SUBR1,UTILITY/CK [RET]

¥CR TKB

TKB>JOB/FP=JOB MATLIB/LE,LB: [t,11¥77FC5/L5 [RET]
1%8>/ [AET]

ENTER OPTIONS:

TEB>MAXBUF=256 [RET)

TKB>//
RUN JOB

You can also run this procedure by using indirect command files. For
example, suppose the file COMPILE.CMD contains:

JOB, JOB=MAIN ,SUBR:,UTILITY/CK
and the file LINK.CMD contains:

JOB/FP=J0B,MATLIB/LB,LB: [1,13F77FCS/LB
/

COMMON=PARM : RW

MAXBUF=256

/7

1-52 Using POP-11 FORTRAN-77

The following is now equivalent to the previous example:

MCR F77 QCOMPILE
MCR TKB QLINK

rRUN JoB [RET]

1.5 Overlays

The overlay facility provided by the Task Builder allows large programs
to be executed in relatively small areas of main memory. An overlaid
program is essentially a program that has been broken down into parts,
or overlays, that are loaded into memory automatically during program
execution,

You construct an overlaid program by providing a single file as input to
the Task Builder. This file describes the structure of the overlaid program
and the actual input files and libraries. You indicate an overlay file in TKB
commands with the /MP qualifier on a single input file. For example:

TKB A/FP = A/MP

No other input files need be specified. The default file type for an overlay
description file is ODL.

To specify the structure of an overlay, you use the Overlay Description
Language (ODL).

The following sections provide an introduction to the Task Builder Overlay
Description Language (ODL) and information about building simple
overlaid FORTRAN-77 programs, Consult your operating system’s Task
Builder manual for more detailed information about overlays and building
overlaid programs; also see Section 2.6.5 for information on task-building
programs with RMS-11 using overlays.

Using PDP-11 FORTRAN-77 1-53

1.5.1 Introduction to the Overlay Description Language

You can build overlay structures using three ODL statements:

ROOT specifies the tree structure of an overlay

FCTR specifies a single branch of an overlay tree, called a factor
or segment

.END indicates the end of an overlay description

i

o

%,
v

For example, suppose a FORTRAN~77 program consists of a main pro-
gram {(MAIN.OBJ) that performs input and output and calls three sub-
routines: One subroutine does preprocessing of the data (PRE.OB]J); one
subroutine does the main processing function of the program (PROC.OBJ);
and one subroutine does postprocessing of the data (POST.OBJ). The
following ODL statements specify an overlay structure having a resident
portion that consists of the main program and three overlays that share
the same memory locations. Each overlay contains a single subroutine,
Figure 1-2 illustrates this overlay structure. The ODL statements to create
this structure are as follows:

.ROCT MAIN-*{4,B.C)
.FCTR PRE

.FCTR PROC

.FCTR PODST

.END

awm>

In this example, the .ROOT statement declares the iree structure; the
.END statement indicates the end of the ODL statements; and the names
A, B, and C specify object modules, libraries, other overlay segment
factor names, or indirect ODL file names (if they are preceded by an (@)
symbol). Commas separate descriptions of overlay segments that occupy
the same memory location; parentheses serve to group these descriptions.

Dashes separate descriptions of modules that are concatenated into a N

single segment. The asterisk indicates that the overlay segments are to
be loaded automaticaily whenever a call is made to a subprogram in the
overlay segment. '

1-54 Using POP-11 FORTRAN-77

T

Figure 1-2: Simple Overlay Structure

MAIN

PRE PROC POST

ZK-242-81

A path in an overlay structure is any route from the root of the structure
that follows a series of branches to an outermost segment of the tree.
Figure 1-2 shows only three short paths: MAIN-PRE, MAIN-PROC, and
MAIN-POST. A program in one overlay segment may call a subprogram
in another segment only when the two segments occur on a common
path. For example, MAIN may call PRE, PROC, or POST; however, the
three subroutines cannot call each other.

Figure 1-3 shows a more complex structure specified by the following
ODL statements:

.ROOT A-B-*{C,FCTR1)

FCTR1: .FCTR D-+{E,F,G}
.END

The paths in this structure are A-B-C, A-B-D-E, A-B-D-F, and A-B-D-G.

Using PDP-11 FORTRAN-77 1-55

1.5.2 Building Overlaid FORTRAN-77 Programs

When building overlaid FORTRAN-77 programs, you should pay special
attention to the following:

* Specifying the FORTRAN-77 OTS library

* Declaring common blocks

* Declaring the associated variable in a DEFINEFILE or OPEN statement
s Specifying the RMS-11 library (if used)

If the FORTRAN-77 OTS is in the default system library, no additional
specification is necessary. If the FORTRAN-77 OTS is a separate library,
and FCS-11 is used, then each segment or branch of the overlay structure
must explicitly refer to the FORTRAN-77 OTS library as the last file
specified. On the other hand, if the FORTRAN-77 OTS is a separate
library, and RMS-11 is used, then each segment or branch of the overlay
structure must explicitly refer to the FORTRAN-77 OTS library as the '
next-to-last file specified, with the RMS-11 library specified as the last file. RN
For example, the ODL file for the example in Figure 1-3 must be written i
as follows:

For FCS-11

.ROOT A-B-L-»{C-L,FCTR1}
FCTRY: .FCTR D-L-»(E-L,F-L,G-L)

L: .FCTR LB:F77FCS/LB
.END
For RMS-11
.RDOT A-B~L-R-*(C-L-R,FCTR1)
FCTR:: .FCTR D-L-R-%{C-L-R,F-L-R,G-L-R)
L: _FCTR LB:F77RMS/LB
R: JFCIR LE:RMSLIB/LB
-END

If your program refers to user libraries, these libraries must be explicitly
referenced by each overlay segment that needs them.

1-66 Using POP-11 FORTRAN-77

Figure 1-3: Overlay Structure

ZK-172-81

3
3
J

FORTRAN-77 common blocks are allocated on each overlay path in the
lowest overlay segment in which they are referenced. Therefore, when

a new overlay path is loaded, the data in the common blocks is lost. If
separate overlay paths are to share common data, the common blocks
containing this data must be either declared in the root segment of the
overlay or specified in a SAVE statement. If the data is declared common
only in the overlay segments, separate common areas for each segment
are established and the data is not shared.

Using PDP-11 FORTRAN-77 1-§7

For example, suppose the subroutines shown in Figure 1-2 (PRE, PROC,
POST) communicate using common blocks. If the same common blocks
are not declared common in MAIN, three independent common areas with
the same name will be established, one each for PRE, PROC, and POST.
When PROC overlays PRE, the data in the common block(s) of PRE will
be lost. In general, when one segment overlays another, data unique to
the overlaid segment is lost.

If you use the SAVE statement to protect common data items, you should
be aware that the SAVE statement causes the size of the root segment

of an overlay—and therefore the task size—to become larger. This
enlargement occurs because using the SAVE statement has the effect of
pulling into the root segment of an overlay the $SAVE PSECT and the
PSECTs of any named common blocks mentioned in the SAVE statement.
{The blank common block PSECT (.$$8$), if present, is pulled into the
root segment whether or not a SAVE statement is used, except when the
/NOF77 switch is set; under /NOF77, .$$$$ is never pulled into a root
segment.) The $SAVE PSECT contains the variables and array elements
mentioned in a SAVE statement.

The SAVE statement requires Task Builder support to run .an overlaid
FORTRAN-77 program in which subprograms that access saved variables
reside in different segments of the overlay. Task Builder support is pro-
vided beginning with Version 4.0 of RSX-11M, Version 2.0 of RSX-11M
/M=PLUS, and Version 7.2 of RSTS/E. If you are not running a supported
operating system and are running an overlaid program, you can assure
access to saved variables as follows: Place variables or COMMON state-
ments that contain saved variables in the root segment of the overlay. The
value of saved variables is retained between subprogram calls,

The associated variable in any DEFINEFILE or OPEN statement must be
declared in a common block that is allocated in the root segment.

You can overlay 2 FORTRAN-77 program in one of three ways:

® You can overlay only the program
* You can overlay only the FORTRAN-77 OTS (and RMS-11, if used)

* You can overlay both the program and the FORTRAN-77 OTS (and
RMS-11, if used)

Section 2.6.5 provides information about the RMS-11 overlays used by
the RMS-11 version of the FORTRAN-77 OTS. Section 5.4.8 describes the
OTS overlay files that are available.

The FORTRAN-77 Object Time System Reference Manual describes overlay-
ing the FORTRAN-77 OTS modules in more detail.

1-58 Using POP-11 FORTRAN-71

1.6 Debugging a FORTRAN-77 Program

FORTRAN-77 provides several aids for finding and reporting errors:
¢+ DEBUG lines in source programs

FORTRAN-77 statements containing a “D” in column 1 can be added
for debugging purposes. During program development, you can use
these statements and the /DE switch to type out intermediate values
and results. After the program runs correctly, you can treat these
statements as comments by recompiling without the /DE switch.

* Traceback facility

The compiled code and the OTS provide information on the program
unit and line number of a run-time error. A list, following the error
message, shows the sequence of calling program units and line num-
bers. The amount of information provided in the list is determined
by the /TR switch during compilation. See Section C.3 for the exact
format and content of the traceback.

: _,_-\.375, * The debugging program ODT, a user-interactive debugging aid

You include ODT in a task by specifying the /DA switch on the
task image file specification during task building. When using ODT,
you should have the machine language code listing of the program
{specify the /LL:3 compiler switch) and the task-build map. See the
IAS/RSX-11 ODT Reference Manual for further information.

« PDP-11 FORTRAN-77 Symbolic Debugger

If your site has installed the PDP-11 FORTRAN-77 symbolic debug-
ger, you can use its facilities to provide a more thorough debugging
than any of the above. The symbolic debugger is interactive and can
refer to program locations symbolically and give symbolic output.
With the debugger, you can control program execution in a variety

of ways: You can set breakpoints and tracepoints; step through your
program by line or instruction; and step into or over called routines.
You can examine or deposit data in a variety of formats. For complete
information, see the PDP-11 FORTRAN-77 User's Guide or the PDP-11
FORTRAN-77 Symbolic Debugger User’s Guide.

Using PDP-11 FORTRAN-77 1-58

By c
Sy

Chapter 2

FORTRAN-77 Input/Output

This chapter describes input/output (I/0) as implemented in PDP-11
FORTRAN-77. In particular, it provides information about FORTRAN-77
I/0 in relation to the two supporting 1/0 subsystems: File Control
Services (FCS-11) and Record Management Services (RMS-11).

2.1 FORTRAN-77 1/0 Conventions

Certain conventions for logical device and file name assignments, and for
implied logical units, are common to 1/O operations involving either of
the 1/0 subsystems mentioned above.

2.1.1 Device and File Name Conventions

FORTRAN logical unit numbers correspond one-to-one with the operating
system’s logical units (except FORTRAN logical unit 0, which must be
mapped to a system logical unit number other than 0; see Section 2.1.3).
Default device assignments are made by the Task Builder for each logical
unit allocated for a task.

Listed in Table 2-1 are the default logical device and file name assign-
ments. You can change default device assignments at the following
times: (1) prior to execution, by using the appropriate operating system
command; (2) at task-build time, by using the Task Builder ASG option
(see Section 1.2.5.2); (3) at execution time, by using the ASSIGN system
subroutine (see Section D.2) or an OPEN statement.

FORTRAN-77 Input/Output 2-1

The default file name conventions hold for logical units not listed below;
for exarnple, unit number 12 has a default file name of FOR(12.DAT.
The default device assignment for logical units not listed is the system

disk, 5Y-.

You may use any combination of valid logical unit numbers; however,
there is an imposed maximum number of units that can be active simulta-

neously. This number depends on the number of buffers allocated and the

number of buffers required for each logical unit (usually 1).

Logical unit numbers are allocated consecutively. Therefore, for example,
even though only logical units 3 and 17 are being used, units 1 through
17 must be allocated.

When a logical unit is closed, the default file name assignment that existed
at the start of task execution is reestablished; the default device assignment

becomes undefined.

Table 2-1:

FORTRAN-77 Default Logical Device Assignments

~ Logical Unit

Number

Default Device

Default File Name

0

[+ NS R

14

99

{(Mapped to a system
logical unit other than 0)

System disk, SY:
System disk, SY:
System disk, 5Y:
Systemn disk, SY:

User’s terminal, TI: or TT:

System listing unit, CL:
(RSTS/E limit)

System disk, SY:

FOROD1.DAT
FOR002.DAT
FORG03.DAT
FORO004.DAT
FORO005.DAT
FORD06.DAT

FOR014.DAT

FOR099.DAT

NOTE

The device assignment to a logical unit is not affected by a
CLOSE operation. However, this convention is subject to

2-2 FORTRAN-77 nput/Output

change in future releases and should not be relied on. If the
device assignment of a unit is changed by a CALL ASSIGN or
an OPEN statement, it is recommended that all CALL ASSIGN
or OPEN statements referencing that unit explicitly specify the
device to be used.

2.1.2 Implied-Unit Number Conventions

Certain I/0 statements do not require explicit logical unit specifications.
These statements, and their equivalent forms, are listed in Table 2-2.

From Table 2-2, you can see that a formatted READ statement of the
form:

READ f,list
is equivalent to:

READ(1,.£)1ist

In a program, these two forms function identically. If logical unit number
1 is assigned to a terminal, input comes from this terminal no matter
which of the above READ formats you use.

The PRINT, ACCEPT, and TYPE statements implicitly refer to logical units
6, 5, and 5, respectively.

-

Table 2-2: Implied Unit Numbers
Statement Equivalent

Type Form
£ READ [, list READ (LD list
PRINT £, list WRITE (6,9 list
ACCEPT f, list READ {5.0) list
TYPE £, list WRITE (5,9) list

2.1.3 Mapping FORTRAN-77 Logical Unit 0 to a System Unit

The default mapping of FORTRAN-77 logical unit 0 is to system logical
unit 0; however, 0 is not a valid system logical unit number. Therefore,
to map FORTRAN-77 logical unit 0 to a valid system logical unit, use the

FORTRAN-77 Input/Output 2-3

GBLPAT option (Section 1.4.4.2) when task-building your program,
as follows:

>TKB

TXB> PROG = PROG,LB:[1,1}F77FCS/LB
TKB» /

TKB> ENTER DPTIDNS:

TKB> GBLPAT = FROG:$LUNO:n

TKB> //

where n is a valid system logical unit number.

This command sequence patches global symbol $LUNO in program
segment PROG to system logical unit number n.

2.2 Files and Records

* This secton discusses file structures, record access modes, and record
formats in the context of the capabilities of the FCS and RMS 1/0
subsystems.

2.2.1 File Structure

A clear distinction must be made between the way files are organized and
the way records are accessed.

The term “file organization” refers to the way records are arranged within

a file; the term “record access” refers to the method by which records

are read from a file or written to a file. A file’s organization is specified

when the file is created, and cannot be changed. Record access is specified

each time a file is opened, and can be different each time the same file is sy
opened. This section discusses file organization; Section 2.2.2 discusses S
record access. Table 2-3 shows the valid record access modes for each file
organization. '

Through its two I/O subsystems, FORTRAN-77 supports three file

organizations: sequential, relative, and indexed. Table 2-3 summarizes
which file organizations are available to the various 1/0 subsystems.

2-4 FORTRAN-77 Input/Qutput

Tahle 2-3: Availability of File Organization

FCS-11 RMS-11 RMS-11K
Sequential X X X
Relative - X X
Indexed - — X
T The organization keyword in the OPEN statement specifies: the organiza-

tion of a file, as described in Section 2.3.7.

2.2.1.1 Sequential Organization

A sequential organization file, or sequential file, consists of records ar-
ranged in a physical sequence that is typically identical to the order in
which the records are written to the file; the first record in the file is
the first record written, the second record in the file is the second record
written, and so forth.

A Sequential file organization is permitted on all devices supported by the
FORTRAN-77 system, and is supported by the FCS-11 and RMS-11 [/0O
subsystems.

The sequential files created under the FCS-11 subsystem are compatible,
both structurally and functionally, with sequential files created under the
RMS subsystem. Therefore, you can freely interchange sequential files
among all FORTRAN-77 programs.

2.2.1.2 Relative Organization

/—\"5 A relative organization file, or relative file, consists of a series of num-
e - bered positions, called cells, that can either contain a single record or

remain empty. These cells are of fixed, equal length and are numbered

consecutively from 1 to n, where 1 is the first cell and n is the last cell.

Relative organization allows you to place a record in a file at any position
relative to the beginning of the file. As a result, you can retrieve a record
simply by specifying that record’s relative record number. Conceptually,
then, a relative file is similar to a sequential file processed under direct
access (see Section 2.2.2.2). The one important distinction is that you can
delete a record from a relative file (simply by specifying the appropriate
relative record number).

FORTRAN-77 lnput/Qutput 2-B

Once a record has been deleted from a relative file, the cell containing

it is no longer a logical part of the file, and any attempt to direct-access
that cell produces error message #36: “ATTEMPT TO ACCESS NON-

EXISTENT RECORD."

Relative files can be stored only on disk and are supported only by the
RMS I/0 subsystems,

Indexed Organization

An indexed organization file, or indexed file, consists of records that are
arranged logically according to the value of an alphanumeric or integer
field {called a key field) contained in each record. Unlike the records in a
sequential or relative file, the records in an indexed file are not necessarily
stored contiguously, but may be widely dispersed on disk.

When you create an indexed file, you must designate a specific field,
common 1o each record in the file, as a primary key. The value of this
field in any one record determines the position of this record in a file.

You can designate additional fields in the records of an indexed file as
alternate keys. These fields do not affect the placement of records in

the file (unless the file was created to allow duplicate primary keys, in
which case the records actually having duplicate primary keys are ordered
by an alternate key). However, each alternate key, like the primary

key, provides a way to locate a record within a file. You can specify up
to 255 keys for an indexed file using an appropriate RMS utility (see the
RMS-11 User's Guide). You can also specify keys with an OPEN statement;
however, the maximum number you can specify with an OPEN statement
depends on the total number of parameters you have specified in the
QPEN statement.

Regardless of the means by which they are created, you can access, with
indexed READ statements, up to 255 keys from a FORTRAN-77 program.

An indexed file contains a tree-structured table, called an index, for each
designated key field. Each entry in an index is a pointer to a set of records,
called a bucket, located at the base of the tree. The bucket contains the
record with the designated key value and zero or more records with
lower key values (or the same key values if the key is an alternate key).
A bucket is a unit of I/O transfer consisting of a fixed number of bytes
specified by the BLOCKSIZE keyword (see Section 2.3.2).

2-6 FORTRAN-77 Input/Qutput

Both the number of key fields and the size of the bucket are estab-
lished when you create a file; you cannot change these parameters with
subsequent OPEN statements. When you add or modify records, RMS
automatically updates the indexes and creates additional entries as needed.

Indexed files permit the most flexible record access. This flexibility is
facilitated by the fact that you can use any field in a record as a key and
can have multiple keys.

S When a FORTRAN-77 program creates an indexed file, the primary key

of the records of that file are restricted in two respects: (1) duplicate
primary keys are not allowed because the value of each primary key must
be unique; and (2) when a record in the file is rewritten, its primary key
cannot be changed. These restrictions do not apply to alternate keys.
When an indexed file is created by a means other than a FORTRAN-77
program, and in such a way as to support changes to, and duplicates of,
primary keys, that file may subsequently be used by a FORTRAN-77
program even though there are duplicate primary keys and the values of
any of the primary keys can be changed by the program.

e Indexed files can be stored only on disk and are available only if RMS-11
} is available on your system.

2.2.2 Access to Records

You can select records for processing by the following methods:
* Sequential (including append) access
* Direct access

Py * Keyed access

Table 2-4 summarizes the ways in which each of the three file organiza-
tions can be accessed.

FORTRAN-77 Input/Qutput 2-7

Table 2-4: Access Modes Per File Organization

Access
Organization Sequential Direct Keyed Append
Sequential X X\ x?
Relative X X
Indexed X X

lFixedﬁlger\gtlw. Tecords only,

Append access to a sequential file consists of opening the file for sequential access and
initially positioning the current record printer at the end of the file.

The FCS-11 1/0 subsystem suppbrts only sequential and direct access (to
sequential files); keyed access is supported only by RMS~11 software.

2221

Sequential Access

Sequential access means, as the term implies, that records are processed
in sequence. The exact nature of this processing sequence depends on
the organization of the file. For sequential files, the processing sequence
consists of the physical progression of the records in the file, from first
created to last created. Processing a sequential file under sequential access
requires that a desired record be read only after all records physically
preceding it have been read, and that a new record be written only to the
curtent end of the file. For relative files, the processing sequence consists
of the numerical order of the record cells (some of which may not have a
record in them). Reading a relative file under sequential access requires
that a desired record be read only after all existing records preceding it
have been read {empty cells are passed over). Writing to a relative file
under sequential access allows a new record to be written at any point.
For example, if records 1 and 2 are read {in sequential access mode) in a
relative file consisting of 24 record cells, and then a record is written, the
new record is written into cell 3 of the file, replacing any old record that
may have been there. (The concept of writing a record into a cell already
containing a record is a FORTRAN-77 concept.)

The processing sequence for an indexed file consists of an index of as-
cending key values; a corresponding physical sequence may or may not
exist. Reading an indexed file under sequential access requires that only
the desired record be read. New records may be added at any point, with
the key values within a record determining the record’s position.

2-8 FORTRAN-77 Input/Output

2.2.2.2 Direct Access

Direct access means that records are selected for processing on the basis of
their position relative to the beginning of a relative or sequential file. Only
one record needs to be read and a new record can be added at any point.
Each READ or WRITE statement must include a relative record number
that specifies the record to be read or written,

You can direct-access relative files and sequential files containing fixed-
length records that reside on disk, but you cannot direct-access indexed
files. Because direct access uses cell numbers to identify and find records,
you can issue successive READ or WRITE statements requesting records
that either precede or follow previously requested records.

For example, the statements

READ{UNIT=12,REC=24) XARRAY
READ (UNIT=12,REC=20) ZARRAY

transfer the data in record 24 of the file connected to logical unit 12 to
the variable XARRAY, and the data in record 20 of the same file to the
variable ZARRAY,

Using direct access to read records in an RMS-11 sequential or relative
file may result in FORTRAN run-time error 36 if the specified record was
never written. FORTRAN run-time error 36 may also occur if the specified
record of a relative file has been deleted.

2.2.2.3 Keyed Access

Keyed access means that records are selected for processing on the basis
of alphanumeric strings or integer values, called keys, that identify the
desired records. Each indexed READ statement contains a key value that
is used to locate the record to be read. The key value is compared against
index entries until the bucket containing the record is located. The bucket
is then read until the exact record is located.

To insert a new record in an indexed file, you specify in the /O list of an
indexed WRITE statement an item that has previously been defined as a
key for the records in the relevant file; you do not specify. a KEY= value in
the WRITE statement. For example, if NAME has previously been defined
in an OPEN statement as a key for the records of an indexed file, to insert
a new record in that file you can use the following statement:

WRITE (UNIT=10, ERR=0999)0RDER. NAME,
1 ADDRESS, CITY, STATE, ZIP, ITEM

FORTRAN-77 Input/Qutput 2-9

Keyed access is valid only for indexed files.

See Chapter 7 for more information on using indexed files.

2.2.3 Record Formats

Records can be stored in a file in one of three formats:
* Fixed length

* Variable length

'* Segmented (sequential files only)

The format that applies in a particular case depends on the organization of
the file.

NOTE

The term “record format” refers to whether a record is fixed
length, variable length, or segmented; the term “record type”
refers to whether a record is formatted or unformatted. “Record
type” should not be confused with the keyword RECORDTYPE.

Fixed-Length Records

When you specify fixed-length records for a file (see Section 2.3,10), you
are specifying that all records in the file are to contain the same number of
bytes; you specify the size of these records by means of the RECORDSIZE
keyword of the OPEN statement (see Section 2.3.9). If the record numbers
are to be computed correctly, a sequential file to be opened for direct
access must contain fixed-length records.

You can use fixed-length records with sequential, relative, or indexed files.

Each fixed-length record in a relative file contains an extra byte, called
the deleted-record control byte. The record overhead in an indexed file
consisting of fixed-length records is seven bytes per record.

Fixed-length records always start on a word boundary. An extra byte,
called the “pad byte,” is allocated if the record length of a fixed-length
record is odd.

2-10 FORTRAN-77 Input/Dutput

2.2.3.2 Variable-Length Records

Variable-length records can contain any number of bytes, up io a specified
maximum, This maximum can be specified by the RECORDSIZE keyword
of the OPEN statement (see Section 2.3.9}.

You can use variable-length records with sequential, relative, or indexed
file organizations.

ST Each variable-length record is prefixed by a count field that indicates the
e number of data bytes in the record. The count field comprises two bytes
on a disk device and four bytes on magnetic tape.

Variable-length records in relative files are actually stored in fixed-length
cells, the size of which must be specified by the RECORDSIZE keyword of
the OPEN statement (see Section 2.3.9). The count field in variable-length
records in a relative file specifies the largest record that can be stored in
that file. Each variable-length record in a relative file contains three extra
bytes, two for the count field and one for deleted-record control. Each
variable-length record in an indexed file contains nine extra bytes.

You can make the count field of a variable-length record available to a
program by means of a READ statement with a Q format descriptor. You
can then use the count field information to determine how many bytes of
data should be read by an I/0 list.

2.2.3.3 Segmented Records

A segmented record is a single logical record consisting of one or more
variable-length records (segments). The length of a segmented record is
arbitrary; however, the length of the segments themselves is specified by
the RECORDSIZE keyword (see Section 2.3.9). Segmented records are
useful when you want {0 write exceptionally long records. Unformatted
sequential records written to sequential files are, by default, stored as.
segmented records.

The segmented record is unique to FORTRAN and can be used only with
unformatted sequential files under sequential access. You should not
use segmented records for files that will be read by programs written in
languages other than FORTRAN.

Because there is no set limit on the size of a segmented record, each
variable-length record segment in the segmented record contains control
information to indicate that it is one of the following:

¢ The first segment in the segmented record

FORTRAN-77 Input/Cutpt 2-11

¢ The last segment in the segmented record
e The only segment in the segmented record
* A segment in the segmented record other than one of the above

This control information is contained in the first two bytes of each segment
of a segmented record.

When you wish to access an unformatted sequential file that contains
fixed-length or variable-length records you must specify RECORDTYPE=F
or RECORDTYPE="VARIABLE' when you open the file; otherwise, the first
two bytes of each record will be misinterpreted as control information, and
errors will probably resuit.

2.3 OPEN Statement Keywords

The following sections supplement the OPEN statement description that
appears in the PDP-11 FORTRAN-77 Language Reference Manual. In
particular, implementation-dependent and/or system-dependent aspects

of certain OPEN statement keywords are described. This section does not -
discuss all the keywords that apply to the OPEN statement.

2.3.1 BLANK

‘BLANK in an OPEN statement controls the interpretation of blanks in
numeric input fields. The default is BLANK=~"NULL’ (blanks in numeric
input fields are ignored).

If a logical unit is opened by means other than an OPEN statement,
a default equivalent to BLANK="ZER(Q' is assumed (that is, blanks in
numeric input fields are treated as zeros).

The BLANK keyword affects the treatment of blanks in numeric in-
put fields read with the D, E, F, G, I, O, and Z field descriptors. If
BLANK="NULL' is in effect for these descriptors, embedded and trailing
blanks are ignored; the value affected is converted as if the nonblank
characters were right justified in the field. If BLANK="2ZEROQ' is in effect,
embedded and trailing blanks are treated as zeros.

2-12 FORTRAN-77 Input/Output

The /F77 switch determines whether a default of BLANK="NULL’ or
BLANK='ZER(Y is assumed, as illustrated below:

OPEN(UNIT=1, STATUS='0LD®)
READ(1,10)I,J

10 FORMAT(2I5)
END

Data record: 1 2 12
Assigned values:

Pl /FTT /NOF77
L I= 12 I= 1020
J= 12 J= 12

If your program treats blanks in numeric input fields as zeros, and you do
not want to use the /NOF77 switch, include BLANK="ZERO" in the OPEN
statement or use the BZ edit descriptor in the FORMAT statement.

2.3.2 BLOCKSIZE

BLOCKSIZE specifies the physical 1/0O transfer size for a file. A
BLOCKSIZE specification has the form:

BLOCKSIZE = bks

For magnetic tape files, the value of bks specifies the physical block size in
the range 18 to 32767 bytes. The default value is 512 bytes.

For tape files created through the RMS-11 subsystem, the maximum block
size is 8192.

For sequential disk files, the value of bks is rounded up to an integral
number of 512-byte blocks and used to specify multiblock transfers. The
number of blocks transferred can be 1 through 127. The default value is
one block.

For relative and indexed files, the value of bks is rounded up to an integral
number of 512-byte blocks and used to specify the RMS5-11 bucket size,
in the range 1 to 32 blocks (1 to 15 on RSTS/E). The default value is the
smallest value capable of holding a single record.

When you select a blocksize, and thereby determine the bucket size used
by RMS-11, you should consider the performance effects of the following
factors: file organization, record format, record size, and the internal
information that RMS-11 maintains in each bucket. For example, a large
bucket size generally speeds up sequential access to a file because fewer

FORTRAN-77 Input/Output 2-13

1/0 transfers are required. On the other hand, a minimal bucket size
means that minimal 1/0 buffer space is required.

Consult the RMS-11 User's Guide for information on determining optimal
bucket size.

2.3.3 BUFFERCOUNT
BUFFERCOUNT specifies the number of memory buffers. A BUFFERCOUNT 3

specification has the form:
BUFFERCOUNT = be

The range of values for b is -1 through 255; a buffercount of -1 specifies
that a unit will be opened in block mode rather than record mode. The
size of each buffer is determined by the BLOCKSIZE keyword. Therefore,
if BUFFERCOUNT=3 and BLOCKSIZE=2048, the total number of bytes
allocated for buffers is 3«2048, or 6144.

The default value is one buffer for each sequential or relative file, and two
buffers for each indexed file. '

2.3.4 DISPOSE

DISPOSE specifies the disposition of a file at the time the file is closed. A
DISPOSE specification has the form:

'SAVE'
. DISPOSE= *KEEP'
DISP= 'DELETE'
'PRINT'

DISPOSE cannot be used to save or print a scratch file, or to delete or
print a read-only file. A DISPOSE parameter in a CLOSE statement
always supersedes a disposition specified in an OPEN statement.

On an IAS operating system, a file printed under DISPOSE is always
deleted; on an RSX-11M or M-PLUS system, a file printed under
DISPOSE is always saved.

The RMS~11 version of the OTS does not support the DISPOSE= "PRINT
option; the file is always saved. Likewise, DISPOSE="PRINT" is not
supported on RSTS/E; the file is always saved.

2-14 FORTRAN-77 input/Output

-

it

2.3.5 INITIALSIZE and EXTENDSIZE

INITIALSIZE specifies the initial storage allocation for a disk file, and
EXTENDSIZE specifies the amount by which a disk file is extended each
time more space is needed for the file.

INITIALSIZE is effective only at the time a file is created. If you specify
EXTENDSIZE when creating a file, the value you specify becomes the
default value used by the system to allocate additional storage for the file.
If you specify EXTENDSIZE when opening an existing file, the value you
specify supersedes any EXTENDSIZE value specified when the file was
created, and remains in effect until you close the file.

If the value of INITIALSIZE is positive, the system allocates contiguous
space; if the value is negative, the system allocates noncontiguous space.

If there is not enough space available to hold the uutxal size of a file or to
extend a file, an error message is issued.

On RSX-11, if you do not specify an INITIALSIZE value, the system
allocates no file storage for data records at the time a file is created;
instead, the system allocates file storage dynamically as needed, except
on RSTS/E systems. On RSTS/E, if you do nct specify an INITIALSIZE
value at file creation, run-time errors may occur. For direct access files,
only the file storage actually written is allocated; therefore, a direct-
access READ to any point beyond the allocated storage results in an error
condition.

2.3.6 KEY

KEY specifies one or more fields to function as keys for accessing records
in an indexed file. A KEY specification (not to be confused with “key”
specification) has the form:

KEY= (kspec 1, kspec}...)
KSPEC =.s: e[: dt]

]

The starting byte position of the key. (The first byte of a record in
FORTRAN-77 is assigned to position 1.

e
The ending byte position of the key.

FORTRAN-77 Input/Output 2-15

dt
The key data type: INTEGER, for binary integer keys, or CHARACTER,

for character-string keys. (If dt is omitted, the key data type is
CHARACTER.) - \

The data type of a key determines the order in which records are indexed
for sorting. The data type of a key is not affected by the formatting you
use for a key value at the time you create a record. Usually, however, if
you specify integer keys for a formatted file, you should use A-formatting
for the key values when creating records in that file, See Section 7.8 for
more information on using integer keys.

A key field has a length of e-s+1, where the values of s and e must be
such that:

1 .LE. (8) .LE. {e) .LE. record-length
1 .LE. (e-s+1) .LE. 255

The key length of an integer key must be either 2 or 4, to correspond to
INTEGER+2 or INTEGER*4, respectively.

2.3.7 ORGANIZATION

ORGANIZATION specifies the type of organization a file has or is to have.
An ORGANIZATION specification has the form: :

) {SEQUENTIAL'
ORGANIZATION = 'RELATIVE'
INDEXED

The default file organization is sequential.

When an existing file is opened, the specified file organization must match
the actual file organization. The ORGANIZATION keyword must be
specified for relative or indexed files.

2-16 FORTRAN-T77 Input/Output

2.3.8 READONLY

READONLY specifies that write operations are not to be allowed on the
file being opened. The main purpose of READONLY is to allow two or
more programs to read a file simultaneously without having to change the
protection specified for that file. Changing the protection specified for a
file can be hazardous because run-time I/0O errors can occur as a result
of the default file access privileges being read or written at the same time
a file's protection does not permit write access. Therefore,"if you want
to open a file for the purpose of reading it, but do not want to prevent
others from being able to read the same file while you have it open,
specify the READONLY keyword. For more information on file sharing,
see Section 2.3.11.

2.3.9 RECL (Recordsize)

RECL specifies how much data a record can contain. A RECL specification
has the form:

RECL
RECORDSIZE = rl

The value of 1l specifies the length of the logical records in a file. For files
that contain fixed-length records, 1l specifies the length of each record;
for files that contain variable-length records, 1l specifies the maximum
length of any record; for files containing segmented records, rl specifies
the maximum length of any segment.

The value of r] does not include the bytes that the file system requires
for maintaining record-length and record-control information; it does,
TN however, include the two segment control bytes, if present.

The value of rl is interpreted as either bytes or storage units (a storage
unit consists of four bytes). It is interpreted as bytes if the records are
formatted and as storage units if the records are unformatted. Table 2-5
summarizes the maximum values that can be specified for r] for each file
organization and record-format combination. Table 2-6 summarizes the
default RECL values the system uses when a file is created.

FORTRAN-77 Input/Output 2-17

Table 2-5: RECL Value Limits

File Organization Record Type
Formatted Unformatted

_ (Bytes) (Storage Units)
Sequential 32766 8191
Variable-length records on 9999 2499
magnetic tape
Relative 16380 4095 L
Indexed | 16360 4090 L

Table 2-6: DPefault RECL Values

Record Type Size (Bytes)
Formatted 133
Unformatted, fixed-length 128
Unformatted, variabie-length 126

If you are opening an existing file that contains fixed-length records or
that has relative organization, and you specify a value for RECL that is
different from the actual length of the records in the file, an error occurs.
If you omit a RECL specification when opening an existing file, the system
uses by default the record length specified when the file was created.

You must make a RECL specification when you create a file that containg
fixed-length records or that has relative organization.

NOTE

You must specify the Task Builder option MAXBUF if records
larger than 133 bytes are to be processed.

2-18 FORTRAN-77 Input/Output

2.3.10 RECORDTYPE

RECORDTYPE specifies the structure of (the record type of) the records in
a file. A RECORDTYPE specification has the form:

'FIXED'
RECORDTYPE = 'VARIABLE'
'SEGMENTED '

RECORDTYPE is particularly useful when you want to override the
default record type used in creating a file. The default record type is:

* Tixed if the file organization is indexed or relative, or if the access
mode is direct

e Variable if the file organization is sequential and the access mode is
formatted sequential

* Segmented if the file organization is sequential and the access mode is
unformatted sequential

The default RECORDTYPE value the system uses when accessing an
existing file is determined by the record structure of the file, with one
exception. In the case of unformatted sequential files containing fixed-
or variable-length records you must explicitly override the default (which
is "'SEGMENTED") by specifying the appropriate RECORDTYPE value

in the OPEN statement. You cannot use an unformatted sequential
READ statement to access an unformatted sequential file that contains
fixed-length or variable-length records unless you specify the appropriate
RECORDTYPE value in an OPEN statement. Files containing segmented
records can be accessed only by unformatted sequential I/0O statements.

2.3.11 SHARED

Ry

SHARED specifies that a file can be accessed by more than one program at
a time, or by the same program on more than one logical unit. The forms
of mutual accessing, or sharing, permitted depend on the organization of
the file and on the 1/O system (FCS-11 or RMS-11) in use.

FCS-11 permits multiple readers and 2 single writer.

RMS-11 permits multiple readers and multiple writers on relative and
indexed files, It does not permit multiple writers on sequential files; how-
ever, it does permit multiple readers, provided you specify READONLY in
all programs that open the files affected.

FORTRAN-77 Input/Output 2-19

When you specify the SHARED keyword, other users can access the file
with write access. If write-sharing occurs, RMS-11 uses a bucket-locking
facility to control operations on the file and ensure that simultaneous
write, update, or delete operations on the same record do not occur. See
Section 2.6.4 for additional information.

2.3.12 USEROPEN

USEROPEN provides access to features of the supporting I/0 system
not directly supported by the FORTRAN-77 I/O system. Or, more
specifically, USEROPEN allows you to access RMS or FCS capabilities
and at the same time retain the ease and convenience of FORTRAN-77
programming.

USEROPEN is intended for experienced users.

For the interface specification for a USEROPEN routine, see the
FORTRAN-77 Object Time System Reference Manual. Consult the

IAS/RSX-11 I/0 Operations Reference Manual for FCS details. Consult the
RMS-11 MACRO-11 Reference Manual for RMS details,

2.4 BACKSPACE and ENDFILE Implications

This section describes implications of the BACKSPACE and ENDFILE 1/0
statements, which are supported only for sequential files.

A BACKSPACE operation cannot be performed on a file that is opened for
append access, because under append access the current record count is
not available to the FORTRAN-77 1/0 system; backspacing from record
n is done by rewinding to the start of the file and then performing n-1
successive reads to reach the previous record.

The ENDFILE statement writes an end-file record. Because the concept of
an embedded end-file is unique to FORTRAN, the following convention
has been adopted: An end-file record is a 1-byte record that contains

the octal code 32 (CTRL/Z), An end-file record can be written only to
sequentially organized files that are accessed as formatted sequential

or unformatted segmented sequential. End-file records should not be
written in files that are read by programs written in a language other than
FORTRAN,

2-20 FORTRAN-77 Input/Output

2.5 FORTRAN-77 Input/Output Using File Control Services (FCS)

File Control Services (FCS-11) is an I/O subsystem that provides
sequential and direct access to sequential files. For a detailed discussion of
FCS-11, consult the IAS/RSX-11 /O Operations Reference Manual.

7 28,1 OTS/FCS Record Transactions

Records are transferred with FCS record mode macros as"follows:
* Sequential input—GET$S

* Sequential output—PUTES

s Direct input—GET$R

s Direct output—PUT$R

<7y 2.5.2 OTS/FCS File Open Conventions

A file or device is opened for I/O activity by the execution of an OPEN
statement, or by the execution of an input or output statement if no
file/device is already open on the logical unit specified in the statement.
The type of FCS open operation invoked is based on the specifications {ex-
plicit or implied) in the OPEN statement or on the type of 1/O statement,

as follows:
Input statement CPENSLU
Output statement OPENS$W
2 e OPEN statement
B e TYPE="OLD’ OPENS$U
. TYPE='NEW’ OPENSW
TYPE='SCRATCH’ OPENS$W, followed by call to .MRKDL

TYPE=UNKNOWN’ try OPEN$U: if no such file, then OPEN$W.

Files created for formatted input/output (both sequentia{l and direct access)
are given the FORTRAN carriage-control attribute (FD.FTN).

FORTRAN-77 Input/Output 2-21

2.5.3 FCS Implications of FIND and REWIND

This section describes FCS-specific implications of the FIND and REWIND
I/O statements.

A FIND statement is similar to a direct access READ operation with no
17O list and may cause an existing file to be opened; upon execution, it
assigns to an associated variable the specified record number.

FCS does not allow error checking with the FIND statement

A REWIND statement is performed as an FCS .POINT operation that spec-
ifies positioning at the beginning of the indicated file (block=1, byte=0).

2.5.4 FCS File Sharing

The FCS file system permits files to be simultaneously accessed by two or
more tasks.

Two tasks writing to a shared file in which some of the records cross block
boundaries may produce undesirable results. That is, because the read,
modify, and rewrite sequences performed by two tasks writing to a shared
file are asynchronous and independent, a record can occur in which part
of the data was written by one task and part by another. In addition,
because FCS generally tries to minimize disk activity by postponing a
rewrite in case a subsequent read or write can be performed using the
in-task buffer image, the disk image of a file may be out-of-date for
arbitrary time intervals. This problem of outdatedness may be encountered
on both sequential and direct access input/output.

You may encounter a related problem in regard to the logical end-of-file.
When a file is extended, the disk description of the logical end-of-file is
not updated until the file is closed by all tasks accessing it. Therefore, if
one task has opened a file to append new records and has not yet dosed
it, a second task opening the file to read certain of its records is not able to
read any of the new records appended by the first task. Furthermore, it is
not able to read any of these new records until the following has occurred:
The first task has closed the file; the second task has closed the file; the
second task has reopened the file,

When using shared files, you must pay careful attention to the intertask
coordination required for reliable performance.

2-22 FORTRAN-77 Input/Output

2.6 FORTRAN-77 Input/Output Using Record Mlanagement
Services (RMS)

_ Record Management Services (RMS-11) is an I/0 system that supports
sequential and direct access to sequential and relative files. For a detailed
discussion of RMS-11, consult the RMS-11 MACRO-11 Reference Manual
and the RMS-11 User’s Guide, The RMS-11 User’s Guide contains useful

e information on RMS-11 file structures and ways to improve performance.

5 Note, however, that the RMS~11 features that are a part of FORTRAN-77
are a subset of the total facilities discussed in the RMS-11 User’s Guide; all
RMS features, however, are available through USEROPEN.

2.6.1 OTS/RMS Record Transactions

To read records under RMS, READ statements use the RMS $GET macro;
to write to records, WRITE statements use the RMS $PUT macro to add
new records and the RMS $UPDATE macro to rewrite existing records in
B a direct access sequential file.

To update a record in an indexed file, the REWRITE statement uses the
RMS $UPDATE macro.

To delete records, the DELETE statement uses the RMS $DELETE macro.
You cannot DELETE records in a sequential file,

2.6.2 OTS/RMS File Open Conventions

A file or device is opened for 1/0 activity by the execution of an OPEN
statement or by the execution of an input or output statement. The type
of open operation invoked is based on the specifications in the OPEN
statement or on the type of 1/C statement, as follows:

FORTRAN-77 Input/Output 2-23

Input statement $OPEN

Output statement $CREATE

OPEN statement
TYPE='OLD” $OPEN
TYPE=NEW’ $CREATE
TYPE~'SCRATCH" $CREATE with FB$TMD set

TYPE~UNKNOWN’ QOPENS; if no such file, then $CREATE,

2.6.3 RMS implications of FIND, REWIND, UNLOCK

This section describes RMS-specific implications of the FIND, REWIND,
and UNLOCK statements.

A FIND statement is similar to a direct access READ statement with no
1/0 list and may cause an existing file to be opened, The RMS $FIND
macro is executed to locate and lock the specified record.

A REWIND statement results in a call to the RMS $REWIND macro.

The UNLOCK statement unlocks the bucket currently locked on the
specified logical unit by executing the RMS $FREE macro. If no record is
locked, the operation has no effect, See Section 2.6.4 for details on file
sharing and using the UNLOCK statement.

2.6.4 RMS File Sharing

You can write-share relative and indexed files, but not sequential files.

If a program has write access to a shared file, RMS-11 locks every bucket
accessed by a successful READ or FIND statermnent until another /0 oper-
ation is performed on the same logical unit. If a program attempts to ac-
cess a record that RMS has locked, FORTRAN run-time error “SPECIFIED
RECORD LOCKED” is reported.

To ensure the greatest flexibility at run time, you should always anticipate
the possibility that any record you attempt to access might be locked by
another logical unit in your own program or by a logical unit in another
program. You can be properly prepared by employing the following
procedures when you write programs.

If you are using a single logical unit to access a file and you encounter the
record-locked error, you can reexecute the 1/0O statement that failed until
RMS-11 indicates successful completion.

2-24 FORTRAN-7 Input/Cutput

(R

If you are using multiple logical units to access a file, you cannot simply
reexecute the 1/0 statement that failed. One of your other logical units
may have Jocked the target bucket; therefore, you could place your
program in an infinite loop if you were to continue to execute the same
statement. Instead, you should first execute an UNLOCK statement for
all other logical units having access to the same file in your program.
You can then safely reexecute the I/O statement until RMS-11 indicates
successful completion,

Never retain a lock on a bucket longer than necessary. For example, when
you execute a successful READ or FIND statement, you cause RMS-11 to

lock a bucket; therefore, you should immediately execute an UNLOCK on
the logical unit so that RMS-11 will unlock the bucket.

The following program segment demonstrates the programming tech-
niques you should use for shared files. The program attempts to access a
record whose key value is contained in the byte array KEYVAL.

10 READ (IDXLUN, KEY=KEYVAL, ERR=20) DATA
UNLOCK (IDXLUN)

(process record)

20 CALL ERRSNS (IERR)
If (IERR .EQ. 52) GO TO 10
TYPE #, ‘ERROR READING INDEXED FILE', IERR
STOP ‘
END

2.8.5 Task Building with RMS

RMS-11 is a set of file access routines that execute as part of a task. The
Task Builder resolves references to these routines in either an object library
(LB:[1,1]JRMSLIB.OLB or LB:RMSLIB.OLB on RSTS/E) or a resident library
(RMSRES or RMSSEQ).

Because these routines add from 8K bytes to 44K bytes to the size of a
task, you may need to overlay the RMS portion of a task. A series of
standard ODL files that describe disk-resident overlays requiring different
amounts of space is provided. Table 2-7 shows the size of the RMS
portion and the RMS features included for each standard ODL file.

FORTRAN-77 Input/Output 2-25

Table 2-7: RMS File System lLibraries

Approximate
File Name' Addition Features Included
LB:[1,1JRMS115.0DL 8K bytes Sequentia! and relative
organizations
LB:{1.1JRMS11X.0DL 9K bytes Sequential, relative and
: indexed organizations
LB:1,1]RMS12X.0DL 12K bytes Bequential, relative and

indexed organizations (in
fewer overlay segments
than RMS11X)

'Do not include {1,1] on RSTE/E systems

A prototype ODL file, LB:[1,1]RMS11.0DL, is also provided (LB:RMS11.0DL
on RSTS/E). This file is similar to RMS11X.ODL, but it contains commenis
and instructions to aid you in optimizing the overlay structure to accom-
modate your particular task requirements. Refer to the RMS-11 User’s
Guide for information on optimizing the overlay structure.

The standard RMS ODL files are incorporated into a program ODL file as
tollows:

The factor RMSROT (which is defined in the RMS ODL file, that is, in
RMS115.0DL, RM511X.0DL, and RMS512X.0DL) must be added to the
task root segment. The factor RMSALL (which is also defined in the RMS
ODL files) should be added as an RMS co-tree root segment. For example:

.ROOT MAIN-RMSROT, RMSALL ;RMS co-tree

The following ODL file builds the same overlaid program as described in
Section 1.4; it incorporates an overlaid RSX-11M OTS and the 12K-byte
version of RMS as a co-tree. On R5TS/E, [1,1] would not be included.
{See Section 5.4.8 for more information on overlaying the FORTRAN-77
OTS.)

.ROOT MAIN-OTSROT-RMSROT-OVL,OTSALL, RMSALL
OvL: FCTR +(PRE,PROC, PGST)
QLB:[1,1]RNSI1M
QLE: {1,1IRMS1X

.END

2-26 FORTRAN-77 Input/Output

NOTE

The FORTRAN-77 OTS and RMS must both be set up as
co-trees (as shown above) or not overlaid at ail.

You may also be able to use an RM5-11 shared resident library (RMSRES)
if your system supports one. Using RMSRES requires 16K bytes of address
space, but significantly reduces both task-build time and execution time.

— You can include the RMS shared library RMSRES in your task by using
0 the following procedure:

e Specify LB:{1,1]RMSRLX.ODL (LB:RMSRLX.ODL on RSTS/E) as the
indirect RMS ODL file within your ODL file.

* Include LIBR= RMSRES:RO as a task-build option,

You can include the RMS shared library for sequential organization,
RMSSEQ, in your task by using the following procedure:

* Specify LB:[1,1)RMSRLS.ODL (LB:RMSRLS.ODL on RSTS/E) as the
indirect RMS ODL file within your ODL file.

¢ Include LIBR= RMSSEQ:RO as a task-build option.

FORTRAN-77 Input/Output 2-27

Chapter 3

PDP-11 FORTRAN-77 Operating

Environment

This chapter discusses aspects of the PDP-11 FORTRAN-77 compiler and
OTS operating environment, Information is provided on the following:

The PDP-11 calling sequence convention

FORTRAN program sections

FORTRAN COMMON bilocks and RSX-11 system common blocks
FORTRAN-77 OTS shared libraries

FORTRAN-77 OTS error processing

Compiler listing-file format

3.1 FORTRAN-77 Object Time System

The FORTRAN-77 Object Time System (OTS) is composed of the follow-
ing routines:

Math routines, including the FORTRAN-77 library functions and other
arithmetic routines (for example, exponentiation routines)

Miscellaneous utility routines (ASSIGN, DATE, ERRSET, and so forth)
Routines that handle FORTRAN-77 input/output

Error-handling routines that process arithmetic errors, /O errors, and
system errors

Miscellaneous routines required by the compiled code

PDP-11 FORTRAN-77 Qperating Environmant 3-1

The FORTRAN-77 OTS is a coliection of many small modules that allows
you to omit unnecessary routines during task-building. For example, if a
program performs only sequential formatted I/O, none of the direct-access
I/0 routines are included in the task.

3.2 FORTRAN-77 Calling Sequence Convention

The PDP-11 FORTRAN-77 calling sequence convention is compatible E
with all PDP-11 processor options and provides both reentrant and Sy’
nonreentrant forms,

3.2.1 The Call Site

The MACRO-11 form of the call is:
; IN INSTRUCTION~SPACE
MOV #LIST,RE ADDRESS OF ARGUMENT LIST T0

;REGISTER 5
JSR PC,8UB ;CALL SUBROUTINE
; IN DATA-SPACE
LIST: .BYTE N.O ;NUMBER OF ARGUMENTS
-WORD ALR1 ;FIRST ARGUMENT ADDRESS
-WORD ADRN ;N'TH ARGUMENT ADDRESS

The argument list must reside in DATA-SPACE and, except for subpro-
grams and statement label arguments, all addresses in the list must also
refer to DATA-SPACE. The argument list itself cannot be modified by the
called program,

The byte at address LIST+1 should be considered undefined and not
referenced. This byte is reserved for use as defined by DIGITAL.

The called program is free to refer to the arguments indirectly through the
argument list. This argument-passing mechanism is known as
call-by-reference.

3-2 PDP-11 FORTRAN-77 Operating Environment

3.2.2 Return

Control is returned to the calling program by restoring (if necessary) the
stack pointer to its value on entry and executing the following:

RTS PC

3.2.3 Return Value Transmission

Function subprograms return a single result in the processor general
registers. The register assignments for returning the different variable

types are:
Type Result
INTEGER=2
LOGICAL+1 RO
LOGICALs2
INTEGER#*4 RO—low-order result
LOGICAL*4 Rl—high-order result
Real RO—high-order resuit
Rl-low-order result
RO0—highest-order result
Double R1 -,
Precision R2 -
R3-—lowest-order result
Complex . RO—high-order real result

Rl1—low-order real result
R2—high-order imaginary result
R3—low-order imaginary result

POP-11 FORTRAN-77 Operating Environment 3-3

aam

3.24 Register Usage Conventions

Before making a call, a calling program must save any values in general-
purpose registers R0 through R4 that it needs after a return from a subpro-
gram. After a return, a calling program cannot assume that the argument
list pointer value in register R5 is valid.

Conventions for floating point registers are similar to those for general-
purpose registers. If a Floating Point Processor (FP11) or the floating point
microcode option (KEF11A) is present on a system, the calling program
must save and restore any floating point registers in use by a calling

“program. The calling program cannot assume that the floating point status

bits I/L (integer/long integer) or F/D (floating/double precision) are
restored by the called routine.

A subprogram that is called by a FORTRAN-77 program can freely use
processor registers RO-R5, FPP registers FO-F5, and the FPP status register.
When returning from a subroutine {when the RTS PC is executed), the ini-
tial (routine entry) value must be restored to the contents of the processor
hardware stack pointer SP.

3.25 Nonreentrant Example

In nonreentrant forms, the argument list can be placed either in line

with the call or out of line in an impure data section. (The latter is
recommended and illustrated here, and is the form produced by the
FORTRAN-77 compiler.) Example 3-1 illustrates assembly language code
implementing a small FORTRAN-77 FUNCTION subprogram that uses
the nonreentrant form of a call. Note that the nonreentrant form is shorter
and generally faster than the reentrant form because addresses of simple
variables can be assembled into the argument list.

3-4 POP-11 FORTRAN-77 Operating Environment

4

"y

ke

Example 3-1: Call Sequence Conventions: Nonreentrant
Example

INTEGER FUNCTION FNC(I.J)
INTEGER FNC1
FHC=FNC1(In* 5)+I

RETURN
END
.PSECT
.GLOBL FNC,FNC1 .
FNC: MOV RS, ~(SP) ;SAVE ARG LIST POINTER
MOV @2(R5),-(SP) :FORM I+J ON STACK
ADD ©4(R5) , €SP
MOV SP,LIST+2 ,ADDRESS OF I+J TO
;ARG LIST
MOV #LIST.RS
JSR PC,FHC1
ADD #2,5P ;DELETE TEMPORARY I+J
MOV (SP)+,RS ;RESTORE RBE
ADD @2(RS),RO ;ADD 1 TO FNC1 RESULT
RTS PC ;RETURN VALUE IN RO
.PSECT DATA ;DATA AREA
LIST: .BYTE 2,0 ; TWO ARGUMENTS
. WORD 0 ;DYNAMICALLY FILLED IN
.WORD LITS ;ADDRESS OF CONSTANT &
LITS: .WORD 5,0 ;CONSTANT 5
.END

3.2.6 Reentrant Example

The PDP-11 FORTRAN-77 calling convention has a reentrant form in
which the argument list is constructed at run time on the execution stack.
Note that the argument addresses must be pushed backwards on the stack
to be correctly arranged in memory for the subroutine that uses the list.
Basically, the technique consists of:

Mov #ADRn , - (SF) ;ADDRESS OF NTH ARGUMERT

POP-11 FORTRAN-77 Operating Environment 3-5

MOV #ADR2, - (BP)

MOV #ADR1, - (5F) ;ADDRESS OF 1ST ARGUMENT
Mav #n,-(SF) . :NUMBER OF ARGUMENTS
MOV SP,R5

JSR PC, SUB ;CALL SUBRCUTINE

ADD #2+n+2 SP ;BELETE ARGUMENT LIST

Example 3-2 illustrates assembly language code that uses reentrant call
forms for the same example shown in Example 3-1.

The FORTRAN-77 compiler does not produce reentrant call forms.

Example 3-2: Call Sequence Convention: Reentrant Example

INTEGER FUNCTION FNC(I.DI)

INTEGER FNC1
FNC=FNCi1(I+J,8)+I
RETURN
END
.PBECT P
.GLOBL FNC,FNC1 Nl
FNC: MOV RS, - (SP) .SAVE ARG LIST POINTER
MOV 82(RS),-(SF) .FORM I+J
ADD @4(R5),@SP ;0N STACK
MOV SP.R4 "REMEMBER WHERE
MOV #CONS,- (SP) :BUILD ARG LIST ON STACK
MOV R4, - (SP) :ADDRESS OF TEMPORARY
MOV ¥2,-(3P) : ARGUMENT COUNT
MOV SP.RS ;ADDRESS OF LIST TO RS
ISR PG FNCY :CALL FNCL
ADD #10,5P ‘DELETE ARG LIST AND TEMP I+J
MOV . (8P)+.R5 ‘RESTORE ARG LIST POINTER
ADD Q2(RS) .RO ‘ADD I TO RESULT OF FNC1 N
BTS PC :RETURN RESULT IN RO Lo
.PSECT DATA ;DATA AREA
CONS: .WORD 5.0
“END

3-6 PDP-11 FORTRAN-77 Operating Environment

3.2.7 Null Arguments

Null arguments are represented in an argument list with an address of -1
(177777 octal). This address is chosen to ensure that using null arguments
in calling routines not prepared to handle null arguments will result in an
error when the routine is called at execution time. The errors most likely
to occur are illegal memory references and/or word reference to odd

TN byte addresses.

Note that null arguments are included in the argument count, as follows:

FORTRAN Statement
CALL SUB BYTE 0,0

CALL SUB() BYTE 1,0
WORD -1

CALL SUB(A,) BYTE 20
WORD A
PN WORD -1

CALL SUB(,B) BYTE 2,0
WORD -1
WORD B

3.3 Program Sections

Program sections (PSECTs) are named segments of code and/or data.
Attributes associated with each program section (see Table 3-1) direct
“the Task Builder when the Task Builder is combining separately com-
piled FORTRAN program units, assembly language modules, and library
routines into an executable task image.

POP-11 FORTRAN~77 Operating Environmant 3-7

3.3.1 Compiled-Code PSECT Usage

The compiler uses PSECTs to organize compiled output into the following
six sections;

1,

Section $CODE] contains all of the executable code for a program
unit.

Section $PDATA contains pure data, such as constants, that cannot
change during program execution.

Section $IDATA contains impure data, such as argument lists, that can
change during program execution.

Section $VARS contains storage allocated for variables and arrays used
in a program.

Section $TEMPS contains temporary storage allocated by the compiler.

Section $SAVE contains global storage for entities specified in 2 SAVE
statement.

The attributes associated with each of these sections are shown in
Table 3-1. :

Table 3-1: Program Section Attributes

Section
Name Attributes

$CODE1 RW, 1, LCL, REL, CON
$PDATA Rw, D, LCL, REL, CON

$IDATA Rw, D, LCL, REL, CON
$VARS Rw, D, LCL, REL, CON
$TEMPS Rw, D, LCL, REL, CON
$SAVE Rw, D, GBL, REL, CON, SAV
NOTE

The RO/RW attributes for the sections $CODE1 and $PDATA
are controlled by the compiler /RO command qualifier.

3-8 POP-11 FORTRAN-77 Operating Enviranment

Section attributes are as follows:

RW, RO Read/write, read only

1,D Instructions, data

CON, OVR Concatenated, overlaid

LCL, GBL Local within overlay segment, global across segments
SAV Unconditionally place PSECT in root segment

Because FORTRAN-77 programs contain statically allocated impure
storage, compiled object modules are not reentrant and cannot be included
in a shareable library.

Virtual arrays are allocated into a special control section, $VIRT, that the
Task Builder allocates into the mapped array area of a task.

3.3.2 FORTRAN COMMON and RSX-11 System Common

You can indicate that a common block in a task is to reference a system
global common block of the same name. You can do this, at task-build
time, with the Task Builder option:

COMMOX = name:access(:apr]

where name is any valid common block name, access may be either RO
for read-only access or RW for read/write access, and the optional element
apr is an integer from 1 to 7 that specifies the first Active Page Register. If
the common block defined in the user task is larger than the corresponding
system global common block, a fatal task-build error results.

If a task attempts to initialize any storage in a common block by using
DATA statements, a fatal task-build error results.

Storage for a common block is placed into a PSECT of the same name as
that of the common block. PSECTs used for common blocks are given
the attributes RW, D, GBL, REL, OVR, and, for saved named common
blocks and blank common, SAV. (The /F77 switch must be set for the
blank common block PSECT to have the SAV attribute; named common
block PSECTS have the SAV attribute under either /577 or /NOF77.) For
example, the statement

COMMON /X/4.B.C

POP-11 FORTRAN-77 Opersting Environment 3-9

produces the equivalent of the following MACRO-11 code:
.PSECT X,RW.D,GBL,REL,OVR, SAV

A: BLKW 2
B: .BLKW 2
C: .BLKW 2

A blank common uses the section name .$$$$. Therefore, under /F77 the
statement

COMMON T,U,V
produces the equivalent of:

.PSECT .$%3%.,Rw,D,GBL,REL,OVR,SAV

T: .BLKW 2
U: .BLKW 2
V. .BLEW 2

When named PSECTs with the OVR attribute are combined by the Task
Builder, all PSECTs with the same name are allocated to begin at the
same address. The resulting PSECT has the length of the largest of the
combined PSECTs.

An example of common communication between a FORTRAN-77 main
program and an assembly language subroutine is shown in Examples
3-3 and 3-4. In the example, the variable ISTRNG in blank common is
filled with Holierith data. This variable is copied to OSTRNG (with space
characters removed) in the labeled common DATA, and the actual length
is returned in the variable LEN.

Note that one word is allocated for each integer in the assembly language
subroutine; this allocation convention is necessary for compatibility

with FORTRAN storage allocation under the default /NOI4 setting for
compilation.

Example 3-3 shows the FORTRAN main program compiled under the
/NOI4 option. The assembly language subroutine COMPRS is shown in
Example 3~4,

3-1B8- POP-11 FORTRAN-77 Dperating Environment

Example 3—-3: Establishing a FORTRAN COMMON Area and
Assembly Language Subroutine CALL

LOGICAL=1 ISTRNG(80),0STRNG(BO)
COMMON ISTRXG
COMMON /DATA/ LEN, OSTRNG

c GET INPUT STRING

READ 1, ISTREG
FORMAT(BCAL)

c COMPRESS THE STRING

¢ CALL COMPRS

c TYPE OUT THE CUMPRESSED STRING
© TYPE 2, LEN, (CSTRNG(I),I=1,LEN)
2 FORMAT(1X,13,6X,8041)

END

3.3.3 OTS PSECT Usage

All OTS modules consist of at least two program sections: $$0TS! and
$$OTSD. Section $$0TSI contains pure-code sequences and section
$$OTSD contains pure-data information.

The OTS module $OTV declares the following sections that are used as
impure working storage by the OTS:

* Section $$AOTS contains a general work area.

* Section $$DEVT contains storage for each FORTRAN logical unit. The
size of $$DEVT is determined by the Task Builder UNITS option,

* Section $$FSR1 contains storage for 1/0O buffers and file-system
control blocks. The size of $$FSR1 is determined by the Task Builder
option ACTFIL.

* Section $$I0B1 contains storage for the FORTRAN-77 input/output
record buffer. The size of $$10B1 is determined by the Task Builder
option MAXBUF.

* Section $$0OBF1 contains storage for holding the compiled form of
object-time formats. The size of $$OBF1 is determined by the Task
Builder FMTBUF option.

PDP-11 FORTRAN-77 Operating Environment 3-H1

Example 3-4: Use of FORTRAN COMMON Area by Assembly
Language Subroutine

.TITLE COMPRS
JIDENT /Oi/

;COMPRESS THE HOLLERITH STRING IN BLANK COMMON
;COPYING THE STRING TO LABELLED COMMON DATA AND
RETURNING THE ACTUAL LENGTH AS WELL.

JPSECT . $$$$..D.GBL,OVR

1: BLKB 80. ; INPUT BUFFER
.PSECT DATA,D,GBL,OVR
L: .BLXW 1 . ACTUAL LENGTH
0: .BLXB 30. ; OUTPUT BUFFER
.PBECT
COMPRS: :
Mov #1,R0O ;. INPUT FOINTER
MOV #0 ,R1 ; OUTPUT PUINTER
MOV #80. ,R2 ; INPUT LENGTH
CLR L ; OUTPUT LENGTH
1%: MOVB (RO}+,R3 . GET INPUT CHARACTER
CMPB #t ,R3 ; IS THIS CHAR A SPACE?
BEQ 28 « ; IGNORE IF SO
MOVE R3, {(R1)+ ; DUTPUT THE CHARACTER
- INC L . COUNT THE CHARACTER
28: DEC R2 ; COUNT DOWN THE INPUT
BGT 1% . LOOP IF MODRE DATA
RTS PC
.END

The handling and conversion routines for formatted records are contained
in the following sections: $$FIOC, $$FIOD, $$FI02, $$FIOI, $$FIOL,
$$FIOZ, $$FIOS, and $$FIOR. Special conventions are used so that the
conversion routines are loaded only if they are required by FORMAT
statements in a source program..

3-12 PDP-11 FORTARAN-77 Operating Environment

Pt

LPEes

3.4 OTS and Resident (Shareable) Libraries

Each module of the FORTRAN-77 OTS (with the exception of modules
$OTV, LICSB$, $ORGSQ, $ORGRL, and $ORGIX) consists only of code
and data that is pure and shareable. Consequently, all or any part of
the OTS can be built into a resident {shareable) library or included in
another resident library. However, the OTS does not consist of position-
independent code (PIC) and cannot, therefore, be included in a resident
library that does consist of PIC. In particular, the OTS cannot be included
in resident libraries SYSRES, FCSRES, or RMSRES of the I/0 system,
because each of these libraries consists of PIC,

Procedures for building a FORTRAN-77 OTS resident library are de-
scribed in Chapter 13 of the PDP-11 FORTRAN-77 Object Time System
Reference Manual.

3.5 OTS Error Processing

The Object Time System detects certain errors in a program (for example,
1/O, arithmetic, and invalid argument errors) and reports these errors on
the user’s terminal. An error-control table within the OTS then deterrines
what action the system is to take for each error reported; for example, it
may call for the system to terminate the task. The default action for each
FORTRAN-specific error is shown in Table 3-2 (in Section 3.5.1.3).

Three system subroutines (ERRSNS, ERRTST, and ERRSET) are provided
to enable you to control OTS error processing: that is, to obtain infor-
mation on specific errors and/or to specify an action to be taken when a
specific error occurs.

The ERRSNS subroutine provides you with information about the error
that has most recently occurred during program execution. It also provides
detailed information on errors detected by the file system (FCS-11 or
RMS-11).

The ERRTST subroutine allows you to test for the occurrence of a specific
error during program execution,

The ERRSET subroutine allows you to modify the continuation action the
system is to take when an error is detected by the OTS. In many cases,
the particular continuation action to be taken may be changed from the
one specified in the error-control table (see Table 3-2).

PDP-11 FORTRAN-77 Operating Enwironment 3-13

The subroutines ERRSNS, ERRTST, and ERRSET are described in detail
in Appendix D. OTS error codes and the format of the OTS diagnostic
messages are shown in Appendix C.

3.5.1 Recovering from 0TS-Detected Errors

You can use three methods to control recovery from errors detected by
the OTS:

e ERR=and END= transfers
* The ERRSNS subroutine
* The ERRSET subroutine

The following three sections discuss these methods.

3.5.1.1 Using ERR= and END= Transfers

By including an ERR=label or END=label specification in an 1/0 statement,
you can transfer control to error-processing code or to any other desired
point in a program. If you use an END= or ERR= specification to process
an I/O error, execution continues at the statement specified by a label.
However, if you do not use an END= or ERR~ specification to process

an I/O error, the system by default prints an error message and halts
execution.

For example, suppose the following statement is in your program:
WRITE(8,50.ERR=400)

If an error occurs during the write operation specified, control transfers to
the statement at label 400,

When an ERR= transfer occurs, file status and record position become
undefined. '

You can use the END=label specification to handle an end-of-file con-
dition. For example, if an end-of-file condition is detected while the
statement

READ (12,70, END=550}
is being executed, control transfers to statement 550.

If an end-of-file is detected while a READ statement is being executed, and
you did not specify END=label, an error condition occurs. If you specified
ERR=label, control is transferred to the specified statement,

3-14 PDP-11 FORTRAN-77 Operating Enviranment

e

-

3.5.1.2 Using the ERRSNS Subroutine

You can use the ERRSNS system subroutine to process errors as they are
encountered by a program. When one of the errors listed in Table 3-2
occurs in a program, you can obtain the number of the error by calling
the ERRSNS subroutine; then, in most situations, you can provide code to
react to this number.

. To determine the number of an error, use the ERRSNS routine as demon-
o strated in the following example:

CHARACTER+40 FILN
1C ACCEPT i, FILKN

1 FORMAT (A)
QPEK (UNIT=INF, STATUS='OLD', FILE=FILN, ERR=100)

. {process input file)

100 CALL ERRSNS(IERR)
IF (IERR .EQ. 43) THEN
TYPE =, 'FILE NAME WAS INCORRECT; ENTER NEW FILE NAME'
ELSE IF(IERR .E0. 28) THEN
TYPE *, 'FILE DOES NOT EXIST; ENTER NEW FILE NAME'
ELSE
TYPE *, 'FAILURE DN INPUT FILE; ERROR=', IERR
ENDIF
STOP
END

In this example, the OPEN statement contains an ERR=100 specification
that causes a branch to the ERRSNS subroutine if an error occurs during
execution of the OPEN. The ERRSNS subroutine returns an error-number
value in the integer variable IERR. The program then uses the value

of IERR to print 2 message that explains the nature of the error and to
determine whether the program should continue.

PDP-11 FORTRAN-77 Operating Environment 3-15

m ey A e A W

3.5.1.3 Using the ERRSET Subroutine

You can alter the default continuation action to be taken upon OTS
detection of a particular error by using the ERRSET subroutine.

Processing each of the errors detected by the OTS is controlled by six con-
trol bits associated with each error. These bits are preset (see Table 3-2);
however, you may alter some of the initial settings—and thereby the con-
tinuation action to be taken upon the detection of a particular error—by
using the ERRSET subroutine,

The six control bits and what they control are as follows:

1. Continuation Bit—If the Continuation Bit is not set, the task encoun-
tering the error exits. If this bit is set, the task continues (if the next
two conditions permit continuation}.

2. Count Bit—If the Count Bit is set, the error encountered is counted
against the task error-count limit unless an ERR=transfer is specified.
If the error-count limit is exceeded, the task exits,

3. Continuation Type Bit—The Continuation Type Bit provides for one
of the following two types of action for a particular error:

a. Return to the routine that reported the error, for apprcpnate
recovery action, then proceed.

b. Take an ERR= transfer in an 1/0 statement. (If the Continuation
Type Bit specifies an ERR= transfer, and no ERR=label was in-
cluded in the 1/0 statement, the task exits).

Each of the error-control-bit checks above must be satisfied for the task to
continue.

4. Log Bit—If a task continues after an error is encountered (that is, if
continuation is permitted by each of the above three control bits), then
the Log Bit is tested. If the Log Bit is set, an error message is produced
before the task continues; if the Log Bit is not set, the task continues
without a message.

If processing any of the first three control bits does not permit continua-
tion, the task exits and the system prints an error message.

Two additional control bits are used to specify the acceptability of argu-
ments to the ERRSET subroutine,

5. Return Permitted Bit—If the Return Permitted Bit is set, ERRSET may
set the Continuation Type Bit to specify a return.

3-16 PDP-11 FORTRAN-77 Operating Environment

6. ERR= Permitted Bit—If the ERR= Permitted Bit is set, ERRSET may set
the Continuation Type Bit to specify that an ERR= transfer is to occur.

At least one of these two additional bits must be set in order for the
Continuation Bit to be set.

All four of the possible combinations of these two bits occur in the OTS;
however, most errors occur as the following:

S e I/0O errors that generally permit ERR= continuation type but not return
Lo continuation

e Errors that permit return continuation but not ERR= transfer continua-
tion (even if they occur during I/O statement processing)

Notable exceptions are the synchronous system-trap errors (3 through
10) and the recursive I/O error (40), all of which always result in task
termination. The format processing and format conversion errors (59, 61,
63, 64, 68) allow both types of continuation.

The initial setting of all six control bits—the two permitted bits as well as
ST the Continuation Bit, the Count Bit, the Continuation Type Bit, and the
b Log Bit—is shown in Table 3-2. You can use the ERRSET subroutine to
change the settings for CONTINUE?, COUNT?, CONTINUE TYPE, and
LOG?. The ERRSET subroutine is described in detail in Appendix D.

Table 3—2: Initial Error Control Bit Settings

Error Continue Permitted
Number Continue? Count? Type Log? Err=? Return?
1 NO NO FATAL YES NO NO INVALID ERROR CALL
2 NO NO FATAL YES NO NO TASK INITIALIZATION
FAILURE
3 ~NO NO FATAL YES NO NO ODD ADDRESS TRAP
{S5T0)
NO NO FATAL YES NO NO SEGMENT FAULT (8ST1)
5 NO NO FATAL YES NO NO T-BIT OR BFT TRAP
(512)..
NO NO FATAL YES NO NO IOT TRAP (S5T3)
NO NO FATAL YES NO NO RESERVED INSTRUCTION
TRAP ...

PDP-11 FORTRAN-77 Operating Environment 3-17

Table 3-2 (Cont.):

Initial Error Control Bit Settings

Error Continue Permitted

Number Continue? Count? Type Log? Err =? Return?

8 NO NO FATAL YES NO NO NON-RSX EMT TRAP
(SST5)

g NO NO FATAL YES NO NO TRAP INSTRUCTION
TRAP (55T6)

10 NQ NO FATAL YES NO NO PDP-11/40 FIS TRAP
(SST7)

11 NO NO FATAL YES NO NO FPP HARDWARE FAULT

12 NO NO FATAL YES NGO NO FPP ILLEGAL OPCODE
TRAP

13 NO NO FATAL YES NO NO FPP UNDEFINED
VARIJABLE TRAP

14 NO NO FATAL YES NQ NO FPP MAINTENANCE
TRAP

20 YES YES ERR= YES YES NO REWIND ERROR

2% YES YES ERR= YES YES NO DUPLICATE FILE
SPECIFICATIONS

22 YES YES ERR= YES YES NO INPUT RECORD TOO
LONG

23 YES YES ERR= YES YES NO BACKSPACE ERROR

24 YES YES ERR= YES YES NO END-QF-FILE DURING

_ READ

25 YES YES ERR= YES YES NO RECORD NUMBER
QUTSIDE RANGE

26 YES YES ERR= YES YES NO MODE NOT SPECIFIED

27 YES YES ERR= YES YES NO MORE THAN QNE
RECORD IN I/O ...

28 YES YES ERR= YES YES NO CLOSE ERROR

29 YES YES ERR= YES YES NO NO SUCH FILE

30 YES YES ERR= YES YES NO OPEN FAILURE

31 YES YES "ERR= YES YES NO MIXED FILE ACCESS
MODES

32 YES YES ERR= YES YES NO INVALID LOGICAL

3-18 PODP-11 FORTRAN-J7 Operating Environment

NUMBER

Table 3-2 {Cont.): Initial Error Control Bit Settings

Error Continue Permitted

Number Continue? Couni? Type Log? Err =? Return?

33 YES YES ERR= YES YES YES ENDFILE ERROR

34 YES ERR= YES YES NO UNIT

ALREADY
OPEN

35 YES YES ERR= YES YES NO SEGMENTED RECORD
FORMAT ERROR

36 YES YES ERR= YES YES NO ATTEMPT TO ACCESS
NON-EXISTENT ...

37 YES YES ERR= YES YES YES INCONSISTENT
RECORD.. ..

38 YES YES ERR= YES YES NO ERROR DURING WRITE

39 YES YES ERR= YES YES NO ERROR DURING READ

40 NO NO FATAL YES NCO NO RECURSIVE 1/0O
OPERATION

41 YES YES ERR= YES YES NO NO BUFFER ROCM

42 YES YES ERR= YES YES NO NO SUCH DEVICE

43 YES YES RETURN YES NO YES FILE NAME SPECIFICATION
ERROR

44 YES YES ERR= YES YES NO INCONSISTENT
RECORD TYPE

45 YES YES ERR- YES YES NO KEYWORD VALUE
ERROR IN OPEN ...

46 YES YES ERR= YES YES NO INCONSISTENT OPEN
JCLOSE . ..

47 YES YES ERR= YES YES NO WRITE TO READONLY
FILE

48 YES YES ERR= YES YES NO UNSUPPORTED 1/O
QOPERATION

49 YES YES ERR= YES YES NO INVALID KEY
SPECIFICATION

50 YES YES ERR~ YES YES NO INCONSISTENT KEY
CHANGE OR ...

PDP-11 FORTRAN-77 Operating Environment 3-19

Table 3-2 {Cont.):

initial Error Control Bit Settings

Error Continue Permitted

Number Continue? Count? Type Log? Err =? Return?

51 YES YES ERR= YES YES NO INCONSISTENT FILE
ORGANIZATION

52 YES YES ERR= NC YES NO SPECIFIED RECORD
LOCKED ,

53 YES YES ERR= YES YES NO NQ CURRENT RECORD

54 YES YES ERR= YES YES NO REWRITE ERRCR

55 YES YES ERR= YES YES NO DELETE ERROR

56 YES YES ERR= YES YES NO UNLOCK ERRCR

57 YES YES ERR= YES ¥YBS NO FIND ERROR

59 YES NO ERR= YES YES YES LIST-DIRECTED 1/0O
SYNTAX ERROR

60 YES YES ERR= YES YES NO INFINITE FORMAT
LOOF

61 YES YES ERR= YES YES YES FORMAT/VARIABLE-
TYPE MISMATCH

62 YES YES ERR= YES YES NO SYNTAX ERROR IN

. FORMAT

63 YES NO RETURN YES YES YES QUTPUT CONVERSION
ERROR

64 YES YES ERR= YES YES YES INPUT CONVERSION
ERROR

65 YES YES ERR= YES YES NO FORMAT TOQ BIG FOR
‘FMTBUF'

66 YES YES ERR= YES YES NO OUTPUT STATEMENT
OVERFLOWS . ..

67 YES YES ERR= YES YES NO RECORD TOO SMALL
FOR 1/0 LIST

68 YES YES ERR- YES YES YES VARIABLE FORMAT
EXPRESSION . ..

70 YES YES RETURN YES NO YES INTEGER OVERFLOW

71 YES YES RETURN YES NO YES INTEGER ZERQO DIVIDE

72 YES YES RETURN YES NO YES FLOATING OVERFLOW

3-20 PDP-11 FORTRAN-77 Opersting Environment

Table 3—-2 {Cont.): Initial Error Control Bit Settings

Error Continue Permitted
Number <Continue? Count? Type Log? Err =? Return?
73 YES YES RETURN YES NO YES . FLOATING ZERO
DIVIDE
74 YES NO RETURN NO NO YES FLOATING UNDERFLOW
75 YES YES RETURN YES NO YES FPP FLOATING TO
INTEGER ...
80 YES YES RETURN YES NQ YES WRONG NUMBER OF
- ARGUMENTS
81 YES YES RETURN YES NO YES INVALID ARGUMENT
82 YES YES RETURN YES NO YES UNDEFINED
EXPONENTIATION
83 - YES YES RETURN YES NO YES LOGARITHM OF ZERO
: OR NEGATIVE . . .
84 YES YES RETURN YES NO YES SQUARE ROCT OF
NEGATIVE VALUE
86 YES YES RETURN YES NO YES INVALID ERROR
NUMBER
91 YES NO RETURN NC NO YES COMPUTED GOTO OUT
OF RANGE
92 YES YES RETURN YES NO YES ASSIGNED LABEL NOT
IN LIST
93 YES YES RETURN YES NO YES ADJUSTABLE ARRAY
DIMENSION . ..
94 YES YES RETURN YES NO YES ARRAY REFERENCE
OUTSIDE ARRAY
95 “NO NO FATAL YES NO NO INCOMPATIBLE
FORTRAN OBJECT . ..
96 NO NO FATAL YES NO NO MISSING FORMAT
CONVERSION ...
97 NO NO FATAL YES NO NO FTN FORTRAN ERROR
CALL
98 YES NO RETURN YES NO YES USER REQUESTED
TRACEBACK

PDP-11 FORTRAN-77 Opersting Environment 3-21

Tabie 3-2 {Cont.):

Initial Error Control Bit Settings

Error Continue Permitted

Number Continue? Count? Type Log? Err =? Return?

100 NO NC FATAL YES NO NO DIRECTIVE: MISSING
ARGUMENT(S)

101 NO NO FATAL YES NO NO DIRECTIVE: INVALID

' EVENT FLAG ...

111 NO NO FATAL YES NO NO VIRTUAL ARRAY
INITIALIZATION ...

112 YES YES RETURN YES NO YES VIRTUAL ARRAY

MAPPING ERROR

3.6 FORTRAN-77 Compiler Listing Format

mhere are three optional sections that you may include in"a compiler
listing file: the source program, the generated machine code, and the

storage map. The source program and storage map are included in a list

file by default. The generated machine language code is excluded by
default, A description of each of these sections follows.

3.6.1 Source Listing

The source code of a compiled program is written into the source listing

section of the compiler listing file in the same format as that in which
the source code appears in the input file, except that the compiler adds

internal sequence numbers to facilitate ease of reference. Comment lines

and uncompiled debug statements, however, do not receive internal

sequence numbers.

If the text editor you use generates line numbers, these numbers also
appear in the source listing. They appear in the left margin, with the
compiler-generated sequence numbers shifted to the right. Diagnostic
messages always refer to the compiler-generated sequence numbers.

3-22 PDP-11 FORTRAN-77 Operating Environment

{

3.6.2 Generated Code Listing

The generated code listing section of the compiler listing file contains
symbolic representations of object code generated by the compiler. These
representations are similar to a MACRO-11 source listing, but they are not
in a form that can be directly assembled by MACRO-11,

Labels that correspond to FORTRAN source labels are printed with

an initial dot. For example, the source label “300” would appear in a
generated code listing as “.300”. Not all labels appearing in a source
program necessarily appear in the corresponding generated code listing.
In particular, labels not referenced in a source program are ignored by the
compiler and are not used in resulting generated code.

References to variables and arrays defined in a source program are shown
in the corresponding generated code listing by their FORTRAN names.

PDP-11 general registers 0 through 5 are represented in a generated code
listing by RO through RS, general register 6 is represented by SP (for
Stack Pointer), and general register 7 is represented by PC (for Program
Counter); the floating point registers are represented by FO through F5.
These representations are the conventional PDP~11 register names and
are used despite the fact that you can also use these names as FORTRAN
variable names.

In some cases, the compiler generates labels for its own use. These labels
are shown in a generated code listing as “L$xxxx”, where “xxx” is a
unique symbol for each label within a program unit,

Addresses for other than labels, registers, and variables are represented
by the name of the program section plus the offset within that sec-
tion. Program section names used by the compiler are summarized in
Section 3.3.1. Changes from one program section to another are shown
as .PSECT lines. The left column of a listing shows the offset within the
current section to which the remainder of the line applies.

All numbers are in octal radix.

The first line of a generated code listing contains a .TITLE directive; for
SUBROUTINE and FUNCTION subprograms, the title is the same as the
subprogram name. If a PROGRAM statement is used in a main program,
the name in that statement is used as the title; otherwise, the title MAIN.
is used. i a name is included in a BLOCKDATA statement, this name is
used for the title; otherwise, the title .DATA. is used.

The second line of a generated code listing contains an .IDENT directive
in which the date of the compilation is represented,

POP-11 FORTRAN-~77 Operating Environment 3-23

The lines that follow the second line describe the contents of storage ini-
tialized for FORMAT statements, DATA statements, constants, subprogram
call argument lists, and so forth.

Machine instructions are represented in a generated code listing with
‘MACRO-11 mnemonics and syntax.

3.6.3 Storage Map Listing

The storage map contains summaries of the following:

* Program sections
* Entry points
* Variables

* Arrays
* Virtual arrays
s Labels .
¢ Functions and subroutines referenced s
* Total memory allocated : Qé..;q_;;f
Figure 3-1 illustrates a typical storage map listing.
N

3-24 PDP-11 FORTRAN-77 Operating Environment

Figure 3—1:

Storage Map Example

PROGRAM BECTIONS

Number Name Size
1 SCOLDE1 0010642 281
2 SPDATA 000022 9
3 $IDATA Q00054 23
4 SVARS 000020 8
7 CBLK 001244 338
ENTRY POINTS
Name Ture Address Name
ROTOR Rx8 1-000000
STATEMENT FUNCTIONS
Name Twre Address NHame
PSI R%4 1-001032
VARIABLES
Name Ture Address Name
ALPHAR R¥4 4=-000014 DELX
J I%7 4=-000012 NE
THETA Rx%4 4--000004 ZETA
ARRAYS
Name Tere Address
ER R¥*4 7-000000 OOLI244
CHI C¥8 F-000004X%
VIRTUAL ARRAYS
Name Ture Offset
CODATA R¥4 00001721
FT R¥4 00000000
LARELS
Label Address Label
29 1-000274 FE0”

Size

Size

16384
15625

Attributes
RWrIsCONsLCL
RW:DsCONsLCL
RWrDsCONYLEL
RW:D,CON(LCL
RW Dy QUR s GRL
Ture Address Name
Tore ALOTRSE Name
Twre Address Nanme
R¥4 F-000002% I
Ix2 F-000004% NS
Rk4 4000000
Dinensions
338 (—&1&r=5636)
(OIksOIK)
DMimensions
(Asdsds4rArasq)
(25,2%5,25)
Address Label
2-000000 999

FUNCTIONS AND SUBROUTINES REFERENCED

COSP SINP 4SIN

Totsl Srace Allocated = 002444

$5GRT

459

Total Virtual Arrau Storsse = 2001

Tere

Tuern

Address

Address

Twre Address

I%2
Ix2

4-000010
F-000010%

Address
1-000724

ZKe1a3+81

POP-11 FORTRAN-77 Operating Environment 3-26

In each of the following descriptions, when a size is given, this size
is printed as octal bytes followed by decimal words (except for virtual
arrays). For example:

000006 3

A data address is given as a program section number followed by the octal
offset from the beginning of that program section.

For example, in the data address that follows, 1 is the program section
number and 000626 is the offset {in octal) from the beginning of program
section 1:

1-000626

A durmnmy argument is represented with an F instead of a program section
number, and the offset is the offset from the argument pointer (R5).

The symbol * following an address field specifies that the program section
number (or F), plus the offset, points to the address of the data rather than
to the data itself.

The PROGRAM SECTIONS summary in a storage map contains L
information—one line per program section—about each of the pro- . Eogs
gram sections (PSECTs) generated by the compiler. Each line contains the e
number of the PSECT being summarized (used by most of the other sum-

maries), the name of the section, the size of the section, and the attributes

of the section. The size is shown twice: first, as the number of bytes in

octal radix; and, second, as the number of words in decimal radix. See

Section 3.3.1 for definitions of the section attributes.

The ENTRY POINTS summary contains a list of all declared entry points
and their addresses. If the routine containing an entry point being listed is
a function, the declared data type of this entry point is also included.

The VARIABLES summary contains a list of each simple variable, together
with its data type and address.

The ARRAYS summary is the same as the VARIABLES summary, except
that it supplies total array size information and detailed dimension infor-
mation. If the array is an adjustable array or assumed-size array, the size
of the array is specified as **, and each adjustable-dimension bound or
assumed-size bound is specified as =

The VIRTUAL ARRAYS summary is similar to the array summary. The
address of a virtual array is shown as an offset, in 64 byte units, from the
start of virtual array storage. The size is specified as the number of array
elements, not the number of bytes,

3-26 POP-11 FORTRAN-77 Operating Environment

The LABELS summary contains a list of all user-defined statement labels.
If a label is marked with an apostrophe, the label is a format label. If the
label address field contains *», the label is neither referenced nor used by
the compiled code.

The FUNCTIONS AND SUBROUTINES REFERENCED summary contains
a list of all external-routine references made by the source program.

if the text NO FPP INSTRUCTIONS GENERATED appears in the storage
£ map, the FORTRAN-77 object module may not require the Floating Point
R Processor (FPP) for execution. See Section 5.4.1 for further information.

At the end of the above summaries, the total amount of memory allocated
by the compilation for all program sections is printed as follows:

TOTAL SPACE ALLOCATED = 000502 161

If any virtual arrays are declared in the program, the total size in 64-byte
units is given as follows:

TOTAL VIRTUAL ARRAY STORAGE = 632

e If a summary section has no entries in a particular compilation, the
o summary headings are not printed.

3.7 \Virtual Array Options

The VIRTUAL statement declares arrays that are assigned space outside a
program’s address space and that are manipulated through the VIRTUAL
array facility of PDP-11 FORTRAN-77. The VIRTUAL array facility
allows arrays to be stored in large data areas that are accessed at high
speed.

NOTE

VIRTUAL arrays are supported only on operating systems that
support the Memory Management Directives.

PDP-11 FORTRAN-77 Operating Environment 3-27

3.7.1 Limits on VIRTUAL Elements

VIRTUAL arrays are limited by the number of elements, not by the
available storage. The maximum number of elements in a VIRTUAL
array is 65535; there is no limit to the total size of the VIRTUAL arrays

a program can access. The limit on elements is 65535 because PDP-11
FORTRAN-77 requires that the number of elements in an array not exceed
the size of an unsigned INTEGER*2, which is 2#+16-1,

The largest LOGICAL»*1 VIRTUAL array is 32K words, or 65535 bytes;
and the largest REAL+8 VIRTUAL array is 256K words, or 624280 bytes.

3.7.1.1 VIRTUAL and DIMENSION Statements

The syntax of the VIRTUAL statement is identical to that of the
DIMENSION statement. However, there is a significant semantic dif-
ference between the two because of the limitations imposed on the
DIMENSION statement. Local arrays declared by the DIMENSION state-
ment are limited by the maximum memory available to the program.
Section 3.7.2 demonstrates how to use the VIRTUAL feature in an existing
program. ' -

3.7.1.2 Memory Allocation for VIRTUAL Arrays

The Task Builder allocates a mapped array area below a task’s header;
this mapped array area is large enough to contain all the VIRTUAL arrays
declared in a program.

A window of 4K words initially maps the first 4K words of the VIRTUAL
array region. When a VIRTUAL array element lies outside the window, a
Memory Management directive causes a remap operation to allow access.

3-28 PDP-11 FORTRAN-77 Operating Environment

TN

3.7.1.3 Exscution Time of Virtual Arrays

Using VIRTUAL arrays increases the execution time of a task because
VIRTUAL array elements must be mapped to memory addresses. In
general the larger the VIRTUAL array, the greater the number of times
mapping occurs; therefore, larger arrays generally take longer to execute
than do smaller arrays.

TN The following example illustrates how using VIRTUAL arrays increases
R execution time:

PARAMETER N=3500
VIRTUAL A(R), BN}, C(W)
DO 10 I= I, K
A(I)=1234.
B(1)=5678
10 C(I)=A(I)/B(I)
STOP
END

As declared in the program above, the VIRTUAL arrays A, B, and C are
each too large (7000 words) to fit within a 4K-word window of memory.
Each time an element outside the 4K-word window is accessed, remapping
occurs. Thus, executing the DO loop requires 17,500 (3500+5) mappings.
If only array C were VIRTUAL, however, then only two mappings would
be needed to execute the loop.

You can also use the R5X~11 Version 4.0 Task Builder option /FM (fast
mapping) to improve execution speed. For more information, see the
RSX-11M/M-PLLUS Task Builder Manual.

The operations in the program above can require as long as 14.1 seconds
for execution on a PDP-11/60 running under RSX~11M, Version 3.2.
By contrast, if arrays A, B, and C were declared with a DIMENSION
statement in directly addressable memory, the same operations could
require as little as 0.12 seconds in the same operating environment.

You can reduce the mapping of VIRTUAL arrays by breaking large
arrays into smaller ones and/or by keeping consecutive accesses of array
elements within the current 4K-word window.

POP-11 FORTRAN-77 Operating Environment 3-28

3.7.2 Converting a Program to VIRTUAL Array Usage

You can convert an existing program to use VIRTUAL arrays simply by
declaring the array with VIRTUAL statements instead of DIMENSION
statements. In doing this, however, be sure to observe the usage restric-
tions for VIRTUAL arrays described in the PDP-11 FORTRAN-77 Language
Reference Manual.

The following example illustrates general program conversion.

1,

2.

Identify the non-VIRTUAL arrays that are to be converted to
VIRTUAL arrays.

Locate the DIMENSION and the type declaration statements in
which these arrays are declared. Replace DIMENSION statements
with equivalent VIRTUAL statements. Replace array-declarative type
declaration statements with VIRTUAL statements to define the array
dimension, and remove the dimensioning information from the type
declaration statements.

Compile the program and observe all compilation errors. These
errors occur where the syntax restrictions outlined in the PDP-11
FORTRAN-77 Language Reference Manual have been violated. In some
cases, to use VIRTUAL arrays effectively you may need to reformulate
the data structures.

Check the code to ensure that VIRTUAL array parameters are passed
correctly to subprograms.

a. If the argument list of a subprogram call includes an unsubscripted
VIRTUAL array name, the argument list of the SUBROUTINE or
FUNCTION statement must have an unsubscripted VIRTUAL
array name in its corresponding dummy argument. This corre-
sponding VIRTUAL array name establishes access to the VIRTUAL
array for the subprogram. The declaration of the VIRTUAL array

‘in the subprogram must be dimensionally compatible with the
VIRTUAL declaration in the calling program. All changes to the
VIRTUAL array that occurred during subprogram execution are
retained when control returns to the calling program.

When you pass entire arrays as subprogram parameters, be certain
that the matching arguments are defined as both VIRTUAL or both
non-VIRTUAL. Mismatches of array types are not detectable at

either compilation or execution time, and the results are undefined.

3-30 PDP-11 FORTRAN-77 Operating Environment

b. If the argument list of a subprogram reference includes a reference
to a VIRTUAL array element, the matching formal parameter
in the SUBROUTINE or FUNCTION statement must be a non-
VIRTUAL variable, Value assignments to the forma! parameter
occurring within the subprogram do not alter the stored value of
the VIRTUAL array element in the calling program. To alter the
value of that element, the calling program must include a separate
assignment statement that references the VIRTUAL array element
directly.

The following shows how to change non-VIRTUAL arrays to VIRTUAL
arrays.

Consider a program containing two arrays, A and B.

DIMENSION A(1000,20)
INTEGER+2 B{1000)

DATA B/1000%0/

CALL ABC(A,B,1000,20)
WRITE(2,#) (A(1,1),1=1,1000}
END

SUBRDUTINE ABC(X,Y.N.M}
DIMENSION X(N, M)
INTEGER*2 Y(N)
Do 10, I=1,¥

10 X(I,1)=¥{I)
RETURN
END

Array A is declared in a DIMENSION statement and is of the default
data type. Therefore, substituting the keyword VIRTUAL for the keyword
DIMENSION is sufficient for its conversion.

Note, however, that array B and its dimensions are declared in a type
declaration statement {in the second line of the program).

To convert B into a VIRTUAL array, its declarator must be moved to
a VIRTUAL statement; also, the variable B must remain in the type
declaration statement, but without a dimension specification.

A and B are both passed to subroutine ABC as arrays, rather than array
elements. Therefore, the associated subroutine parameters must also be
converted to VIRTUAL arrays.

PDP-11 FORTRAN-77 Operating Environment 3-31

The following listing shows the program after the conversion is completed.

PhRel] PORTRAN=TT va,pD 185303587 Sedun=8i Page 1 .
VIRTUAL,FTN L - ZTRIBLDEKE/ AR
" YIRTUAL A(iesd, 263 ,804999)
e INTEGER»2 B
"l o 5 Ist 1900
[L1l |] [13407
L] CALL ARC{A,B,1d80,20)
[1] 1Y WAITECZ,#) C(A{L,1),In},1000)
M END
POP=1] FORTRANSTY VA,Q 10438197 SaJuneb) Page 2
VIRTUAL,FTNp} JTRIBLOCKS/WR
PROGRAN BECTIONS
Nysber Name Atteibutas
i SCODEL b1 R¥, 1, SON,LEL
] APOATA L4 Rw, D, CON, LEL
3 BIDATA 8 AN, B, CON,LEL
L1 AVARS 1 R Dy CON, LEL
VARIADLES
Nama Tyse Addrass Nams Typa Addraes Nams Adarens Nams Type
} Ind Ll [
YIRTUAL ARRAYS
Huns Tyme G443t Siue Dimansions
A Red BRODRBGSE 20800 (ig8ge,2a)
2 {11 [$1.1.1)]
LABELS
Lanpel addrast Label Addrase LabD#) Address Lave) hodrassy Label hGgrssy
3 [T
PUNCTIOND AND SUBROUTINES REFERENCED
ASC
Total Ipaqe Allagared = #0023e 7
Tete) Yircual Arrey Btoregn = 1202
Ne PPP Instryseions Gensrsted
PhPerl FORTRANTT YA, 8 iE3i100 Bedum=61 Page 3
YIATYAL.FTHNy | /TRIBLOLKR/NR
[L] BUBROUTINE ABE(X, Y MeN)
[L]} VIRTUAL YLNJ,X(N, M)
"3 INTEGERs2 ¥
(1Y B0 (@ 1mieN
:s 1] XL, eyl
[11T RETURN
i END

3-32 PDP-11 FORTRAN-77 Operating Environment

Ixoaret

Addrsss Name Type

Chapter 4

PDP-11 FORTRAN-77
Implementation Concepts

This chapter discusses several of the fundamental design and implemen-
tation concepts of PDP-11 FORTRAN-77 that are different from those of
other FORTRAN systems, or that are likely to be new to many FORTRAN
programmers.

4.1 Intrinsic Functions

As it processes a program unit, the compiler determines (without any
information about other program units that may be added later) whether a
function referenced in the program unit is an intrinsic function (processor-
defined) or a user-defined function. The compiler invokes an intrinsic
function with a symbolic name, called an internal name, that is different
from any name the user can define. For example, the intrinsic real-valued
sine function is invoked by the compiler with the internal name $SIN.

In general, an internal name is a FORTRAN name with a dollar sign
prefixed. Where the FORTRAN name is six characters long, a 5-character
contraction is combined with the dollar sign. A compilete list of the intrin-
sic names and their corresponding internal names appears in Table 4-1.

Using the IMPLICIT statement to change the default data type rules has
no effect on the data type of intrinsic functions.

PDP-11 FORTRAN-77 Implementation Concepts 4-1

4.1.1 Using EXTERNAL and INTRINSIC Statements

The EXTERNAL statement identifies symbolic names as user-supplied
functions and subroutines. The INTRINSIC statement identifies symbolic
names as system-supplied functions or subroutines. For example, the
statement

EXTERNAL INVERT

identifies a subroutine named INVERT as user-supplied, and
INTRINSIC ABS

identifies a function named ABS as system-supplied.

Once a symbolic name has been identified in an EXTERNAL statement, it
is no longer available in the same program unit for use in an INTRINSIC
statement.

Refer to Appendix E for information on the compatibility of the
EXTERNAL statement with PDP-11 FORTRAN-77 and PDP-11
FORTRAN IV-PLUS programs. '

4.1.2 Generic Function References

A generic function is similar to an intrinsic function, but instead of being
a single function it is a set of similar functions called specific functions.
The specific functions in a generic set differ from each other only in that
each function manipulates data of one specific type. For example, SIN()
is a generic function that includes the specific functions SIN, DSIN, and
CSIN, where SIN manipulates real data, DSIN double-precision data, and
CSIN complex data. The data type of the argument in a generic reference
determines which specific function is actually invoked. For example,
SIN(X) invokes SIN if X is real and DSIN if X is double precision. The
compiler makes a separate determination of the specific function to be
referenced each time it encounters the same generic reference.

Those intrinsic functions that can be referenced by generic references are
listed in Table 4-1 under the heading “Generic Name.” Many generic
function names are also intrinsic function names. However, in a few cases
(for example, the generic function name MIN), the generic function name
is not an intrinsic function name.

4-2 PDP-%1 FORTRAN-77 Impieméntation Concepts

Table 4-1:

Generic and Intrinsic Functions

Number . Type
: of Generic Specific Type of of
Functions Arguments Name Name' Argument Result
Square Root? 1 SQRT SQRT Real Real
DSQRT Double Double
a(1/2) CSQRT Complex
Complex
Natural Logarithm® 1 LOG ALOG Real Real
DLOG Double Double
log(e)a CLOG Complex
Complex
Common Logarithm® 1 LOG10 ALOG10 Real Real
Double Double
log(10%a DLOG
Exponential 1 EXP EXP Real Real
DEXP Double Double
e(a) CEXP Complex
Complex
Sine* 1 SIN SIN Real Real
DSIN Double Double
sin a CSIN Complex
Complex
Cosine* 1 cos COs Real Real
DCOS Double Double
cos a CCOS Complex
Complex
Tangent* 1 TAN TAN Real Real
DTAN Double Double
tan a

2The argument of SQRT and DSQRT must be greater than or equal to 0. The result of
CSQRT is the principal value with the real part greater than or equal to 0. When the real

0

part is 0, the result is the principal value with the imaginary part greater than or equal to

3The argument of ALOG, DLOG, ALOG10, and DLOG10 must be greater than 0. The
argument of CLOG must not be (0.,0.).

*The argument of SIN, DSIN, COS, DCOS, TAN, and DTAN must be in radians. The
argument is treated as modulo 2#pi.

POP-11 FORTRAN-77 implementstion Concepts 4-3

Tabile 4-1 (Cont.):

Generic and Intrinsic Functions

Number Type
of Generic Specific Type of of
Functions Arguments Name Name! Argument Result
Arc Sine®® 1 ASIN ASIN Real Real
DASIN Double Double
arc sine a
Arc Cosine™® 1 ACOS ACOS Real Real
DACOS Double Double
arc cos a : ,
Arc Tangent® 1 ATAN ATAN Real Real
DATAN Double Double
arc tan a
Arc Tangent®’ 2 ATAN2 ATAN2 Real Real
DATAN2 Double Double
arc tan a(l)
/a(2)
Hyperbolic Sine 1 SINH SINH Real Real
DSINH Double Double
sinh a
Hyperbolic Cosine 1 COSH COSH Real Real
DCOSH Double Double
Cosh a
Hyperbolic Tangent 1 TANH TANH Real Real
DTANH Double Double

Tanh a

15ee Section 4.2.4 for definitions of “I” and “J” forms.

*The absolute value of the argument of ASIN, DASIN, ACOS, and DACOS must be less

than or equal to 1.

5The result of ASIN, DASIN, ACOS, DACOS, ATAN, DATAN, ATANZ, and DATANZ is in

radians.

"The result of ATAN2 and DATAN? is O or positive when a(2) is less than or equal to 0.
The result is undefined if both arguments are 0.

4-4 PDP-11 FORTRAN-77 Implementation Concepts

i
R
B

Table 4-1 (Cont.):

Generic and Intrinsic Functions

Number Type
of Generic Specific Type of of
Functions Arguments Name Name' Argument Result
. Absolute value® 1 ABS ABS Real Real
DABS Double . Double
[a] CABS Complex
1IABS INTEGER*2 Real
JIABS INTEGER»2
INTEGER*4
INTEGER*4
IABS IIABS INTEGER*2 INTEGER=*2
JIABS
INTEGER#4 INTEGER*4
Truncation’ 1 INT IINT Real INTEGER=2
JINT Real
[a) UDINT Double INTEGER=*4
JIDINT Double
INTEGER+2
INTEGER+4
IDINT IHDINT Double INTEGER»2
JIDINT Double
INTEGER=~4
AINT AINT Real Real
DINT Double Double
Nearest Integer’ 1 NINT ININT Real INTEGER=2
JNINT Real
[a+5#sign(a)] IIDNNT Double INTEGER*4
Double
JIDNNT INTEGER=*2
INTEGER=*4
IDNINT IDNNT Double INTEGER=*2
Double
JIDNNT INTEGER»4

5ee Section 4.2.4 for definitions of “I and *J* forms.

®The absolute value of a complex number, (X,Y), is the real value: (X(21Y(2))(1/2)

%[x] is defined as the largest integer whose magnitude does not exceed the magnitude of x
and whose sign is the same as that of x. For example [5.7] equals 5. and [-5.7] equals -5.

POP-11 FORTRAN-77 Implementation Concepts 4-5

Table 41 {Cont.):

Generic and Intrinsic Functions

Number Type
. of Generic Specific Type of of
Functions Arguments Name Name' Argument Result
ANINT ANINT Real Real
DNINT Double Double
Fix'® 1 IFIX IIFIX Real INTEGER*2
(real-to-integer conver- JIFXT . Real b
sion)
Float™® 1 FLOAT FLOAT! INTEGER+2
(integer-to-real conver-
sion) FLOAT] INTEGER=»¢
Doubllﬂe Precision 1 DFLOAT DFLOTI INTEGER#2 Double
Float
(integer-to-double DFLOT] INTEGER*4 Double
conversion)
Conversion to Single i SNGL - Real Real
Precision'? SNGL Double Real
FLOATI iNTEGER+*2 Real
Real
FLOAT] INTEGER»4
Conversion to 1 DBLE DBLE Real Doubie
Double Precision’® - Double
- Complex Double
DFLOTI INTEGERs2
Double
DFLOT}] INTEGER»+4
Double
Double
Real Part of Complex 1 REAL REAL Complex Real
or Conversion to Single FLOATI INTEGER=2 Real
Precision'? Real
FLOAT] INTEGER+4 Real
Real
SNGL Real
SNGL Double

15ee Section 4.2.4 for definitions of “I” and *J" forms.

Functions that cause conversion of one data type to another type provide the same

effect as the implied conversion in assignment statements. The function SNGL with a real
argument and the function DBLE with a double precision argument return the value of the
argument without conversion.

4-6 POP-11 FORTRAN-77 Implementation Concepts

Table 4-1 {Cont.): Generic and Intrinsic Functions

Number Type
of Generic Specific Type of of
Functions Arguments Name Name' Argument Result
Imaginary Part of 1 - AIMAG Complex Real
Complex
. Conversion to 1,2 CMPLX - INTEGER*2 Complex
Sty Complex 1,2 -
oo or 1,2 - INTEGER*4 Complex
Complex from Two 1,2 CMPLX
Arguments'! 1,2 - Real Complex
1 - Real
Double Complex
Complex
Complex
_ Complex
Complex Conjugate 1 - CONJG Complex Complex
P (if a= (X,Y)
B 3)1 CONIJG {a)=(X.Y)
’ Double Product of 2 - DPFROD Real Double
Reals
a(1)*a(2)
Maximum n MAX AMAX1 Real Real
Double Double
max (a(l,).a(2), ... a DMAXI INTEGERs2
{n})) (returns the max- INTEGER+2
imum value from IMAX0 INTEGER=4
among the argument IMAX0 INTEGER+4

IR list; there must be at
o ' least two arguments})

MAXC IMAXO INTEGER*2
JIMAXO
INTEGER*4

15ee Section 4.2.4 for definitions of *“I” and “J” forms.

"'When CMPLX has only one argument, this argument is converted into the real part

of a complex value, and zero js assigned to the imaginary part. When CMPLX has two
arguments, the first argument is converted to the real part of a complex value, the second
to the imaginary part.

PDP-11 FORTRAN-77 Implementation Concepts 4&-7

Table 4~1 (Cont.):

Generic and Intrinsic Functions

Type
Generic Specific Type of of
Functions Name Name' Argument Result
MAX1 IMAX1 Real INTEGER*2
IMAX1 Real
INTEGER+=4
AMXAO0 AIMAXC INTEGER+«2 Real
Real
AJMAX0 INTEGERw4
Minimum MIN AMINI Real Real
DMIN1 Double Double
min(a(1),a(2)...a(n) IMING INTEGERs2
(returns the minimum JMING INTEGERs2
value among the argu- INTEGER+4
ment list; there must be MINCO IMINOG INTEGER+4
at least two arguments) MINC
INTEGER+2
MIN1 MINO INTEGER»2
JMINO INTEGER=4
INTEGER+4
AMINO AIMINO
Real
Real INTEGER=2
AJMIND
INTEGER»2 INTEGER+*4
INTEGER+4
Real
Real
Positive Difference DIM DIM Real Real
DDIM Double Double
a(1)-(min(a(1),a(2))) IDIM INTEGERs2
returns the first ar- JIDIM INTEGER»2
gument minus the INTEGER+4
minimum of the two IDIM DM INTEGER*4
arguments} DM
INTEGER»*2
INTEGER+2
INTEGER»4
INTEGER=4

15ee Section 4.2.4 for definitions of *I” and *]" forms.

4-8 PDP-11 FORTRAN-7T7 Implementation Concepts

i

Table 4--1 (Cont.):

Generic and Intringic Functions

Number Type
of Generic Specific Type of of
. Functions Arguments Name Name' Argument Result
" Remainder 2 MOD AMOD Real Real
DMOD Double Double
a(1)-a(2){a(1)/a{2)] IMOD INTEGER=2
{returns the remainder JMOD INTEGER»2
when the first argu- INTEGER«4
ment is divided by the INTEGER+4
second)
Transfer of Sign 2 SIGN SIGN Real Real
DSIGN Double Double
a{1) *Sign a(2) IISIGN INTEGERe2
JISIGN INTEGER»2
INTEGER=*4
ISIGN IISIGN INTEGER+4
NISIGN
INTEGER=*2
INTEGER»2
INTEGER»4
INTEGER»4
Bitwise AND (performs 2 IAND IIAND INTEGER«2
a logical AND on JIAND
corresponding bits) INTEGER+4
Bitwise OR (performs 2 IOR NOR INTEGER=2
an inciusive OR on JIOR
corresponding bits) INTEGER=4
Bitwise Exclusive OR 2 IECR HEOR INTEGER*2 INTEGER*2
(performs an exclusive JIEOR
OR on corresponding INTEGER*4 INTEGER+*4
bits)
Bitwise Complement 1 NOT INOT INTEGER+2 INTEGER»*2
(complements each bit) INOT
INTEGER*4 INTEGER%4
Bitwise Shift 2 ISHFT 1ISHFT INTEGER*2 INTEGERs2
(a{1) logically shifted HSHFT
left a(2) bits) INTEGER»4 INTEGER%4

l5ee Section 4.2.4 for definitions of “I” and “]” forms.

PDP-11 FORTRAN-77 Implementation Concepts 4-8

Table 4-1 (Cont.): Generic and Intrinsic Functions

Number Type
of Generic Specific Type of of
Functions Arguments Name Name! Argument Resuit
Random Number'?(returns 1 - RAN INTEGER*4 Real
the next number from
a sequence of pseu-
dorandom numbers of
uniform distribution 2 - RAN Real
over the range 0 to 1) : INTEGER+2
Length 1 - LEN Character INTEGER=2
{returns length of the
character expression}
Index (C(1),C(2)) 2 - INDEX Character INTEGER=2
(returns the position
of the substring ¢(2) in
the character expression
o1)
ASCH Value 1 - ICHAR Character
{retums the ASCII .
value of the argument;
the argument must be
a character expression
that has a length of 1)
Character relationals 2 - LLT Character Logical»2
{ASCII collating se- 2 - LLE Character
quence) 2 - LGT Character Logical*2
2 - LGE Character
Logical+2

Logical»2;

15ee Section 4.2.4 for definitions of “I” and *T" forms.

2The argument for this function must be an integer variable or integer array element. The
argument should initially be set to 0. The RAN function stores a value in the argument
that it later uses to calculate the next random number. Regetting the argument to C
regenerates the sequence, Alternate starting values generate different random-number

sequences,

4-10 PDP-11 FORTRAN-77 Implementation Concepts

4.2 INTEGER+2 and INTEGER+4

PDP-11 FORTRAN-77 provides two integer data types: INTEGER»*4, for
purposes of high precision; and INTEGER=2, for purposes of efficiency.
INTEGER#*4 operations are performed to 32 bits of significance; however,
because these operations require more instructions and storage than
INTEGER*2 operations, they are less efficient in terms of both time and
memory.

Ry To encourage efficiency, the FORTRAN-77 compiler assumes all integer
variables to be of INTEGERs2 types unless you explicitly declare them
to be INTEGER*4 within a program, or unless you set the /14 compiler
switch (see Section 1.2.4).

When in INTEGER*4 mode, the compiler treats all integer (and logical)
variables as INTEGER*4 (and LOGICAL+4) types unless you explicitly
declare them otherwise within a program.

4.2.1 Representation and Relationship of INTEGER+2 and INTEGER+4 Values

INTEGER#*2 values are stored as two’s complement binary numbers in one
word of storage. INTEGER»4 values are represented in two's complement
binary form in two words of storage: the first word (lower address)
contains the low-order part of the value, and the second word (higher
address) contains the high-order part of the value (including sign).

An INTEGER#*2 value is, then, a subset of an INTEGER*4 value.
Therefore, the address of an INTEGER+4 value within the range -32768
to +32767 can be treated as the address of an INTEGER+2 value; and
conversion from INTEGER*4 to INTEGER#2 (without overflow checking)
consists of ignoring the high-order word of the INTEGER*4 value. (In sit-
uations where you can determine at compile time that the results will not
be affected, you can generate INTEGER*2 code to perform INTEGER*4
operations.)

The FORTRAN rules state that corresponding actual and dummy argu-
ments must agree in type. In the following example, héwever, if the
compiler supplies an INTEGER*2 constant as the actual argument, SUB
executes correctly even if its dummy argument is of INTEGER+4 data type:

CALL SUB(2)

PDP-11 FORTRAN-77 implementation Concepts 4-11

4.2.2 Integer Constant Typing

In general, typing integer constants as either INTEGER#2 or INTEGER+4 is
based on the magnitude of the constant; and in most contexts, INTEGER»2
and INTEGER#*4 variables and integer constants may be freely mixed.
However, the programmer is responsible for ensuring that integer overflow
conditions that might adversely affect the program do not occur. Consider
the following example:

INTEGER*2 I
INTEGER*4 J
I = 32767
J=1I+3

In this example, I and 3 are INTEGER+2 values, and an INTEGER#2
result is computed. The 16-bit addition, however, overflows the valid
INTEGER#2 range, and the resulting bit pattern represents -32766, a valid
INTEGER#2 value that is converted to INTEGER=4 type and assigned to J.
This overflow is not detected.

Compare the above example with the following apparently equivalent
program, which produces an entirely different, and logically correct, result:

INTEGER*4 J
PARAMETER I = 32767
I=1+3

In this example, the compiler adds the constant 3 and the parameter
constant 32767 and produces a resulting constant of 32770. The compiler
recognizes this constant as an INTEGER#*4 value and assigns it to J.

4.2.3 0Octal Constant Typing

Octal constants can take either of two forms:

'C1 C2 C3...Cn’
Gl €2 C3...¢Cn

Octal constants of the form ‘C1 C2 C3 ... Cn’ O are typeless numeric
constants that assume data types on the basis of the way they are used.
See the PDP-11 FORTRAN-77 Language Reference Manual for the rules on
the typing of octal constants of this form.

Octal constants of the form C1 C2 C3 ... Cn, however, are typed as
either INTEGER#2 or INTEGER®#4, and are typed on the basis of the
magnitude of the constant.

4-12 FDOP-11 FORTRAN-77 Implementation Concepts

An octal constant of the form C(1) C(2) C(3) ... C(n) is typed as
INTEGER+2 if bits 16 through 31 of the value are the same as bit 15;
otherwise, it is typed as INTEGER»4. Because octal constants are treated
as unsigned values, they are interpreted as positive values unless bit 31 is
set. The octal constants 100000 through 177777 are typed as INTEGER*4
and interpreted as the decimal values 32768 through 65535, rather than as
the negative signed decimal values -32768 through -1.

Because octal constants are positive values, you must take care when you
compare octal constants with negative signed INTEGER*2 values.

Consider the following example:

INTEGER+2 1
IF (I .EQ. *105132) STOP

The comparison made here always results in an inequality (and the STOP
statement is not executed). The reason for this is that the INTEGER»2
value of I is converted to INTEGER+4 before the comparison (to conform
with the type of 105132); therefore, whenever I contains the bit pattern
105132, this pattern will be interpreted after conversion as the negative
decimal value -30118.

The above example is equivalent to:

INTEGER*2 I
IF (I .EQ. 35418) STOP

If INTEGER»*2 values must be compared with octal constants of the
form oo, the octal constant should be assigned to an INTEGER»2
temporary. An INTEGER#2 temporary could be used in our example
as follows:

INTEGER#2 I, ICONST
DATA ICONST/*105312/
IF (I .EQ. ICONST) STOP

[Py

PDP-11 FORTRAN-77 Implemantation Concepts 4-13

4.2.4 Integer-Valued Intrinsic Functions

A number of the intrinsic functions provided by FORTRAN-77 (for
example, IFIX) produce integer results from real or double-precision
arguments. These intrinsic functions are called “result generic” functions.
Because the compiler operates in two different modes, INTEGER»*2 mode
and INTEGER#*4 mode, the system provides two internal versions of
each of these integer-producing functions: an INTEGER#*2 version and
an INTEGER=*4 version. The compiler selects the proper version on the
basis of the current compiler mode setting rather than—as it does for the
other intrinsic functions-—on the basis of the data type of arguments in
the function reference.

In some cases, you may need to use the version of an integer intrinsic
function that is the opposite of the one that would be invoked under
the current compiler mode setting. For example, a program that pre-
dominantly uses INTEGER=*2 values may at some point need to get an
INTEGER=*4 result from a intrinsic function. To satisfy this need, the
system provides an additional pair of intrinsic function names that can
reference the two internal versions of each integer-producing intrinsic
function no matter what the current compiler mode setting may be. By
convention, these additional names are created by prefixing I and] to the
intrinsic function name. For example, I is prefixed to IFIX to create the
INTEGER»*2 version of this function name, and] is prefixed to create the
INTEGER#4 version. IIFIX references the INTEGER#2 internal function
$IFIX, and JIFIX references the INTEGER*4 internal function $JFIX.

The compiete set of names and corresponding internal routines is shown
in Table 4-1 (in Section 4.1).

Implementation-Dependent Integer Typing

The FORTRAN-77 compiler performs a number of integer-typing opti-
mizations by taking advantage of certain properties of the PDP-11 and/or
the operating system. These optimizations are generally transparent to a
FORTRAN user and include the following:
* Array addressing calculations
Because the entire virtual address space of the PDP-11 can be rep-
resented in one word, array bounds expressions and array subscript
expressions are always converted to INTEGER*2 before being used
in an array address calculation. Therefore, even when the compiler v

4-14 FDP-11 FORTRAN-77 Impilementation Concepts

——

is operating in /14 mode, the code generated for array addressing is
performed with INTEGER*2 operations.

* Input/output logical unit numbers

Because logical unit numbers can always be represented by a 1-word
integer, the compiler converts all unit numbers to INTEGER*2 when
producing calls to the 1/0 section of the OTS.

* Direct access record numbers

For easy implementation, and to provide programs that predominantly
use 1-word integers the capability of using very large-files, all direct
access record numbers are processed as INTEGER#+4 values.

(e g

4.3 BYTE (LOGICAL»1) Data Type

FORTRAN-77 provides the byte data type (BYTE) to take advantage of
the byte-processing capabilities of the PDP-11. Although LOGICAL=#1 is a
synonym for BYTE, a BYTE value is actually a signed integer. In addition
to storing small integers, the byte data type is used for keyed access to
indexed files and for storing and manipulating Hollerith information.

In general, when data of two different types are used in a binary oper-
ation, the lower-ranked type is converted, before any computations, to
the higher-ranked type. However, in the case of a byte variable and an
integer constant that can be represented as a byte variable, the integer
constant is treated as a byte constant; therefore, the result of the operation
is of type byte rather than of type integer, as it would be under the more
general convention. The overflow possibilities under this convention,
however, are similar to those in Section 4.2.2 for mixed INTEGER*2 and
INTEGER#*4 variables and constants.

POP-11 FORTRAN-77 implementation Concepts 4-15

4.4 Iteration Count Model for DO Loops

FORTRAN-77 provides an extended form of the DO statement. This
statement has the following features:

* The control variable may be an INTEGER+*2, INTEGER*4, REAL, or
DOUBLE PRECISION variable.

¢ The initial value, step size, and final value of the control variable
can be represented by any expressions whose resulting types are
INTEGER#*2, INTEGER*4, REAL, or DOUBLE PRECISION.

¢ ' The number of times the loop is executed (the iteration count) is
determined when the DO statement is initialized and is not reevalu-
ated during successive executions of the loop. Thus, the number of
times the loop is executed is not affected by changing the values of
the parameter variables used in the DO statement.

441 Cautions Concerning Program Interchange

Three common practices associated with the use of DO statements on ‘w
other FORTRAN systems may not have the intended effects when used
with FORTRAN-77. These are as follows:

* Assigning a value to the control variable within the body of the
loop that is greater than the final value does not always cause early
termination of the loop.

* Modifying a step size variable or a final value variable within the body
of the loop does not modify the loop behavior or terminate the loop.

* Using a negative step size (for example, DO 10 I = 1,10,-1) in order
to cause an arbitrarily long loop that is terminated by a conditional NI
control transfer within the loop results in zero iterations of the loop N7
body. A zero step size may result in an infinite loop at run time.

4-18 PDP-11 FORTRAN-77 Implementation Concepts

4.4.2 Iteration Count Computation

Given the following generic DO statement:
DO label V=mi,n2,m3

(where m1, m2, and m3 are any expressions), the iteration count is
computed as follows:

count= MAX (INT(m2-m1+m3)/m3,0)

This computation does the following:

¢ Provides that the body of the DO loop will be executed zero times
if the iteration count given by the above formula is zero. (Under the
/NOF77 switch, the loop is executed one time if the iteration count
is zero.)

¢ Permits the step size (m3) to be negative or positive, but not zero

» Gives a well-defined and predictable value of an iteration count that
results from any combination of values of the allowed result types

Do Note that overflow of INTEGER*2 control variables is not detected and
can result in an infinite loop at run time. Consider the following
program unit:

DD 10 I=1,32767

10 CONTINUE

This program unit always results in an infinite loop when I is of
INTEGER#2 type. See Section 4.2.2 for more information on integer
overflow conditions.

You should also be aware that the effects of round-off error inherent in
any floating-point computation, when real or double-precision values are
used, may cause the count to be greater than, or less than, desired.

Under certain conditions, it is not necessary to actuaily compute the
iteration count to obtain the required number of iterations; if all the
parameters in an iteration computation are of type integer, and the step
size is a constant (so that the sign of the increment value is known), the
FORTRAN-77 compiler generates the necessary code to compare the
control variable directly with the final value to control the number of
iterations of the loop.

PDP-11 FORTRAN-77 implementation Concepts 4-17

4.5

4-18

Using EQUIVALENCE with Mixed Data Types

You can predict the effects of EQUIVALENCE statements involving
variables and/or arrays of mixed type when you consider the actual
storage (in bytes) of each type of variable involved.

Example 4-1 illustrates the relationships that result when an EQUIVALENCE
statement uses byte, integer, real, and complex elements.

Character data must not be equivalenced to data of any type other than
character, BYTE, or LOGICAL»1.

Example 4~1: EQUIVALENCE Using Mixed Data Types

BYTE B {0:9)

COMPLEX C(4)

REAL R(3)

INTEGER+2 I(3)

EQUIVALENCE (G(2),R(2),I),(143),B(9})

Address Storage Alignment =
n €(1) B(1)

n+l . .

n+2

n+3 . . B(0)

n+4 . R(@ B{1)

n+5 . . B(2)

n+6 . . B(3)

n+7 . . B(4)

n+8 c{2) R{(3) I(1) B(&)

n+9 . . . B(8)

n+10 . . I(2) BT

n+11 . . . B(8)

n+12 . 1(3) B(9)

n+13 . . Lk
n+l4 . S
n+i% .

n+16 c(3)

PDP-11 FORTRAN-77 Implementation Concapts

4.6 Equivalence, BYTE Data, and Storage Alignment

The PDP-11 hardware requires that sforage for all data elements except
byte elenents begin at an even address. This requirement can be satisfied
in all except the following two cases:

® FEquivalence relationships involving byte elements and nonbyte
. elements can make it logically impossible to allocate variables in a
= manner that satisfies the even-byte alignment constraint for all ele-
ments involved in an equivalence. An exampie of such an equivalence
relationship is as follows:

BYTE B(2)
INTEGER+2 I,
EQUIVALEXCE (B(1),I).(B(2),D)

* Using a COMMON block in more than one program unit constitutes
an implied relationship of equivalence among the sets of elements
declared in that block. If a strict interpretation of the sequence of
variable allocations causes a nonbyte variable to start at an odd
address, a compiler adjustment is not made because it could destroy
alignment properties expected in another program unit.

The compiler begins allocating each common block, and each group of
equivalenced variables that are not in common, at an even address. If an
allocation results in an element not of type byte being stored beginning
at an odd address, an error message is produced. If this happens, to
avoid fatal errors during execution, you must modify the common and/or
EQUIVALENCE statements to eliminate the odd-byte addressing.

Variables and arrays not in common and not used in EQUIVALENCE
statements are always correctly aligned.

4.7 ENTRY Statement Arguments

The FORTRAN-77 implementation of argument association in ENTRY
statements varies from that of some other FORTRAN systems.

As mentioned in Chapter 3, FORTRAN-77 uses the call-by-reference
method of passing arguments to called procedures. Some other FORTRAN

- implementations use the call-by-value/result method. This difference in
approach is important to keep in mind when you reference dummy
arguments in ENTRY statements.

PDP-11 FORTRAN-77 Implementation Cancepts 4-19

Although standard FORTRAN allows you to use the same dummy argu-
ments in different ENTRY statements, it allows you to reference only those
dummy arguments that are defined for the ENTRY point being called. For
example, given the subprogram unit

SUBROUTINE SUB1(X,Y.Z)

ENTRY ENT1(X.A)

ENTRY ENT2(B.Z.¥)

you can make the following references:

CALL Valid References
SUB4 X ¥ Z
ENT1 X A

ENTZ2 B A §

FORTRAN implementations that use the call-by-value/result method, L
however, permit you to reference dummy arguments that are not defined (%"’
in the ENTRY statement being called. For example, consider the following ‘-’
device for initializing dummy variables for subsequent referencing:

SUBRDUTINE INIT(A.B,C)
RETURN

ENTRY CALC(Y.X)

Y = (A*X+B)/C,

END

You can use this nonstandard device in call-by-value/result implemen-
tations because a separate internal variable is allocated for each dummy
argument in the called procedure. When the procedure is called, each
scalar actual-argument value is assigned to the corresponding internal
variable, and these internal variables are then used whenever there is
a reference to a dummy argument within the procedure. On return
from the procedure, modified dummy argumerits are copied back to the
corresponding actual-argument variables.

When an entry point is referenced, all the dummy arguments of the entry
point are defined with the values of the corresponding actual arguments
and .can be referenced on subsequent calls to the subprogram. However,
you should avoid such subsequent referencings in programs that are to be
compiled under FORTRAN-77, as they will not have the intended effect
and will produce programs that are not transportable to other systems that
use the call-by-reference method.

4-20 PDP-11 FORTRAN-27 implemantation Concepts

FORTRAN-77 creates associations between dummy and actual arguments
by passing the address of each actual argument to the called procedure.
Each subsequent reference to a dummy argument generates an indirect
address reference through the actual-argument address. When control
returns from the called procedure, the association between actual and
dummy arguments ends. The dummy arguments do not retain their
values, and therefore cannot be referenced on subsequent calls. Therefore,
to perform the kind of nonstandard references shown in the previous
example, the subprogram would have to copy the values of the dummy
arguments to other variables. For example, if subroutine INIT is rewritten
as follows, it will work on FORTRAN-77 as well as on systems that use
the call-by-value/result method:

SUBROUTINE INIT(A1,B1,C1)
SAVE A,B.C

A=Al

B = Bl

C=c1

RETURN

ENTRY CALC(Y.X)

Y = (A=X+B)/C

END

PDP-11 FORTRAN-77 Implementation Concepts 4--21

Chapter 5

PDP-11 FORTRAN-77
Programming Considerations

This chapter discusses techniques for writing effective FORTRAN-77
programs. Topics discussed are as follows:

* Efficient use of program statements and data types

* Compiler optimizations

* Program size and speed considerations

* Optional OTS capabilities

* RMS-11 and FCS link and run-time considerations

5.1 Creating Efficient Source Programs

The following sections discuss the use of the PARAMETER, INCLUDE,
OPEN, and CLOSE statements in relation to writing efficient source
programs; they also discuss the efficient use of the INTEGER»2 and
INTEGER#*4 data types.

PDP-11 FORTRAN-77 Programming Considerations &-1

2 s 7 om s

5.1.1 PARAMETER Statement

The PARAMETER statement provides a way for you to write programs
containing easily modified parameters, such as array bounds and iteration
counts, without losing the efficiency of using constant expressions to
manipulate these parameters. Because the FORTRAN-77 compiler-can
optimize constants more efficlently than it can optimize variables (see
Section 5.2.2), programs that use PARAMETER statements are generally
more efficient than programs that initialize parameters with DATA or
assignment statements. For example, the first program fragment below
compiles into more efficient code than the second or third:

{1) PARAMETER (M=50,§=1007
DIMENSION X(M),Y({N)
D0 5, I=1 .M
po 5, J=1L.N
b XIY = X(IIAYLT) + R(MIAY (N}

(2) DIMENSION X(50),Y(100)
DATA M,N/50,100/
Dt 5, I=1 .M
D05, J=1.N
5 X(I) = X(D)+Y (D) + X(M)+Y(N)

(3 DIMENSION X({5¢),Y(100)
M =50
N = 100
bO 5, I=1.M
DO 5, J=1,¥
5 X(I) = XCL3*Y(J) + X{M)#Y (W)

§5.1.2 INCLUDE Statement

The INCLUDE statement provides a way for you to eliminate duplication
of source code and to facilitate program maintenance. Because of the
availability of the INCLUDE statement, you can create and maintain

a separate file for a section of program text used by several different
program units, and then include this text in the individual program units
at compile time, For example, rather than duplicate the specification

for a common block referenced by several program units, you can write
the specification a single time in a separate file; then each program unit
referencing the common block merely executes an INCLUDE statement
to incorporate the specification into the unit. In addition to increasing
programming efficiency, using the INCLUDE statement fosters reliability,
modular programming, and ease of maintenance.

The following example shows the use of the INCLUDE statement.

§-2 POP-11 FORTRAN-77 Programming Considerations

The file COMMON.FTN defines the size of the blank common block and
the size of the arrays X,Y, and Z.

Main Program File File COMMON.FTN
INCLUDE 'COMMON.FTN* PARAMETER M=1(C0
DIMENSION Z{M) COMMON X{M),Y(M)
CALL CUBE

DO & I=1.M

5 Z(I)=X(I)+SQRT{Y(ID)

SUBROUTINE CUBE
INCLUDE 'COMMON.FTN*
D0 10 I=1 .M

10 X(L)=Y(I}**3
RETURN
END

6.1.3 OPEN and CLOSE Statements

The OPEN and CLOSE statements provide you with precise, explicit, and
efficient control of 1/0 devices and files. Some examples follow:

OPEN (UNIT=1, STATUS='NEW', INITIALSIZE=200)

This statement creates a sequential file and allocates the space required for
the file. Allocation of space at file opening is more efficient than dynamic
extension of the file.

OPEN (UNIT=1, STATUS='UNKNOWN', EXTENDSIZE=200)

This statement specifies a relatively large EXTENDSIZE value, which is
useful when a program writes many blocks to a file; it is faster to use one
large extension than several small ones.

QPEN (UNIT=J, STATUS='NEW'...)
IF (IERR) CLOSECUNIT=J, STATUS='DELETE')

CLOSE (UNIT=J, STATUS='SAVE'}

PDP-11 FORTRAN-77 Programming Considerations 5-3

If an error (denoted by IERR) occurs that makes the file created by the
OPEN statement invalid or useless, the file is efficiently deleted.

CHARACTER=40 FILNAM

1 TYPE 100

100 FORMAT('$SINPUT FILET')
ACCEPT 101, FILNAM

101 FORMAT (A)

OPEN {UNIT=3, FILE-FILNAM, STATUS='QOLD', ERR=9)

9 TYPE 102, FILNAM .
102 FORMAT (' ERROR OPENING FILE ',A)
G0 T0 1

This program fragment reads a file specification into the character variable
FILNAM. The specified file is then opened for processing.

DPEN(UNIT=1,STATUS='NEW', ORGANIZATION='INDEXED',
RECL=60, FORN="UNFORMATTED" ,
KEY= (1:20, 30:33:INTEGER, 46:57), ACCESS='KEYED')

This statement creates a new indexed file that has three keys: the primary
key is from byte 1 to byte 20; the first alternate key is an integer key from
byte 30 to byte 33; and the second alternate key is from byte 46 to byte
57.

NOTE

If you are adding several records to a file, make certain you
specify a large enough EXTENDSIZE to reflect the size the file
will be at the end of the program.

INTEGER+2 and INTEGER+4

Because the PDP-11 is a 16-bit computer, the code sequences generated
for INTEGER*4 computations are larger and slower than those for their
INTEGER=*2 counterparts. Therefore, the use of INTEGER#+4 should be

limited to those data items requiring 32-bit representation; INTEGER*2

should be used elsewhere. In general, it is advisable to minimize use of
the /14 compiler option.

6-4 PDP-11 FORTRAN-77 Progremming Considerations

s’

et

R

5.2 Compiler Optimizations

Optimization is producing the greatest amount of processing with the least
amount of time and memory.

The primary goal of FORTRAN-77 optimization is to produce an object
program that executes faster than an unoptimized version of the same
source program. A secondary goal is to reduce the size of the object
program.

The language elements you use in a source program directly affect the
compiler’s ability to optimize the object program. Therefore, you should
be aware of the ways in which you can assist compiler optimization. The
FORTRAN-77 compiler performs the following optimizations:

* Constant folding: Integer constant expressions are evaluated at
compile-time.

» Compile-time constant conversion.

s Compile-time evaluation of constant subscript expressions in array
calculations.

* Argument-list merging: if two function or subroutine references have
the same arguments, a single copy of the argument list is generated.

* Branch instruction optimizations for arithmetic and logical IF
statements.

¢ Eliminating unreachable (“dead”) code: an optional warning message
is issued to indicate unreachable statements in a source program.

¢ Recognizing and replacing common subexpressions.
¢ Removing invariant computations from DO loops.

* Local register assignment: frequently referenced variables are retained
(if possible) in registers to reduce the number of load and store
instructions required.

* Assigning frequently used variables and expressions to registers across
DO loops. :

* Constant pooling: storage is allocated for only one topy of a con-
stant in the compiled program. Constants, including most numeric
constants, used as immediate-mode operands are not allocated storage.

¢ Inline code expansion for some intrinsic functions.

¢ Fast calling sequences for the real and double-precision versions of
some intrinsic functions.

PDP-11 FORTRAN-77 Programming Considerations $5-5

* Reordering the evaluation of expressions to minimize the number of
temporary values required.

* Delaying unary minus and .NOT. operations to eliminate unary
negation and complement operations.

* Partially evaluating Boolean expressions. For example, if el in the
following expression has the value .FALSE., €2 is not evaluated:

IF {et.AND.e2) GO TO 20

The order in which el and e2 appear in the source statement has no
effect on partial evaluation.

* Peephole optimization of instruction sequences: examining code on an
instruction-by-instruction basis to find operations that can be replaced
by shorter, faster operations.

5.2.1 Characteristics of Qptimized Programs

An optimized FORTRAN-77 program is computationally equivalent to an
unoptimized program; therefore, identical numerical results are obtained
and equivalent (in meaning, not quantity) run-time diagnostic messages
are produced. An optimized program, however, can produce fewer
run-time diagnostic messages and the diagnostics can occur at different
statements in the source program.

Example 5-1: Effects of Optimization on Error Reporting

Uncptimized Program Optimized Program
A= X/Y t = X/Y
B = X/Y A =1
DG 10, I = 1,10 B =t -
10 CCI) = ¢{I) * (X/) DO 10, I = 1,10
10 C{I) =Q(I) = ¢

In Example 5-1, if Y has the value 0.0, the unoptimized program produices
12 zero-divide errors at run time; the optimized program, however,
produces only one zero-divide error because the calculation that produces
the error has been moved out of a loop. (Note that ¢ is a temporary
variable created by the compiler,})

§-8 POP-11 FORTRAN-77 Programming Considerations

Note that optimizations such as eliminating redundant calculations and
moving invariant calculations out of loops can affect the use of the
ERRTST system subroutine. For example, in the above program, a call to
ERRTST from inside the loop does not detect a zero-divide error in the
loop calculation because the compiler has moved the error-producing part
of the calculation outside the loop.

~~. 522 Compile-Time Operations on Constants
- The compiler performs the following computations on exi:ressions involv-
ing constants (including PARAMETER constants):

¢ Negation of constants: constants preceded by unary minus signs are
negated at compile time. For example:

X=-10.0

is compiled as a single move operation.

» Type conversion of constants: Lower-ranked constants are converted
Ty to the data type of the higher-ranked operand at compile time. For
Lo example:

X = 10%Y
is compiled as:
X = 10.0xY

* Integer arithmetic on constants: Expressions involving +, -, *, / or =«
operators are evaluated at compile time. For example:

PARAMETER (NN=27)
I = 2+NN+J

is compiled as:
I = 54+J
Array subscript calculations involving constants are simplified at compile
time where possible. For example:

DIMENSION I(10,10)
I1{1.2) = I({4,5)

is compiled as a single move instruction.

POP-11 FORTRAN-77 Programming Considerations §-7

5.2.3 Source Program Blocks

FORTRAN-77 performs some optimizations only within the confines of
a single “block” of a source program. A block is a sequence of one or
more source statements. The start of a new block is generally defined by
a labeled statement that is the target of a control transfer from another
statement (for example, a GO TO, an arithmetic IF, or an ERR= option).
An ENTRY statement also defines a new block. Some occurrences of
statement labels do not define the start of a new block; these occurrences
are as follows:

* Unreferenced statement labels,

* A label terminating a DO loop, provided the only references to the
- label occur in DO statements.

* Labels of FORMAT statements. FORMAT statements must be labeled,
but control cannot be transferred to a FORMAT statement.

* Labels such that the only reference to the label occurs in the immedi-
ately preceding arithmetic IF statement. For example:

IF(A) 10,20,20
ic X = 1.

* Singly referenced labels. A jump to a singly referenced label may
be equivalent to an IF THEN /ENDIF structure. lf it is, the IF THEN
/ENDIF structure is used and the block is extended past the labeled
statement.

The compiler imposes a limitation on the size of a single block. Therefore,
a very long straight-line sequence of FORTRAN statements can be treated
as several “blocks” during optimization.

A block can contain one or more DO loops, provided none of the labels
within the loops defines the start of a new block. Therefore, the following
are considered single blocks and are optimized as complete units:

Example 1 Example 2
X = BsC DG 20, I=1,N
D0 10, I=1.N 03 20, J=1,N
10 A(I) = A(I)/(B*C) SUK = 0.0
DG 20, J=1 N DO 10, K=1,N
20 Y(J) = Y(I)+BC 10 SUM = SUM+A(L,K)*B(K.J)

20 ¢{I.I) = SUM

5-8 POP-11 FORTRAN-77 Programming Considerations

If the label specified as the target of a GOTO in a logical IF is referenced
only once, the structure may be equivalent to a block IF. For example, the
following examples are equivalent:

Example 1 Example 2
IF (I .LT. J) GOTO 20 IF (I .LT. J}THEN
A(D) = A{D)*J A(I) = A(I)=]
J=J-1 J=3+1
TR 20 I=I+1 ENDIF
Pl I=I+1

Even though these two examples are equivalent, Example 2 is more easily
optimized. Therefore, as long as Example 1 is valid (that is, as long as
both the GOTO and the label are in the same block, and the nesting
rules are not violated), FORTRAN-77 transforms Example 1 into the form
shown in Example 2.

. Optimizations can be done most effectively over complete structures. If a
block would otherwise be ended within either a block IF or DO structure,
the block is instead ended at the beginning of the DO structure or the

ST conditional block of the block IF structure.

A more thoroughly optimized object program is produced if the number of
separate blocks is minimized. The common-subexpression, code motion,
and register allocation optimizations are performed only within single
blocks.

Multiple block IF structures, as well as nested DO and block IF structures,
can occur within a single block.

5.2.4 Eliminating Common Subexpressions

Often a subexpression appears in more than one computation within a
program. If the values of the operands of such a subexpression are not
changed between computations, the value of the subexpression can be
computed once and substituted for each occurrence of the subexpression.
For example, B+C is a common subexpression in the following sequence:

A = BxC+EF

E = A+G-B«C

POP-11 FORTRAN-77 Programminﬁ Considerations §-8

IF ((B+C)-H)10,20,30
The preceding sequence is compiled as:

BeC

Tt =
A = L+E*F

H = A+G-t
IF({t}-H)10,20,30

where t is a temporary variable created by the compiler. Two computa-
tions of the subexpression B+C are eliminated from the sequence,

In the above example, you can medify the source program to eliminate
the redundant calculation of (B+C). In the following example, however,
you cannot reasonably modify the source program to achieve the same
optimization ultimately effected by the compiler. The statements

DIMENSION A(25.25), B{(25,25)
A(I,I}=B(I,I}

are compiled, without optimization, to a sequence of instructions of the
form:

tl = J*25+]
£2 = J*25+1
A(tl) = B(t2)

where the variables t1 and t2 represent equivalent expressions.
Recognizing the redundancy, the compiler optimizes the sequence into
the following shorter, faster sequence:

t = J&25 + I
A(t) = B(t)

If a common subexpression is created within a conditional block of a block
IF, this subexpression can be used anywhere within the conditional block
in which it was created, including within any nested inner blocks; but it
cannot be used outside that conditional block.

5-10 PDP-11 FORTRAN-77 Programming Considerations

5.2.5 Removing Invariant Computations from Loops
Execution speed is enhanced if invariant computations are moved out of
loops. For example, in the sequence '

DO 10, I=1,100
10 F = 2.0+Q+A(I)+F

the value of the subexpression 2.0*Q) is the same during each iteration of
the loop. Transformation of the sequence to:

t = 2.0%)
DO 10, I=1,100
10 F = t+A(I}+F

moves the calculation 2.0»Q outside the body of the loop and eliminates
99 multiply operations.

However, invariant computations cannot be moved out of a zero-trip DO
loop. For example, in the sequence

Do 10, I=1.N
10 F=2.0+Q*A(I)+F

statermnent 1{/ is not executed for certain values of n; therefore, the invariant
computation 2.0+Q cannot be moved out of the loop.

5.3 Run-Time Programming Considerations

You can often reduce the execution time of programs by making use of the
following facts relevant to the FORTRAN-77 run-time environment.

* Unformatted I/0O is substantially faster and more accurate than
formatted 1/0. The unformatted data representation usually occupies
less file storage space as well. Therefore, you should use unformatted
1/0O for storing intermediate results on secondary storage.

* Specifying an array name in an 1/0O list is more efficient than using an
equivalent implied DO list. A single I/O transmission call passes an
entire array; however, an implied DO list can pass only a single array
element for each 1/0 call,

* Implementing the BACKSPACE statement involves repositioning the
file and scanning previously processed records. If a reread capability is
required, it is more efficient to read the record into a temporary array
and DECODE the array several times than to read and backspace the
record.

PDP-11 FORTRAN-77 Programming Considerations S-11

* Array subscript checking is time-consuming and requires additional
compiled code. It is primarily useful during program development and
debugging.

* To obtain minimum direct access 1/0O processing, the record length
should be an integer factor or multiple of the device block size of
512 bytes (for example, 32 bytes, 1024 bytes, and so on). Note that
relative files under RMS-11 have additional overhead bytes added to
each record.

¢ If the approximate size of the file is known, it is more efficient to
allocate disk space when the file is opened than to incrementally
extend the file as records are written.

¢ Using run-time formats should be minimized. The compiler prepro-
cesses FORMAT statements into an efficient internal form. Run-time
formats must be converted into this internal form at run-time. In
many cases, variable format expressions allow the format to vary at
run time as needed.

*» RMS5-11 I/O operations are substantially slower in most cases than
corresponding FCS-11 I/O operations; therefore, using RMS-11
should generally be restricted to indexed files under keyed access.

5.4 FORTRAN-77 Optional Capabilities

The FORTRAN-77 system, as distributed, contains several optional
capabilities supported by alternate OTS modules. These capabilities
include: o

* Running FORTRAN-77 without a Floating Point Processor

* Running FORTRAN-77 compiled programs under RSX-115

* Choosing alternate run-time error reporting

¢ Obtaining an alternate floating point output conversion routine
¢ Building an OTS shareable library

* Building tasks with overlaid OTS modules

¢ Choosing an alternate random-number generator for compatibility
with previous versions of the OTS (see Appendix B).

These options are described below. You should consult your system
manager to determine the availability of these options; optional OTS
modules are located in LB:(1,1] (LB: on RSTS/E). None of these options
are required for normal use of the FORTRAN-77 system.

§-12 POP-11 FORTRAN-77 Programming Considerations

5.4.1 Non-FPP Operation (F77E1S.0BJ)

The FORTRAN-77 compiler does not require a floating point processor
(FP11 or KEF11A) to compile a FORTRAN-77 program; the compiler
¢+ can run on any PDP-11 with the EIS instruction set. However, the code
generated by the FORTRAN-77 compiler is intended to run on a PDP-11
» with FPP and may therefore contain FPP instructions.

A FORTRAN-77 source program containing no real, double-precision, or
complex constants, variables, arrays, or function references is compiled
into a PDP-11 program that contains no FPP instructions. If this program
is linked using the module F77EIS.OB] and the standard FORTRAN-77
OTS, as shown below, the resulting task executes no FPP instructions.
Such programs can therefore run on any PDP-11 with the EIS instruction
set.

TKB INT/-FP=INT,LB:[1,1]F77EIS,LB: [1,1]1F77FCS/LB
On RSTS/E, [1,1] is not included in the above command line.

TN If a compiled program unit contains no FPP instructions, the program
o listing contains the statement: NO FPP INSTRUCTIONS GENERATED.

5.4.2 RSX-113 Suppert (F77115.08J)

An optional OTS module provides a subset of FORTRAN-77 I/O capa-
bility consistent with the facilities available in RSX~115. Sequential I/0
statements are supported for unit record devices such as terminals, non-
spooled card readers, and line printers. This I/O support uses direct QIO
operations and does not require any modules of the standard file system.
The R5X-115 subset OTS is approximately 2000 words smaller than the
normal OTS and can be provided as an object module or as a separate
OTS library.

5.4.3 Optional OTS Error Reporting (F77NER.OBJ)

An optional OTS module that does not perform any run-time diagnos-
tic message reporting is available; it is several hundred words smaller
than the standard error-reporting module. Error processing and calls to
ERRSET, ERRSNS, and ERRTST continue to operate normally, only the
logging of the diagnostic message to the user terminal being suppressed.
If this option is used, STOP and PAUSE messages are not produced.

PDP-31 FORTRAN-77 Programming Considerations §-13

5.4.4 Shoert Error Text (SHORT.0BJ)

For RSX-11M, RSX-1IM-PLUS, and RSTS/E, the error message text for
run-time error reports is contained in memory and requires over 1000
words. An alternative version is available that requires only one word. If
the alternative is used, the error report is complete except for the 1-line
English text description of the error. This module, $SHORT, is included in
the task at task-build time. For example:

TKB> MAIN/FP=MAIN,LB: [1,1jF77FCS/LB:$SHORT,LB: [1,1]FT7FCS/LE
On RSTS/E, [1,1] is not included in the above command line.

5.4.5 Intrinsic Function Name Mapping (F77MAP.OLB)

As discussed in Section 4.1, references to FORTRAN intrinsic functions are
transformed at compile time into calls that use internal names. Therefore,
if a program written in MACRO-11 uses a FORTRAN name instead of an
internal name to reference an intrinsic function, an unresolved reference
results during task build.

To prevent such unresolved references during the task building of a
MACRO program, a set of concatenated object modules is provided for
transforming FORTRAN-77 intrinsic-function names into internal names
at task-build time. For example, the name SIN is transformed at task-build
time by means of the following module:

.TITLE SMSIN

SIN JMP $SIN

JE¥D
The object module similar to the one for SIN is available for each intrinsic- R
function name. N

An F77MAP library may be necessary to provide function mapping.

$-14 PDP-11 FORTRAN-77 Programming Considetations

5.4.6 Floating Point Output Conversion (F77CVF.0BJ)

An alternative module for performing formatted output of floating point

values under control of the D, E, F, and G format codes is provided. The

standard module uses multiple-precision, fixed-point integer techniques to

maintain maximum accuracy during the conversion. (FPP hardware is not

used.) The alternative module performs the same functions using the FPP

hardware; it is substantially faster but in some cases less accurate than the
y standard module. The standard module is accurate to 16 decimal digits;
the optional module is accurate to 15 digits.

5.4.7 OTS Resident Libraries

F7FCL5.MAC, F7FRES.MAC, and F7SRES.MAC are MACRO-11 source
files that contain global references to all OTS modules. You can use
these files as a starting point in building an OTS resident library.
Documentation in the files describes the OTS modules and such logi-
cal groups of modules as sequential I/O support and complex arithmetic.
If your operating system supports memory management directives, these
resident libraries provide a more extensive capability without sacrificing
address space.

The procedures for building an OTS resident library are described by
documentation in the file, in Chapter 13 of this manual, and in the
PDP-11 FORTRAN-77 Object Time System Reference Manual.

NOTE

If the OTS resident library is overlaid, you must place all OTS
I/0 modules in the same overlay.

5.4.8 OTS Overlay Files

There are two OTS overlay files:

* FCS11IM.ODL (FCS-11 support for RSX-11M/M-PLUS, RSTS/E, and
VMS)

¢ RMS1iIM.ODL (RMS-11(K) support for RSX~11M/M-PLUS, RSTS/E,
and VMS)

POP-11 FORTRAN-77 Programming Considerations 5-15

Each file is an ODL fragment file that you can use for overlaying the
FORTRAN-77 OTS modules, Also, each file contains documentation that
describes OTS options and procedures for using the file. The following
example of an ODL file includes the FCS-11 overlaid OTS file in the
overlay file described in Section 1.4 {on RSTS/E, [1,1] is not included):

-ROOT MAIN-GTSROT-#(A,B,C), QTSALL
A: .FCTR PRE
B: .FCTR PROC
C: .FCTR POST
QLB: [1,11FCS11M
.END

The factor “OTSROT” must be added to the root segment; the factor
“OTSALL" must also be added as a co-tree. These factors are defined in
the OTS overlay files listed above. '

The following example of an ODL file includes the overlaid RMS-11 OTS
file of the overlay file described in Section 1.4, as well as the RMS overlay
file RMS11X (on RSTS/E, [1,1] is not included):

ROOT MAIN-DTSROT-RMSHOT ~OVL, OTSALL, RMSALL
OVL: .FCTR = (PRE, PROC, POST)
QLB: [1, 11RMS11M
~ @LB:[1,1]RMS11X
.E¥D

The factors “OTSROT” and “RMSROT” must be added to the root seg-
ment; the factors “OTSALL” and “RMSALL” must also be added as
co-trees.

See Section 1.4 for more information about overlaid programs.

5.5 RMS-11 Link and Run-Time Considerations

When RMS-11 is used with programs that are not overlaid, even modest-
sized programs produce tasks that overflow the address space of the
PDP-11. There are two possible solutions to this problem: Expand the
task size such that it is large enough to accommodate the task, or make
the program smaller by overlaying.

If the task is near or beyond the task size limit, the task build fails with a
message indjcating an oversize task.

Even if your program successfully links, you may encounter buffer-space
problems at run time, indicated by FORTRAN-77 error message #41:
“NO BUFFER ROOM.”

6-16 PDP-13 FORTRAN-77 Programming Considerations

¥f this message is encountered, try rerunning your program with a larger
task increment, using (except on RSTS/E):

RUN/INC: value taskname

value
The amount of additional memory to be used for buffers.

— The RUN command may fail if the /INC value makes the total task size
Fimd too large. If the RUN command does fail, the only choices you have to
s get a successful run are to reduce the size of your program or to overlay
your program.}

5.6 FCS Link and Run-Time Considerations

Under certain circumstances, the open-file buffers kept by FCS in PSECT
$$FSR1 may become fragmented, causing the FORTRAN-77 OTS to
produce, unexpectedly, the error message: “No Buffer Room.”

One of the circumstances under which one of the open-file buffers can
become fragmented is as follows: suppose a program specifies ACTFIL=2,
to indicate that the program has at most two files open at any one time;
FCS then allocates 1024 bytes for two 512-byte buffers in PSECT $$FSR1
(512 bytes is the largest possible device buffer size).

Suppose further that a logical unit is opened to a terminal, causing FCS

to allocate an 80-byte buffer (that device’s buffer size) in PSECT $$FSR1.

Then another logical unit is opened to a disk file, causing FCS to allocate

the next 512 bytes in PSECT $$FSR1 as a buffer for the disk file. Finally,
o the logical unit connected to the terminal is closed, resulting in the release,
RPN by FCS, of the 80-byte buffer in PSECT $$FSR1.

Any attempt to open a second disk file (resulting in a 512-byte buffer)
now fails because PSECT $$FSR1 does not have 512 contiguous bytes. It
has B0 free bytes, then 512 bytes in use by the first disk file, then 432
(512 - 80) free bytes.

Some possible solutions to the above situation are to specify a block
size of 512 when opening the terminal; to open the first disk file before
opening the terminal (if possible); or to speafy ACTFIL=3, to allocate a
larger $$FSR1 buffer. :

PDP-11 FORTRAN-77 Programming Considerations B-17

Chapter 6
Using Character Data

The character data type facilitates the manipulation of alphanumeric data.
You can use character data in the form of character variables, arrays,
constants, and substrings.

=™ 6.1 Character Substrings

You can select certain segments (substrings) from a character variable
or array element by specifying the variable name, followed by delimiter
values that indicate the leftmost and/or rightmost characters in the
substring. For example, if the character string NAME contains:

ROBERT WILLIAM BOB JACKSON

and you want to extract the substring BOB, specify the following:
NAME(16:18)

If you omit the first value, you are indicating that the first character of the
substring is the first character in the variable. For example, if you specify:

NAME(:18)
the resulting substring is:
ROBERT WILLIAM BOB

If you omit the second value, you are specifying the rightmost character to
be the last character in the variable, For exampie:

NAME(16:)

Using Character Data 6-1

encompasses:

BOB JACKSON

6.2 Character Constants

Character constants are strings of characters enclosed in apostrophes. You
can assign a character value to a character variable in much the same
way you would assign a numeric value to a real or integer variable, For
example, as a result of the statement

XYZ = 'ABC'

the characters ABC are stored in location XYZ. Note that if XYZ's length is
less than three bytes, the character string is truncated on the right. Thus,
if you specify:

CHARACTER#2 XYZ
XYZ = 'ABC'

the result is AB. If, on the other hand, the variable is longer than the con-
stant, it is padded on the right with blanks. For example, the statements

CHARACTER#6 XYZ
XYZ = 'ABGC'
result in having:
ABC

stored in XYZ. If the previous contents of XYZ were CBSNBC, the result
would still be ABC because the previous contents are overwritten.,

‘You can give character constants symbolic names by using the
PARAMETER statement. For example, if you specify:

CHARACTER*17 TITLE
PARAMETER (TITLE = 'THE METAMORPHOSIS')

you can use the symbolic name TITLE anywhere a character constant is
allowed.

You can include an apostrophe as part of the constant by specifying two
consecutive apostrophes. For example, the statements

CHARACTER=15 TITLE
PARAMETER (TITLE = ‘FINNEGANS''S WAKE')

6-2 Using Character Oata

£
%

oo

result in the character constant FINNEGAN'S WAKE.

The value assigned to a character parameter can only be a character
constant.

6.3 Declaring Character Data

To declare variables or arrays as character type, you use the CHARACTER
type declaration statement, as shown in the following example:

CHARACTER=10 TEAM(12) ,PLAYER

This statement defines a 12-element character array (TEAM), each element
of which is 10 bytes long; and a character variable {PLAYER), which is
also 10 bytes long,

You can specify different lengths for variables in a CHARACTER statement
by including a length value for specific variables. For example:

CHARACTER*E NAME,AGE=2,DEPT

In this example, NAME and DEPT are defined as 6-byte variables and
AGE is defined as a 2-byte variable.

Character strings and character arrays are not interchangeable. Character
strings comprise one or more characters; character arrays comprise one or
more character strings,

Both must be declared and referenced uniquely to avoid compiler and run-
time errors. This section describes how to declare and reference character
strings and arrays correctly.

8.3.1 Character String Declaration

A character string declarator has the form
CHARACTER[*1en[,]] vl+len][,v{*lenll . ..

len

The length specification, that is, the number of characters in a character
variable. Len must be an unsigned, nonzero, integer constant.

Using Character Data 6-3

A length len immediately following the word CHARACTER is the length
specification for each variable in the character string statement not having
its own length specification. A length specification immediately following
a variable is the length specification for only that variable. If a length is
not specified for a variable, its length is 1.

v
A variable name,

The following examples illustrate the length specification rules when
applied to character string declaration.,

CHARACTER+10 FNAM A string FNAM of ten characters

CHARACTER»10 FNAMMNAM Two strings FNAM and MNAM of
ten characters each

CHARACTER FNAM«10 A string FNAM of ten characters

CHARACTER FNAM=*10,MNAM+10 Two strings FINAM and MNAM of
ten characters each

CHARACTER=2 FNAM-=10 A string FNAM of ten characters

CHARACTER+«2 FNAM=~10,MNAM A string FNAM of ten characters
and a string MNAM of two
characters

CHARACTER FNAM A string FNAM of one character

6.3.2 Character Array Declaration

A character array declarator has the form

CHARACTER [*len[,]] v{elm) [*ler] [.v(elm}{#len]]

fen
The length specification, that is, the number of characters in a character
array element. Len must be an unsigned, nonzero, integer constant.

A length len immediately following the word CHARACTER is the length
specification for each array element in the character array statement not
having its own length specification. A length specification immediately
following an array element is the length specification for only that array
element. If a length is not specified for an array element, its length is 1.

v
An array name.

%-4 Using Character Data

elm

The array declarator, that is, the number of elements in the array.

The following examples illustrate the length specification rules when

applied to character array declaration,
CHARACTER+10 FNAM(5)

CHARACTER*10 FNAM(5),MNAM(5)

CHARACTER FNAM(5)*10

CHARACTER FNAM(5)*10, MNAM(5)*10

CHARACTERs2 FNAM(5)*10
CHARACTER*2 FNAM(5)*10, MNAM(5)

CHARACTER FNAM(5)

A 5-element array FNAM, each
element has 10 characters

Two 5-element arrays FNAM
and MNAM, each element has
10 characters

A 5-element array FNAM, each
element has 10 characters

Two 5-element arrays FNAM
and MNAM, each element has
10 characters

a

A 5-element array FNAM, each
element has 10 characters; A
5-elerment array MNAM, each

" element has 2 characters

A 5-element array FNAM, each
element has 1 character

6.3.3 Character String Reference

A character string reference has the form
v([e1]: [e2])

v
A character variable,

el

A numeric expression that specifies the leftmost character position of the
string. Character positions within a character variable are numbered from
left to right, beginning at one. If el is omitted, FORTRAN-77 assumes

that el equals one.

Using Character Data 6-5

e2

A numeric expression that specifies the rightmost character position of the
string. Character positions within a character variable are numbered from
left to right, beginning at one. If €2 is omitted, FORTRAN-77 assumes
that e2 equals the length specification.

The following examples illustrate the character-range rules when applied
to character-string references.

FNAM(7:9) Characters 7 through 9 of string FNAM
FNAM(3:3) Character 3 of string FNAM

FNAM(:6) Characters 1 {default) through 6 of string FNAM

FNAM(Z:) Characters 2 through the length specification {default) of string
FNAM

FNAM All characters of string FNAM

6.3.4 Character Array Referenca

A character array reference has the form

als[,sl...Y¢let]: [e2]}

a
A character array name.

s .
A subscript expression.

el

A numeric expression that specifies the leftmost character position of the
string. Character positions within an array element are numbered from
left to right, beginning with one, If el is omitted, FORTRAN~77 assumes
the el equals one.

e2

A numeric expression that specifies the rightmost character position of the
string. Character positions within an array element are numbered from
left to right, beginning with one. If e2 is omitted, FORTRAN-77 assumes
that e2 equals the length specification,

6-6 Using Character Data

The following examples illustrate the character-range rules when applied
to referencing character arrays.

FNAM(1)1:10) Characters 1 through 10 of the first string of array FNAM
FNAM(2){3:3) Character 3 of the second string of array FNAM

- FNAM(3)(:4) Characters 1 (default) through 4 of the third string of array
FNAM
FNAM(4)(6:) Characters 6 through the length specification (default) of the
fourth string of array FNAM
FNAM(5) All characters of the fifth string of array FNAM

8.3.5 Error 21 and Program Corrections

Error 21, Missing operator or delimiter symbol, is generated at compile
time if an illegal reference is made to a character string, The following
program demonstrates this error.

PROGRAM CHAR

CHARACTER#5 ASTR,BSTR#2

ASTR(1:1) = '1°

BSTR = ASTR(1) ! This line generates ERROR 21 at compile time
END

The error is generated at the indicated line because ASTR is illegally
referenced as an array, not as a string. The compiler expected to see ASTR
referenced with the form ASTR(1:1). That is, a “:1” was expected after
the “1” thus the missing operator or delimiter symbol error. The corrected
progtam follows.

PROGRAM CHAR -
CHARACTER*S ASTR,BSTR=*2

ASTR(1:1) = '1°

BSTR = ASTR{1:1)

END

There is an alternate way to correct this program. Instead of changing the
reference to ASTR, you might change the declaration of ASTR (making

it an array, as the original incorrect program assumed it was). However,
the assignment to ASTR must be modified to reference the first (and only)
string of the array. The second version of the program follows.

PROGRAM CHAR

CHARACTER*S ASTR(1),BSTR+2

ASTR(1)(1:1) = '1'

BSTR = ASTR{1) ! Accept defanlts for range of elements
END

Using Character Data 6-7

6.4 Initializing Character Variables

‘Use the DATA statement to preset the value of a character variable. For

example:

CHARACTER*1D NAME, TEAM(S)

DATA NAME/' '/,TEAM/'SMITH','JONES',
1 'DOE', 'BROWN ', 'GREEN'/

Note that NAME contains 10 blanks, but that each array element in TEAM ‘;_‘-:. T

contains a character value, right-padded with blanks.

To initialize an array so that each of its elements contains the same value,
use 2 DATA statement of the following type:

CHARACTER+S TEAM{10)
DATA TEAM/10+'WHITE'/

The result is a 10-element array in which each element contains WHITE.

6.5 Character Data Examples

An example of character data usage is shown in Example 6-1. The
example is a program that manipulates the letters of the alphabet. The
results are shown in Example 6-2.

6.6 Character Library Functions

The PDP-11 FORTRAN-77 system provides the following character
functions:

¢ ICHAR
* INDEX
+ LEN

* LGE, LGT, LLE, LLT

The following sections describe these functions.

6-8 Using Character Data

L "3

6.6.1 ICHAR Function

The ICHAR function returns an integer ASCII code equivalent to the
character expression passed as its argument. It has the form:

ICHAR(c})

c
ST A character expression. If ¢ is longer than one byte, the ASCII code
o equivalent to the first byte is returned and the remaining bytes are ignored.

Example 6-1: Character Data Usage

CHARACTER C,ALPHA*26
DATA ALPHA/'ABCDEFGHIJKLMNOPQRSTUVWXYZ'/
WRITE{6,90)

90 FORMAT{' CHARACTER EXAMPLE PROGRAM OUTPUT')

DO 10 I = 1:26
WRITE(6,%) ALPHA
C = ALPHA(1:1)
ALPHA(1:25) = ALPHA{Z2:26)
ALPHA(26:28) = C
10 CONTINUE

CALL REVERS(ALPHA)
WRITE(G,+) ALFHA

CALL FIND{'UVW' ALPHA)
CALL FIND{'AAA','DAAADHAJDAAAJAAA CEUEBCUEI'}

WRITE (8,*) ' END OF CHARACTER EXAMPLE PROGRAN'
END

SUBRGUTINE REVERS(S)
CHARACTER Tx1,8+26

K =26

DO 10 I =1, K/2
T =8(1:1)
S(I:1) = B(K:K)
S(XK) =T
K=K-i

10 CONTINUE
RETURN
END

Example 6—1 Cont’d. on naxt page

Using Character Data 8-3

‘Example 6-1 {Cont.): Character Data Usage

SUBRQUTINE FIND{SUR,S)
CHARACTER*3 SUB, 526
CHARACTER+*132 MARKS

I=1
MARKS = *
10 J = INDEX(S(I:),SUB}
IF {J .ME. O) THEN
I=1I+ (J-1)
MARKS(I:I) = ‘#*
I =1
IF (I .LE. LEN(S)) G0 TOD 10
ENDIF

WRITE(6,91) 5. MARKS
01 FORMAT(2(/1X.A))

RETURN

END

6.6.2

INDEX Function

The INDEX function is used to determine the starting position of a sub-
string. It has the form:

INDEX(c1,c2)

cl?

A character expression that specifies the string to be searched for a match
with the value of c2.

c2

A character expression representing the substring for which a match is
desired.

If INDEX finds an instance of the specified substring (c2), it returns an
integer value corresponding to the starting location in the string (c1). For
example, if the substring sought is CAT and the string that is searched
contains DOGCATFISHCAT, the return value of INDEX is 4.

If INDEX cannot find the specified substring, it returns the value 0.

8-10 Using Character Data

Lo
%

Example 6-2: Output Generated by Example Program

CHARACTER EXAMPLE PROGRAM OUTPUT
ABCDEFGHI JKLMNOPQRSTUVWXYZ
BCDEFGHI JKLMNOPQRSTUVWXYZA
CDEFGHI JKLMNOPQRSTUVWXYZAB
DEFGHI JKLMNOPQRSTUVWXYZABC
EFGHIJKLMNOPQRSTUVWXYZABCD
FGHIJKLMNOPQRSTUVWXYZABCDE
T GHIJKLMNOPQRSTUVWXYZAECDEF
o HIJKLMNOPQRSTUVWXYZABCDEFG
I JKLMNCPQRSTUVWXYZABCDEFGH
JKLMNOPQRSTUVWXYZABCDEFGHI
KLMNOPQRSTUVWXYZABCDEFGHIJ
LMNOPQRSTUVWXYZABCDEFGHI JK
MNOPQRSTUVWXYZABCDEFGHI JKL
ROPGRSTUVWXYZABCDEFGHI JKLM
OPQRSTUVWXYZABCDEFGHI JKLMN
PQRSTUVWXYZAECDEFGHIJKLMNQ
QRSTUVWXYZABCDEFGHI JKLMNOP
RSTUVWIYZABCDEFGHIJKLMNOPQ
STUVWXYZABCDEFGHI JKLMNOPQR
o TUVWXYZABCDEFGHI JKLMNOPQRS
cw ey UVWXYZABCDEFGHI JKLMNOPQRST
e VWXYZABCDEFGHI JKLMNOPQRSTU
i WXYZABCDEFGHIJKLMNOPQRSTUV
XYZABCDEFGHIJKLMNOPORSTUVW
YZABCDEFGHI JKLMNOPQRSTUVWX
ZABCDEFGHIJKLMNOPQRSTUVWXY
ZYXWVUTSROQPONMLK JIHGFEDCBA

ZYXWVUTBRQPONMLX JTHGFEDCBA

DAAADHAJDAAAJAAA CEUEBCUEI
#
END OF CHARACTER EXAMPLE PROGRAM

If there are multiple occurrences of the substring, INDEX locates the first
{left-most) one. Use of the INDEX function is illustrated in Examples 6-1
and 6-2. jacki

6.6.3 LEN Function

The LEN function returns an integer value that indicates the length of a
character expression. It has the form:

LEN(c)

Using Character Data- 6-11

c
A character expression.

6.6.4

LGE, LGT, LLE, and LLT Functions

The lexical comparison functions (LGE, LGT, LLE, and LLT) compare two
character expressions, using the ASCII collating sequence. The result is
the logical value ,TRUE. if the lexical relation is true, and .FALSE. if the
lexical relation is not true. The functions have the forms:

LGE {ci,c2)
LGT (cl,c2)
LLE (cl,e2)
LLT (ci.,c2)

cl.c2
Character expressions.

You may wish to include these functions in FORTRAN programs that can
be used on computers that do not use the ASCII character set. In PDP-11 .= -,
FORTRAN-77, the lexical comparison functions are equivalent to the .GE., b“««...w
.GT., .LE., .LT. relational operators. For example, the statement '

IF (LLE (stringl, string2)} GO 70 100
is equivalent to:

IF (stringl.LE.stzring2) GO TO 100

6.7 Character Input/Output

The character data type simplifies transmitting alphanumeric data. You =
can read and write character strings of any length from 1 to 255 characters.

For example; the statements
CHARACTER#24 TITLE

READ(12.,100) TITLE
100 FORMAT (A)

6-12 Using Character Data

.

cause 24 characters to be read from logical unit 12 and stored in the
24-byte character variable TITLE, If instead of character data you were
to use Hollerith data stored in numeric variables or arrays, the following
code is necessary:

INTEGER*4 TITLE(6)

READ(12,100) TITLE
100 FORMAT (BA4)

Note that you must divide the data into lengths suitable for real or (in this
case) integer data, and specify 1/0 and FORMAT statements to match,

In this example, a 1-dimensjonal array comprising six 4-byte elements is
filled with 24 characters from logical unit 12,

Using Character Data 6-13

Chapter 7
Using Indexed Files

This chapter provides detailed information on using indexed organization
files. Included is an extended example. The indexed file is defined in
Chapter 7 of the PDP-11 FORTRAN~77 Language Reference Manual.

Indexed organization is especially suitable for maintaining complex files
from which records can be selected on the basis of one of several criteria.
For example, a mail order firm using an indexed file to store its customer
list might select records on the basis of a unique customer order number,
the customer’s zip code, or the item ordered. In such cases, reading
sequentially on the basis of the zip code key produces a mailing list
already sorted by zip code, and reading sequentially on the basis of

the item-ordered key provides a list of customers sorted by the product
ordered,

7.1 Accessing Indexed Files

You can access indexed files in both the sequential and the keyed modes.
Sequential reading retrieves records in sorted order by defined key field.
Keyed access, on the other hand, permits random record selection on the
basis of a particular key-field value.

Once you select a record by key, a sequential read retrieves records
with ascending key values, beginning with the key-field value of the
initial indexed READ. Using the keyed and sequential access modes in
combination is sometimes referred to as the Indexed Sequential Access
Method (ISAM).

When you specify ACCESS=*KEYED” in an OPEN statement, you enable
both sequential and keyed access to an indexed file.

Using Indexed Files 7-1

7.2 Creating an Indexed File

numbered from 1 throu

CHARACTER=*20 NAME
CHARACTER*20 ADDRESS
CHARACTER»19 CITY
CHARACTER»2 STATE
CHARACTER+% ZIP
INTEGER=*2 ITEM

[)

7-2 - Using Indexed Files

You can create an indexed file with the following;

An OPEN statement
An appropriate utility

You can use the OPEN statement to specify the more common file options
and a utility to select features not directly supported from FORTRAN-77. %
Note, however, that any indexed file created with a utility can be accessed
by FORTRAN-77 1/0 statements.

When you create an indexed file, you define certain fields within each
record as key fields. One of these key fields, called the primary key,
is identified as key number zero and must be present in every record.
Additional keys, called alternate keys, may also be defined; they are
_ gh a maximum of 254. While an indexed file
may have as many as 255 key fields defined, in practice f
require more than three or four key fields.

When you design an indexed file, you decide which character positions
within each record are to be the key fields. There are three key data types
supported by PDP-11 FORTRAN-77: INTEGER+2, INTEGER*4, and
CHARACTER. Using the example of a mail order firm, you might define a
file record to consist of the following fields:

INTEGER#+4 ORDER

ew applications

! Positions 1:4
1 Positions 5:24

!
!
'
1

Given this record definition, you could use the following OPEN statement
to create an indexed file:

OPEN (UNIT=10, FILE='CUSTOMERS.DAT', STATUS='NEW',
ORGANIZATION='INDEXED', ACCESS='KEYED',
RECORDTYPE='VARIABLE',6 FORM='UNFORMATTED',

! 19 storage unitse
KEY=(1:4:INTEGER, 66:74:CHARACTER, 75:76:INTEGER},

! Positions 25:44
Positions 45:63
Positions 64:6%
Positions 66:74
Positions 75:76

This OPEN statement establishes the attributes of the file, including a
primary key and two alternate keys. Note that the definitions of the
integer keys do not explicitly state INTEGER«4 and INTEGER»2. The data
type sizes are determined by the number of character positions allotted to
the key fields, which in this case are 4 and 2, respectively.

You may specify the KEY= keyword when opening an existing file; the
FORTRAN Run-Time Library ensures that the given key specification
matches that of the file. :

T FORTRAN uses RMS default key attributes when creating an indexed file.
These defaults are as follows:

» Primary key values cannot be changed when a record is rewritten.

* Primary key values cannot be duplicated; that is, no two records can
have the same primary key value.

» Alternate keys may both be changed and have duplicates.

You can use an RMS utility or a USEROPEN routine to override these
defaults and to specify other values not supported by FORTRAN-77, such
as null key values, key names, and key data types other than integer and
character.

Refer to Section 2.3.12 for information on using the USEROPEN keyword
in FORTRAN-77 OPEN statements. The RMS-11 Liser’s Guide has more
information on indexed file options.

7.3 Current-Record and Next-Record Pointers

The RMS file system maintains two pointers into an open indexed file:
the next-record pointer and the current-record pointer. The next-record
pointer indicates the record to be retrieved by a sequential read. When
you open an indexed file, the next-record pointer indicates the record
with the lowest primary key value. Subsequent sequential read operations
cause the next-record pointer to be the one with the next higher key value
in the same key field. In case of duplicate key values, records are retrieved
in the order in which they were written.

The current-record pointer indicates the record most recently retrieved by
a read operation, that is, the record that is locked from access by other
programs sharing the file. The current record can be operated on by the
REWRITE statement and the DELETE statement, but is undefined until a
READ operation is performed on the file. Any file operation other than a
READ causes the current-record pointer to become undefined.

Using Indexed Files 7-3

In addition, an error results if a REWRITE or DELETE operation is per-
formed when the current-record pointer is undefined.

7.4 Wiriting to Indexed Files

You can write records to an indexed file with either formatted or unfor-
matted indexed WRITE statements, Each WRITE inserts a new record into
the file and updates the index(es) so that the new record appears in the
correct order for each key field.

Continuing the mail order file example of Section 7.2, you could add a
new record to the file with the following statement:

WRITE (UNIT=10,ERR=5090) ORDER,
1 NAME, ADDRESS,CITY,STATE,ZIP, ITEM

7.4.1 Duplicate Keys

It is possible to write two or more records with the same key value.
Whether this duplicate-key situation is allowed depends on the
attributes that were specified for the file when it was created. By default,
FORTRAN-77 creates files that allow duplicate alternate keys but that
prohibit duplicate primary keys {see Section 7.2). If duplicate keys are
present in a file, the records with equal keys are retrieved on a first-in,
first-out basis,

For example, assume that five records are written to an indexed file in the
following order (for clarity, only key fields are shown):

Order Zip Item
1023 70856 375
942 02163 2736
903 14853 375
1348 44901 1047
1263 33032 690

7-4 Using Indexed Files

i

If the file is later opened and réad sequentially by primary key (ORDER),
the sorted order of the records is unaffected by the duplicated ITEM key,
as shown below:

Order Zip Item
903 14853 375
942 02163 2736

1023 70856 375 -

1263 33032 690

1348 449M 1047

If the file is read along the second alternate key (ITEM), however, the sort
order is affected by the duplicate key, as shown below:

Order Zip Item
1023 70856 375
903 14853 375
1263 33032 630
1348 44901 1047
942 02163 2736

Notice that the records containing the same key value (375) were retrieved
in the order in which they were written to the file.

7.4.2 Omitting Alternate Keys

You can omit one or more alternate keys when writing to an indexed file
that contains variable-length records. To omit any alternate key field, omit
the alternate key-field name from the WRITE statement. However, do not
specify another field after that point; an omitted key must be at the end
of the variable-length record. For example, if the last record in the mail
order example (ORDER 1263) was written with the statement

WRITE (UNIT=10,ERR=0009) ORDER,
1 NAME,ADDRESS,CITY,STATE,ZIP

Using Indexed Files 7-5

then the result of reading the complete file along the alternate ITEM index
would be as follows:

Order Zip Item
1023 70856 375
903 14853 375
1348 44901 1047
942 02163 2736

Because the ITEM was omitted when the last record was written, there is
no index entry for that key; and it cannot be read when the file is sorted
on ITEM,

You may omit only alternate keys from a record; the primary key must
always be present.

7.5 Reading From Indexed Files

You can read records in an indexed file with either sequential or indexed
READ statements.

Indexed READ statements position the file pointers (see Section 7.3) at a
particular record (determined by the key value), the key-of-reference, and
the match criterion. Once you retrieve a particular record by key, you can
use sequential READ statements to retrieve records with increasing key
values.

The following FORTRAN-77 program segment prints the order number
and zip code of each record, with a zip code in which the first 5 characters
are greater than or equal to ‘10000 but less than '50000": %

7-6 Using Indexad Files

w -

Read first record with ZIP key greater than or
equal to '10000'.

QOaGa

READ (UNIT=10, KEYGE='10000*, KEYID=1i, ERR=9999),
1 ORDER, NAME, ADDRESS, CITY. STATE, ZIP

While the Zip Code previously read is within range, érint
the order number and zip code, then read the next record.

HOOOQ

o IF {ZIP .LT. '50000') THEN .
PRIRT », 'Order pumber', ORDER, 'has zip code',
1 IIP
READ (UNIT=10, END=200, ERR=9999)
1 ORDER, NAME, ADDRESS, CITY, STATE, ZIP

[.
C END= branch will be taken if there are no more records
C in the file.
C
ENDIF
GOTO 10

200 CONTINUE

The error branch on the indexed READ in the example is taken if no
record is found with a zip code greater than or equal to '10000’; an attempt
to access a nonexistent record is an error. However, if the sequential
READ has accessed all records in the file, an end-of-file status occurs, just
as it does with other file organizations.

7.6 Updating Records

You use the REWRITE statement to update existing records in an indexed
file. You cannot replace an existing record simply by writing it again: A
WRITE statement attempts to add a new record.

An update operation is accomplished in two steps. First, you must read
the record in order to make it the current record. Next, you execute

a REWRITE statement. As an example, to update the record contain-
ing ORDER 903 (see prior examples) so that the NAME field becomes
"Theodore Zinck’, you might use the following FORTRAN-77 code
segment:

READ {UNIT=10, KEY=003, XKEYID=0, IOSTAT=IDS, ERR=93999)
1 ORDER, NAME, ADDRESS, CITY, STATE, ZIP; ITEM
NAME='Theodore Zinck'

REWRITE (UNIT=10, ERR-9999) DORDER

1 NAME, ADDRESS, CITY, STATE, ZIP, ITEM

Using Indexed Fles 7-7

When you rewrite a record, key fields may change. Whether a key-field
change is permitted depends on the attributes given the file when it was
created.

1.7 Deleting Records

To delete records from an indexed file, you use the DELETE statement.
The DELETE and REWRITE statements are similar in that each operates
on a record that has been locked by a READ statement.

The following FORTRAN-77 code segment deletes the second record in
the file with ITEM 375 (refer to previous examples):

READ {UNIT=10, KEY=376, KEYID=2, ERR=0999)
READ (UNIT=1C, ERR=9999) ORDER
1 NAME, ADDRESS, CITY, STATE, ZIP, ITEM
IF (ITEM .EQ. 375) THEN

DELETE (UNIT=10, ERR=9969)
ELSE

PRINT *,'There is no second record.'
ENDIF

Deletion removes a record from all defined indexes in the file.

7.8 Using integer Keys

When writing an integer-key value to a record (with an indexed WRITE
statement), use an A2 format for an INTEGER=2 value and an A4 format
for an INTEGER=*4 value. Do not use an I format, because the I format
produces an ASCII representation that an indexed READ statement cannot
later read.

To read a key field, you may use any format you wish, because the format
you associate with an indexed READ has no bearing on the matching
process used to locate the record in which the desired key field is located.

The following program segment is an example using integer keys with an
indexed file. Note that ACODE and TEL, which are the third and second
alternate keys in the record described below, are of type INTEGER#*2 and
INTEGER#4, respectively, and that the formats used to write these keys
are A2 and A4, respectively. :

7-8 Using Indexed Files

-
Y

The record layout is as follows:

Field Size Type Meaning
F1 1 CHAR First Initial
NAME 10 CHAR Last Name
STADDR 20 CHAR Street Address
e CITY 10 CHAR City
STATE 2 CHAR State :
N SSN 9 CHAR Social Security Number

ACODE 2 INT+2 Area Code
TEL 4 INT»4 Telephone Number
AGE 2 INT+2 Age
The keys are as follows:
PRIMARY SSN 44:52

e ALTERNATE 1: NAME 211

R ALTERNATE 2: TEL 55:58:INTEGER

ALTERNATE 3: ACODE 53:54:INTEGER

CHARACTER FI1,NAME=10,STADDR*20,CITY+1(0,STATE#2,SEN*9
INTEGER+4 TEL

INTEGER#2 AGE, ACODE

COMMON /DBREC1/ACODE, TEL , AGE

COMMCON /DBREC2/NAME,FI,STADDR,CITY,STATE,S5N
INTEGER+4 INTKEY

OPEN(UNIT=1,NAME='DE.DAT' ,ORGANIZATION="INDEXED' ,ACCESS='KEYED',
1 RECORDTYPE='FIXED', RECL=128,FORM='FORMATTED', fTYPE='NEW',
2 KEY=(44:52, 2:11, 55:58:INTEGER, 53:54:INTEGER))

WRITE(1,1000)FI,NAME,STADDR,CITY,STATE,SSN,ACODE, TEL , AGE

Using Indexed Files 7-3

G READ WITH KEY EQUAL TO INTKEY

READ(1, 1000, KEY=INTKEY ,KEYID=IKEYID)
1 FI,BAME,STADDR,CITY,STATE,88N,ACODE, TEL , AGE

C READ WITH KEY GREATER THAN INTKEY

READ(1, 1000, KEYGT=INTKEY, KEYID=IKEYID)
1 FI NAME,STADDR,CITY,STATE,S5¥,ACODE, TEL, AGE

C READ WI&H KEY EQUAL TO OR GREATER THAN INTKEY

READ(1,1000,KEYGE=INTKEY ,KEYID=IKEYID)}
1 FI,NAME, STADDR,CITY,STATE, SSK, ACODE, TEL,AGE

1000 FORQAT (A1,10A1,2041,10A1,2A1 941, A2, A4, A2}

STOP
END

7.9 Error Conditions

You may encounter certain error conditions when using indexed files. The
two most common conditions result from attempts to read locked records
and attempts to create duplicate primary keys. Provisions for handling
both of these situations should be included in a well-written program.

When an indexed file is shared by several users, any read operation can
result in a “SPECIFIED RECORD LOCKED” error. One way to recover
from this error condition is to ask if the user would like to reattempt the
read. If the user’s response is positive, the program can go back to the
READ statement. For example:

PARAMETER (LOCKED=52)
100 READ (UNIT=10, ERR=200) DATA

200 CALL ERRSNS(IERR)
IF(IERR .EQ. LOCKED) GOTO 100

7-10 Using ndexed Files

If your program reads a record but does not intend to modify the record,
you should place an UNLOCK statement immediately after the READ
statement. This technique reduces the time that a record is locked and
permits other programs to access the record.

The second error condition, creation of duplicate primary keys, occurs
when a program tries to create a record with a key value that is already
in use. To handle this situation, you might have your program prompt for
a new key value whenever an attempt is made to create a duplicate key.
This technique is demonstrated below:

INTEGER DUPKEY
PARAMETER (DUPKEY=50)

200 WRITE(UNIT=10, ERR=300) KEYVAL, DATA

300 CALL ERRSNS(IERR)
IF (IERR .EG. DUPKEY) THEN
TYPE+, 'This key value already exist. Please enter'
TYPE=, 'a different key value, or press CONTROL Z*
TYPE*, 'to discontinue this operation.'
READ(UNIT=+, END=999) KEYVAL
GDTO 200
ELSE
TYPE+, 'ERROR',IERR,'DURING WRITE'
STOP
ENDIF
999 CONTINUE

Using Indexed Files 7-11

i H.‘.
g

Appendix A

FORTRAN-77 Data Representation

A.1 Integer Formats

The following sections display the formats for INTEGER+2 and

INTEGER+4.

A1t

INTEGER+2 Format

Sign
0=+
1 Binary number
15 14 0
ZK-1244-83

Integers are stored in two's complement representation. INTEGER»*2
values lie in the range -32768 to +32767. For example:

+22 = 000028
-7 = 177771

(octal)
(octal)

FORTRAN-77 Data Representstion A-1

A.1.2

INTEGER+4 Fermat
word 1: low order
15 4]
word2: s high order
15 14]
ZK-7685-HC

INTEGER*4 values are stored in two’s complement representation. The
first word contains the low-order part of the value; the second word
contains the sign and high-order part of the value, If the value is in the
range of an INTEGERs2 value (-32768 to +32767), then the first word may
be referenced as an INTEGER*2 value.

A.2 Floating Point Formats

The exponent for both 2-word and 4-word floating point formats is
stored in excess-128 notation. Binary exponents from -128 to +127 are
represented by the binary equivalents of 0 through 255. Fractions are
represented in sign-magnitude notation, with the binary radix point to the
left. Numbers are assumed to be normalized; therefore, because it would
be redundant, the most significant bit is not stored (the practice of not
storing the most significant bit is called “hidden bit normalization”). The
unstored bit is assumed to be a 1 unless the exponent is 0 (corresponding
to 2s+-128), in which case the unstored bit is assumed to be 0. The value
0 is represented by an exponent field of 0 and a sign bit of 0. For example,
+1.0 would be represented in octal by:

40200
0

A-2 FORTRAN-77 Data Representation

in the 2-word format, or:

40200
0
0
0

in the 4-word format. The decimal number -5.0 is:

140840
0

in the 2-word format, or:

140640
0
0
0

in the 4-word format.

A.2.1 Real (REAL+4) Format (2-Word Floating Point)

=
‘ Sign
) O=+ Binary excess High-order
word 1: f=— 128 exponent mantissa
15 14 7 6 0
word 2: Low-order mantissa
15 : 0 .

ZK-1245-83

The form of a single-precision real number is sign magnitude, with bit 15
the sign bit, bits 14:7 an excess 128 binary exponent, and bits 6:0 and 15:0
in the second word a normalized 24-bit fraction with the redundant most
significant fraction bit not represented. The value of a single-precision real
number is in the approximate range .29+10++-38 through 1.7+10#+38, The
precision is approximately one part in 2«+23—or typically seven decimal
digits.

FORTRAN-77 Data Representation A-3

A.2.2 Double-Precision {(REAL»8) Format (3-Word Floating Peint)

word 1;

word 2:

word 3:

word 4:

The form of a double-precision real number is identical to that of a single-
precision real number except for an additional 32 low-significance fraction
bits. The exponent conventions and approximate range of values are the
same as for a single-precision real value. The precision is approximately

Sign
0= Binary excess High-order
1= 128 exponent mantissa
15 14 7 6 Q
Low-order mantissa
15 0
Lower-order mantissa
15 ¥
L owest-order mantissa
15 0
zKJsés-Hc

one part in 2»*55-or typically 16 decimal digits.

A-4 FORTRAN-77 Data Representation

A.2.3 Complex Format

Sign
word 1: 0=+ | Binary excess High—_order
1=—1| 128 exponent mantissa
Real
15 14 7 6 0 Part
ﬂ\\ word 2: Low-order mantissa
. 15 0
Sign
. 0=+ 1 Binary excess High-ardet
word 3: 1=—1] 128 exponent mantissa
15 14 7 6 0 Imaginary
Part
o word 4: Low-order mantissa
Jod 15 o
N ZK-7688-HC

The form of a complex number is an ordered pair of real numbers. The
first real number represents the real part of the imaginary number; the
second represents the imaginary part. '

A.3 LOGICAL+*1 (BYTE) Format

Data item
7 0

ZK-1246-83

The logical values true or false (see Section A.4), a single Hollerith
character, or integers in the range of numbers from +127 to -128 can

FORTRAN-77 Data Reprasentation A-§

£
C
be represented in LOGICAL#*1 format. LOGICAL»1 array elements are
stored in adjacent bytes.
A.4 \logical Formats
LOGICAL+1
LOGICAL"1 £n
L 4
TRUE: byte 1 1 undefined
7 & G
FALSE: byte 1 0 undefined
7 6 0
ZK-7697-HC
LOGICAL=2
LOGICAL*4

A-B FORTRAN-77 Data Representation

k

LOGICAL*2

TRUE:

FALSE:

LOGICAL4

TRUE:

FALSE:

word 1

word 1

word 1

word 2

word 1

word 2

1 undefined
15 14 (4]
0 undefined
15 14 0
undefined

15 0
undefined

15 14 0
undefined

15 0
Q undefined

15 14 0

ZK-7700-HC

A.5 Character Representation

A character string is a contiguous sequence of bytes in memory.

FORTRAN-77 Data Representation

A-7

char 1 A

char L CAYL Y

ZK-7699-HC

A character string is specified by two attributes: the address A of the first
byte of the string, and the length L of the string in bytes. The length L of
a string is in the range 1 through 255.

A.6 Hollerith Format

ward 1: char 2 char 1

15 ‘ 8 7 0

word 2: char 4 char 3

J15 8 7 0

blank=40 octal char n (n<255)

15 8 7 o

ZK-1247-83

Hollerith constants are stored one character per byte. Hollerith values are
padded on the right with blanks, if necessary, to fill the associated data
item.

A-8 FORTRAN-77 Data Representation

A.7 Radix-50 Format

Radix-50 character set

Character Equivalent

Value (Octal} Octal ASCII Radix-50
(space) 40 0

A-Z 101-132 1-32

$ 44 33

. 56 34
(unused) 35

0-9 60-71 36-47

Radix-50 values are stored, up to three characters per word, by packing
the Radix-50 values into single numeric values according to the formula:

((1#50+) #50+k)

ij.k
The code values of three Radix-50 characters.

The maximum Radix—50 value is, therefore:
4TAB50R*2+4T*E0+4T=1T4TT7(8)

The following table provides a convenient means of translating between
the ASCII character set and Radix-50 equivalents. For example, given the
ASCII string X2B, the Radix—50 equivalent is (arithmetic is performed in
octal}:

FORTRAN-77 Data Representation A-3

A-10

X=113000
2=002400
B=000002
X2B=116402

Single Character or
First Character

Seceond Character

Third Character

000000
A 003100
B 006200
C 011300
D (114400
E 017500
F 022600
G 025700
H 031000
1034100
J 037200
K 042300
L 045400
M 050500
N 053600
O 056700
P 062000
Q 065100
R 070200
S 073300
T 076400
U 161500
V 104600
w 107700
X 113000
Y 116100

FORTRAN-77 Data Representation

000000
A 000050
B 000120
C 000170
D 000240
E 000310
F 000360
G 000430
H 000500
1 000550
] 000620
K 000670
L 000740
M 001010
N 001060
O 001130
P (01200
Q 001250
R 001320
S 001370
T 001440
U 001510
V 001560
W 001630
X 001700
Y 001750

000000 (space)
A 000001
B 000602
C 000003
D 000004
E 000005
F 000006
G 000007
H 000010
I 200011
] 600012
K 000013
L 000014
M 000015
N 000016
O 000017
P 000020
Q 000021
R 000022
S 000023
T 000024
U 000025
V 000026
W 000027
X 000030
Y 000031

Single Character or

First Character Second Character Third Character

Z 121200 Z 002020 Z 000032

$ 124300 $ 002070 $ 000033

. 127400 . 002140 . 000034

132500 002210 000035 (unused)

. ¢ 135600 0 002260 0 000036
1 140700 1 002330 1 000037

2 144000 2 002400 2 000040

3 147100 3 002450 3 000041

4 152200 4 002520 4 000042

5 155300 5 002570 5 000043

6 160400 & 002640 6 000044

7 163500 7 002710 7 000045

8 166600 8 002760 8 000046

9 171700 9 003030 9 000047

FORTRAN-77 Data Representation A-11

Appendix B

Algorithms for Approximation
Procedures

This appendix contains brief descriptions of the algorithms used in intrin-
sic functions that involve approximations.

Some of the descriptions below give relative error bounds. These relative
error bounds are for the approximating polynomials involved in the
algorithms, and assume exact arithmetic. Possible additional sources of
errors not reflected in these error bounds are:

* Rounding and truncation errors that can occur when a given argument
is reduced to the range in which approximations for a polynomial or
rational fraction are valid

* Rounding errors that can occur as a result of using finite-precision,
floating point arithmetic in polynomial or rational-fraction computa-
tions

B.1 Real-Value Procedures

B.1.1 ACOS—Real Floating Point, Arc Cosine
ACOS(X) is computed as:

Algorithms for Approximation Procedures B-1

If X = 0, then ACOS(X) = pi/2
If X =1, then ACOS(X) = C
If X = -1, then ACOS(X) = pi
If 0 < X <1, then ACOS(X)

If -1 < X <0, then ACOS(X)
If 1 < ABS(X) , error

ATAN (SQRT(1-X#%2) /X)
ATAN(SQRT (1-X«*2)/X) + pi

B.1.2 DACOS—Double-Precision Floating Point Arc Caosine

DACOS(X) is computed as:

i1f X = 0, then DACOS(X) = pi/2
If X = 1, then DACOS(X) = O
If X = -1, then DACOS(X) = pi

If 0 < X < 1, then DACOS(X) = DATAN(DSQRT(1-X+*2)/X)

If -1 < X < 0, then DACOS(X) = DATAN(DSQRT(1-X**2)/X) + pi

If 1 < ABS(X), error

B.1.3 ASIN—Real Floating Point Arc Sine

ASIN(X) is computed as:

ABS(X) < 1, thenm ASIN(X) = ATAN(X/SQRT(1-X++2)}

If X = 0, then ASIN(X) = 0

If X = 1, then ASIN(X) = pi/2
If X = -1, then ASIN{X) = -pi/2
If 0 <

If 1 < ABS(X), error

B.1.4 DASIN—Double-Precision Floating Point Arc Sine

ABS(X) < t, them DASIN(X) = DATAN(X/DSQRT(1-X*#2))}

DASIN(X} is computed as:
If X = 0, then DASIN(X) = O
1# % = 1, then DASINCX) = pif2
If X = -1, then DABIN(X) = -pi/2
If 0 <
If 1 < ABS(X), error

B-2 Algorithms for Approximation Procedures

i
X‘.
AN

B.1.5 ATAN—Real Floating Point Arc Tangent

ATAN(X) is computed as:
1. IfX <0, then:

Begin
Perform Steps 2, 3, and 4 with arg = ABS(X)
Negate the result since ATAN(X) = -ATAN{-X)
Return End

2. If ABS(X) > 1, then:

Begin
Perform Steps 3 and 4 with arg = L/ABS(X)
Negate result and add a bias of pi/2 since
ATANCABS(X)) = pi/2 - ATAN(1/ABS(X))
Return End

3. At this point the argumentis1 > =X > =0
If ABS(X) > TAN(pi/12), then:

Begin
Perform Step 4 with arg = (X » SQRT(3) - 1)/
(SQRT(3) + X}
Add pi/6 to the result
Return End

Note: {X * SQRT(3) -1)/(X + SQRT(3)) <=~ TAN(pi/12) for
ABS(X) > = TAN(pi/12)

4. Finally, the argument is ABS(X) <= TAN(pi/12)
Begin

ATANCX) = X » SUM{CTi] * X==(2[1))), i1 = 0:4
Return End

The coefficients C[i] are drawn from Hart #4941.!
The relative error is <= 10++-9.54,

1 1, Hart,). F. et al., Computer Approximations (John Wiley & Sons, 1968), P, 267

Algorithms for Approximation Procedures B-3

B.1.6 ATAN2—Real Floating Point Arc Tangent with Two Parameters

ATAN2(X,Y) is computed as:

If Y = 0 or X/Y > 2+x25, ATAN(X.Y) = pi/2 x (sign X)

If Y > 0 and X/Y <= 2#x35, ATAN2(X.Y) = ATAN(X/Y)

If Y < 0 and X/Y <= 2%x35, ATAN2(X,Y) = pi * (eign X)
+ ATAN(X/Y)

B.1.7 DATAN—Double-Precision Floating Peint Arc Tangent

DATAN(x) is computed as:
1. X <0, then:

Begin
Perform Steps 2, 3, and & with arg = ABS(X}
Negate the result since DATAN(X) = -DATAN(-X)
Return

End

2. If ABS(X) > 1, then:

Begin
Perform Steps 3 and 4 with arg = 1/ABS(X)
Negate result and add a bias of pi/2 since
DATAN(ABS(X)} = pi/2 - DATAN(L/ABS(X))
Return

End

3. At this point the argumentis 1 > =X > =0
If ABS(X) > DATAN(pi/12) then:

Begin N
Perform Step 4 with arg = (X+DSQRT(3) - 1)/ oo
(DSURT(3) + X) N
Add pi/6 to the result

Return

End

Note: (X+*DQRT(3) -1)/(X + DQRT(3)) <= DATAN(pi/12) for
AB(X) > =DATAN(pi/12)
4. Finally, the argument is ABS(X) <= DATAN(pi/12):
Begin ‘
DATAN(Y) = X » SM(CTi] » X»+(2¢i)), i = 0:B

Return
End

B-4 Algarithms for Approximation Procedures

The coefficient C[i['s are drawn from Hart #4941.1
The relative error is <= 10++-9,54.

B.1.8 DATAN2—Double-Precision Floating Point Arc Tangent with Two
Parameters

If ¥ = 0 or X/Y > 2++25, DATAN2(X.Y) = pi/2 * (sign X}
L If Y > 0 and X/Y <= 2%+25, DATAN2(X,Y) = DATAN(X/Y)
- If ¥ < 0 and X/Y <= 2%+25, DATAN2{X.Y) = pi = (sign X}
+ DATAN(X/Y)

B.1.9 ALOG10—Real Floating Peint Commen Logarithm

ALOG10(x) is computed as:
ALOG1O(E) » ALOG(X)
where:

E = 2.718, the base of the natural log system.

See the description of ALOG (Section B.1.21) for the complete algorithm.

B.1.10 DLOG10-—Double-Precision Fleating Point Common Logarithm

DLOG10(X) is computed as:
DLOG10(E) * DLOG {X)

where;

C E = 2.718, the base of the natural log system.

See the description of DLOG (Section B.1.22) for the complete algorithm.

1 Hart, Computer Approximations p. 267.

Algorithms for Approximation Procedures - B-5

B.1.11 COS—Real Floating Point Cosine

COS(X) is computed as:
SIN(X+pi/2)

See the description of SIN (Section B.1.23) for the complete- algorithm.

B.1.12 DCOS—Doubhle-Precision Floating Peint Cosine

DCOS(X) is computed as:
DEIN(X+pi/2).

See the description of DSIN (Section B.1.24) for the complete algorithm,

B.1.13 EXP—Real Floating Point Exponential

EXP(X) is computed as:

If X > 88.028, overflow occurs

If X <= -88.5, EXP(X) = 0

If ABS(X) < 2#%-28, EXP(X) = 1
Otherwise;

EXP{X) = 2mxY % 2xkZ * %W
where:

Y = INTEGER(X*LOG2(E))
V = FRAC(XLOG2(E)) * 16
Z = INTEGER(V)/16

W = FRAC(V)/16

P+wl)
P-wQ

2uxy =

P and Q are first degree polynomials in We»2. The coefficients of P and Q
are drawn from Hart #1121.1

Powers of 2#+(1/16) are obtained from a table. All arithmetic is done
in double precision and then rounded to single precision at the end of
calculation. The relative error is less than or equal to 10%+-16.4.

! Hart, Computer Approximations, p. 206.

B-6 Algorithms for Approximation Procedures

B.1.14 DEXP-—Double-Precision Floating Point Exponential

See the description of EXP {Section B.1.13). The approximation is identical
except that there is no conversion to single precision at the end.

B.1.15 COSH—Real Floating Point Hyperbaolic Cosine
COSH(X) is computed as:

If ABS(X) < 2%-11, COSH(X) =1

If 2xx-11 <= ABS(X) < 0.25,

COSH(X) = DIGITAL's approximation
If Q.25 <= ABS(X) <= 87.0,

COSH{X) = (EXP{X} + EXP{-X))/2
If 87.0 < ABS(X) and ABS(X) - LDG(2) < 87,

COSH(X) = EXP(ABS(X) - LOG(2))

If 87.0 < ABS(X) and ABS(X) -~ LOG(2)>= 87, then overflow

1

B.1.16 DCOSH—Deuble Floating Point Hyperbolic Casine
DCOSH(X) is computed as:

If ABS(X) < 2%x-27, DOOSH{X) = 1

If 2++-27 <= ABS(X) < 0.25,
DCOSH(X) = DIGITAL's approximation

If 0.26 <= ABS(X) <= 87.0,
DCOSH(X) = (DEXP(X) + DEXP{~X)}/2

b If 87.0 < ABS(X) and ABS(X) - LOG(2) < 87,
DCOSH(X) = DEXP(ABS(X) - LOG(2))

If 87.0 < ABS(X) and ABB(X) - LOG(2)>= 87, then overflow

1

! This approximation is proprietary.

Algorithms for Approimation Procedures B-7

B.1.17 SINH—Real Floating Point Hyperholic Sine
SINH{X) is computed as!

I ABS(X) < Z#*-11, SINH{X) = X

If 2#%-11 <= ABS(X) < 0.25,
SINE(X) = DIGITAL's approximation!

I£ 0.25 <= ABS(X) <= 7.0,
SINH(X) = (EXP(X) - EXP(-X))/2

If 87.0 < ABS(X) and ABS(X) - LOG(2} < 87,
SINH(XY = sign{X) * EXP(ABS(X) - LDG{2)}

If 87.0 < ABS(X) and ABS(X) - LOG{2)>= 87, then overflow

B.1.18 DSINH—Double-Precision Floating Point Hyperbolic Sine
DSINH(x) is computed as:

1f ABS(X) < 2%%-27, DSINH(X) = X

If 2+»-27 <= ABB(X) < .25,
DSINH(X) = DIGITAL's approximation

If ¢.25 <= ABS(X) <= 87.0,
DSINH(X) = (DEXP(X} - DEXP(-X})/2

If 87.0 < ABS(X) and ABS{(X) - LOG{2) < 87,
DSINH(X) = sign(X} * DEXP(ABS(X) - LOG{(2))

If 87.0 < ABS(X) and ABS(X) - LDG(2)>= 87, then overflow

1

B.1.19 TANH—Real Floating Point Hyperbolic Tangent

TANHM(X) is computed as:
If ABS(X) <= 2++-14, then TANH(X) = X
I 2+%-14 < ABS(X) <= 0.25, then TANH(X) = SINH(X} / COSH(X)

If 0.25 < ABS(X) < 16.0, then
TANH{X) = (EXP(2*X) - 1)/(EXP(2+X) * 1}

If 16.0 <= ABS(X), then TANH(X) = sign(X) * 1

! This approximation is proprietary.

8-8 Algorithms for Approximation Procedyres

B.1.20 DTANH-—Double-Precision Floating Point Hyperbolic Tangent

DTANH(X) is computed as:
If ABS(X) <= 2#%-14, then DTANH(X) = X
If 2+#+-14 < ABS(X) <= 0.25, them DTANH(X) = DSINH(X)/DCOSH(X)

 If 0.25 < ABS(X) < 6.0, then
DTANH(X) = (DEXP(2+X) - 1}/(DEXP{2*X) + 1)

If 16.0 <= ABS(X), then DTANH(X) = sign(X} * 1

8.1.21 ALOG—Real Floating Point Natural Logarithm
ALOG(x) is computed as:

If X <= 0, an error is sigraled.
Therefore, let X = ¥ x (2xxA)

where:

1/2 <= Y < 1
Then LOG{X} = A * LDG{2) + LOG(Y)
If ABS(X-1) <= 0.25, let W = (X-1)/(X+1}
Then, LOG(X) = W * SUM(CILi] = wex(2%i))
Otherwise, let W = (Y-SQRT(2)/2)/(¥+SQRT(2)/2)

Then, LOG(X) = A * LOG(2) - 1/2 * LOG{2) +
W % SUM CLil » Wsx(2#1)

The coefficients are drawn from Hart #2662.!
The polynomial approximation used is of degree 4.

The relative error is less than or equal to 10++-9.9.

! Hart, Computer Approximations, p. 227.

Algarithms for Approximation Procedures B-9

B.1.22 DLOG—Double-Precision Floating Point Natural Logarithm

DLOG(x) is computed as:
If X <= 0, ar error is signaled.
Therefore, lat X = Y * (2%xA}
where:
1/2<=Y <1
Then, DLOG(X) = A * DLOG(2) * DLOG(Y)
If ABS(X-1) <= 0.25, then let W = (X-1)/(X+1)
Then DLOG(X} = W * SUM (C[i] * Wex(241))
Otherwise, let W = (Y - DSQRT(2)/2)/(Y + DSQRI(2)/2)

Then DLOG(X} = A * DLOG{2) - 1/2 » DLOG{2) +
W SUM(CTL] * Wak(2%1)

The coefficients are drawn from Hart #2662.!
The polynomial approximation used is of degree 6.

The relative error is less than or equal to 10++-9.9,

B.1.23 SIN-—-Real Floating Paint Sine

SIN(X) is computed as:
Let Q = INTEGER(ABS(X)/(pi/2))
where:

Q = 0 for first quadrant

Q =1 for second quadrant
Q =2 for third quadrant
Q = 3 for fourth quadrant

Let ¥ = FRACTION({(ABS(X}/(pi/2))

! Hart, Computer Approximations, p. 227.

B-10 Algorithms for Approximation Procedures

If ABS(Y) < 2#+-14, the sine is computed as:
SIN(X) = § * (pi/2)

S5=Y ifQ=20
§=1-Y itg=1
g =-Y if Q=2
= ¥Y-1 ifQ=23

For all other cases:

SIN(X) = P(Y#pi/2) itg=0
SIN(X) = P({1-Y)*pif2) if Q=1
SIN(X) = P{-Y*pi/2) ifQ=2
SIN(X) = P((Y-1)»pi/2) itQ=3

where:
P = Y+SUM{C[i)«(¥»«(2+i}))) for i = D:4
The coefficients are taken from Hastings.}
The polynomial approximation used is of degree 4.

The relative error is less than or equal to 10++-8. The result is guaranteed
to be within the closed interval -1.0 to +1.0.

B.1.28 DSIN—Double-Precision Floating Point Sine

DSIN(X} is computed as:
Let Q = INTEGER(ABB(X)/(pi/2))
where:

Q = 0 for first quadrant

Q =1 for second quadrant
Q = 2 for third quadrant
Q = 3 for fourth quadrant

Let ¥ = FRACTION((ABS(X)/(pi/2))

! Hastings, C. et al., Approximation for Digital Computers (Princeton University Press, 1955), Sheet 16 (Part

2, p. 140).

Algorithms for Approximation Procedures B-11

If ABS(Y) < 2»+-28, the sine is computed as:
DSIN{X) = § * (pi/f2)

8=y ifQg=0

8= 1-Y it Q=1

8= -y itQe=2

8= y-1 if Q=3

For all other cases:

DSIN(X) = PeYspi/2) < ifo=0
DSIN(X) = P{(1-¥)*pi/2} if Q=1
DBINCK) = P{-Yapi/f2) Hg=2
DSINCX) = P{(Y-1)#pi/2) 1f Q=3

where:
= Y+SUM(C[i]#(Y+x(2%i))) for i = 0:8
The coefficients are taken from Hastings.!
The polynomial approximation used is of degree 8.

“The relative error is less than or equal to 10+»-18.6. The resuit is guaran-
teed to be within the closed interval -1.0 to +1.0.

No loss of precision occurs if X < 2 + pi *256.

B.1.25 SORY—Real Floating Point Square Root
SQRT(X) is computed as: .

If X <= 0, an error is signaled. Therefore, let X = -X .
let X = 2%+ * F
where:

K is the exponential part of the floating point data.
F is the fractional part of the floating point data.

If K is even:
X = 2¢(2P) * F

SQRT{X) = 2+=+P » SQRT (F)
1/2<¢=F < 1

1 Hastings, C. et al., Approximation for Digital Compuiers (Princeton University Press, 1955), Sheet 16 (Part
2, p. 140).

~ B-12 Algorithms for Approximation Procedures

where:
P=K/2.

If K is odd:

X = 2¢+{2P+1) * F = 2%+{2P+2) = (F/2)
SQRT(X) = 2#++(P+1) = SQRT{F/2)
1/4 <= F/2 < 1/2
Let F' = AsF + B, when K is even:

A = 0.453730314 (octal)
B = 0.327226214 (octal)

Let F = A%(F/2) + B, when K is odd:

A = 0.650117146 (oc%al)
B = 0.230170444 {octal)

Let K’ = P, when K is even
Let K’ = P+1, when K is odd

Let Y[0] = 2««K’ = F’ be a straight line approximation within the given
interval using coefficients A and B, which minimize the absolute error at
the midpoint and endpoint.

Starting with Y[0], two Newton-Raphson iterations are performed:
Y[n+1] = 1/2 * (¥[n] + X/¥YIo])

The relative error is < 10%=-8.

‘r\“ B.1.26 DSORT—Double-Precision Floating Point Square Root

DSQRT(x) is computed as:

If X <=0, an error is signaled. Therefore, let X=-X.
Let X = 2#«K » F where:

K is the exponential part of the floating point data.
F is the fractional part of the floating data.

Aigorithms for Approximation Procedures B-13

If X is even:

X = 2«x(2P) * F
DSQRT(X) = 2#«P = DSQRT (F) -

1/2 <= F ¢ 1
If K is odd:

X = 2#x(2P+1) * F = 2#x(2P+2) » (F/2)
DSQRT(X) = 2#x(P+1) = DSQRT(F/2)

1/4 <= F/2 < 1/2
Let F' = A*F + B, when K is even:

A = 0.453730314 (octal)
B = 0.327226214 (octal)

Let F' = A*(F/2) + B, when K is odd:

A =0.650117146 (octal)
B = 0.230170444 (octal)

Let K’ = P, when K is even.
Let K’ = P+1, when K is odd.

Let Y[0] = 2»«K’ = F’ be a straight line approximation within the given
interval using coefficients A and B, which minimize the absolute error at
the midpoint and endpoint.

Starting with Y[0], three Newton-Raphson iterations are performed:
Y(o+1] = 1/2 * (Y[a] + X/Y[n})
The relative error is < 10*+-17.

B.1.27

TAN—Real Floating Point Tangent

TAN(X) is computed as:
SIN (Xy/c08 (X)

1f COS(X) = O and SIN(X) » O: arror, return +
If COS(X) = 0 and SIN(X) < 0, error, return -

where:

co is the largest representable number.

B-14 Algorithms for Approximation Procedires

Y

B.1.28 DTAN—Double-Precision Floating Point Tangent

DTAN(X) is computed as:

DSI¥ (X)/DCOB(X)

If DCDS(X} = O and DBIN{X) > O; error, return + If DCOS(X) = 0
ané DSIN(X) < O; error, return -

where:

oo is the largest representable number.

B.2 Complex-Valued Procedures

B.2.1 CSORT—Complex Squars Root Function

CSQRT is computed as:
ROOT = SQRT ({ABS (r) + CABS ({r,i})) / 2
Q =41/ (2 » ROOT)

r i CSQRT {((r,i)
>=0 any (ROOT, Q)
<0 >=0 (Q, ROOT)
<0 <0 (-Q, ROOT)

CSIN(Z) is computed as:

(BIN(X) * cosh(Y), iCOS(X) »* sinh(Y¥)}
where:

Z=X-=1Y

cosh(Y) = (EXP(Y) + (1.0/EXP{Y}))/2
sinh(Y) = (EXP(Y) - (1.0/EXP(Y))}/2

Algorithms for Approximation Procedures B-15

B8.2.3 CCOS—Complex Cosine

CCOS(Z) is computed as:
{COS(X) * cesh(Y), i(-SIN(X) * ainh{Y)}

where:
Z =X+ 1Y
cosh{Y) = (EXP(Y} + (1.0/EXP(Y)))/2.0
sinh(Y) = (EXP(Y) - (1.Q/EXP(Y)))/2.0

B.2.4 CLOG—Complex Logarithm
CLOG(Z) is computed as:
(ALOG(CABS(2)), 1ATANZ(X,Y))

where:
Z=X+iY

B.25 CEXP--Compiex Exponentia
CEXP(Z) is computed as:
EXP(X) * (COS(Y) +iSIN(Y))

where:
Z=X-+iY

B.2 Random Number Generator

Two random number generators are available with FORTRAN-77:
RANDOM and F77RAN. They are described in the following sections.

B-18 Aigorithms for Approximation Procedures

ko
ol

B.3.1 RANDOM—Uniform Pseudorandom Number Generator

This procedure is a general random number generator of the multiplicative
congruential type. This means that it tends to be fast, but prone to non-
random sequences when considering triples of numbers generated by this
method. This procedure is called again to obtain the next pseudorandom
number, The 32-bit seed is updated automatically. The result is a floating
point number that is uniformly distributed in the range between 0.0 inclu-
sive and 1.0 exclusive. There are no restrictions on the seed, although it
should be initialized to different values on separate runs in order to obtain
different random sequences. RANDOM uses the following to update the
seed passed as the parameter:

SEED = 60069 * SEED + 1 (MOD 2%+32)

The value of SEED is a 32-bit number whose high-order 24 bits are
converted to floating point and returned as the result.

RANDOM is invoked in one of three ways:
i £ = RAN(j)

Vo £ = RAN(i1,12)
: CALL RANDU(i1,i2.f)

where:

f is a real, floating point, random number
j is an INTEGER#4 seed
i1,i2 are INTEGER+2 seeds.

Notes:

AT 1. Because the result is never 1.0, a simple way to get a uniform random
ol integer selector is to multiply the value returned by the random num-
ber function by the number of cases. For example, if a uniform choice
among five situations is to be made, then the following FORTRAN
statement will work:

G0 10 (1,2,3,4.5),1 + IFIX(S.*RAN(ISEED))

The explicit IFIX is necessary before adding 1 in order to avoid a
possible rounding during the normalization after the addition of
floating point numbers.

Algorithms for Approximation Procedures B-17

2. For further information on congruential generators and their limita-
tions, see: -

G. Marsaglia, “Random Number Generation”, in The Encyclopedia of
Computer Science, ed., Anthony Ralston (Petrocelli/Charter, 1976),
pp. 1192-1197.

B.3.2 F77RAN - Optional Uniform Pseudorandom Number Generator

This optional procedure is a general random number generator of the
mudtiplicative congruential type. This procedure was the standard random
number generator previous to Version 3.0 of PDP-11 FORTRAN and is
included only for compatibility purposes as the file LB:[1,1}F77RAN.OB].

If 1%2=0, SEED = 2%*16+8
otherwise, SEED = (2#%16+3) = SEED (MOD 2%#31)

The value of SEED is a 32-bit number whose high-order 24 bits are
converted to floating point and returned as the result.

F77RAN is invoked in one of two ways:

» S
f= RAN (il,i2) ’
CALL RANDU (i1,i2,£)

where:

f is a real floating point, random number,
i1, i2 are INTEGER#2 seeds.

B-18 Algarithms for Approximation Procedures

Appendix c
Diagnostic Messages

C.1 Diagnostic Nessage Overview

Diagnostic messages related to a FORTRAN-77 program can come from
the compiler or from the OTS. The compiler detects syntax errors in

a source program—such as unmatched parentheses, illegal characters,
misspelled keywords, and missing or iliegal parameters. The OTS reports
errors that occur during execution.

C.2 Compiler Diagnostic Messages

Compiler diagnostic messages are generally self-explanatory; they specify
the nature of an error and the action taken by the compiler. Besides
reporting errors detected in source-program syntax, the compiler issues
messages for errors such as I/O errors and stack overflow that involve the
compiler itself. : :

Diagnostic Messages €-1

C.2.1 Source Program Diagnostic Messages

The compiler distinguishes three classes of source-program errors, reported
as follows:

F -

Fatal errors that you must cotrect before a program can be compiled. If
any F-class errors are reported in a compilation, the compiler produces no
object file.

Errors that should be comrected. The program is not likely to run as
intended with E-class errors; however, an object file is produced.

Warning messages that are issued for statements using nonstandard,
though accepted, syntax and for statements corrected by the compiler.
These staternents may not have the intended result and you should check
them before attempting execution. These messages are produced only
when the waming switch (/WR} is set.

Information messages that although they do not call for corrective action,

. inform you that a correct FORTRAN-77 statement may have unexpected

results. These messages are produced only when the warning switch
(/WR) is set.

Errors detected during the initial phase of compiling appear immediately
after the source line in which the error is presumed to have occurred; all
other diagnostic messages appear immediately after the source listing.

Diagnostic messages issued by the compiler consist of twa lines: The
first line gives the error number and error message text; the second line
contains a short section of the source line or the line number and/or the
symbol that caused the diagnostic message.

One of the most frequent reasons for syntax etrors, typing mistakes, can
sometimes cause the compiler to give misleading diagnostic messages.
You should avoid the following common typing mistakes:

®* Missing commas or parentheses in complicated expressions or
FORMAT statements.

® Particular instances of misspelled variable names. Because the com-
piler usually cannot detect these errors, execution may also be affected.

* Inadvertent line continuation marks, which can cause error messages
for the preceding lines.

* Typing the uppercase letter O for the digit 0, or the reverse. If your
terminat does not differentiate between the number and the ietter, you
may find it difficult to detect this error.

€-2 Diagnostic Messages

The presence of invalid ASCH characters in the source program can

also cause misleading diagnostics. Nonprinting ASCI control characters
except tab and form feed are not permitted in a FORTRAN-77 source
program. If such control characters are detected, they are replaced by the
question mark (2). However, because a question mark cannot occur in a
FORTRAN-77 statement, this replacement can cause a syntax error.

Example C-1 shows the form of source-program diagnostic messages as
they are displayed at your terminal in interactive mode. Example C-2
shows how these messages appear in listings.

Example C-1: Sample Diagnostic Messages (Terminal
Format)

F77T>COMERR=COMERR /NOF77

F77 -- ERROR 63-E Format item contains meaningless character
{RSTUVWXYZ',I4 N} in module ERRCHK at line §
F77 ~- ERROR 85-W Name longer than 6 characters -
[.LONGIDENTIFIER] in module ERRCHK at line 12
F77 -- ERROR 26-W No path to this statement
in module ERRCHK at line 17
F77 -- ERROR 10-E Multiple definition of a statement label, second
ignored [FORMAT] in module ERRCHK at lime 20
F77 -- ERROR 50-F Undefined statement label
[1921 in module ERRCHK
F77 -- & Exrore COMERR.FTN:3

The compiler diagnostic messages are as follows:

1 W Redundant continuation mark ignored

Explanation: A continuation mark is present where an initial
line is required. The continuation mark is ignored.

2 W Invalid statement number ignored

Explanation: An improperly formed statement number is present
in columns 1-5 of an inifial line. The statement number has been
ignored.

Diagnostic Messages C-3

Example C-2: Sample Diagnostic Messages (Listing Format)

0001
0002
0003
0004

0008
F77 --

0005
o007

0008
0009

0010
Q011
0012
FI7T --

0013
0014
0016
0018
Q017
F77 --

0018
0019
0020
F77 --

0021
0022
0023
0024
F77 --

F77 --

PROGRAM ERACHK
PARAMETERS T=.TRUE.,F=.FALSE.
INTEGER*4 TT.FF,I1.J.II
DATA TT,FF/T.F/
C
501 FORMAT(' 1234567800ABCDEFGHT JKLMNOPQRSTUVWXYZ ! , 14, M)
ERRUR 63-E Format item contains meaningless character
[RSTUVWXYZ',I4,.M] in module ERRCHK at line §

OPEN(UNIT=1,NANE='FILE1.DAT', ACCESS='DIRECT',
1 RECORDSIZE=2)
WRITE(1'1)TT.FF

TYPE 501,TT,FF
TYPE 501,TT,.FF

CALL SUBR
READ(L,102)I.1.K
READ(1,102,ERR=24)1,J,LONGIDENTIFIER

ERROR 85-W Name loager than € characters
[,LONGIDENTIFIER] in module ERRCEK at line 12

24 ASSIGN 92 TO X
I=0
J=3
GO T0 24
II=3/1
ERROR 26-W No path to thip statement
in medule ERRCHK at line 17

73 XX=Y/X
TYPE 502, 11.XX,ZZ

501 FORMAT(2X,L2,2%,L2) .

ERROR 10~E Multiple definition of a statement label, second
ignored [FORMAT] in module ERRCHK at line 20

502 FORMAT (2X,I5,2X,F,2X,F)
CLDSE(UNIT=1,DISP='DELETE')

92 STOP 'OK!
ERD

ERROR 50-F Undefined statement label
{ 102] in module ERRCHK

5 Errors COMERR.FTN;2

3 E

C-4& Diagnastic Massages

Too many continuation lines, remainder ignored

Explanation: More continuation lines are present than were
specified by the /CO:n qualifier. Up to 99 continuation lines are
permitted. The default value is 19.

¢

10

Source line too long, compilation terminated

Explanation: A source line contains more than 88 characters.
The compiler examines only the first 72 characters of a line.

Statement out of order, statement ignored

Explanation: Statements must appear in the order specified in
the PDP-11 FORTRAN-77 Language Reference Manual.

Statement not valid in this program unit, statement ignored

Explanation: A program unit contains a statement that is not
allowed; for example, an executable statement in a BLOCK DATA
subprogram.

Missing END statement, END is assumed

Explanation: An END statement is missing at the end of the last
input file and has been inserted.

Extra characters following a valid statement

Explanation: Extraneous text is present at the end of a syntac-
tically valid statement. Check the entire statement for typing or
syntax errors.

Invalid initialization of variable not in COMMON

Explanation: An attempt was made in a BLOCK DATA sub-
program to initialize a variable that is not in a COMMON
block.

Multiple definition of a statement label, second ignored

Explanation: Two or more statements have the same statement
label. The first occurrence of the label is used.

Diagnostic Messages C-5

11

12

13

14

15

16

17

C-6 Diagnostic Messages

F

Compiler expression stack overflow

Explanation: An expression is too complex to be compiled. This
error occurs in the following cases:
* An arithmetic or logical expression is too complex.

* There are too many actual arguments in a reference to a
subprogram,

* There are too many parameters in an OPEN statement.

Explanation: The expression, subprogram reference, or OPEN
statement must be simplified.

Statement cannot terminate a DO loop

Explanation: The terminal statement of a DO loop cannot be a
GO TO, arithmetic IF, RETURN, DO, or END statement.

Count of Hollerith or Radix50 constant too large, reduced

Explanation: The integer count preceding H or R specifies more
characters than remain in the source statement. i

Missing apostrophe in character constant

Explanation: A character constant must be enclosed by
apostrophes. :

Missing variable or subprogram name

Explanation: A required variable name or subprogram name
was not found.

Multiple declaration of data type for variable, first used \‘*\._/"’

Explanation: A variable cannot appear in more than one type
declaration statement. The first type declaration is used.

Constant in format item out of range

Explanation: A numeric value in a FORMAT statement exceeds
the allowable range. Refer to the PDP-11 FORTRAN-77 Language
Reference Manual.

18

19

20

21

22

23

24

25

26

Invalid repeat count in DATA statement, count ignored

Explanation: The repeat count in a DATA statement is not an
unsigned nonzero integer constant. It has been ignored.

Missing constant

Explanation: A required constant was not found.

Missing variable or constant

Explanation: An expression, or a term of an expression, has
been omitted. Examples:

WRITE (}
DIST = = TIME

Missing operator or delimiter symbol

Explanation: Two terms of an expression are not separated by
an operator, or a punctuation mark (such as a comma} has been
omitted. Examples:

CIRCUM = 3.14 DIAM

Multiple declaration of name

Explanation: A name appears in two or more inconsistent
declaration statements.

Syntax error in IMPLICIT statement

Explanation: Improper syntax was used in an IMPLICIT state-
ment. Refer to the PDP-11 FORTRAN-77 Language Reference
Manual.

More than 7 dimensions specified, remainder ignored

Explapation: An array may have up to seven dimensions.

Non-constant subscript where constant required

Explanation: In the DATA and EQUIVALENCE statements,

subscript expressions must be constant.

No path to this statement

Explanation: Program control cannot reach the statement. The
statement is deleted.

Diagnostic Messages C-7

27

28

29

30

31

32

33

C-8 Diagnostic Messages

Adjustable array bounds must be dummy arguments or in
COMMON

. Explanation: Variables specified in dimension declarator expres-

sions must either be subprogram dummy arguments or appear in
COMMON,

Overflow while converting constant or constant expression

Explanation: The specified value of a constant is too large or too
small to be represented.

Inconsistent usage of statement label

Explanation: Labels of executable statements have been con-
fused with iabels of FORMAT staternents,

Missing exponent after E or D

Explanation: A floating point constant is specified in E or D

‘notation, but the exponent has been omitted,

Invalid character used in hex, octal, or Radix-50 constant

Explanation: A character used was invalid. It must be one of
the following:

¢ The valid Radix—50 characters are the letters A-Z, the digits
0-9, the dollar sign, the period, and the space. A space is
substituted for the invalid character.

s The valid hexadecimal characters are 0-9, A-F, a-f.
* The valid octal characters are 0-7.

Program storage requirements exceed addressable memory

Explanation: The storage space allocated to the variables and
arrays of the program unit exceeds the addressing range of the
PDP-11.

Variable inconsistently equivalenced to itself

Explanation: The EQUIVALENCE statements of the program
specify inconsistent relationships among variables and array
elements. Example:

EQUIVALENCE (A(1), A(2))

Tl

34

35

36

37

38

39

40

41

Undimensioned array or function definition out of order

Explanation: Either a statement function definition has been
found among executable statements, or an assignment statement
has been detected that involves an array for which dimension
information has not been given.

Format specifier in error

Explanation: The format specifier in an I/O statement is invalid.
It must be one of the following:

Label of a FORMAT statement

* (list-directed)

* A run-time format specifier: variable, array, or array element
¢ Character constant containing a valid FORMAT specification

Subscript or substring expression value out of bounds

Explanation: An array element has been referenced which is not
within the specified dimension bounds.

Invalid equivalence of two variables in COMMON

Explanation: Variables in COMMON cannot be equivalenced to *
each other,

EQUIVALENCE statement incorrectly expands a COMMON
block

Explanation: A COMMON block cannot be extended beyond its
beginning by an EQUIVALENCE statement,

Allocation begins on a byte boundary

Explanation: A non-BYTE quantity has heen allocated to an odd
byte boundary.

Adjustable array used in invalid context

Explanation: A reference is made to an adjustable array in a
context where such a reference is not allowed.

Subscripted reference to non-array variable

Explanation: A variable that is not defined as an array cannot
appear with subscripts.

Diagnostic Messages ©-9

42 F

43 F

44 F

45 E

46 E

47 F

48 F

49 F

50 F

C-10 Disgnostic Messages

Number of subscripts does not match array declaration

Explanation: More or fewer dimensions are referenced than
were declared for the array.

Incorrect length modifier in type declaration

Explanation: The length specified in a type declaration state-
ment is not compatible with the data type specified. Example:

INTEGER PIPES+8

Syntax error in INCLUDE file specification

Explanation: The file name string is not acceptable (invalid
syntax, invalid qualifier, undefined device, and so forth).

Missing separator between format items

Explanation: A comma or other separator character has been
omitted between fields in a FORMAT statement.

Zero-length string

Explanation: The length specification of a character, Hollerith,
or Radix—50 constant must be nonzero.

Missing statement label

Explanation: A statement-label reference is not present where
one is required.

Missing keyword

Explanation: A keyword, such as TO, is omitted from a state-
ment such as ASSIGN 10 TO L.

Non-integer expression where integer value required

Explanation: An expression reqmred to be of type INTEGER is
of another data type.

Undefined statement label

Explanation: A reference is made to a statement label that is not

defined in the program unit.

51

52

53

54

55

56

57

58

59

'n

Number of names exceeds number of values in DATA statement

Explanation: The number of constants specified in a DATA
statement must match the number of variables or array elements
to be initialized. The remaining variables and/or array elements
are not initialized.

Number of values exceeds number of names in DATA statement

Explanation: The number of constants specified in a DATA.
staternent must match the number of variables or array elements
to be initialized. The remaining constant values are ignored.

Statement cannot appear in logical IF statement

Explanation: The statement contained in a logical IF must not
be a DO, logical IF, or END statement.

Unclosed DO loops or block IF

Explanation: The terminal statement of a DO loop or the ENDIF
statement of an IF block was not found.

Assignment to DO variable within loop

Explanation: The control variable of a DO loop has been as-
signed a value within the loop.

Variable name, constant, or expression invalid in this context

Explanation: A quantity has been incorrectly used: for example,
the name of a subprogram where an arithmetic expression is
required.

Operation not permissible on these data types

Explanation: An invalid operation, such as .AND. on two real
variables, is specified.

Left side of assignment must be variable or afray element

Explanation: The symbolic name to which the value of an
expression is assigned must be a variable or array element.

Syntax error in 1/O list
Explanation: Improper syntax was detected in an 1/O list.

Diagnostic Massages €-11 -

60 E

61 E

62 E

63 E

64 E

65 E

66 E

67 E

C-12 Diagnostic Messages

Constant size exceeds variable size in DATA statement

Explanation: The size of a constant in a DATA statement is
greater than that of its corresponding variable.

String constant truncated to maximum length

Explanation: The maximum length of a Hollerith constant or
character constant is 255 characters; of a Radix-50 constant, 12.

Lower bound greater than upper bound in array declaration

Explanation: The upper bound of a dimension must be greater
than or equal to the lower bound.

Format item contains meaningless character

Explanation: An invalid character or a syntax etror is present in
a FORMAT statement.

Format item cannot be signed

Explanation: A signed constant is valid only with the P format
code.

Unbalanced parentheses in format list

Explanation: The number of right parentheses does not match
the number of left parentheses.

Missing number in format list

Explanation: There is a2 missing number in the format list.
Example:

FORMAT (F6.}

Extra number in format list

Explanation: There is ant extra number in the format list.
Example: '

FORMAT (14,3)

68

69

70

71

72

73

74

75

Extra comuna in format list

Explanation: There is an extra comma in the format list.
Example:

FORMAT (I4.)

Format groups nested too deeply

Explanation: Too many parenthesized format groups have been
nested, Formats can be nested to only eight levels.

END= or ERR= specification given twice, first used

Explanation: Two instances of either END= or ERR= were
found. Control is transferred to the location specified in the first
occurrence,

Invalid I/0 specification for this type of I/O statement

Explanation: A syntax error is in the portion of an I/O state-
ment preceding the 1/0 list.

Arguments incompatible with function, assumed user supplied

Explanation: A function reference has been made using an
intrinsic function name, but the argument list does not agree in
order, number, or type with the intrinsic function requirements.
The function is assumed to be supplied by you as an external
function. '

ENTRY within DO loop or IF block statement ignored

Explanation: An ENTRY statement is not permitted within the
range of a DO loop.

Statement too complex

Explanation: The statement is too large to compile. It must be
subdivided into several statements.

Too many named COMMON blocks
Explanation: Reduce the number of named COMMON blocks.

Diagnostic Messages C-13

".
;

76 F INCLUDE files nested too deeply

Explanation: Reduce the level of INCLUDE nesting or increase
the number of continuation lines permitted. Each INCLUDE file
requires space for approximately two continuation lines.

77 F Duplicated keyword in OPEN/CLOSE statement

Explanation: A keyword subparameter of the OPEN or CLOSE
statement cannot be specified more than once.

78 F DO and [IF statements nested too deeply

Explanation: DO loops and IF blocks cannot be nested more
than 20 levels.

79 F DO or IF statements incorrectly nested

Explanation: The terminal statements of a nest of DO loops
or IF blocks are incorrectly ordered, or a terminal statement
precedes its DO or block IF statement

80 F UNIT= keyword missing in OPEN/CLOSE statement

Explanation: The UNIT= subparameter of the OPEN and
CLOSE statement must be present.

81 E Letter mentionted twice in IMPLICIT statement, last used

Explanation: An initial letter has been given an implicit data
type more than once, The last data type given is used.

82 F Incorrect keyword in CLOSE statement

Explanation: A subparameter that can be specified only in an
OPEN statement has been specified in a CLOSE statement.

83 F Missing 1/0 list
Explanation: An [/O list is not present where one is required.

8¢ F Open failure on INCLUDE file

Explanation: The file specified could not be opened. Possibly
the file specification is incorrect, the file does not exist, the
volume is not mounted, or a protection violation occurred.

£-14 Diagnostic Messages

85 W Name longer than 6 characters

Explanation: A symbolic name has been truncated to six
characters.

86 F Invalid virtual array usage

Explanation: A virtual array has been used in a context that is
not permitted.

87 F Invalid key specification

Explanation: The key value in a keyed /0 statement must be a
character constant, a BYTE array name, or an integer expression.

88 F Non-logical expression where logical value required

Explanation: An expression that must be of type LOGICAL is of
another data type.

89 E Invalid control structure using ELSEIF, ELSE, or ENDIF

TN
T Explanation: The order of ELSEIF, ELSE, or ENDIF statement is
incorrect.
ELSEIF, ELSE, and ENDIF statements cannot stand alone.
ELSEIF and ELSE must be preceded by either a block IF state-
ment or an ELSEIF statement. ENDIF must be preceded by either
a block IF, ELSEIF, or ELSE statement. Examples:
DO 10 I=1,10
I=J+1
ELSEIF (J.LE.K)THEN
.‘ /ﬁ\ ERROR: ELSE IF preceded by a DD statement.
Lo IF (J.LT.K)THEN
’ i J=I+]
ELSE
3=1-3
ELSEIF (J.EQ.K)THEN
ENDIF

ERROR: ELSEIF preceded by an ELSE statement.

90 F Name previously used with conflicting data type

Explanation: A data type is assigned to a name that has already
been used in a context that required a different data type.

Diagnostic Messages GC-15

91 E

92 E

93 F

94 W

95 E

9% E

97 E

C-16 Diagnostic Messages

Character name incorrectly initialized with numeric value

Explanation: Character data with a length greater than 1 is
initialized with a numeric value in a data statement. Example:

Character *4 A
DATA A/14/

Substring reference used in invalid context

Explanation: A substring reference to a variable or array that is
not of data type CHARACTER has been detected. Example:

REAL X(10)
Y=X{J:K}

Character substring limits out of order

Explanation: The first character position of a substring expres-
sion is greater than the last character position. Example:

C(5:3)

Mixed numeric and character elements in COMMON

Explanation: A COMMON block must not contain both numeric
and character data.

Invalid ASSOCIATEVARIABLE specification

Explanation: An ASSOCIATEVARIABLE specification in an
OPEN or DEFINE FILE statement is a dummy argument or an
array element.

ENTRY dummy variable previously used in executable
statement

Explanation: The dummy arguments of an ENTRY statement |
must not have been used previously in an executable program in
the same program unit.

Invalid use of intrinsic function as actual argument

Explanation: A generic intrinsic function name was used as an
actual argument.

ST
S

98 E

99 E

100 E

101 W

102 F

103

104 F

105 F

106 1

Name used in INTRINSIC statement is not an intrinsic function

Explanation: A function name that appears in an INTRINSIC
statement is not an intrinsic function.

Non-blank characters truncated in string constant

Explanation: A character or Hollerith constant was converted to
a data type that was not large enough to contain all significant
digits. ‘

Non-zero digits truncated in hex or octal constant

Explanation: An octal or hexadecimal constant was converted to
a data type that was not large enough to contain all significant

digits.
Mixed numeric and character elements in EQUIVALENCE

Explanation: Numeric and character variable and array elements
cannot be equivalenced to each other.

Arithmetic expression where character value required

Explanation: An expression that must be of data type
CHARACTER was another data type.

Assumed size array name used in invalid context

Explanation: An assumed size array name was used where the
size of the array was also required, for example, in an 1/0 list.

Character expression where arithmetic vaiue required

Explanation: An expression that must be arithmetic (integer,
real, logical, or complex) is of data type character.

Function or entry name not numeric
Explanation: Functions of data type character are not allowed.

Default STATUS"UNKNOWN' used in OPEN statement

Explanation: The OPEN statement default STATUS="UNKNOWN'
may cause an old file to be modified inadvertently.

Diagnostic Messages G-17

107

108

109

110

111

112

C-18 Disgnostic Messages

Extension to FORTRAN-77: tab indentation or lowercase
source

Explanation: The use of tab characters or lowercase source

letters in the source code is an extension to the ANSI FORTRAN

sta_ndard.

Extension to FORTRAN-77: non-standard comment

Explanation: The ANSI FORTRAN standard allows only the
characters C and * to begin a comment line; D, d, and ! are
extensions to the standard.

Extension to FORTRAN-77: non-standard statement type

Explanation: A nonstandard statement type was used. See
Appendix G.

Extension to FORTRAN—??:' non-standard lexical item

Explanation: One of the following nonstandard lexical items
was used:

¢ The single-quote form of record specifier in a direct access
I/0 statement

* A variable format expression
Extension to FORTRAN-77: non-standard operator

Explanation: The operator .XOR. is an extension to the ANSI
FORTRAN standard. The standard form of .XOR. is NEQV..

Extension to FORTRAN-77: non-standard keyword

Explanation: A nonstandard keyword was used. See
Appendix G. :

113 1 Extension to FORTRAN-77: non-standard constant

Explanation: The following constant forms are extensions to the
ANSI FORTRAN standard:

Hollerith nH ., ...

Typeless "xxxx'X or ‘0000’0
Octal "oooo or Qoooo
Hexadecimal Zxxxx

Radix-50 nk....

Complex with

PARAMETER

components

114 I Extension to FORTRAN-77: non-standard data type specifica-
tion
Explanation: The following data type specifications are
extensions to the ANSI FORTRAN standard. The acceptable
: equivalent in the standard language is given where appropriate.
SR This message is issiied when these type specifications are used
in the IMPLICIT statement or in a numeric type statement that
contains a data type length override.

Extension Standard
BYTE
LOGICALs1
LOGICAL»2 Logical
T LOGICALs4 Logical (only with /14)
< INTEGER*2 Integer
INTEGER»4 Integer (only with /14)
REAL»4 Real
REAL»#E Double Precision
COMPLEX*8 Complex

115 I Extension to FORTRAN-77: non-standard syntax

Explanation: One of the following syntax extensions was
specified:

Dizgnostic Messages C-18

PARAMETER name = Ne parentheses around name = value.
value

IMPLICIT type letter See Section G.2.1 for explanation.
CALL name (argl.arg3) Null actual argument.

READ (...)iolist Comma between 1/0 control and element
lists.
el » -e2 Two consecutive operators.

116 I Extension to FORTRAN-77: non-standard FORMAT statement
item

Explanation: The following format field descriptors are exten-
sions to the ANSI FORTRAN standard:

S-r Qr or Z All forms
(A,LLEEGD) Default field width forms
P Without scale factor

117 F Untyped name, must be explicitly typed

Explanation: An IMPLICIT NONE statement is included in the
program unit, and a symbolic name has not been assigned a data type.

118 [Extension to FORTRAN-77: non-standard source line length

Explanation: The ANSI FORTRAN standard allows source lines of up
to 72 characters; source lines exceeding 72 characters are extensions to
the standard.

€.2.2 Compiler — Fatal Diagnostic Messages

Certain error conditions can occur during compilation that are so severe
that the compilation must be terminated immediately. The following
messages report such errors. Included are hardware error conditions,
conditions that may require you to modify the source program, and
congdlitions that are the result of software errors.

F77 -~ FATAL 01 « Open errer on work file (LUN 6)
F77 -- FATAL 02 * Dpen error on tewmp file [(LUN 7,8)

C-20 Ciapnostic Messages

F77
Y

F77

FT7

F77

F77

F77

During the compilation process, FORTRAN-77 creates
a temporary work file and zero, one, or ftwo temporary
scratch files; the compiler was unable to open these
required files. Possibly the volume was not mounted,
space was not available on the volume, or a protection

violation occurred.

FATAL 03 » I/0 error on work file (LUN 6)
FATAL 04 * I/0 error on temp file (LUN 7.8)
FATAL 05 * I/0 error on source file

FATAL 06 * 1/0 error om object file

FATAL 07 = I/0 error on listing file

1/O errors report either hardware 1/0 errors or such
software error conditions as an attempt to write on a

write-protected volume.

FATAL 08 * Compiler dynamic memory overflow

Reduce the number of continuation lines allowed, reduce
the INCLUDE file nesting depth, run in a larger partition,
or rebuild or reinstall the compiler with a larger dynamic

memory area.

FATAL 09 « Compiler virtual memory overflow

A single program unit is too large to be compiled. Specify
/WE:3 or divide the program into smaller units.

FATAL 10 * Compiler internal copsistency check

An internal consistency check has failed. This error
should be reported to DIGITAL in a Software Performance

Report; see Appendix G.

FATAL 11 » Compiler contrel stack overflow

The compiler’s control stack overflowed. Simplifying the

source program will correct the problem.

Diagnostic Messages C-21

C.2.3 Compiler Limits

C-22

There are limits to the size and complexity of a single FORTRAN-77
program unit. There are also limits on the complexity of FORTRAN
statements. In some cases, the limits are readily described; see Table C-1.
Ire other cases, however, the limits are not so easily defined.

For example, the compiler uses external work files to store the symbol
table and a compressed representation of the source program. The /WF
quaiifier controls the number of work files: The maximum is 3, which
provides space for approximately 2000 or more lines of source code in
a typical FORTRAN program unit. If you run out of work file space,
compiler fatal error 9 occurs.

In some cases, you can adjust the limits by relinking the compiler and
modifying the limits to suit your needs. Table C-1 shows two values for
such limits, in the form m(n), where m is the default limit and n is the
maximum. Limits for which only one value is shown are not adjustable.
Consult the PDP-11 FORTRAN-77 Iunstallation Guide for information about
modifying compiler limits and relinking the compiler.

Table C-1: Compiler Limits

Language Element Limit

DO nesting 20 (many)
Block IF nesting 20 (32)
Actual arguments per CALL or function reference 32 (120)
OPEN statement keyword 16 (60)
Named COMMON blocks 45 (250)
Saved named COMMON blocks 45 (128)
Format group nesting 8

Labels in computed or assigned GOTO list 250
Parentheses nesting in expressions 24 (many)
INCLUDE file nesting 10
Continuation line 99
FORTRAN source line length 88 characters (132)

Symbolic name length 6 characters

Diagnostic Messages

Table C-1 {Cont.}: Compiler Limits

Language Element Limit
Constants:
Character 255 characters
Hollerith 255 characters
Radix-50 12 characters
Array dimension 7

C.3 Obhject Time System Diagnestic Messages

The following sections provide information on the formats and contents
of OTS diagnostic messages, and a list of OTS error messages arranged by
error code,

C.3.1 Obhject Time System Diagnostic Message Format

An OTS diagnostic message consists of several lines of information
formatted as foliows:

tsknam =-- [EXITING DUE TO] ERROR number
text
[AT PC = address]
[I/0: ioerr ioerrl unit filespec)
IN oo [AT [OR AFTER] yyy)
FROM xcooex [AT (OR AFTER] yyy)

FROM scocoor [AT [OR AFTER] yyy)

{In the above message prototype, fixed parts of the message are shown in
uppercase letters and variable parts in lowercase letters.)

The variable parts of the message are:

tsknam The name of the task in which the error occurred.
number The error number.
text A 1-line description of the error.

The phrase “EXITING DUE TO” is included only when the error is

causing program termination. If a program is terminated by the OTS, the
termination status value is severe error,

Diagnostic Messages C-23

If the OTS error results from one of the synchronous system traps or a
Floating Point Processor trap, the program counter is shown in the line
AT PC =. This line is produced only for errors numbered 3 through 14
and 72 through 75.

If the OTS error results from an 1/0O error condition detected by the file
system, the line beginning 1/0: is included.

ioerr The primary error code; this value is the F.ERR value for the
FCS-11 file system or the O$5TS value for the RMS-11 file
system.

ioerrl The secondary error code; this value is the F.ERR+1 value for
FCS-11 or the O$5TV value for RMS-11.

unit The logical unit on which this ervor occurred.

filespec The file name, file type, and version number of the fle.

Next follows a traceback of the subprogram calling nest at the time of the
error. Each line represents one level of subprogram call and shows

XXX The name of the subprogram.

The name of the main program is shown as .MAIN. unless a
PROGRAM statement has been used. The name of-a subprogram
is the same as the name used in the SUBRCUTINE, FUNCTION,
or ENTRY statement. Statement furictions, OTS system routines,
and routines written in assembly language are not shown in the
traceback.

A program unit compiled with the /TR:NONE switch in effect is not
included in the traceback list.

yyy The internal sequence number of the subprogram at which the error,
cail statement, or function reference occurred.
If a program unit is compiled with the /TR:ALL switch in effect,
then the text AT yyy indicates the exact internal sequence number at
which the error occurred.

If a program unit is compiled with the /TR:BLOCKS switch in effect,
then the text AT OR AFTER yyy indicates that the error occurred in
the block starting at sequence number yyy.

If a program unit is compiled with the /TRINAMES option in effect,
then no sequence information is available and no text or sequence
number follows the routine name.

NOTE

With Floating Point Processor errors, it is possible for the
internal sequence number shown in the first traceback line to be
the sequence number of the next statement. This results from

C-24 Diagnostic Messages

v

the asynchronous relationship between the central processor
and the FPP, and occurs when the CPU starts execution of the
next statement before the FPP error trap is initiated,

Example C-3 is a sample terminal listing of several object time system

diagnostic messages.

Example C-3: Sample of Object Time System

Diagnostic

TTan -~ ERROR 37
Inconsistent record length
IN "ERRCHK" AT 00022

TToz -- ERROR 34

Unit already open
IN “SUBR2" AT OR AFTER 00002
FROM YSUBR1"
FROM “ERRCHK" AT 00025

TTon -- ERROR 64
Input conversion error
IN U"ERRCEK" AT 00026

TTnn -- ERROR 24

End-of-file during read

FC8 -10, 0 1 FILE1.DAT;1
N "ERRCHK" AT 00028

TTon -- ERROR 73
Floating zero divide
at PC = 024666

IN "ERRCHK" AT 00036

TTon -- ERROR 84

Square root of megative value
IN "FUNC™ AT 00002
FROM “ERRCHK" AT Q0037

TTmn -~ Exiting due to ERROR 20
¥o such file
FCS -26, 0 4 TEMPFILE.DAT

N "ERRCHK" AT 00042

Diagnostic Messages

C-25

C.3.2 DObhject Time System Error Codes

The following messages result from severe run-time error conditions

for which no error recovery is possible. Consult the operating system’s
Executive reference manual for details of what error conditions cause traps
to the System Synchronous Trap Table entries cited.

1 Invalid error call

A TRAP instruction has been executed whose low byte is within the range

used by the OTS for error reporting but for which no error condition is
defined.

2 Task initialization failure
Task startup has failed for one of the following reasons:
® The directive to initialize synchronous system trap handling (SVTK$S)
has returned an error indication.

® The executive directive to enable the FPP asynchronous trap (SFPA$S)
has returned an error indication. This error will be returned if the task
was task-built with /-FP specified, or if the hardware configuration
does not contain an FPP.

* The FCS-11 initialization caill (FINIT$) or RMS-11 initialization call
($INITIF) has retumed an error indication. '

3 Odd address trap (S5T0)
The program has made a word reference to an odd byte address.
4 Segment fault (55T1)

The program has referenced a nonexistent address, most likely due to a
subscript value out of range on an array reference.

5 T-bit or BPT trap (SST2)

A trap has occurred as a result of the trace bit being set in the processor
status word or of the execution of a BPT instruction.

6 IOT trap (SST3)

A trap has oceurred as a result of the exerution of an IOT instruction.
7 Reserved instruction trap (55T4)

The program has attempted to execute an illegal instruction,
8 Non-RSX EMT trap (S85T5)

The program has executed an EMT instruction whose low byte is not in the
range used by the operating system.

C-26 Diagnostic Messages

9 TRAP instruction trap (S5T6)

A TRAP instruction has been executed whose low byte is outside the range
used for OTS error messages.

10 PDP-11/40 FIS trap (SST7)

This message may result when an operating system which was generated
for an 11/40 is used on another PDP-11 processor.

i1 FPP hardware fault :

The FPP Floating Exception Code (FEC) register contained the value 0
following an FPP interrupt. This is probably a hardware malfunction.

12 FPP illegal opcode trap
The FPP has detected an illegal floating point instruction.
13 FPP undefined variable trap

The FPP loaded an illegal value {-0.0). This trap should not occur since the
OTS initialization routine does not enable this trap condition. A negative
zero value should never be produced by any FORTRAN operation.

14 FPP maintenance trap

The FPP Floating Exception Code register contained the value 14 (octal)
following a FPP interrupt. This is probably a hardware malfunction.

The following messages result from errors related to the file system:

20 REWIND error

An error condition was detected by FCS-11 during the .POINT operation
or by RMS-11 during the $REWIND operation used to position at the
beginning of a file.

21 Dusplicate file specifications

Multiple attempts to specify file attributes have been attempted, without
an intervening close operation, by one of the following:

¢ DEFINEFILE followed by DEFINEFILE

e DEFINEFILE, CALL ASSIGN, or CALL FDBSET followed by an
OPEN statement. :

22 Input record too long

A record too large to fit into the user record buffer has been read. Rebuild
the task using a larger Task Builder MAXBUF value (see Section 1.2.5.2)
and specify a larger RECL for the file.

Diagnostic Messages C-27

23

24

25

26
27
28
29

30

31

C-28 Diagnostic Messages

BACKSPACE error

One of the following errors has occurred:

® BACKSPACE was atternpted on a relative or indexed file or a file
opened for append access (See Section 2.3),

e FCS-11 or RMS~11 has detected an error condition while rewinding
the file.

¢ F(CS-11 or RMS5-11 has detected an error condition while reading
forward to the desired record. '

End-of-file during read

Either an end-file record produced by the ENDFILE statement or an
end-of-file condition has been encountered during a READ statement, and
no END= transfer specification was provided.

Record number outside range

A direct access 1/0 statement has specified a record number outside the
range specified in a DEFINEFILE statement or in the MAXREC keyword
of the OPEN statement.

Access mode not specified

The access mode of an I/0 statement was inconsistent with the access
specified by a DEFINEFILE or OPEN statement for the logical unit.

More than one record in I/0 statement

An attempt was made to process more than a single record in a REWRITE
statement or in an ENCODE or DECODE statement.

Close error

Ar error condition has been detected during the close, delete, or print
operation of an attempt to close a file.

No such file

A file with the specified name could not be found during an open
operation.

Open failure

FCS-11 or RMS-11 has detected an error condition during an open
operation. (This message is used when the emor condition is not one
of the more common conditions for which specific error messages are
provided.)

Mixed file access modes

An attempt was made to use both formatted and unformatted operations,
or both sequential and direct access operations, on the same unit.

.
"

32

33

34

35

36

Invalid logical unit number

e A logical unit number was used that is greater than 99, less than 0,
or outside the range specified by the Task Builder UNITS option (see
Section 1.2.5.2). -

* A logical unit number of { was not mapped to 2 valid logical unit
number (1-99) specified by the Task Builder option GBLPAT (see
Section 2.1.3).

ENDFILE error

An end-file record may not be written to a direct access file, a relative file,
an indexed file, or an unformatted file that does not contain segmented
records.

Unit already open

An OPEN statement or DEFINEFILE statement was attempted that
specified a logical unit already opened for input/output.

Segmented record format error

Invalid segmented record control data was detected in an unfor-

matted sequential file. The file was probably either created with
RECORDTYPE="FIXED' or "VARIABLE' in effect, or written by a language
other than FORTRAN.

Attempt to access non-existent record
One of the following conditions has occurred:

s A nonexistent record was specified in a direct access READ or FIND
statement to a relative file. The nonexistent record might have been
deleted or never written,

® A record located beyond the end-of-file was specified in a direct
access READ or FIND statement.

* No record matches the key value of a keyed access READ statement.

Diagnostic Messages £-29

37

38

39

40

41

42

43

44

C-30 Diagnostic Messzges

Inconsistent record length

An invalid or inconsistent record length specification occurred for one of
the following reasons:

* The record length specified is too large to fit in the user record buffer.
Rebuild the task with a larger Task Builder MAXBUF value.

* " The record length specified does not match the record length attribute
of an existing fixed-length file.

¢ The record length specification was omitted when an atternpt was
made to create a relative file or a file with fixed-length records.

Error during write

FCS-11 or RM5-11 has detected an error condition during execution of a
WRITE statement,

Error during read

FCS-11 or RMS-11 has detected an error condition during execution of a
READ statement,

Recursive 1/0 operation

An expression in the 1/0 list of an 1/0 statement has caused initiation of
another 1/O operation. This can happen if a function that performs 1/0
is referenced in an expression in an [/O list.

No buffer room

There is not enough free memory left in the OTS buffer area to set

up required I/0O control blocks and buffers. Rebuild the task with a
larger Task Builder ACTFIL option (see Section 1.2.5.2), For RMS-11,
rebuild the task with a larger EXTTSK value, or run the task with a larger
task increment. For FSC, if the correct ACTFIL has been specified, see

Section 5.6 for information on how to work around fragmentation of the
$$FSR1 buffer area,

No such device

A file name specification has included an invalid device name or a device
for which no handler task is loaded when an open operation is attempted.

File name specification error

The file name string uvsed in a CALL ASSIGN or OPEN statement is
syntactically invalid, contains a qualifier specification, references an

- undefined device, or is otherwise not acceptable to the operating system.

Inconsistent record type

The RECORDTYPE specification does not match the record type of an
existing file.

45

46

47

48

49

Keyword value error in OPEN statement

An OPEN statement keyword that requires a value has an illegal value.
The following values are accepted:

BLOCKSIZE; 0 to 32767
EXTENDSIZE: -32768 to 32767
INITIALSIZE: -32768 to 32767

MAXREC: 0 to 2es31-1

BUFFERCOUNT: 0 to 127

RECL: up to 32766 for sequential organization
16360 for relative or indexed organization
9999 for ~magnetic tape

Inconsistent OPEN/CLOSE parameters

The specifications in an OPEN and/or subsequent CLOSE statement have
incorrectly specified one or more of the following:

s A ’'NEW’ or 'SCRATCH’ file which is 'READ-ONLY’

e 'APPEND’ to a ‘NEW’, ‘SCRATCH’, or 'READONLY’ file
* ‘SAVE' or 'PRINT on a 'SCRATCH' file

® ‘DELETE’ or 'PRINT’ on a 'READONLY" file,

Write to read-only file

A write operation has been attempted to a file which was declared to be
READONLY.

Unsupported 1/0 operation

An 170 operation (such as direct or keyed access) has been specified
which is not supported by the OTS being used.

Invalid key specification

A key specification value, such as position, size, or key-of-reference
number, was invalid in an OPEN or READ statement. Examples:

OPEN (UNIT=1,RECL=40,KEY=(200:220))
or

READ (UNIT=1,KEY='ABCD', KEYID=-1)

Diagnostic Messages C-31

50

51

52

53

54

55

56

57

Inconsistent key change or duplicate key value

A keyed WRITE or REWRITE statement specified an invalid key value for
one or more of the following reasons:

s A key value changed that is not allowed to change.

® A key value duplicated the key value of another record, but duplicate
key values are not permitted.

Inconsistent file organization

The value of the ORGANIZATION keyword in an OPEN statement does
not match the organization of the existing file being opened.

Specified record locked

The record specified by an 1/0 statement was locked by another program
or another logical unit within your program.

No current record

A REWRITE or sequential DELETE statement was executed but no current
record was defined. Sequential REWRITE and DELETE statements must
be preceded by a successful READ statement.

REWRITE error

An error occurred during execution of a REWRITE statement, or an
attempt was made to rewrite a record in a sequential or relative file.

DELETE error

An error occurred during execution of a DELETE statement, or an attempt
was made to delete a record from a sequential file,

UNLOCK error _

An error occurred during execution of an UNLOCK statement.
FIND error '

An error occurred during execution of a FIND statement.

The following messages result from errors related to transmitting data
between 2 FORTRAN-77 program and an internal record:

C-32 Diagnostic Messages

59

60

61

62

63

64

65

66

List-directed 1/0 syntax error

The data in a list-directed input record has an invalid format or the type
of the constant is incompatible with the corresponding variable. The
value of the variable is unchanged.

Infinite format loop

The format associated with an I/O statement that includes an I/0 list has

no field descriptors to use in transferring those variables. For example:
WRITE (I,1)X

1 FORMAT (' X=*)

Format /variable-type mismatch

An attempt was made to input or cutput a real variable with an integer
field descriptor (I or L), or an integer or logical variable with a real field
descriptor (D, E, F, or G}. The data type of the value is ignored, and the
value is processed as if it were of the correct data type.

Syntax error in format

A syntax error was encountered while the OTS was processing a format
stored in an array.

Output conversion error

During a formatted output operation, the value of a particular number
could not be output in the specified field length without loss of significant
digits. The field is filled with asterisks (*).

Input conversion error

During a formatted input operation, an invalid character was detected in
an input field, or the input vaiue overflowed the range representable in
the input variable, The value of the variable is set to zero.

Format too big for 'FMTBUF

The OTS has run out of memory while scanning an array format that was
generated at run time. The default internal format buffer length is

64 bytes. You can increase this length by using the Task Builder FMTBUF
option {see Section 1.2.5.2}.

Output statement overflows record

An output operation has specified a record that exceeds the maximum
record size specified. The maximum record length is specified by the
DEFINEFILE statement, by the RECL keyword of the OPEN statement, or
by the record length attribute of an existing file. See Section F.1.7.

Diagnostic Messages €-33

67

. 68

Record too small for 1/0 list

A READ statement has attempted to input more data than existed in
the record being read. For example, the 1/0 list might have toe many
elements.

Variable format expression value error

The value of a variable format expression is not within the range accept-
able for its intended use: for example, a field width that is less than or
equal to zero, A value of 1 is used.

The following messages result from arithmetic overflow and underflow
conditions:

70

71

72
73

74

75

Integer overflow

During an arithmetic operation, an integer’s value has exceeded
INTEGER*4 range. (Note; Overflow of INTEGER*2 range involving
INTEGER*2 variables is not detected.)

Integer zero divide

During an integer mode arithmetic operation, an attempt was made to
divide by zero. (Note: A zero-divide operation involving INTEGER+2
variables is rarely detected.) : o

Floating overflow

During an arithmetic operation, a real value has exceeded the largest
representable real number, The result of the operation is set to zero.

Floating zero divide

During a real mode arithmetic operation, an atternpt was made to divide
by zero. The result of the operation is set to zero.

Floating underflow

During an arithmetic operation, a real value has become less than the
stallest representable real number and has been replaced with a value
of zero.

FPP floating to integer conversion overflow

The conversion of a floating point value to an integer has resulted in a
value that overflows the range representable in an integer. The result of
the operation is zero.

The following messages result from incorrect calls to FORTRAN-77
supplied functions or subprograms:

C-34 Disgnostic Messages

80

81

82

83

84

Wrong number of arguments

One of the FORTRAN library functions or system subroutines has
been called with an improper number of arguments (see Table 4-1 or
Appendix D).

Invalid argument

One of the FORTRAN library functions or system subroutines has
detected an invalid argument value. (see Table 4-1 or Appendix D).

Undefined exponentiation

An exponentiation (for example, 0.#+0.) has been attempted that is
mathematically undefined. The result returned is zero.

Logarithm of zero or negative value

An attempt was made to take the logarithm of zero or a negative number.
The result returned is zero.

Square root of negative value

An argument required the evaluation of the square root of a negative
value. The square root of the absolute value is computed and returned.

The following miscellaneous errors are detected.

2

92

93

Computed GOTO out of range

The integer variable or expression in a computed GO TO statement was
less than 1 or greater than the number of statement label references in
the list. Control is transferred to the next executable statement.

Assigned label not in list

An assigned GOTO has been executed in which the label assigned to the
variable is not one of the labels in the list. Control is transferred to the
next executable statement.

Adjustable array dimension error

Upon eniry to a subprogram, the evaluation of dimensioning information
has detected an array in which one of the following accurs:

* An upper dimension bound is less than a lower dimension bound

¢ The dimensions imply an array which exceeds the addressable
memory. ‘

Diagnostic Messages C-36

94

95

96

97

98

Array reference outside array

An array reference has been detected that is outside the array as described
by the array declarator. Execution contirues, {This checking is performed
only for program units compiled with the /CK switch in effect.)
Incompatible FORTRAN object module in task

An object module produced by another PDP-11 FORTRAN compiler has
been linked with a FORTRAN-77 task (see Section 1.2.5.1).

Missing format conversion routine

* A format conversion code has been used for which the corresponding
conversion routine is not loaded (see Section 3.4).

* An F4F V3 object file that uses octal format may have been task-built
with the F77 OTS. Re-task-build with the option GBLREF = ZCI$,
or recompile, with the F77 V4 compiler, the modules that use octal
format; then task-build as usual.

FTN FORTRAN error call

The error-reporting subroutine entry used by the FTN FORTRAN system
has been called. Possibly an FTN object module or FTN—dependent
service subroutine has been included in the task.

User requested traceback

~ A user-supplied MACRO-11 subprogram has requested a subroutine

calling nest-traceback display. Execution continues.

The following messages result from incorrect calls to system directive
subroutines:

100

101

Directive: Missing argument(s)

A call to a system directive subroutine was made in which one or more
of the arguments required for directive execution was not given.

Directive: Invalid event flag number

A call to a system directive subroutine was made in which the argument
used for event flag specification was not in the valid range (1 to 64).

The following messages result from incorrect usage of virtual arrays:

C-36 Diagnostic Messages

111 Virtual array initialization failure

The mapped array area could not be initialized. The operating system
does not support the memory management directives requited, or ho
memory management registers are available for use.

112 Virtual array mapping error
A virtual-array address was invalid, probably due to a subscript out of
bounds, Execution continues.

P

C.4 Operating System and File System Error Codes

The following sections list the error-code names and values for operating
system and file system errors that occur during run-time.

C.4.1 Operating System Error Codes

Standard operating system error codes returned during run time by
directives in the Directive Status Word are as follows.

Diagnostic Messages C-37

IE.UPN
IE.INS
IE.PTS
IE.UNS
IE.ULN
IE.HWR
IE.ACT
IE.ITS
IE.FIX
IE.CKP
IE.TCH
IE.RBS
IL PRI
IE.RSU
IE.NSW
IE.ILV
IE.AST
IE.MAP
IE.IOP
IE.ALG
1E. WOV
1E.NVR
IE.NVW
IE.ITP
1E.IES
IE.LNL
IE. IVUI
IE. IDU
IE.ITI
IE.PHS
IE.IPR
IE.ILU
IE.IEF
IE.ADP
IE.SDP

177777
177776
177775
177774
177773
177772
177771
177770
177767
177766
177765
177761
177760
177767
177766
177785
177660
177657
177655
177654
177653
177652
177651
177650
177647
177646
177646
177644
177643
177642
177841
177640
177637
177636
177635

-01.
-02.
-03.
-04.
~05.
-06.
-07.
-08.
~Qg.
-10.
-11.
-15.
-16.
~-17.
-18.
-19.
-80.
-81.
-83.
-84.
-85,
-86.
-87.
-88.
-89.
-80.
-91.
-92.
-93.
-94.
~95.
~96.
-97,
-98.
-9g,

INSUFFICIENT DYNAMIC STORAGE
SPECIFIEDR TASK NOT INSTALLED

. PARTITION TOO SMALL FOR TASK

INSUFFICIENT DYNAMIC STORAGE FOR SEND
UN-ASSIGNED LUN

DEVICE HANDLER NOT RESIDENT

TASK NOT ACTIVE

DIRECTIVE INCONSISTENT WITH TASK STATE
TASK ALREADY FIXED/UNFIXED

ISSUING TASK NDT CHECKPOINTARLE
TASK IS CHECKPCINTABLE

RECEIVE BUFFER IS TO0 SMALL
PRIVILEGE VIOLATION

RESOURCE IN USE

NO SWAP SPACE AVAILABLE

ILLEGAL VECTOR SPECIFIED

DIRECTIVE ISSUED/NOT ISSUED FROM AST
ILLEGAL MAPPING SPECIFIED

WINDOW HAS 1/0 IN PRDGRESS
ALIGNMENT ERROR

ADDRESS WINDOW ALLDCATION OVERFLOW
INVALID REGION ID

INVALID ADDRESS WINDDW ID

INVALID TI PARAMETER

INVALID SEND BUFFER SIZE (.GT. 255.)
LUN LOCKED IN USE

INVALID UIC

INVALID DEVICE OR UNIT

INVALID TIME PARAMETERS
PARTITION/REGION NOT IN SYSTEM
INVALID PRIORITY (.GT. 250.)
INVALID LUN

INVALID EVENT FLAG { .GT. 64.)

PART OF DPB OUT OF USER'S SPACE

DIC OR DPB SIZE INVALID

C.4.2 Summary of FCS-11 Error Codes

Directive error codes are returned during run time to FCS in the Directive
Status Word, FCS returns these codes in byte F.ERR of the File Descriptor
Block. Byte F.ERR+1 in the FDB distinguishes Directive error codes from
the overlapping codes from within the file system by showing negative

values for the Directive error codes.

File system error codes are returned by FCS-11 in byte F.ERR in the File
Descriptor Block. Byte F.ERR+1 is O if F.ERR contains a file system error

code.

C-38 Diagnostic Messages

IE.BAD
IE.IFC
IE.DNR
JE.VER
IE.ONP
IE.SPC
IE.DNA
IE.DAA
IE.DUN
IE.EOF
IE.EQV
IE.WLK
IE.DAD
1IE.SRE
IE.ABO
IE.PRI
IE.RSU
IE.OVR
IE.BYT
IE.BLK
IE.MCD
IE.CON
IE.BBE
IE.BTK
IE.FHE
IE.EOT
IE.OFL
IE.BCC
IE.NOD
1E.DFU
IE.IFU
IE.NSF
IE.LCK
IE.HFU
IE.WAC
1E.CKS
IE.WAT
IE.RER
IE.WER
1E.ALN
IE.SKC
IE.8QC
IE.NLY
1E.CLO
IE.DUP
IE.BVR
IE.BHD
IE.EXP
IE.BTF
IE.ALC

IE.WCK

-01.
-02.
-03.
=04,
-05.
-06.
.07,
-08.
-09.
-10.
-i1,
-12.
-13.
=14,
-156.
-16.
-17.
-18.
-19.
~20.
-21.
-22.

-68.
-B9.
-62.
-65.
-66.
-23.
-24.
-25.
-26.
-27.
-28.
=29,

-31.
-32.
-33.
-34.
-35.
-36.
-37.

-B7.
-83.
-84,
-75.
-76.
-84.
-85.
-86.

BAD PARAMETERS

INVALID FUNCTION CODE

DEVICE NOT READY

PARITY ERROR ON DEVICE

HARDWARE GPTICON NOT PRESENT
ILLEGAL USER BUFFER

DEVICE NOT ATTACHED

DEVICE ALREADY ATTACHED

DEVICE NOT ATTACHABLE

END OF FILE DETECTED

END OF VOLUME DETECTED

WRITE ATTEMPTED TO LOCKED UNIT
DATA OVERRUN

SEND/RECEIVE FAILURE

REQUEST TERMINATED

PRIVILEGE VIOLATION

SHARABLE RESOURCE IN USE

ILLEGAL OVERLAY REQUEST

QDD BYTE CQUNT (OR VIRTUAL ADDRESS)
LOGICAL BLOCK NUMBER TOD LARGE
INVALID UDC MODULE #

UDC CONNECT ERROR

BAD BLOCK ON DEVICE

NOT ENOUGH STACK SPACE (FCS OR FCP)
FATAL HARDWARE ERROR ON DEVICE
END OF TAPE DETECTED

DEVICE OFF LINE

BLOCK CHECK, CRC, OR FRAMING ERROR
CALLER'S NODES EXHAUSTED

DEVICE FULL

INDEX FILE FULL

NO SUCHE FILE

LOCKED FROM READ/WRITE ACCESS
FILE HEADER FULL

ACCESSED FOR WRITE

FILE EEADER CHECKSUM FAILURE
ATTRIBUTE CONTROL LIST FORMAT ERROR
FILE PROCESSOR DEVICE READ ERRDR
FILE PROCESSOR DEVICE WRITE ERROR
FILE ALREADY ACCESSED ON LUN

FILE ID, FILE NUMBER CHECK

FILE ID, SEQUENCE NUMBER CHECK

RO FILE ACCESSED ON LUN

FILE WAS NOT PROPERLY CLOSED
ENTER - DUPLICATE ENTRY IN DIRECTORY
BAD VERSION NUMBER

BAD FILE HEADER

FILE EXPIRATION DATE NOT REACHED
BAD TAPE FORMAT

ALLGCATICN FAILURE

UNLOCK ERROR

WRITE CHECK FAILURE

Diagnostic Messages

c-39

IE.NBF
IE.RBG
IE.NBK
IE.ILL
IZ.BTP

iE. RAT
IE.RCN
IE.2DV
IE.FEX
IE.BOR
JE.RNM
I1E.BDI
IE.FOP
IE.BNN
IE.BDYV
IE.NFI
1E.15Q
1E.NKC
IE.AST
IE.NN¥
IE.NFW
IE.BLB
IE.TMM
IE.NDR
IE.CNR
IE.TMD
IE.NNL
IE.NLK
IE.NST
IE.FLN
IE.IES
IE.PES

IE.ICE
IE.QONL
IE.NTR
IE.REJ
IE.FLG

C-40 Diagnostic Messages

177731
177730
177727
177726
171728
177724
177723
177722
177720
177717
177716
177716
177714
177713
177712
177711
177704
1TFI03
177663
177660
177674
177673
177672
177871
177670
177867
177666
177662
177661
177660
177667
177656
177685

177721
177676
177651
177660

17T64T .

-39,
-40.
~41.
-42.
-43.
~44.
-45.
-46.
-48.
-49,
-50.
-51.
-52.
-63.
-54.
-55.
-80,
~61.
~T7.
-80.
-68,
-69.
-70,
-71.
~72.
-73.
-74.
-78.
-79.
-80.
-81,
-82.
-83.

-47.
-67.
-87.
-88.
-89,

OPEY - KO BUFFER SPACE AVAILABLE FOR FILE
ILLEGAL RECORD SIZE

FILE EXCEEDS SPACE ALLOCATED, ¥O BLOCKS
ILLEGAL OPERATION ON FILE DESCRIPTOR BLOCK
BAD RECORD TYPE

TLLEGAL RECORD ACCESS BITS SET

ILLEGAL RECORD ATTRIBUTES BITS SET
ILLEGAL RECORD NUMBER - TOO LARGE

RENAME - 2 DIFFERENT DEVICES

RENAME - NEW FILE NAME ALREADY IN USE
BAD DIRECTORY FILE

CAN'T RENAME OLD FILE SYSTEM

BAD DIRECTORY SYNTAX

FILE ALREADY OPEN

BAD FILE NAME

BAD DEVICE NAME

FILE ID WAS NOT SPECIFIED

TLLECAL SEGUENTIAL OPERATION

NOT ANSI 'D' FORMAT BYTE COUNT

NO AST SPECIFIED IN CONNECT

O SUCH NODE

PATH LOST TO PARTNER

BAD LDGICAL BUFFER

TOO MANY QUTSTANDING MESSAGES

ND DYNAMIC SPACE AVAILABLE

CONNECTION REJECTED

TIMEOUT ON REQUEST

NOT A NETWORK LUN

TASK NOT LINKED TO SPECIFIED ICS/ICR INTERRUPTS
SPECIFIED TASK NOT INSTALLED

DEVICE OFFLINE WHEN QFFLINE REQUEST WAS ISSUED
INVALID ESCAPE SEQUENCE

PARTIAL ESCAPE SEQUENCE

INTERNAL CONSISTENCY ERROR

DEVICE ONLINE

TASK NOT TRIGGERED

TRANSFER REJECTED BY RECEIVING CPU
EVENT FLAG ALREADY SPECIFIED

€4.3 Summary of RMS-11 Error Codes

RMS5-11 error codes are returned during run time in offset STS of the
File Access Block (FAB) or Record Access Block (RAB). Additional status
information or system error codes are returned in offset STV.

ER$ABO 177760 ~16. OPERATION ABORTED (STV-SER$STK/MAP)

ER$ACC 177740 ~32. F11ACP COULD NOT ACCESS FILE (STV=SYS ERR CODE)
ER$ACT 177720 ~48. "FILE" ACTIVITY PRECLUDES OPERATION

ER$SAID 177700 ~64. BAD AREA 1D (STV=GXAB)

ER$ALN 177660 -80. ALIGNMENT QPTIONS ERROR (STV=QXAB}

ER$ALL 177640 ~96. ALLOCATION QUANTITY TOD LARGE

ERSANI 177620 -112. - NOT ANSI "D" FORMAT

ER$AOP 177600 -128. ALLOCATION OPTIONS ERROR (STV=0XAB)

ER$§AST 177560 -144. INVALID (I.E. SYNCH) OPERATION AT AST LEVEL

ER$ATR 177540 -160. ATTRIBUTE READ ERROR (STV=SYS ERR CODE)

ER$ATW 177520 -176. ATTRIBUTE WRITE ERROR (STV=8YS ERR.CODE)

ER$BKS 177600 -192. BUCKET SIZE TOD LARCE. (FAE)

ER$BKZ 177460 -208. BUCKET SIZE TOO LARGE (STV=8XAB)

ER$BLN 177440 -224. "BLN® LENGTH ERRGR {(RAB/FAB)

ER$BOF 177430 -232. BEGINNING OF FILE DETECTED($SPACE)

ER$BPA 177420 -240. PRIVATE PODL ADDRESS NOT MULTIPLE OF "4

ER$BPS 177400 -256. PRIVATE POOL SIZE NOT MULTIPLE OF "4"

ERSBUG 177380 -272. INTERNAL RMS ERROR CONDITION DETECTED

ER$CCR 177240 -288. CAN'T CONNECT RAB

ER$CHG 177320 -304. SUPDATE-KEY CHANGE WITHGUT HAVING ATTRIBUTE OF XB$CHG SET
ER$CHK 177300 -320. BUCKET FORMAT CHECK-BYTE FAILURE

ER$CLS 177260 -336. RSTS/E CLOSE FUNCTION FAILED (STV=SYS ERR CODE)
ER$COD 177240 -352. INVALID QR UNSUPPORTED "COD" FIELD (STV=0XAB)
ER$CRE 177220 -388. COULD NOT CREATE FILE (STV=SYS ERR CODE)

ERSCUR 177200 -384. NO CURRENT RECORD (OPERATION NOT PRECEDED BY GET/FIND)
ER$DAC 177160 -400. Fi1-ACP DEACCESS ERROR DURING "CLOSE" (STV=SYS ERR CODE)
ER$DAN 177140 -416. DATA "AREA" NUMBER INVALID {STV=8XAB)

ERSDEL 177120 -432. RFA-ACCESSED RECORD WAS DELETED

ER$DEV 177100 -448. BAD DEVICE. OR INAPPROPRIATE DEVICE TYPE

ER$DFW 177070 -456. ERROR OCCURRED ON DEFERRED WRITE (STV=SYZ ERR CODE)
ER$DIR 177060 -464. ERROR IN DIRECTORY NAME :

ERSDME 177040 -480. DYNAMIC MEMORY EXHAUSTED

ER$DNF 177020 -496. DIRECTORY NOT FOUND

ERSDNR 177000 -512. DEVICE NOT READY

ERSDPE 176770 -520. DEVICE POSITIONING ERROR (STv=SYS ERR CODE)

ERSDTP 176760 -528. *DTP" FIELD INVALID (5TV=@XAB)

ER$PUP 176740 -544. DUPLICATE KEY DETECTED, XB$DUP ATTRIBUTE NOT SET
ER$ENT 176720 -580. RSX-FiiACP ENTER FUNCTION FAYLED (STV=SYS ERR CODE}
ERSENV 178700 -576. OPERATION NOT SELECTED IN "DRG$"™ MACRQ

ER$EDF 176660 --692. END-OF-FILE

ER$ESS 178640 -608. EXPANDED STRING AREA TOD SHORT

ER$EXP 176630 -616. FILE EXPIRATION DATE NOT YET REACHED

ER$EXT 176620 -€24. FILE EXTEND FAILURE (STV=SYS ERR CODE)

ER$FAB 176600 -640. NOT A VALID FAB ("BID* NOT=FB$BID)

ER$FAC 178580 -866. ILLEGAL FAC FDR REC-DP,0, OR FB$PUT NOT SET FOR “CREATE®
ER$FEX 178540 -872. FILE ALREADY EXISTS

ER$FID 177630 .-680. INVALID FILE-ID

Diagnostic Messages C-41

ERSFLG
ER$FLK
ER$FND
ER$FNF
ERSFNM
ER$FOP
ER$FSS
ER$FUL
ER$IAN
ER$IDX
ER3IFI
ER$IMX
ER$INT
ER$IOP
ER$IRC
ER$ISI
ER$KBF
ERSKEY
ERSKRF
ER$KSZ
ER$LAN
ER$LBL
ER$LBY
ER$LCH
ERSLEX
ER$LOC
ER$MAP
ERSMKD
ERSMRN
ERSMRS
ER$NAM
ERSNEF
ERSNID
ER$NPK
ER$OPN
ER$ORD
ER$ORG
ER$PLG
ER$POS
ER$PRM
ER$PRV
ER$RAB
ER$RAC
ERSRAT
ER$RBF
ER$RER
ER$REX
ER$RFA
ER$RFN
ER$RLK
ERSRMY
ER$RNF
ERSRNL
ER$ROP
ER$RPL

C-42 Diagnostic Messages

176520
176500
176460
176440
176420
176400
176370
176360
176340
176320
176300
176280
176240
176220
176200
176160
176140
176120
176100
176060
176040
176020
176000
175760
175750
178740
175720
176700
175660
175640
175620
175600
175560
175540
176520
178500
175460
175440
178420
175400
175360
176340
175320
175300
176260
175240
175220
175200
175160
175140
175120
175100
175060
176040
175020

-688.
-T04.
-720.
-736.
-752.
~768.
-776.
-784.
-800.
-816.
-832.
-B48.

-880.
~-896.
-912.
-928.
-944.
-860.
-976.
-992.

-1008.
-1024.
-1040.
-1048.
-1066 .
~1072.
-1088.
-1104.
-1120.
~1136.
-1152.
-1168.
-1184.
-1200.
-1216.
-1232.
-1248.
-1264.
-1280.
-1296.
-1312.
-1328.
-1344.
-1360.
-1376.
~-1392.
~1408.
-1424.
-1440.
-1456.
~1472.
~1488.
-1804.
-1520.

IKVALID FLAG-BITS COMBINATION (STV=£XAB)

FILE IS LOCKED BY OTHER USER _

RSX-F11ACP "FIND* FUNCTION FAILED (STV=SYS ERR CODE)

FILE NOT FOUND

ERROR IN FILE NAME

INVALID FILE GPTIONS

SYSTEM ERROR DURING FNA/DNA STRING PARSE (STV=SYS ERR CODE)
DEVICE/FILE FULL

INDEX “AREA" NUMBER INVALID (STV=QXAB)

INDEX NOT INITIALIZED {STV ONLY, STS=ER$RNF)
INVALID IFI VALUE, OR UNOPENED FILE
MAX NUM {254) AREAS/KEY XABS EXCEEDED (STV=0XAE)
$INIT MACRC NEVER ISSUED

OPERATION ILLEGAL, CR INVALID FOR FILE ORG.
ILLEGAL RECORD ENCOUNTERED (SEQ. FILES ONLY)
INVALID ISI VALUE, OR UNCONNECTED RAB
BAD KEY BUFFER ADDRESS (KBF=C}

INVALID KEY FIELD (KEY=O/NEG)

INVALID KEY-OF-REFERENCE ($GET/$FIND)

KEY SIZE=Q, OR TDO LARGE (IDX)/NOT=4{REL)
LOWEST-LEVEL-INDEX "AREA" NUMBER INVALID (STV=CXAB)
NQT ANSI LABELED TAPE

LOGICAL CHAMNEL BUSY

LOGICAL CHANNEL NUMBER TOU LARGE

LOGICAL EXTEND ERROR, PRIOR EXTEND STILL VALID (STV=GXAB)
nLACcT FIELD INVALID (STV=EXAR)

BUFFER MAPPING ERROR

F11ACP COULD NOT MARX FILE FOR DELETION (STV=SYS ERR CODE)
MEN VALUE=NEG/REL.KEY>MRN

MRS VALUE=0 FOR FIXED LENGTH RECS/=0 FOR REL. FILES
"NAM" BLOCK ADDRESS INVALID (NAM=0, OR NOT ACCESSIBLE)
¥OT POSITIONED TD EOF (SEQ. FILES ONLY)

CAN'T ALLOCATE INTERNAL INDEX DESCRIFTOR

INDEXED FILE-NO PRIMARY KEY DEFINED

RSTS/E QPEN FUNCTION FAILED (STV=SYS ERR CODE)

XAB'S NOT IN CORRECT ORDER (STV=QXAB)

INVALID FILE ORGANIZATION VALUE

ERROR IN FILE'S PROLOGUE (RECONSTRUCT FILE)

*POS" FIELD INVALID (POS>MRS,STV=QXAE)

BAD FILE DATE FIELD RETRIEVED (STV=QXAB)

PRIVILEGE VIOLATION (0S DENYS ACCESS)

ROT A VALID RAB ("BID" ROT=RB$BID)

ILLEGAL RAC VALUE

ILLEGAL RECORD ATTRIBUTES

INVALID RECORD BUFFER ADDR (NOT WORD-ALIGNED IF BLK-I0)
FILE READ ERROR (STV=SYS ERR CODE)

RECDRD ALREADY EXISTS

BAD RFA VALUE (RFA=0)

INVALID RECORD FDRMAT

. TARGET BUCKET LOCKED BY ANOTHER STREAM

RSX-F11ACP REMOVE FUNCTION FAILED (STV=SYS ERR CODE)
RECORD NOT FOUND (STV=Q/ER$IDX)

RECORD NOT LOCKED

INVALID RECORD OPTIONS

ERROR WHILE READING PROLOGUE (STV=8YS ERR CUDE)

ERSRRV
ERSRSA
ER$RSZ
ER$RTE
ER$RVU
ER$SEQ
ER$SHR
ERS$SIZ
ER$STK

ERS$TRE

ERSTYP
ERSUEF
ER$USZ
ERS$VER
ERSVOL
ERSWCD

ER$WLK
ER$WPL

ERSXTR

175000

174760
174740
174720
174710
174700
174660
174640
174620
174600
174560
174540
174520
174500
174460
174440
174430
174420
174410
174400
174360
174340

-1536.
-1552.
-1568.
~1584.
~1592.
-1600.
-1616.
-1632.
-1648.
-1664.
-1680.
-1696.
-1712.
-1728.
-1744 .
-1760.
-1768.
-1776.
-1784.
-1792.
~1808.
~1824.

INVALID RRV RECORD ENCOUNTERED:

RAB STREAN CURRENTLY ACTIVE ,

BAD RECORD SIZE (RSZ>MRS, OR NOT=MRS IF FIXED LENGTH RECS
RECORD TOO BIG FOR USER'S BUFFER (STV=ACTUAL REC SIZE)
RRV UPDATE ERROR OK INSERT

PRIMARY KEY OUT OF SEQUENCE (RAC=RB$SEQ FOR $PUT)
USHR® FIELD INVALID FOR FILE (CAN'T SHARE SEQ FILES)
wSIZ" FIELD INVALID (STV=QXAB)

STACK TOD BIG FOR SAVE AREA

SYSTEM DIRECTIVE ERROR {STV=SYS ERR CODE)

INDEX TREE ERROR

ERROR IN FILE TYPE EXTENSION/FNS T00 BIG

INVALID USER BUFFER ADDR (0, OR BLK-ID NOT WORD ALIGKED)
INVALID USER BUFFER SIZE (USZ=0)

ERROR IN VERSION KUMBER

INVALID VOLUME NUMBER (STV=@XAB)

WILD CARD ENCOUNTERED DURING FNA/DNA STRING PARSE
FILE WRITE ERROR (STV=SYS ERR CODE)

DEVICE IS WRITE-LOCKED

ERROR WHILE WRITING PROLOGUE (STV=5YS ERR CODE)

NOT A VALID XAE (@XAB=0DD,STV=QXAB}

EXTRANEOUS FIELD DETECTED DURING FNA/DNA STRING PARSE

Diagnostic Massages C-43

Appendix D
System Subroutines

D.1 Systém Subroutine Summary

The FORTRAN-77 library contains, in addition to functions intrinsic
to the FORTRAN language, subroutines that the user may call (except
on RSTS/E) in the same manner as a user-written subroutine. These
subroutines are described in this appendix.

In addition, the RSX-11 operating systems provide a complete set of
subroutines, callable from FORTRAN, for performing process control and
executive calls (see the RSX-11M/M-PLUS Executive Reference Manual).

The following subroutines are supplied with FORTRAN-77,

System Subroutines D-1

ASSIGN Specifies, at run time, device and/or file name information to be
associated with a logical unit number.

CLOSE Closes a file on a specified logical unit.

DATE Returns a 9-byte string containing the ASCII representation of the
current date.

IDATE Returns three integer values representing the current month, day,
and year.

ERRSET Specifies the action to be taken on detection of certain errors.

ERRSNS Returns information about the most recently detected error
condition.

ERRTST Returns information about whether a specific error condition has
occurred during program execution.

EXIT Terminates the execution of a program, reports termination status
information, and returns control to the operating system,

USEREX Specifies a user subprogram to be called immediately prior to task
termination. '

FDBSET Specifies special 1/0 options to be associated with a logical unit.

RADS0 Converts 6-characier Hollerith strings to Radix-50 representation
and returns the result as a function value. s

JRADSD Converts Hollerith strings to Radix-50 representation.

R50ASC Converts Radix—50 strings to Hollerith strings.

SECNDS Provides system titme of day or elapsed time as 2 floating-point

function value, in seconds.

TIME Returns an 8-byte string containing the ASCII representation of the
current time, in hours, minutes, and seconds.

References to integer arguments in the following subroutine descriptions E o

refer to arguments of type INTEGER*2. In general, INTEGER*4 variables B

Aol

or array elements may be used as input values to these subroutines, if
their value is within the INTEGER»2 range. However, arguments that
receive return values from these subroutines must, for correct operation,
be INTEGER=2 variables or array elements.

D-2 System Subroutines

D.2 ASSIGN

The ASSIGN subroutine specifies file name information for a logical unit.
The ASSIGN call must be executed before the logical unit is opened for
1/O operations. The assignment remains in effect until the end of the
program or until the file is closed by the CLOSE subroutine or a CLOSE
statement, The call to ASSIGN has the form:

CALL ASSIGN(n[,name][,icnt])

n
An integer value that specifies the logical unit a number.

name

A variable, array, array element, or alphanumeric literal that contains
any standard file specification. If the device is not specified, the device
assignment remains unchanged. If a file name is not specified, the default
name as described in Section 2.1.1 is used.

:'\
B

fcnt
An INTEGER=*2 value that specifies the nunber of characters in the string

name. If icnt is zero or not present, the string name is processed until the
first ASCII null character is encountered.

CALL ASSIGN requires only the first argument; all others are optional
and, if omitted, are replaced by the default values as noted in the
argument descriptions. However, if any argument is to be included, all
arguments that precede it must also be included.

If only the unit number argument is specified, all previously specified file
name information concerning that unit is disassociated from the unit, and
the default conditions become effective.

For example, in the following situation:

CALL ASSIGN(S,'SY:ABC.DAT')
WRITE(5.-)

CALL CLOSE(5)

WRITE(S.,-)

the first WRITE operation is performed to file ABC.DAT and the second to
FORQ(05.DAT.

See also the discussion in Section 2.1.1 concerning default device
assignments.

System Subroutines D-3

D3 CLOSE
The CLOSE subroutine closes the currently open file on a logical unit. The

call to CLOSE has the form:
CALL CLOSE(n)

n
An integer value that specifies the logical unit number.

When the close is completed, the logical unit reacquires the default file
name attributes in effect when program execution was initiated.

See also the discussion in Section 2.1.1 concerning default device assign-
ments.

0.4 DATE

The DATE subroutine obtains the current date as set within the system,
The call to DATE has the form:

CALL DATE{(buf)

buf
An array or array element.

The date is returned as a 9-byte ASCII string of the form:
dd-pam-yy

dd
The 2-digit date.

mmm
The 3-letter month specification.

yy
The last two digits of the year.

D-4 System Subroutings

D.5 IDATE

The IDATE subroutine returns three INTEGER*2 values that represent the
current month, day, and year. The call to IDATE has the form:

CALL IDATE(i,j,K)

If the current date is October 19, 1988, the values of the integer variables
upon return are:

[LY
LI |
=1 == W

9
9

D.6 ERRSET

The ERRSET subroutine specifies the action to be taken when an error is
o detected by the OTS. The error action to be taken is specified individually
N for each error-that is, independently of other errors. The call to ERRSET
has the form:

CALL ERRSET(number, comtin, count, type. log. maxlim)

number

An integer value that specifies the error number to which the following
parameters apply.

contain

A logical value that specifies whether to continue after an error. .TRUE,
means continue after the error is detected; .FALSE. causes an exit after the
error.

count

A logical value that specifies whether to count this error against the task’s
maximum error limit. .TRUE. causes the error {0 be counted; .FALSE.
causes it not to be counted.

type

A logical value that specifies the type of continuation to be performed
after error detection. ,TRUE. passes control to an ERR= transfer label if
available; .FALSE. causes a return to the routine that detected the error for
default error recovery.

System Subroutines D-5

s L R A o - LTEMIEFL I RAA RN h A

log
A logical value that specifies whether to produce an error message for this
error. .TRUE. produces a message; .FALSE. suppresses the message.

maxiim

A positive INTEGER#*2 value used to set the task’s maximum error limit.
The default value is set at 15 at task initialization.

Null arguments are permitted for all but the first argument and cause no
change in the current state of that control code.

See Section 3.5 for a discussion of the control effects obtained by these
subroutine arguments. Table 3-2 shows the initial settings of the error
control bits.

D.7 ERRSNS

The ERRSNS subroutine returns information about the most recent error

that has occurred during program execution. The call to ERRSNS has the
form: '

CALL ERRSNS (num,ioerr,icerri,iumit)

num

An INTEGER»*2 variable or array element name in which the most
recent error number is stored. A zero will be returned if no error has
occurred since the last call to ERRSNS, or if no error has occurred since
the beginning of task execution.

If the last error occurred as a result of an I/O error, the next three param-
eters receive selected values. Otherwise, values of 0 are returned.

ioerr
An INTEGER«2 variable or array element in which the primary file system

error code is stored: that is, the FCS-11 F.ERR value or the RMS-11 STS
value.

ioerr
An INTEGER+2 variable or array element in which the secondary file

system error code is stored: that is, the FCS-11 F.ERR+1 value or the
RMS-11 STV value.

0-6 Systern Subroutines

L

iunit
An INTEGER®#2 variable or array element in which the logical unit number
is stored.

From zero to four arguments may be specified. After the call to ERRSNS,
the error information is reset to {.

To determine if an error occurs in a given section of a program, the
following technique is suggested:

1. Call ERRSNS immediately prior to the segment in order to clear any
previous error data.

2. Execute the section.

3. Call ERRSNS again and branch on a nonzero return value to error
analysis code.

For example:

CALL ERRSNS

CALL ASSIGN (1,'NAME.DAT')

CALL FDBSET (1,'DLD','SHARE'}

CALL ERRSNS (IERR,IFCS,IFCS1,ILUY)
IF (IERR.NE.0) GOTD 100

D.8 ERRTST

The ERRTST subroutine tests for the occurrence of a specific error during
program execution. The call to ERRTST has the form:

CALL ERRTST(i,j)

i
The INTEGER#2 error number, and the value of j is returned as:

1 if error number i has occurred
2 if error number i has not occurred

System Subroutines D-7

For example, the sequence

CALL ERRTST(43,3)
GO TO (10,20).J
20 CONTINUE

transfers control to statement 10 if error 43 has occurred.

The ERRTST routine also resets to 0 the error flag for an occurring error.
For example, in the sequence

CALL ERRTST(I,J)
CALL ERRTST(I,J)

the second call is guaranteed to return J=2. The ERRTST subroutine
is independent of the ERRSET subroutine; neither subroutine directly
influences the other except that ERRSET can cause execution to terminate.

D.9 EXIT

The EXIT subroutine causes program termination, closes all files, reports
termination status to the operating system, and returns control to the
operating system. The call to EXIT has the form:

CALL EXIT [(istat)]

istat
An INTEGER»2 value that is the termination status value to be reported to
the operating system.

If istat is not specified, the termination status value is success.

D-8 System Subroutines

D.10 USEREX

The USEREX subroutine specifies a routine that is to be called as part
of the program termination process. Using USEREX allows clean-up
operations in non-FORTRAN routines. The call to USEREX has the form:

EXTERNAL name
CALL USEREX (name)

£
3 name

The routine that is to be called. This name must appear':in an EXTERNAL
statement in the program unit.

The user exit subroutine is called with a JSR PC instruction after all
procedures required for FORTRAN program termination have been
completed-that is, when all files have been closed, and any attempt to
perform FORTRAN 1/0 operations produces unpredictable results. In
addition, all OTS error handling is disabled; so if an error occurs in the
USEREX-specified routine, the task is immediately aborted by the oper-
ating system. The transfer of control takes place immediately preceding
the exit to the operating system; return from the subroutine by an RTS PC
results in a normal exit to the operating system.

D.11 FDBSET

The FDBSET subroutine specifies special input/output options. (It is pro-
vided primarily for compatibility with older FORTRAN implementations

because similar and more extensive capabilities are available through the
OPEN statement.} The call to FDBSET has the form:

CALL FDBSET(unit,mode,shars,numbuf,initsz,extend)

unit
an INTEGER»2 value specifying the logical unit to which the subsequent
arguments apply.

mode

One of the following character constants, specifying the type of access to
be used:

System Subroutines D-9

'READONLY' Fer read-only access.

'NEW!' For creating a new file.

'oLp? For accessing an existing file.

' APPEND For appending to an existing sequential file.
'UNKNOWN For an unknown file; has the effect of trying

‘OLD' firet, and if ne suck file exists, uses 'NEW'.

share
The character constant 'SHARE’, which specifies that shared access is
allowed.

numbuf
An INTEGER=2 value that specifies the number of buffers to be used for
multibuffered input/output.

initsz
An INTEGER+2 value that specifies the initial allocation, in disk blocks, of
file storage for a new file.

extend
An INTEGER*2 value that specifies the number of blocks by which to
extend a file.

FDBSET may only be called prior to opening the unit specified in the
first argument. CALL FDBSET, CALL ASSIGN, and the DEFINEFILE
statement may be used together.

The unit number argument is required. All other arguments may be null
or missing to indicate no specification for that argument.

B.12 IRADSC

The IRADS50 subprogram performs conversions of ASCII data to Radix-50
representation. Radix-50 representation is required by the Process Control
subroutines and the System Directives for specifying task names within
the RSX-11 system. (See Section A.5.)

IRADS50 may be called as a FUNCTION subprogram if the return value is
desired, or as a SUBROUTINE subprogram if no return value is desired.
The call to IRAD50 has the form:

n = IRADSO (icat,input,output)

D-10 System Subroutines

forey
Nl

or
CALL IRADSO(icnt,input,cutput)
ient
The INTEGER»2 maximum number of characters to convert.
input
An ASCI (Hollerith) text string to be converted to Radix~50.

output
The location for storing the results of the conversion.

n
The INTEGER*2 number of characters actually converted.

Three characters of text are packed into each word of output. The number
of output words medified is computed by the expression (in integer mode)

(icnt+2)/3

Therefore, if a count of four is specified, two words of output are written
even if only a 1-character input string is given as an argument.

Scanning of input characters terminates on the first non-Radix-50
character encountered in the input string.

D.13 RADS0

The RADS50 function subprogram provides a simplified way to encode
RS5X-11 task names in Radix—-50 notation (see Section A.5). This function

m’g converts six characters of ASCII data to two words of Radix-50 data. The
AR call to RAD50 has the form:
RAD50{name)
name

The variable name or array element corresponding to an ASCII string.

Note that the RAD50 function may be used as an argument to an RSX-11
systemn directive subroutine. For example:

REAL#S A
DATA A/'TABK A'/
CALL REQUES (RADSO(A),...)

Systern Subroutines D-11

The RADS50 function is equivalent to the following FORTRAN function:

FUNCTION RADGO(A)

CALL IRADSO(8,A, RADSO)
RETURN

END

D.14 R50ASC

The R50ASC subprogram provides decoding of Radix-50 encoded values
into ASCII strings. The call to RS0ASC has the form:

CALL RSOASC (icat.im,out)

icnt _ .

The INTEGER*2 number of output characters to be produced.
in

The variable or array that contains the encoded input. Note that
(icnt+2}/3 words are read for conversion.

out

The variable or array in which icnt characters (bytes) are placed.

If the undefined Radix--50 code is detected, or the Radix~50 word exceeds
maximum value 174777 (octal), question marks are placed in the output.

D.15 SECNDS

The SECNDS function subprogram returns the system time in seconds as
a single-precision, floating-point value less the value of its single-precision,
floating-point argument. The call to SECNDS has the form:

REAL SECNDS
y = SECNDS (x)

y
Set equal to the time in seconds since midnight, minus the user-supplied
value of x.

D-12 System Subroutines

Y

R

You can use the SECNDS function to perform elapsed-time computations.
For example:

¢ START OF TIMED SEQUENCE
T1 = SECNDS(0.0)

c
C CODE TO BE TIMED
c
DELTA = SECNDS(T1)
where DELTA gives the elapsed time.

The value of SECNDS is accurate to the resclution of the system clock:
0.0166 . . . seconds for a 60-cycle clock, 0.02 seconds for a 50-cycle clock.

NOTE

The time is computed from midnight. SECNDS also produces
correct results for time intervals that span midnight.

The 24 bits of precision provide accuracy to the resolution
of the system clock for about one day. However, loss of
significance can occur if you attempt to compute very small
elapsed times late in the day.

D.16 TIME

The TIME subroutine returns the current system time as an ASCII string,
The call to TIME has the form:

CALL TIME(buf}

buf
An 8-byte variable, array, or array element,

The TIME call returns the time as an 8-byte ASCII character string of the
form:

hh:mm:gs

System Subroutines D-13

hh
The 2-digit hour indication.

mm

The 2-digit minute indication.

The 2-digit second indication.

For example:
10:45:23

A 24-hour dock is used.

D-14 System Subroutines

AR

Appendix E
i) Compatibility: PDP-11 FORTRAN-77
and PDP-11 FORTRAN IV-PLUS

PDP-11 FORTRAN-77 is based on American National Standard
FORTRAN-77, X3.9-1978. As a result, it contains certain incompati-
bilities with the PDP-11 FORTRAN IV-PLUS language, which is based on
the previous standard, X3.9-1966. The areas affected are:

* DO loop minimun. iteration count

* EXTERNAL statement

* OPEN statement BLANK keyword default
¢ OPEN statement STATUS keyword default
* Blank common block PSECT

e X format edit descriptor

The PDP-11 FORTRAN-77 compiler selects ANSI FORTRAN-77 lan-
guage interpretations by default. If you are compiling PDP-11 FORTRAN
IV-PLUS programs, there are several actions you can take to compensate
for language incompatibilities:

* You can modify your programs so that they produce the intended
result with the /F77 switch. Compiler diagnostics help you identify
OPEN statements in which an explicit STATUS keyword should be
added. Linker diagnostics help you locate EXTERNAL statements that
must be changed to INTRINSIC statements.

* You can specify the /NOF77 switch to select PDP-11 FORTRAN
IV-PLUS language interpretations. The /NOF77 switch affects the
interpretation of DO loop minirnum iteration counts, EXTERNAL
statements, and OPEN statement BLANK and STATUS defaults. It
does not affect the X format edit descriptor,

Compatibility. PDP-11 FORTRAN-77 and PDP-11 FORTRAN IV-PLUS E-1

* You can build the PDP-11 FORTRAN-77 compiler with the /NOF77
switch as the default, which selects PDP-11 FORTRAN IV-PLUS
language interpretations as defaults.

This appendix discusses each of the language differences. When possible,
it gives an example of how you can modify your PDP-11 FORTRAN
IV-PLUS programs to make them compatible with both PDP-11
FORTRAN-77 and PDP-11 FORTRAN IV-PLUS.

E.1 DO Loop Minimum Iteration Count

In PDP-11 FORTRAN-77, the body of a DO loop is not executed if the
end condition of the loop is already satisfied when the DO statement is
executed (see Section 4.4.2). In PDP-11 FORTRAN IV-PLUS, however,
the body of a DO loop is always executed at least once.

If you are running a PDP-11 FORTRAN IV-PLUS program with the
/F77 switch, you may want to ensure a minimum loop count of one by
modifying the program’s DO statements. As an example, assume that a
FORTRAN IV-PLUS program contains this statement:

DO 10, J = ISTART,IEND

This DO statement specifies that the body of the loop is executed only
when [END is greater than or equal to ISTART. However, you could
modify the statement to handle a situation in which IEND might be less
than ISTART. For example:

DO 10 J = ISTART, MAX(ISTART.IEND)

The body of this medified DO loop is executed at Jeast once in both
PDP-11 FORTRAN-77 and PDP-11 FORTRAN IV-PLUS.

The /F77 switch controls the interpretation of the DO loop minimum
iteration count.

E-2 Compathility. PDP-11 FORTRAN-77 and PDP-11 FORTRAN iv-PLUS

E.2 EXTERNAL Statement

Under PDP-11 FORTRAN IV-PLUS, a function specified in an EXTERNAL
statement with the name of a FORTRAN processor-defined (intrinsic) or
library function was assumed to refer to the named processor-defined

or library function, not to a user-defined function with that name. If,
however, a function name appeared in an EXTERNAL statement preceded
by an asterisk, that function was assumed to be a user-deﬁned function,
regardless of any name conflicts.

Under ANSI FORTRAN-77 and PDP-11 FORTRAN—??, a function
specified in an EXTERNAL statement with the name of a processor-
defined {intrinsic) or library function is assumed to refer to a user-defined
function.

Under PDP-11 FORTRAN-77, the function name fname in the statement

EXTERNAL fname [,fname ...]

is interpreted to refer to a user-defined function by default.

If the /NOF77 swiich is specified, and fname is the same as one of the
processor-defined or library functions, fname is interpreted to refer to the
processor-defined or library function.

If fname appears preceded by an asterisk, it is interpreted to referto a
user-defined functon if the /NOF??‘ switch is set, but it is an error if the
/F77 switch is set.

All functions declared with the new INTRINSIC statement are interpreted
to be processor-defined (intrinsic) or library functions, regardless of the
setting of the/NOF77 switch.

E.3 OPEN Statement BLANK Keyword Default

In PDP-11 FORTRAN-77, the OPEN statement BLANK keyword con-
trols the interpretation of blanks in numeric input fields. The PDP-11
FORTRAN-77 default is BLANK="NULL'; that is, blanks in numeric input
fields are ignored. The PDP-11 FORTRAN IV-PLUS OPEN statement
does not have a BLANK keyword. However, the PDP-11 FORTRAN
IV-PLUS interpretation of blanks in numeric input fields is equivalent to
BLANK='ZERO'.

Compatibility. PDP-11 FORTRAN-T7 and POP-11 FORTRAN IV-PLUS E-3

If a logical unit is opened without an explicit OPEN statement, PDP-11
FORTRAN-77 and PDP-11 FORTRAN IV-PLUS both provide a default
equivalent to BLANK=ZERO'.

The BLANK keyword affects the treatment of blanks in numeric

input fields read with the D, E, F, G, I, O, and Z field descriptors. If

- BLANK='NULL' is in effect, embedded and trailing blanks are ignored;
the value is converted as if the nonblank characters were right-justified in
the field. If BLANK='ZERO' is in effect, embedded and trailing blanks are
treated as zeros. The following example illustrates the difference in how
blanks in numeric input fields are interpreted in PDP-11 FORTRAN-77
and in PDP-11 FORTRAN IV-PLUS:

Program:

OPEN(UNIT=1, STATUS='0OLD'} READ(1,100I, 3
10 FORMAT (215} END

Data record:
12 12

FORTRAN-77 Values FORTRAN IV-PLUS Values
1=12 = 1020
J=12 j=12

The /F77 switch controls the default value for the BLANK keyword. If
your program treats blanks in numeric input fields as zeros and you do
not want to use the /NOF77 switch, include BLANK='"ZER(C' in the OPEN
statement or use the BZ edit descriptor in the FORMAT statement.

E.4 OPEN Statement STATUS Keyword Defauit

In PDP-11 FORTRAN-77, the OPEN statement STATUS keyword
specifies the initial status of the file ({OLD’, ‘'NEW’, 'SCRATCH’, or

‘UNKNOWN'). The PDP-11 FORTRAN-77 default is STATUSUNKNQWN';

that is, an existing file is opened, or a new file is created if the file does
not exist. The PDP-11 FORTRAN IV-PLUS keyword TYPE is a syn-
onym for STATUS; however, the PDP-11 FORTRAN 1V-PLUS default is
TYPE="NEW'.

E-4 Compatibility: PDP-11 FORTRAN-77 and PDP-11 FORTRAN JV-PLUS

If you use the /F77 switch and you do not specify STATUS (or TYPE) in
an OPEN statement, the compiler issues an informational message to warn
you that it is using a default of STATUS~UNKNOWN'. It is advisable to
include an explicit STATUS (or TYPE)} keyword in every OPEN statement.

The /F77 switch controls the default value for the STATUS (or TYPE)
keyword.

<7y ES5 Blank Common Block PSECT (.$$$S.)

Under PDP-11 FORTRAN-77, the blank common block PSECT (.$$$$.)
has the SAV attribute; it does not have this attribute under PDP-11
FORTRAN IV-PLUS. The SAV attribute on a PSECT has the effect of
pulling that PSECT into the root segment of an overlay.

The /F77 command switch controls the default assignment of the SAV
attribute; under /F77, the blank common block PSECT is assigned the
SAV attribute by default,

'C"FT\

.7 EB XFormat Edit Descriptor

The nX edit descriptor causes transmission of the next character to or
from a record to occur at the position n characters to the right of the
current position. In a PDP-11 FORTRAN-77 output statement, character
positions that are skipped are not modified, and the length of the output
record is not affected. However, in a PDP-11 FORTRAN IV-PLUS output
statement, the X edit descriptor writes blanks and may extend the output
record. For example, the statements

WRITE(1,10)
10 FORMAT(iX, 'ABCDEF', T4, 2X, '12345', 3X)

produce the output records:

FORTRAN-77 FORTRAN IV-PLUS
ABCD12345 AB 12345

The /F77 switch does not affect the interpretation of the X edit descriptor.
To achieve the PDP-11 FORTRAN IV-PLUS effect, change nX to n(’ ‘).

Compatibility. POP-11 FORTRAN-77 and PDP-11 FORTRAN IV-PLUS E-&

Appendix F

~ Compatibility: PDP-11FORTRAN-77,
PDP-11FORTRAN IV, VAX FORTRAN

PDP-11 FORTRAN-77 is a compatible superset of PDP-11 FORTRAN IV
and a compatible subset of VAX FORTRAN,

Generally speaking, any PDP-11 FORTRAN-77 program that does not
use superset features runs correctly in PDP-11 FORTRAN IV, and any
PDP-11 FORTRAN-77 program runs correctly in VAX FORTRAN.

Differences in execution, however, may be encountered because of differ-
ences in compiler architecture, hardware architecture, or operating system
environment.

The following sections discuss differences among PDP-11 FORTRAN 1V,
PDP-11 FORTRAN-77, and VAX FORTRAN.

There are both language differences and run-time support differences
among PDP~11 FORTRAN IV, PDP-11 FORTRAN-77, and VAX
£ FORTRAN.

Compatibility: PDP-11 FORTRAN-77, POP-11 FORTRAN 1V, VAX FORTRAN F-1

F.1 Language Differences

Differences related to language involve:

* Logical tests

* TFloating-point results

* Logical unit numbers

¢ Assigned GO TO label list

* Integer computations

* Effect of DISPOSE = 'PRINT" specification

F.1.1 Logical Tests

The logical constants .TRUE. and .FALSE. are defined, respectively, as all
1s and all zeros by both VAX FORTRAN and PDP-11 FORTRAN. The
test of .TRUE. and .FALSE. differs, however.

PDP-11 FORTRAN-77 tests the sign bit of a logical value: bit 7 for AR
LOGICAL#1, bit 15 for LOGICAL#2, and bit 31 for LOGICAL*4. PDP~11 "~
FORTRAN IV tests the low-order byte: All zeros is .FALSE.; any nonzero

pattern is .TRUE.. And VAX FORTRAN tests the low-order bit (bit 0) of a

logical value, (This is the system-wide VAX convention for testing logical

values.)

In most cases, these differences have no effect on compatibility. They
are significant only for nonstandard FORTRAN programs that perform
arithmetic operations on logical values and then make logical tests on the
result,

in the example: N F
LOGICAL*1 BA

BA = 3

IF (BA) GO 10 10

PDP-11 FORTRAN-77 produces a value of .FALSE., but PDP-11
FORTRAN IV and VAX FORTRAN produce a value of .TRUE.

£-2 Compatibility: POP-11 FORTRAN-77, POP-11 FORTRAN IV, VAX FORTRAN

F.1.2 Floating-Point Results

Differences in math library routine results may occur between different
arithmetic hardware configurations on PDP-11 processors and between
PDP-11 and VAX hardware due to the hardware architecture differences.
Equivalent accuracy is provided but there may be differences in the
least-significant digits.

F.1.3 Laogical Unit Numbers

If you specify a logical unit number in an I/O statement, a default unit
number is used. The defaults used by PDP-11 FORTRAN-77 and PDP-11
FORTRAN 1V differ from those used by VAX FORTRAN, as shown in
Table F-1.

Table F—1: Defauit Logical Unit Numbers

T 1/O Statement PDP-11 Unit VAX Unit
i READ 1 4
PRINT 6 -1
TYPE 5 2
ACCEPT 5 3

Note that PDP-11 FORTRAN uses normal logical unit numbers, but VAX
FORTRAN uses unit numbers that are not available to users.

F.1.4 Assigned GO TO Label List

PDP-11 FORTRAN-77 checks at run time that the label is in the list of
labels specified. If not, execution continues at the next statement.

PDP-11 FORTRAN IV and VAX FORTRAN check only that the labels
specified in the list are valid statement labels in the program unit. No
check is made at run time, and execution continues at the label specified.

Compatibility: POP-11 FORTRAN-77, POP-11 FORTRAN IV, VAX FORTRAN F-3

F.1.5 DISPOSE = Print' Specification

On some PDP-11 systems, the file is deleted after being printed if
DISPOSE = ‘PRINT’ was specified. On VAX systems and some PDP~11
systems, the file is retained after being printed.

F.1.8 Integer Computations

In PDP-11 FORTRAN-77 and VAX FORTRAN, INTEGER=*4 computa-
tions are carried out using 32-bit arithmetic, In PDP-11 FORTRAN IV,
INTEGER#4 data occupies 32 bits of storage (4 bytes) but only 16 bits are
used for computation,

F.1.7 Default Record Buffer Size

In PDP-11 FORTRAN-77, if there was no RECL specification when a

file was created, the FORTRAN-77 OTS uses the default record size

(see Section 2.3.8) as the size of the user record buffer. FORTRAN 1V,
however, allows the user record buffer to be as large as the value specified
in the MAXBUF option in the task-build command line.

In FORTRAN-77, when you attempt to write more bytes to a record than
the default record size, you should use an explicit OPEN statement with a
RECL specification. ' '

F.2 Run-Time Support Differences

Run-time support differences involve unformatted data transfer and error
handling and reporting.

F.2.1 Unformatted Data Transfer

For unformatted input/output operations, four bytes of data are trans-
ferred for INTEGER#*4 and LOGICAL»4 data. However, because the
high-order part is undefined in PDP-11 FORTRAN IV, INTEGER*4 and
LOGICAL#4 values written by a PDP-11 FORTRAN IV program may not
reliably be read by PDP-11 FORTRAN-77 or VAX FORTRAN.

F-4 Compatibility: PDP-11 FORTRAN-77, PDP-11 FORTRAN IV, VAX FORTRAN

F.2.2 Error Handling and Reporting

Error handling and reporting differ significantly between PDP-11
FORTRAN and VAX FORTRAN. In PDP-11 FORTRAN, program exe-
cution normally continues after errors such as floating overflow until 15
such errors have occurred, at which point execution is terminated. VAX
FORTRAN, however, sets a limit of one such error; program execution
normally terminates when the first such error occurs.

VAX FORTRAN neither generates an error message nor increments the
image error count when an I/O error occurs, if an ERR=specification is
included in the 1/0 statement. PDP-11 FORTRAN both reports the error
and increments the task error count.

Compatibility: PDP-11 FORTRAN-77, PDP-11 FORTRAN IV, VAX FORTRAN F-5

Appendix G

PDP-11 FORTRAN-77 Extensions to
ANSI Standard (X3.9-1978) FORTRAN

The following are PDP-11 FORTRAN-77 extensions to ANSI standard
(X3.9-1978) FORTRAN at the full-language level.

flem If you specify the /ST switch at compile time, the compiler flags these

T extensions in your source code and produces informational diagnostics
about them. See Section 1.2.4 for complete information on how to use the
/ST switch. See Appendix C for a list of compiler diagnostic messages.

6.1 Statement Extensions

The following statements appear in PDP-11 FORTRAN~77 but not in
ANSI standard FORTRAN:

ACCEPT DELETE REWRITE
BYTE ENCODE TYPE

DECODE FIND UNLOCK
DEFINE FILE INCLUDE VIRTUAL

G.2 Statement Syntax Extensions

The following sections contain PDP-11 FORTRAN-77 syntactic variations
of statements present in ANSI standard FORTRAN.

PDP-11 FORTRAN-77 Extensions to ANSI Standard {X3.3-1978) FORTRAN G-1

G.2.1 Specification Statement

Data type *len (Except CHARACTER +len)
IMPLICIT Examples of extended syntax follow

IMPLICIT INTEGER A.B
IMPLICIT INTEGER (A~C),(P-T)

PARAMETER (Alternative syntax, see Section A.4, PDP-11 FORTRAN-77
Language Reference Manual) .

typ FUNCTION nam slen{Length specifier in function declaration)

6.2.2 Format Statements
Default formats for L F, E, D, G, L, O, A, Z

Ow, Ow.m, Q, Zw, Zw.m, $ format descriptors
P without scale factor

Variable format expressions

6.2.3 Control Statements

Null actual argument (Examples follow)

CALL pame (,arg?)

CALL pame (argl,,arg3)
CALL name (argl,)

CALL name {argl,,..arg®b)

6.2.4 1/0 Statements

READ and WRITE (Comma between 1/O conirol and element lists;
example follows)

READ (...), iolist

G-2 POP-11 FORTRAN-77 Extensions to ANSI Standard (X3.9-1978) FORTRAN

6.2.5 Miscellaneous Syntax Extensions

The follbwing are present in PDP-11 FORTRAN-77 but not in ANSI
standard FORTRAN:

Consecutive operators in expressions

D-line comments

End-of-line comments

Parameter constants for the real or imaginary part of a complex
constant

Tab-character formatting

6.3 Keyword and Keyword Value Extensions

G.3.1 OPEN Statement Keyword Extensions

Lo ASSOCIATEVARIABLE NAME
BLOCKSIZE NOSPANBLOCKS
BUFFERCOUNT ORGANIZATION
CARRIAGECONTROL READONLY
DISPOSE RECORDSIZE
DISP RECORDTYPE
EXTENDSIZE SHARED
INITIALSIZE TYPE
KEY USEROPEN
MAXREC

G.3.2 OPEN Statement Keyword Value Extensions

ACCESS = 'APPEND'
ACCESS = 'KEYED'

PDP-11 FORTRAN-77 Extensions to ANS) Standard (X3.5-1878) FORTRAN G6-3

6.3.3 CLOSE Statement Keyword Extensions

DISP
DISPOSE

6.3.4 CLOSE Statement Keyword Value Extensions

STATUS = ‘SAVE'
STATUS = ‘PRINT”

6.3.5 READ Statement Keyword Extensions

KEY KEYGE
KEYEQ KEYGT
KEYID

G.4 Lexical Extensions

The following lexical elements are present in PDP-11 FORTRAN-77 but
not in ANSI standard FORTRAN:

Hollerith constants

Lowercase source letters

"an octal constants

O octal constants

‘oct’O, 'hex’'X constants

Radix-50 constants

‘rec in direct access I/0O statements
XOR. operator

Z hexadecimal constants

G-4 POP-1} FORTRAN-77 Extensions to ANSI Standard (X3.9-1978) FORTRAN

Appendix H
Software Performance Reports

From time to time, you may encounter problems and/or errors in using
the FORTRAN-77 Compiler or Object Time System. These should be
communicated to Digital Equipment Corporation by means of a Software
Performance Report (SPR). Software Performance Report forms like the
one shown in Figure H-1 may be obtained from the nearest SPR center.

You should submit Software Performance Reports to the nearest SPR
center for handling. SPRs are forwarded to the approgriate group within
the Software Engineering Department for analysis and response.

Use the following guidelines in preparing a Software Performance Report:

* Give as complete a description as possible of the problem encountered.
Often a detail that may seem irrelevant will give a clue to solving the
problem.

* If possible, isolate the problem to a small example. Large, unfamiliar
programs are difficult to work with and may result in a misunder-
standing of what the problem is or an inability to duplicate the
problem.

¢ If the error example is longer than one page of source code, try to
send all information in a machine-readable form. Machine-readable
problems are much easier to diagnose and enable us to provide better
service. All media are returned.

* Send console samples, command files, listings, link ‘maps, and so
on with the SPR. Annotations showing where the error occurred are
extremely helpful.

s If a program reads input data, include sample input listings and, if
possible, sample output.

Software Parformance Reports H-1

o If an error example cannot be isolated to a single program unit, include

listings for all program units involved.

Many SPRs do not contain sufficent information to duplicate or identify
the problem. Complete and concise information helps DIGITAL give
accurate and timely service to software problems.

H-2 Software Performance Reports

oS

Figure H-1: Software Performance Report (SPR} Form

BOR00B0 . T 279086

EPD
{ TO SET UF FOR FROTER ALIGNMENT. START AT MARK BELOW, rAGE oF.

CPEMATING RYRTEM VRRBGN lm TROARAM TR DOCRAENT TITLE | VERBION OF GOCUMENT PART NG, DATE
The GFFICE BEVSTRAVESSUNTERY |
wame | vea[] nef]
L{LTB MERCRT TYPLIPRIORITY
H o Insavy gverew saracr
FROBLEM/ERAQR 2] |MopsmaTs svavEM iMPACY
aponces: SUGGRSTED ENHARKCEMENT 1| [Mino®k SvsTom imPacT
OTHER af |0 SiGHIMICANT IMBACT
CUST HO.: [+ DOCLIMIEN Y AT KON [SUIE KET N
EURMITTED BY! FHONK
SAN THE FROBLEM BE REFRODULED AT WiLLt v:sD nﬂ
ATTALE "
HMENTS COWLD THES SPR HAVE BENN PREVENTEC BY
MAS TArE D Lneand MB ‘-""'"“"D “"’""D ACTTER 0K MONE ODEUMENTATIONT '“D ~
ar PLEARE EXPLAIN 18 PRSVIRED FPAGK BELOW,
CPU TYPE SERIAL NG MEMORY $1ZT GISYTFBUTION MEDI UM BYSTOM OEVICE 10@ HOT PR D
ALL SUBMISSIONS BECOME THE PROPERTY OF DIGITAL EQUIPMENT CORPORATION.
FHENT RAWE TR CAT. TANT. ZAF. [XFEE Gmr. o
CATE TO MAINTAINER XrEm GATL LocGEG ON
DATE AECOIVED FROMMAINTAINER |DATE ARGWERKD VAGGED OFF

ADMINISTRATIVE SERVICES GROUP, 5W5

EMN 1084M-D7-N41Y (15C)

ZK-244-81

Software Performance Reports H-3

Index

A

ABORT command* 1-26
ACCEPT statement ® 2-3
ACOS,
algorithm ¢ B-1
ACTFiL® 119
Active page register® 1-21, 1-23, 3-9
ALOG,
algorithm * B—9
ALOG10,
algorithm ¢B-5
Argument-passing mechanism
call-by-reference ® 3-2, 4-20
call-by-value/result® 4-19
Arguments :
data type of®*4-11, 4-14
dummy * 4-20
ENTRY statement®4-19
nult® 3—7
Array bounds
checking® 1-11
Arrays ® 3—26
virtuai® 1-38, 3-89, 3-2610 3-32,C-36
Array subscript
calculations ® 5—7
checking®*5-11
ASG Task Builder option® 1-20, 2-1
ASIN,
algorithm® B-2
Assembly language subroutine
example® 3—~10
Associated variable
in DEFINEFILE or OPEN® 1-56

ATAN,

slgorithm ® B-3
ATAN2,

algorithm ¢ B4

BACKSPACE statement® 2—-20, 5-11
Batch mode ® 1-51
BLANK keyword®2-12, E-3
Blanks

embedded and trailing ® E-4

interpretation of *2-12, E-3
BLOCKDATA statement® 3—23
Block mode * 2~14
Block size®2-13
BLOCKSIZE keyword®2-13, 214
Bucket ® 2-6

locking ® 2—-25

size®2-13

unlocking ® 2-24
BUFFERCOUNT keyword®2-14
Buffers

allocating® 1-48

format specifications ®* 1-48

fragmented ® 5-17

memory ® 2—14

OTSe 1-562
BYTE (LOGICAL*1) data type®*4-15

c

CALL ASSIGN statement®*2-3, D-3
CALL EXIT statement® 1-51, D8

Calting sequence conventions®3-2 to 3-7
Calls
/0 section® 415
nonreentrant form*® 3—4
reentrant form® 3-5
Call site
MACRO-11 form® 3~2
CCL commands
See Concise Command Language
Character
ASCl set Radix—b0 equivalants ®* A-9
data type ®* 6-1
Hollerith® A-&
1/0®G-12
library functions * 68
Radix~-b0 set® A-9
segmeants {substrings)® 61
Character array
declarator
farm® 6—4
rules ® 6-5
definition * 6-3
error message ® 67
reference
form®*6-6
rules®6-7
Character stting
dactarator
form®B6-3
rules ®* 6—4
definition ® 6-3
error message ®*6-7
reference
forme®6-5
ruigs ® 6-6
CHARACTER type declaration statement ® 6-3
JCK compiler switch ® 1-11
CLOSE statement ® 5-3
CMD files® 1-5, 1-29
fCO:n compiler switch® 1-11
Code sections
pura® 1-12
Code sharing in multiuser tasks® 1~12
Command file
indirect® 1-2
Command Languages® 1-2
Command Lines ® 1-2

2-index

Command sequences
examples® 1-27
Command switch® 1-5, 1-41
Common blocks
allocation ® 419
blank®*3-10, E-5
global referencing® 1-21
in overtays ® 1-57
resident® 1-15
storage in®*3-9
system global ® 1-21
COMMON Task Builder option#® 1-21, 3~9
Compatablity with FORTRAN IV-Plus ® E-5
Compatibility
with VAX-11 FORTRAN®F—1
with FORTRAN |V-PLUS ®E—-1
with VAX FORTRAN ® F-5
Compiler® 1-1
data type assumptions® 4~11
diagnostic messages ®C—1 to C-23
integer mode settings *4-—-14
integer-typing optimizations ®* 414
listing format ® 3-22
optimization® 5-5 to 5—10
optional capabilities with .0BJ and .OLB files ®
5-12
PSECT use® 3-8
switches ® 1-10
with RSX-11#1-3
with DCL® 1-8
with RSTS/E» 1-28
with VMS® 1-389
COMPLEX Format® A-5

Concise Command Language (CCL)® 1-28, 1-30,

1-31, 1-32
Constants
character ® 6-2)
computations on expressions involving ® 57
Holierith® A-8
integer*4-12
logical®F--2
octal ®* 412
Continuation lines
specifying maximim® 1—11
Control bits® 3-16
initial setting®3-17
Control byte
deleted-record 2—10

Controt byte (cont'd.)
segment®2-17
Conventions
calling sequence®3-2 to 3-7
conversion routing loading ® 3-12
device ® 2—-1
end-file record® 2-20
file name® 2-1
file open® 2--21, 2-23
implied-unit number ® 2-3
register usage®*3—4 '
storage allocation ® 3—10
Conversion
Floating Point#5—16
COS,
algorithme® B8
COSH,
algorithm ¢ B—7
Count field®* 2-11
$CREATE statement ® 2-24
Cross-referance listing® 1—-17
/CR Task Builder switch® 1-17, 1-45
CSQRT,
algarithm ® B-15

DACOS,
algorithm ¢ B-2
DASIN,
algorithm® B-2
Data formats ® A-1to A-11
COMPLEX ® A-5
double-precision (REAL*8)® A4
Floating Point® A-2
integer ® A-1
LOGICAL*1 {BYTE)® A-5
LOGICAL=2 and LOGICAL+4 % A-H
REAL+4® A-~3 :
Data sections
pure® 1-12
fOA Task Builder switch® 1-15, 1-45
DAT files® 1-5, 1-29
/DB compiler switch® 1—11
DCL qualifiers
switch equivalents ® 1-8
DCOS,

DCOS, (cont’d.)

algorithm ® B—6
DCOSH,

aigorithm ® B-7
Debugging ® 1-59
DECODE statement®5—11
/DE compiler switch® 1-11, 1-59
DEFINEFILE statement® 1--56, 1-58
‘DELETE"

See DISPOSE keyword
Deleted-record control byte ® 2--10
$DELETE macro {RMS)*2-23
DELETE statement® 2-23, 7-8
Device

RSTS/E®1-28

REX-11*1-3

VMS® 1-39
DEXP,

algorithm * B-7
Diagnostic messages®C-1to C-43

compiler® C—1 tc C-23

fatal®C-20 10 C-22

OTS*(C-23t0c C-37
Diagnostics

compiler® 1-13

DIMENSION statement ® 3-28, 3-30, 3-31

Direct-accass e 2-9

to files ® 2-9

10 relative file cells * 2-6

with READ* 2-15
Disk space allocation®§5-12
DISP

See DISPOSE keyword
DISPOSE keyword® 2-14, F-4
DLOG,

algorithm s B-10
DLOG10,

algorithm ® B-5
DO icops ® E-2

extended form*4-16
DSIN,

algorithm®B-11
DSINH,

algorithm e 88
DSORT,

algorithm*B-13
DTAN,

aigorithm ® 8-15

Index-3

DTANH,
algorithm*B-9

END= transfers ® 3—-14
ENDFILE statement ® 2—-20
End-of-file
condition® 3-14
logical ® 2~22
END statement ¢ 1-54
ENTRY POINTS summary ® 3—26
ENTRY statement arguments® 4—19
Equivalence relationships ® 4—19
EQUIVALENCE statemem ® 4~18, 4-19
ERR= transfers ® 3—14
Error classes {F~, E—, W—, and {—)*(-2
Error codes
FCS-11*C-38 10 C-40
operating system® C-37 to C-38
RMS—-11#C—41 to C-43
Error processing
OTS*3-13, 6-13
Error recovery
QTS*3-14 10 3-22
Error reports®* D-5 10 D-8, F-B
short®5-14
Error traceback ® 1-14, C-24
ERRSET subroutine ® D5
ERRSET Subroutine® 3—-16
. See also System subroutines
ERRSNS subroutine ® D—6
ERRSNS Subroutine # 3—15
See also System subroutines
Executing a program ® 1~1
on RSX—11%1-26
on RSTS/E® 1-36
on VMS® 138
EXP,
algorithm ® B—6
EXTENDSIZE keyword ® 2-15, 5-3
Extend Task system directive ® 1=-22
EXTERNAL statement®4-2, D-8, E-3
EXTTSK® 1-21

4-Index

F

F4PRES library ® 1-25, 1-35
F77 command ® 1-42
[F77 compiler switch® 1-8, 1-11,2-13
F7FCLS.MAC MACRC—-11 soutce file ®* 5-15
FCS-11 file system® 1-15, 1-44, 2-1, 2-4, 2-5,
2-8, 2-19, 2-21
link and run-time considerations ®5—17
FCSRES library ® 1-25
FCTA statemem® 1~-54
FOFTN
See FORTRAN carriage-control attribute
Field
count®2-11
key®2-8, 2-18, 7-110 7-8
Field descriptor
formatiing® 2~12
File Control Services (FCS}
See FCS-11 file system
File directory default® 1-3
File names
indirect ODL ® 1-54
RSTS/E® 1-29
RSX—-11%1-3
viviSs 1-38
Files
access modes® 2-7
compiler input® 1-6, 1-8, 1-17, 1-31, 1-33,
1-42, 1-46
contigucus ® 1-38
indexed ® 1~15, 2-6 to 2-7, 2-8, 2-9, 2-15,
7-110 7~11
arcor conditions ® 7-10
keyed access ®4~15, 7-1
inpute® 1-2, 1-4
listing® 1-6, 1-30, 1-42
map® 1-17, 1-33, 1-45
naming conventions » 2—1
object code ® 1-30, 1-42
ObL®2-25
organization ® 2—4
OTS overlay*5-15
output® 1-2, 1-4
overlay description® 1-53
relative* 1-15, 2-5, 2-8, 2-9, 2-11, 2-18

Files (cont’d.)
sequential ® 1-15, 2-6, 2-13, 2-20, 2-23,
2-27
unformatted® 2-11, 2-19
sharing ® 2—19, 2-22, 2-24to 2-25, D-10
specifying- maximum length* 217
unformatted sequentia! ® 2-12
File specifications ® 1-2, 1-3, 1-28, 1-30, 1-31,
1-39
RSTS/E® 1-28
RSX-11%1-3
vMS® 1-39
$FIND macro ® 2-24
FIND statement ® 2—-22, 224
Floating-point microcode option® 1—16, 1-45,
3-4
Fipating-point processor® 1-16, 1-45, 34
FMTBUF Task Builder option® 1-22, 3-11
Format procassing and conversion errors#3-17
Formats
data® A—1to A-11
use with integer keys ® 7-8
FORTRAN carriage-control attribute (FD.FTN} ®
2-21
FORTRAN [V-PLUS ® 1-11
JFP Task Builder switch® 1-18, 1-45
$FREE macro ® 2-24
$$FRS1 PSECT®6-17
FTN® 1-40
FTN files ® 1-5, 1-29
Functions
character library ® 6-8
gereric® 4-2 to 4-10
Integer-valued intrinsic {"result generic”}*4-14
intrinsic® 4—1t0 4-10
name mapping ® 514
specific ® 4-2
Function subprograms®3-3, D-10 10 D-13

GBLPAT option® 1-22, 2-3
Generated code listing® 3—-23

Genaeric function references ® 4—2
GET$R FCS record mode macro® 2-21
GET$S FCS record mode macro® 2-21
$GET macro ® 2-23

Hollerith constanis ® A—-8

1/0
Sea Input/Output
/14 compiler switch® 1-12, 4-11, 4-14
minimizing use ® 54
ICHAR function® 6-9
/1D compiler switch® 1-12
IMPLICIT statement®4-—1
INCLUDE statement ® 5-2
indexed files®*2-6, 7-1to 7-11
record overhead® 2-10
record pointers ® 7-3
Indexed READ statement®2-6, 2-9,
7-6t0 7-11
Indexed Sequential Access Method (ISAM)® 7-1
Indexed WRITE statement® 2-9, 7—4
INDEX function®6—10
INITIALSIZE keyword®2-15
Input/Output
character string ® 6—12
direct access®2-9
minimum direct access record size ®5-12
OTS support modules ® 1-15, 1-44
reducing program execution time ®* 5—11
sequential ® 1-23, 5--3
seguential statements ® 5—13
sequential support® 5-15
unformatted® 511, F—4
INTEGER+*2 and INTEGER-4 data types®4-~11,
8-4, A-1
Integer constant typing * 4-~12
integer-typing optimizations® 4-14
Integer variable
default allocation® 1-12

interactive mode® 1-7, 1—12, 1-18, 1-18, 1-43,

1-46, 1-47
Internal name ® 4-1
Internai sequence numbers ¢ 3-22
INTRINSIC statement ®4—-2
Invariant Computations
removal from loops®5-11

Index-5

Iteration count

computation®*4-17

for DO loops* 4--16
lunput/Output

transfer size specification®2—-13

J

Job Command Sequences
ASTS/E examples ® 1-36

"KEEP”

See DISPOSE keyword
KEF11A option® 1-16, 1-45
Key attributes ® 7~3
Keyed access ¥ 2-9, 7-1
Key field®2-6, 2-16, 7-1tw 7-8
KEY keyword® 2-15, 7-3
Keys

alternate ® 2—-6, 7-2

binary integer® 2-15

character-string® 2-156

duplicate primary ® 2—-6, 2-7

primary ® 7-2

L

Labets

compiler generated ® 3—-23

format® 3-27

source® 3-23

staternent ® 5-8

user-defined statement ® 3~27

with GOTO staternent *5-9, F-3
JLA compiter switch® 1-12
Language extensions* G-1to G-4
Latching switch settings ¢ 1-12
LB:RMSLIB.OLB (LB:[1, 1JRMSLIB.OLB) files ® 2-25
LB:SYSLIB.OLB® 1-35
LB1.1FAPOTS.OLB* 115, 1-44
LB:[1,1JRMSLIB.OLB® 1-15, 1-44
LB:[1, 1}RMSxxx.ODL files ® 2-26
LB:[1.1]SYSLIB.OLB#* 1-25, 1-50
/LB Task Builder switch® 1-17, 1-46

6-Index

LEN function®* 6-11
LGE, LGT, LLE, and LLT Functions®*&-12
/LI:n compiler switch® 1-12
Librarian Utility ® 1-26, 1-36, 1-51
Libraries
OTS*1-15, 3-13, 5-15
relocatable
RSTS/E® 1-35
RSX-1191-25, 1-B4
resident
RSTS/E® 1-35
RSX-11#1-25, 1-54
resident {shareable) ® 3~-13
RMS file system® 2-25
RSTS/E system® 1-35
RSTS/E user® 1-36
REX-11 system* 1-25
RSX—-11 user® 1-26
shared ® 1-23, 1-24
systemn object® 1-15, 1-44
VMSe® 1-BD
VMS user® 1-51
LIBR option® 1-23, 1-25, 1-35
Linking object modules ® 1~15, 1-44
Listing format =
See Compiler
LOGICAL+=1 {BYTE) data type® A-5
Logical unit number ® F=3
assigning ® 1-20, 1-48, 2-11t0 2-4
Logical units ® 2-3, 2-98, 2-12, 2-19, 2-21,
2-24,D-3
patching logical unit O to® 1-22
Logical variable
default allocation® 1-12
LST file type value® 1-8, 1~42

Macros
record mode®2-21
Map file® 1-17, 1-33, 1456
Mapping
intrinsic functionp name ® 5-14
MAXBUF Task Builder option® 1-23, 1-43,
2-18, 3—-11
JMP Task Builder switch® 1=-18, 1-48
Multiblack transfers ® 2-13

#

©

e
N

/MU Task Builder switch® 1-17, 145

- /NOF77 switch® 1-68, 2-13, E-1, £-3

Null arguments ® 3—7

Object modules ® 1-1, 1-30, 1-34, 1-50
relocatable ® 1-15, 1-25, 1-44
Object Time System (OTS)® 1-1, 2-14, 2-27
diagnostic messages ® C-23 1o C-37
error processing ® 3—13, 5-13
error recovery methods® 314
libraries* 3-13, 515
module sections ® 3—11
overlay files®*5-15
PSECT usage®3—11
routines ® 3—13
OB files® 1-6, 1-30, 1-42
Octal constant typing® 412
ODL
See Overlay Description Language
ODT system debugging aid® 1-16, 1-45, 1-89
OLB files * 1-15, 1—-44
JOP compiler switch® 1-12
QOPENSU * 2-21
OPENSW ¢ 2-21
OPEN statement® 2-6, 5~3, 7-1 10 7-3
keywords ® 2~12
specifications * 2~21, 2-23
$OPEN statement ® 223
Optimizing overlay structures ® 2--26
ORGANIZATION keyword * 2-16
0TS
See Object Time Systemn
Overflow
integer®4-12
Overlay Description Language (ODL)*®
1-563 w0 1-56
files® 2-25
QOverlays
OTSe5-15
Overlay segments® 1-54

P

pad byte®2-10
PARAMETER Statement ® 52
Position-independent code (PICy® 1-23, 1-24,
3-13
PRINT’
See DISPOSE keyword
PRINT statement ® 2—3
Program blocks ® 5-8
Program limits ® C-22 to C-23
Program section attributes ® 3-8 to 3—-10
Pragram sections (PSECTs}®3-7. 3-9, 3-23,
3-26
btank common block ® E~5
PSECTs
See Program sections
PUTSR FCS record mode macro® 2—21
PUTS$S FCS record mode macro® 2—-21
$PUT macro® 2-23

Q format descriptor® 2=11

READONLY keyword® 2-17
READ statsment ® 2—3, 2-9, 2-19, 2-23, 2-24,
2-28, 3-14
indexed® 2-6, 2-9, 7-61t0 7-11
with Q format descriptor ®* 2—11
Real floating point exponential ,
algorithm®*B—6
Real fioating point exponential—EXP *B-6
Real valued mathematics functions ¢ B—1
RECL keyword ®2—17
Record access modes® 2-4
direct®2-9
keyed®2-9
sequential ® 2-8
Record cells ® 2-8
Record formats® 210
Record Management Services {RMS)
See RMS—-11
Record mode ® 2-14

Index-7

Record mode {cont’d.)

macros® 2-21
Record operations ® 2—-23
Record pointers
open indexed file® 7-3
Records® 2-5, 2-6, 2-8, 2-9, 2-19
accessing®2-4, 2-7, 2-19, D-9
in an indexed file® 2-15, 7—1
buffer size default® F—4
data® 2-15
data limits ® 2—17
deleting® 7-8
end-file ® 2—-20
fixed-length® 2-3, 2—10
formatted® 1-23, 1-49
handling and conversion routines for formatted
*3-12
indexed for sorting®2—-16
locked ® 7—-10
read only ® 2-8
segmented ®* 2—-11
specifying length® 2-17
type® 2-19
unformatied ® 1-23, 1-49
updating ®* 7-7
variable-length®2-11, 7-5
Record siza limits® 1-23, 5~12
RECORDTYPE keyword®2-19
Record vaiue limits®2-17
Registers ® 3-23
Active Page ® 3-9
assignments * 3-3
usage conventions ® 3—4
Relative files® 2-5
RESLIB libraries ® 1-24
SREWIND macro*® 2-24
REWIND statement® 2-22, 224
REWRITE statement® 2~-23, 77
RMS-11#1-15, 1-44, 2-1, 2-4, 2-5, 2-6,
2-9, 2-13, 2-14, 2-18, 2-2310 2-27,
5-12, 5-16
RMS-11Ke2-7, 2-8
RMSLIB® 1—-18, 1-48
RMSRES library ® 1-25, 1~-35, 2-27
/RO compiler switch® 1-12
.ROOT statement® 1-54
RSTS/E task-building ® 1-32
RSX-11 task-building ® 1-15

RSX Emulator® 1-22, 1~-38 _
RUN command® 1-26, 1-32, 1-36, 1-561
failure®*5-17
Run-time formats
minimizing ®* 5-12

‘SAVE’

See DISPOSE keyword
$SAVE PSECT® 1-58
SAVE statement

in overtays® 1-58
Sections :

compiler listing file ® 3-22

in OTS moduies ® 3~11
Sequence numbers

See Internal sequence numbers
Sequential access® 2-8, 2—13
Sequential files ® 2-6, 2-8, 2-13, 2-20, 2-23

2-27, 5-3

unformatted ® 2—12, 2—-19
Shared files ® 2-22, 2-24
SHARED keyword* 2-19
Shared RMS libraries® 2-27
$SHORT module * 5-14
SiN,

algorithm*B-10
SINH,

algorithm *B-8
Slash characters

double® 1-19, 1-32, 1-47

single® 1-19, 1-47
Source listing® 3-22
Source program transformation® 11
/SP compiler switch® 1—-13
Specifying listing options ® 1-12
Spooling

listing file® 1-13

map file® 1-18, 1-45
/SP Task Builder switch® 1-17, 1-46
SORT,

algorithm ®B—12
/ST:xxx compiler switch® 1-13
Stack

execution ® 3-5

pointer *3--3, 3-4, 3-23

.

Standard real, floating point arc cosine function,
algorithm ® B-1
Standard resl, floating point arc cosine function—
ACOS® B~1
Status bits®*3—4
STATUS Keyword # E~-4
STOP statement® 1-26
Storage *3-11
alignment ® 419
in common block ® 3-9
virtual srray ® 3-26
Storage map® 3~22, 3-26, 3-27
listing ®* 3—24
Storage units® 2—17
Subexpressions
gliminating * 59
Subroutines
See also Systemn subroutines
assembly language ® 3—-10
Switch® 1-2
See also under Compiler, Command, and Task
Builder
negative form® 1-6, 1-10, 1-41
SY: default device assignment®2-2
Systemn clock #D-13
System object library (SYSLIB.OLB)}® 1-18, 1-46
System subroutines®*D-1 to D-14
ERRSNS, ERRTST, and ERRSET*3-13, 5-13

T

TAN,
slgorithm® B—-14
TANH,
algorithm *B-8
Task
array allocation® 3-28
size limit® 5-16
Task Builder
invoking ® 1-2
options® 1-18 10 1-24, 2-1, 2-18, 3-9,
3-1n
purpose of PSECT attributes ® 3-7
routine references ® 2—-25
RSTS/E systems® 1-32
RSX-11 systems*® 1-15
switch® 1-16 to 1-18, 14510 1-46

Task Builder {cont’d.)
uses® 1-15
VMS systems * 1-44
Task image®1-1, 115, 1-18, 1-25, 1-32,
1-33, 1-34, 1-35, 1-44, 1-50
memory allocation® 1—-22
Task tarmination® 1-51
TBK command® 1—44 10 1-51
TKB command® 1-15, 1-16tw0 1-19,
1-32 to 1-37
fTR:xxx compiler switch® 1-13
Traceback facility ® 1-59
TSK file type® 1—16, 1-32, 1-44
TYPE statement® 2-3

uic
See User identification code
Unformatted sequential files®2-11, 2-12, 2-18
Unformatted sequential records®2—-11
UNLOCK statement ®2-24, 2-25, 7—-11
$UPDATE macro® 2-23
User azcount {RSTS/E)* 1-29
lUser iuentification code (UIC)® 1-3
USEROPEN keyword® 2-20

v

Variables
allocating® 4—-19
byte® 4-15
control ® 4—16
equivalenced * 4--19
integer®4-11
internal ® 4-20
references t0® 3-23
VARIABLES summary ® 3-28
Variable types
register assignments for® 3-3
Virtual arrays ® 1-38, 3-9, 3-26 to 3-32
VIRTUAL statement® 3-27, 3-28, 3—-30

/WF:n compiler switch® 1-14

index-9

{WR compiler switch® 1-14
WRITE statement®2-9, 2-23
WRITE statements

indexed ® 2-9

X edit descriptor®*E—5

16-indax

