
•

•

INTRODUCTION TO DIBOL-83
Order No. AA-P042B-TK
April 1984

Supersession:

Operating System:

Software Version:

This is a revision.

VAX/VMS. C"rS-300, RSTS/F . Professional,

RSX-11M-PIUS. Wicro/RSX. Professional CTS-300

Applicable to alt products containing DI30L-83

First Revision, April 1984

The information in this document is subject to change without notice and

should not be ::onstrued as a commitment by Digital Equipment

Corporation. Digital Equipment Corporation assumes no responsibility for

any errors that may appear in this document.

The software described in this document is furnished under a license and

may only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on

equipment that is not supplied by DIGITAL or its affiliated companies

The specifications and drawings, herein, are the property of Digital

Equipment Corporation and shall not be reproduced or copied or used in

whole or in part as the basis for the manufacture or sale of items without

written permission.

Copyright 1984 by Digital Equipment Corporation. All Rights Reserved

•

The following are trademarkc of Digital Equipment Corporation:

CTI BUS
DEC
DECmate
DECsystem-10
DECSYSTEM-20
DECUS
DECwriter

DIBOL

MASSBUS
PDP
P/OS
PRO/BASIC
Professional

PRO/FMS
PRO/RMS
PROSE
Rainbow

RSTS
RSX
Tool Kit

UNIBUS
VAX
VMS
VT
Work Processor

TABLE OF CONTENTS

PREFACE

.

CHAPTER

CHAPTER

CHAPTER

CHAPTER

.1

.1.1

.1.2

.1.3

.1.4

.1.5

.2

.3

2.1

2.2

2.2.1

2.3

2.4

2.5

2.6

3.1

3,1.1

3.1.2

3.1.3

3.1.4

3.2

3.2.1

4

4.1

4.2

4.3

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

4.3.7

INTRODUCING DIBOL-83

FROM DIBOLTO DIBOL-83

COS-300
PDP-11sandCOS-350
COS-310andDIBOL-8
CTS-300andRSTS/EDIBOL
VAX. PRO. and RSX DIBOL

DIBOL STANDARDS ORGANIZATION

.

DIBOL-83

TALKING DIBOL-83.

DIBOL-83 CHARACTER SET
DIBOL-83 STATEMENT TYPES

.

Statement Labels

COMPILER DIRECTIVES
DIBOL-83 TERMS
LINE '^'"NTiNUATION

PROGRA... DOCUMENTATION.

DIBOL-83 PROGRAM STRUCTURE

DATA DIVISION

RECORD Statement

COMMON and SUBROUTINE Statements

Field and Argument Definitions

Initial Values

PROCEDURE DIVISION

Procedure Division Statements

PROGRAM CONTROL IN DIBOL-83

DIBOL-83 RELATIONAL OPERATORS
GOTO STATEMENT
DIBOL-83 STRUCTURED CONSTRUCTS.

Using BEGIN-END Blocks

IF Statement...,

IF-THEN-ELSE Statement

WHILE Statement

DO-UNTIL Statement

FOR Statement

USING Statement

Page

1-1

1-1

1-1

1-1

' 1

1-2

1-2

1-2

1-2

2-1

2-1

2-1

2-1

2-2

2-3

2-3

2-4

3-1

3-1

3-1

3-1

3-2

3-2

3-3

3-4

4-1

4-1

4-1

4-2

4-2

4-3

4-4

4-4

4-5

4-6

^-7

///

CONTENTS (CONT.)

CHAPTER

CHAPTER

CHAPTER

CHAPTER

APPENDIX

GLOSSARY

FIGURES

TABLES

5.1

5.1.1

5.1.2

5.2

5.2.1

5.3

5.4

6.1

6.2

6.2.1

7.1

7.2

7.3

8

8.1

8.1.1

8.2

8.3

8,4

8.5

8.6

8.7

8.7.1

8.7.2

3-1

4-1

4-2

4-3

4-4

4-5

4-6

4-1

A-1

ASSIGNMENT, FORMATTING, AND MATH

ASSIGNMENT STATEMENT
Justifying Data in a Field

Formatting Decimal Data For Output

INTEGER ARITHMETIC
Integer Division

OPERATOR PRECEDENCE
INCR STATEMENT

SUBROUTINES

INTERNAL SUBROUTINES
EXTERNAL SUBROUTINES

Universal External Subroutines

ARRAYS AND SUBSTRINGS

DIBOL-83 ARRAYS
ARRAY SUBSCRIPTING
SUBSTRING SUBSCRIPTING

INPUT/OUTPUT OPERATIONS

OPEN STATEMENT
Relative and Indexed Files

CLOSE STATEMENT
INDEXED VS. SEQUENTIAL
READ AND WRITE STATEMENTS
READS AND WRITES STATEMENTS
STORE AND DELETE STATEMENTS
TERMINAL I/O

ACCEPT Statement

DISPLAY Statement

DIBOL-83 CHARACTER SET

FIGURES

DIBOL-83 Program Structure

IF Flowchart

iF-THEN-ELSE Flowchart

WHILE Flowchart

DO-UNTIL Flowchart

FOR Flowchart

USING Flowchart

TABLES

DIBOL-83 Relational Operators.

DIBOL-83 Character Set

5-1

5-1

5-2

5-3

5-4

5-4

5-5

5-5

6-1

6-1

6-1

6-2

7-1

7-1

7-2

7-2

8-1

8-1

8-2

8-3

8-3

8-3

8-4

8-5

8-5

8-6

8-6

A-1

G-1

3-3

4-3

4-4

4-5

4 5

4-7

4-8

4-1

A-2

»
IV

PREFACE

PURPOSE

Introduction to DIBOL-83 is a precursor to the DIBOL-83 Language Reference Manual. It is .ntended for

tne following audiences;

The experienced programmer who is learning DIBOL-83 and needs to become productive as rapidly as

possible in writing, maintaining, or modifying DIBOL-83 programs.

The programmer who knows at least one high-level computer language and wants to learn DIBOL-83

NON-GOALS

This manual is not intended to be used as a reference document and should not be construed as sucn
'. ,ie complete authonty and reference document on the DIBOL-83 Language is the DlBOL-83 Language

Reference Manual.

MANUAL ORGANIZATION

The manual is organized as follows:

Chapter 1 contains a run-down of the DIBOL-83 language: when and why it was developed and how

it evolved into what it is today Chapter i also describes the DIBOL Standards Organization

Chapter 2 is a general introduction of DIBOL-83. This chapter gives a basic desciption of the

language and some of the terms used when discussing the languag*^ This chapter also includes

information on compiler directives and statement labels.

Chapter 3 picks up where Chapter 2 leaves off: going from the general to the specific Program

structure is the mam focus of this chapter and the parts that make up the whole

Chapter 4 discusses program control m DiBOL-83 and also introduces structured constructs

available with DIBOL-83. Each construct is discussed and examples are shown

Chapter 5 contains information on the assignment statement, formatting, and operator prucedence

Chapter 6 explains how DIBOL-83 uses external and internal subroutines

Chapter 7 introduces the concept of arrays and subscripting within a DI80I.-83 program.

Chaptei 8 deals with Input/Output operations within DIBOL-83 An^ the statements used m
performing these operations.

Appendix A contains the DIBOL-83 Character Set

The Glossary defines terms used for DIBOL-83.

ASSOCIATED DOCUMENTS

DIBOL for Beginners

DIBOL-83 Language Reference Manuals

DIBOL-83 System User Guides

DIBOL-83 Language Reference Cards

VI

CHAPTER 1

INTRODUCING DIBOL-83

This chapter introduces the DIBOL-83 language and explains how it evolved from a simple commercial

language into what it is today This chapter aiso discusses the DIBOL Standards Organization (DSO)

1.1 FROM DIBOL to OIBOL-83

The original DiBOL language was developed m the late 60 s as a simple commercial language to serve

as a development tool tor writing applications 'or POP 8 minicomputers The first version of DlBOl was
comprised of a collection of ASSEMBLY language routines Although effective these routines were
complex and slow The compiler printed is iistmgs at a slow rate even with a fast printer Not satisfied

with this, DIGITAL set forth to produce an improved version of the DIBOL language that would meet the

high standards of both the corporation and its customers

1.1.1 ^JS-300

A DIBOL development team ^as formed m 1971 faced with the task of improving DIBOL After a

concentrated effort, the project team produced a fast and efficient DIBOL Compiler interpreter Sort

program, Monitor, and assorted utilities DiBOL was offered as a Commercial Operating System called

COS-300 The initial customer reaction was encouraging ana enhancements were made for succeeding

versions

In 1974 a version of COS-300 was released which allowed up to eight terminals to concurrently execute a

single DIBOL program Included was a *creground data entry package which allowed data entry/mquiry

to lake place simultaneously with the operation of background DiBOL data processing

1.1.2 PDPHsandCOS-350

The advent of the PDP- 1 1 s brought a need for \ proven DiBOL-based system capable of running on such

machines This need was met with the development of an expanded version of the DIBOL language

called DIBOL-1 1 The operating system for this line of PDP 1 1 processors became known as COS-350 In

1975 COS-350 became the first commercial timesharing DIBOL- 1 1 operating system This mitial release

of COS-350 offered multi-u^er facilities for two to four users

1.1.3 COS-310 and DIBOL-8

COS-300 was renamed COS-310 and became a floppy disk based, smgie-user system A highly

competitive product, COS-310 became the first high volume operating system produced by DIGITAL

This single-user DIBOL operating system was used on the PDP-8A family of processors COS 310

supported the original DIBOL language known today as DIBOL-8

COS-310 became the first tightly integrated packaged system produced by DIGITAL and is the only

DIBOL-8 operating system still under active development COS-310 has continued to adapt to customer

needs with each release

1-1

1.1.4 CTS-300 and RSTS/E DIBOL

COS-350 eventually became known as CTS-300 (Commercial Timesharing System). CTS-300 serves as

a DIBOL-11 timesharing operating system for the PDP-11 family.

RSTS/E "S a timesharing operating system that functions in a much larger environment than CTS-300,

supporting many terminal users concurrently. RSTS/E DIBOL enables development work to be done by

multi-users, working simultaneously. RSTS/E contains a number of CTS-300 facilities, which, along with

DIBOL-83 support, gives the two systems the capability of developing some applications on and for either

system.

1.1.5 VAX, PRO. and RSX DIBOL

In the late 70's the VAX-1 1 system became available and soon after VAX DIBOL also became available

The Professional-350, one of DIGITAL'S entries into the personal computer market contained DIBOL as

part of its package. DIBOL has recently become available for RSX-1 IM-PLUS systems to complete the

availability of DIBOL across the family of systems now offered by DIGITAL Today s DIBOL is known as

DIBOL-83 ;.nd has evolved through the efforts of the DIBOL Standards Organization (DSO) •
1.2 DIBOL STANDARDS ORGANIZATION

The DIBOL Standards Organization (DSO) was formed in 1979 to establish language standards for

DIBOL and to eliminate the incompatibilities of DIBOL between systems DSO is made up of DIBOL
developers and customers who discuss enhancements and customer needs

After countless meetings, discussions, and testing. DSO produced a new language standard DIGITAL

produced and released implementations based on this standard (DIBOL-83) for CTS-300, RSTS/E.

PROFESSIONAL. VAX, and RSX-1 IM-PLUS,

Today DIBOL-83 is recognized as an efficient high-level programming language, supported by a proven

family of operating systems and processors This dictates a need for control and standardization which

DSO offers.

1.3 DIBOL-83

Through the efforts of developers and customers DIBOL evolved into today's DIBOL-83. an interactive

high-level business language DIBOL-83 offers

• Compatibility across DIGITAL'S range of computers, from DIGITAL s Professional Personal

Computer through the VAX systems

• Flexibility with record handling through subscripting, array handling, substring operations, and

record redefinition.

• A simple-to-follow syntax that uses English action verbs as the first element characterizing an

action to be performed

• Sequence control statements that allow /ou to write structured programs and reduces

development, testing, and maintenance time

• A large set of DIGITAL-supplied external subroutines that help you develop software as

efficiently as possible

From DIBOL to DIBOL-83, this language has continued to adapt and develop according to its customer s

needs and will continue to do so m the future

1-2 Introducing DIB0L-d3

CHAPTER 2

TALKING DIBOL-83

This chapter briefly introduces the DIBOL-83 language and describes some of the terms that are used

when talking about the language.

2.1 DIBOL-83 CHARACTER SET

The DIBOL-83 Character Set is comprised of a subset of symbolic characters from The American

Standard Code for Information Exchange (ASCII) characters Appendix A lists the ASCII characters and

their associated numeric codes.

2.2 DIBOL-83 STATEMENT TYPES

DIBOL-83 uses six functional groups of statements They are:

Compiler Directives and Deciarations which are instructions tnat provide information on how to

compile a program.

Dats Specification Statements which identify and define all characteristics on data processed by

the program.

Data Manipulation Statements which perform conversion and assignment tasks.

Control Statements which modify the order of statement execution within a program.

Intertask Commiunications Statements which allow communication between programs

Input/Output Statements which control transmission and reception of data between memory and

input/output devices.

DIBOL-83 statements are English verbs which represent actions to be performed (such as READ.
WRITE. SLEEP, OPEN, and CALL).

These statements may also contain arguments, expressions, or other statements Arguments may be

symbolic data names, references to statement labels, and expressions of data values or relationships.

Arguments specify the objects of the action being performed by the statement

2.2.1 Statement Labels

A statement label is a unique, symbolic name which identifies a specific statement in the Procedure

Division. Statement labels are used with the GOTO statement to transfer program control The GOTO
statement is discussed in Chapter 4.

2-7

Statement label names must begin with an alphabetic character followed by any combination of

alphabetic or decimal characters, and the two special characters $, _ A label name may begin at any

column on a line. It must precede the statement it identifies and must be followed by a comma. A
statement label must be on the same line as the statement or be on a line by itself preceding the

statement.

In the following example the label AGAIN identifies the WRITES statement which follows it When the

GOTO statement is executed, control transfers to the WRITES statement which AGAIN identifies.

AGAIN,
WRITES, (1,BLANK)

IF (COUNT LT. 3) GOTO AGAIN

2.3 COMPILER DIRECTIVES

DIBOL-83 has a collection of Compiler Directives which provide instructions about the program to the

compiler. Tl^iey can be used anywhere m the program and they are not executable at run time.

The Compiler Directive PROC tells the compiler where the Data Division ends and the Procedure

Division begins. PROC can be used only once m a program and only in one place It is placed at the end

of the Data Division.

The Compiler Directives serve many other functions They can be used to enable (LIST) or disable

(.NOLIST) the listing of compiler source code They can tell the compiler to include a top-of-page

command (PAGE) and place ? new title m the page header (TITLE) There is even a directive that

informs the compiler to open a specified fiie and continue the compilation using that file (INCLUDE)

There are two sets of Compiler Directives which can be used to conditionally compile statements;

.IFDEF-.ENDC and IFNDEF- ENDC

.IFDEF causes statements that follow it (up to ENDC) to be compiled if a specified variable (field or

record) is defined In the following example the CALL statement is not compiled because the variable

BNKNBR IS not a defined variable

RECORD
NAME, A12

ADDR, A15
PROC
.IFDEF BNKNBR

CALL RLCALC
ENDC

.IFNDEF causes statements that follow it (up to ENDC) to be compiled if a specified variable (field or

record) is NOT defined In the following example the CALL statement is compiled because the variable

BNKNBR IS not a defined variable

2-2 Talking DIBOL-83

RECORD
NAME, A12
ADDR, A15

PROC
IFNDEF BNKNBR

C'LLRECALC
ENDC

All the DIBOL-83 Compiler Directives are described in detail in the DIBOL-83 Language Reference

Manual.

2.4 DIBOL-83 TERMS

DIBOL-83 has Its own set of terms These terms may or may not be familiar to you Later chapters in this

manual may use some of these terms The purpose here is to familiarize you with these terms at this

point in the boox. Here are a few

Alphanumeric
This IS one of the two data types recognized by DIBOL Alphanumeric fields may contain any

characters from the character set

Array

An array is a technique for specifying multiple occurrences of a field of a certain length and type

Channel
A channel is a number that represents a device or file that is associated with an input/output

statement.

Comments
Comments are informative notes that can be included m a DIBOL program Comments must be

preceded by a semicolon (,)

Keyword
A keyword is part of a command operand and it consists of a specific character string.

Mode
A mode is a designation used m an OPEN statement which indicates the purpose for which a tile

was opened

Subscript

A subscript IS a designation which specifies particular parts (characters, values records) wi'hin

an array.

Trappable error

A trappable error is an error that can be handled by the executing program so that execution will

not terminate

2.5 LINE CONTINUATION

DIBOL code can be continued onto another ime by using an ampersand (&) Trie ampersand specifies

that a statement is continued This is accomplished by placing the ampersand in the first character

position on the line on which the statement will be continued Only one statement may appear on a line

Talktng DIBOL-83 2-3

2.6 PROGRAM DOCUMENTATION

In order to provide easier understanding of what a program is doing, comments are allowed <n DIBOL
programs. A semicolon (;) is used for this purpose

A semicolon indicates to the DIBOL compiler that what follows is a comment and is not executable, the

compiler ignores any characters after a semicolon A semicolon may be contained in a literal without

indicating a comment A comment may begin at any column m a line of DIBOL source code If a comment
is to be continued on a following line, the semicolon must be repeated

2-4 Talking DIBOL 83

CHAPTER 3

DIBOL-83 PROGRAM STRUCTURE

A DIBOL-83 program is made up of two majOr parts a Data Division and a Procedure Division This

chapter explains the characteristics of these two program sections and also discusses the DiBOL 83

assignment statement

3.1 DATA DIVISION

The Data Division of a DIBOL-83 program contains statements that define and identity data used by the

program All variables to be used m the program must be declared m the Data Division

3.1.1 RECORD Statement

The RECORD statement iS me most commonly jsed DIBOL-83 statement withm the Data Division This

RECORD statement is known as a Data Declaration statement The RECORD statement defines the

record, data, or work area that will be processed via actions specified in the Procedure Division

RECORD names must be no larger than six characters and must begin with an alphabetic character

This character may be followed by any combination of alphabetic, numeric and the two special

characters $ and _ The following are examples of RECORD statement names

RECORD PAYROL RECORD NUMBER RECORD OUTPUT

Each name begins with an alphabetic character

3.1.2 COMMON and SUBROUTINE Statements

The COMMON and SUBROUTINE statements are the other Data Declaration statements which can be

used in the Data Division COMMON is similar to RECORD except that fields defined m COMMON can

be also used by an external subroutine An external subroutine is a unit of (DIBOL) code which is

separately compiled and may be linked into many different programs Subroutines are discussed m detail

in Chapter 6

COMMON names must conform to the same rules as RECORD names When a COMMON area is to be

used by a subroutine, that COMMON area must be defined identically m both the calling routine and the

subroutine The following are examples of COMMON statement names

COMMON EMPNM COMMON BALNC COMMON SALRY

A SUBROUTINE statement identifies a program as an external subroutine This subroutine can be called

into the mam program via an XCALL statement XCALL will be explained m more detail later on in this

book The following are examples of SUBROUTINE statement names

SUBROUTINE TOTAL SUBROUTINE SCALE SUBROUTINE PHODU

3 J

3.1 3 Field and Argument Definitions

RECORD and COMMON must De tollowed Dy one or more field defm.tions and SUBROUTINE mus! De

followed by one or more argument definitions Field definitions define ^eids or vanaces ^ithm a

RECORD or COMMON area Field and argument definitions (names) must t)egin witri an alphabetic

character This character may be toKowed by any combination ot alphabetic numeric and the 'wo

special characters $ and __ All field names must be followed by a comma

All fields have a field size and data type DiBOL 83 supports two data types alphanumeric and dt^^mai

Fields do not require names Only a comma is required before the data type specification unnamed
fields cannot t)e airectly referenced trnm the P''0cedure Division put they can pe accessed by

referencing the record under which they are de'med

In the upcoming example the tieid <s named SUM and its data type is identified as oemg deci'riai 'Di

Decimal fields contam .nteger quantities 'epreserted by the digits 0-9 A negative value is encoded with

the right-most digit

If no sign appears m the field or if the plus sign s present the value is positive the value is negative oniy

if the minus sign is present in the field

SUM D1

The number i following the D defines the fieid size SUM may contain i character which may bf> •'

positive or negative integer m the range 0-9

In the next example WORDS is an alphanumeric i Ai tield Alphar^umenc fields may contain any character

from the character set Appendix A con'ams the DiBOL-83 character set WORDS has a field s;/e of 23

characters

WORDS, A23, The sum of 2 pius 3 .s

NOTE

Both record ard field names can be referred to as

vanabies because the values they contain can

change during program execution

Subroutine argument definitions are simnar to field definitions except that they specify the data passed

between the external subroutine and the program that is calling the subroutine An argument definition

name must begin with an alphabetic character This character may be followed by any combination of

alphabetic, numeric, and the two special characters $ and „ Tne argument name must be followed by a

comma

3.1.4 Initial Values

All DIBOL-83 fields have initial values An initial value is the original value a field has when program

execution begins DIBOL-83 supplies a default mitial value for each field or the programmer may specify

an initial value

3-2 DIB0Ld3 Program Structure

DIBOL-83 supplies an initial value of spaces for alphanumeric fields. In the following example ANSWER
contains 1 space.

ANSWER. A1

Zeros are the initial value supplied for decimal fields. In the following example SUM contains 1 zero.

SUM. D1

The programmer may specify initial values after the field size, separated by a comma. Apostrophes (')

and quotation marks (") may be used to delimit initial values for alphanumeric fields; initial values for

decimal fields have no delimiters.

In the following example WORDS has a programmer-specified initial value

WORDS. A23. The sum of 2 plus 3 is
'

Whatever is contained within the delimiters is taken as the initial value, The initial value in WORDS
contains tfie following string of characters;

The sum of 2 plus 3 is

The following example shows a programmer-specified initial value for a decimal field:

NUMBER. D1, 5

t
This specifies a decimal field named NUMBER with a field size of 1 and an initial value of 5

3.2 PROCEDURE DIVISION

The Procedure Division in a DIBOL-83 program always follows the Data Division and contains executable

statements which work with the data declared in the Data Division The PROC Compiler Directive

separates the Data Division from the Procedure Division PROC must appear in every program to serve

this function. It does not affect the processing that occurs within the program.

Figure 3-1 shows a schematic drawing of a typical DIBOL-83 program structure.

f^Ttcmowm iW*i«*r

FNC

Cjl«r<MM SuttrOuIKO

*»Oi»db^ C^m *T

Figure 3-1 DIBOL-83 Program Structure

DIBOL83 Program Structure 3-3

;
r^,'.-^-'.^yr-_"^f .«>v

3.2.1 Procedure Division Statements

The Procedure Division is made up of four different groups of statements They are:

Data {Manipulation Statements which are used for conversion and value assignment

Control Statements which are used to modify the order of statement execution within a program

Intertask Communications Statements which allow communication between programs

Input/Output Statements which control the transmission and reception of data between memory
and input/output devices

Some of the statements in each of the above groups are introauced and discussed further on m this

book. They are all discussed in detail in the DIBOL-83 Language Reference Manual

3-4 DIBOL -83 Program Structure

CHAPTER 4

PROGRAM CONTROL IN DIBOL-83

This chapter introduces DIBOL-83 program control and the elements which can be used to achieve

program control.

4.1 DiBOL-83 RELATIONAL OPERATORS

DIBOL-83 offers a group of relational operators which can create relational expressions that affect

program control. In the following example a relational expression containing the relational operator LT

(for less than) tests to see if the value of COUNT is less than 3. The expression evaluates as true it the

value of COUNT is less than 3 ind false if the value of COUNT is not less than 3

IF (COUNT LT. 3) GOTO AGAIN

When IF is executed, if the value of COUNT is less than 3. the GOTO statement is executed If the value

of COUNT IS equal to or greater than 3, GOTO is ignored and the next statement is executed

Table 4-1 contains all the DIBOL-83 relational operators for forming relational expressions

Table 4-1

In this example the GOTO statement allows the statements within the label AGAIN to be executed over

and over until the value of COUNT becomes 3 At that time program control will pass to the CLOSE
statement.

Program control can also be affected via a DIBOL-63 structured construct The following section

introduces these constructs.

4.3 DIBOL-83 STRUCTURED CONSTRUCTS

DIBOL-83 offers an assortment of structured constructs that allow structured programming for all

DIBOL-83 programs. This section introduces the DIBOL-83 constructs and illustrates their use

Currr.itly there are six structured constructs m DIBOL-83 They are

DO-UNTIL which repetitively executes a statement UNTIL a condition is true

FOR which repetitively executes a statement based on an index, with an initial, final, and step

value.

IF which executes a statement IF a condition is true

IF-THEN-ELSE which executes one of two statements based on a condition

USING which conditionally executes one statement from a list of statements based on the

evaluation of an expression

WHILE which repetitively executes a statement as long as a condition is true

Each of these structured constructs is explained m detail m the following sections

4.3.1 Using BEGIN-END Blocks

A program is created to perform a certain task or)0b In order to do this job the program may have to go

through a number of smaller steps, tasks, or functions Many times there will be a use for one or more of

the DIBOL-83 structured constructs withm these steps

The BEGIN-END block groups individual statements into a single entity (unit; v.hich can be conditionally

executed or repeated This results m a more controlled and readable program Each one of these

functions must be earned out for the program to complete its)0b The BEGIN-END block makes it easy

for the programmer to easily identify a certain function and to quickly make a change

In the following example, the outer BEGIN-END block contains statements which are repetitively

executed until CUSNAM equals spaces The inner BEGIN-END block contains statements which are

executed only if the current customer s balance is over $100

4-2 Program Control in DIBOL-83

DO
BEGIN
READS (I.CUSRECEOF)
IF BALANCGT 100

BEGIN
NAME = CUSNAM
AMT = BALANC
WRITES {6.PLINE)

END
END

UNTIL CUSNAM EQ SPACES

The examples shown throughout this book will at times, use BEGIN-END blocks to illustrate their use

The purpose here is to show their value withm a program

4.3.2 IF Statement

If executes a statement only if a condition is true The condition that is tested can be either true (non-

zero) or false (zero) If the condition is true then me statement is executed It the statement is false (zero)

then the statement is not executed

Figure A-i contains a flowchart of the iF statement

•est

V^ conaition

false

true

t

In this example the program is reading a field named BALANC The program is checking to see whether

BALANC IS over $1000 If the program tmas a BAlANC greater than $:000 the WRITES statement is

then executed printing out the contents of CUSNAM The BALANC fieid s then cleared and then the

program is instructed to read CUSFIL

4.3.3 IF-THEN-ELSE Statement

IF-THEN-ELSE executes one of two statements cased on a test condition The condition is a decimal

expression that determines which of t^e two statements is to t>e executed

The test condition must be either true (non-zero) or false (zero) if the condition is true the statement

following the THEN is executed if the condition is false the statement following tne ELSE >s executed

Figure 4-2 contains a flowchart for tne IFTHENELSE statement

test

condition
true

false

X
execute

statement 2

±
execute

statement 1

Figure 4-2 IF-THEN-ELSE Flowchart

In the following example BOOKS is tested to determine whether a Dook is overdue The iF THEN ELSE
statement determines what wiii be displayed o^ the terminal as a result of this test

READS (1 BOOKS)
IF OVERDU GT 30

THEN
DISPLAY (15, TITLE, IS ove' a month late)

ELSE
DISPLAY (15. TITLE. IS less than a month late)

4.3.4 WHILE Statement

WHILE repetitively executes a statement as long as a condition is (remamsi true The condition is

evaluated prior to each possible execution of the statement The condition is either true (non-zeroi or

false (zero)

If the condition is true the statement 'S executed if the condition s false the statement is not executed

4-4 Program Control m DIBOL-83

Figure 4-3 contains a flowchart illustrating how WHILE works

est

JittOfi

'aistf

«iecute

Figure 4 3 WHILE Flowcharl

The following program segment accepts a ime '•om the terminal The WHILE statement is used to trim

trailing spaces from th€> mput ime

RECORD INLINE

CHR.
RECORD

PROC

80A1

SIZE. D2

OPEN (1 I TT)

READS (MNLINE)
SIZE = 80

WHILE SIZEGT9
SIZE = SIZE-1

.
Characters input

, Number of characters

Open terminal

Accept terminal input

. Set size of line

Trim line

4.3.5 DO-UNTIL Statement

DO-UNTIL IS used to execute a statement until a test condition is true Figure 4-4 shows a flowchart for

the DO-UNTIL structured construct Notice that the statement is executed repeatedly until the lest

condition results in a true condition

«xf»tutp

statement

condition

true

Figure 4-4 DO-UNTIL Flowchart

Program Control in DIBOL 83 4 5

The following example illustrates the DO-UNTIL statement. In this example the program reads customer

records (CUSREC) until one is found with a balance (BALANC) over $500.

DO
READS (1,CUSREC. EOF)

UNTIL BALANC.GT.500

The sequential reading (READS) of the file is stopped once a record with a balance (BALANC) exceeding

$500 is read. The program direction is then re-directed to perform another task, like creating a list of

those records having a balance over $500. In the following example the program creates a list of the

records having balances over $500 until CUSNAM is blank.

DO
BEGIN
READS (1.CUSREC.EOF)
IF BALANC.GT.500

BEGIN
NAME = CUSNAM
AMT= BALANC
WRITES (6.PLINE)

END
END

UNTIL CUSNAM.EQ.SPACES

4.3.6 FOR Statement

FOR will repetitively execute a statement To best explain how FOR works it is necessary to look at the

format:

FOR dtield FROM initial THRU final [BY step] statement

where:

dfield

initial

final

IS a decimal field to be incremented.

is a decimal expression which specifies the initial value to be assigned to dfield.

is a decimal expression which specifies the final value for dfield.

step is a decimal expression which specifies the value to add to dfield each time through

statement IS a DIBOL Procedure Division statement.

Prior to each execution of statement, dfield is tested to determine if it has reached its limit If dfield has not

reached its limit, statement is executed.

If the loop IS exited normally, dfield will equal the previous value of dfield plus step Modifying the initial

value, final value, or step value in the FOR loop has no effect on the execution of the FOR loop

4-6 Program Control in biBOL-83

Figure 4-5 contains a flowchart representation of the FOR statement.

(positive step value)

1-tinal • iinai

i-step • (MP
dfiaicl • initial

!_.

(negative step value)

I final • final
|

I step -Slap
I

dftaU " initial

y « (JhaM

< IMW than
"\ t-Mnal

:i
no

•xacuta
statanwni

[]
ddakj •«dlwtd * iMap3

Figure 4-5 FOR Flowchart

In the following example customer record*. 100 through 200 (inclusive) will be read and displayed

FOR REGNO FROM 100 THRU ?00

BEGIN
READ (1.OUST.REGNO)
WRITES (8.GUST)

END

4.3.7 USING Statement

Read customer record

Display the record

USING conditionally executes a statement from a list of statements based on the evaluation of an

expression. The expression is evaluated and then compared with each match expression within the

case-label (list of match expressions) USING, like FOR. is best explained by first looking at the format

USING selection-value SELEGT
{\mexp[,...]]),statement

ENDUSING

where:

selection-value

IS an alphanumeric field or literal, a decimal expression, or record.

mexp is one or more match expressions in the following format:

value

value THRU value

statement is a DIBOL Procedure Division statement

Program Control in DIBOL-83 47

The match expression (mexp) is referred to as a case-label. Each case-label has an accompanying

statement which is executed if the case-label matches the selection-value. Once this happens. USING is

exited. If no match is found, no statement within USING is executed

Figure 4-6 shows a flowchart depicting the USING statement.

The following program displays a message indicating which case of USING was selected

RECORD

PROC

AGAIN,

•
EOF.

CHARS, D3

OPEN (l.l.'TT:')

WRITES (1. Enter 3 characters')

READS (1,CHARS, EOF)
USING CHARS SELECT

('AAA),

WRITES (1

('AAB' THRU
WRITES (1

('BAA' THRU
WRITES (1,'

.'1st case selected)

AZZ)
,'2nd case selected)

WZZ)
3rd case selected')

zzzi('XXX', 'YYY',

WRITES (l,'4th case selected")

()

WRITES (I.Null case selected)

ENDUSING
GOTO AGAIN
CLOSE 1

STOP

Characters entered

Open terminal

Display prompt

Get response

Branch based on CHARS

Close terminal

All the DIBOL-83 structured constructs, as well as all DIBOL-83 statements, are completely described m
The DIBOL-83 Language Reference Manual.

Program Control in DIBOL-83 4-9

CHAPTER 5

ASSIGNA/l;iNT, FORMATTING, AND MATH

This chapter introduces the assignment sfatement, formatting techniques and DIBOL-83 math Areas

such as operator pre cedence and the INCR statement are also included m this chapter

5.1 ASSIGNMENT STATEMENT

One of the most often used statements m DIBOL is the assignment statement The assignment

statement in DIBOL-83 assigns a value to a field or record and has the tollowing general format

field or record to receive the value » source of the value

The source may be another field or record, a literal, or an expression

In the follov^ing example, SUM receives a value (5) from the expression 2+3

SUM = 2 + 3

The following example introduces an assignment statement with a variable as part of the source

expression This assignment increments the value of the count by l

COUNT = COUNT + 1

There are cases where assignment statements move data between a source and destination of different

sizes.

Where the destination has more character positions than the source, excess positions are filled with

default values. If the destination field is alphanumeric, the excess positions are filled with spaces If the

destination field is decimal, the excess positions are filled with zeros

When data is moved into a numeric field, the data is right-justified and truncation occurs on the leftmost

digits. When data is moved into an alphanumeric field, the data is left-justified and truncation occurs on

the right-most characters.

In the following example RATE is a six character field, and NEWRTE is a five character field Data moved
between these fields will have a zero added in the left-most character position of RATE, if NEWRTE
contains 05000, RATE will contain 005000

RATE = NEWRTE

If 05000 was moved into a three character decimal field, the fielc would accommodate the three zeros on

the right, 05 would be truncated If ABC were moved into a two character alphanumeric field, the field

would accommodate AB, C would be truncated

5-f

5.1.1 Justifying Data in a Field

In cases where there are fewer characters in a tield than the field size allows. DIBOL positions the

characters in the field by justifying them

Characters m alphanumeric fields are lett-justified DIBOL positions the characters beginning ^ith the

left-most character position and. when all characters have been placed, fills any remaining positions with

spaces.

If the name William were entered to the field REPLY, which can accept a name up to 30 characters

REPLY would contain the seven characters William followed by 23 spaces

REPLY A30

W 1^

. _ .,1
I
i i A A

m
Characters are right-justified <n decimal fields DiBOL positions the characters Degmmng with the right

most character position and. when all characters nave been placed fills any remaining positions with

zeros

If the field COUNT contained the value 2 it wouid contain the character 2 preceded by one leading zero

(02)

5.1.2 Formatting Decimal Data for Output

DIBOL provides a way to format decimal data that is to D© output to a file or to a terminal "''^e structure

which specifies the formal is called an edit masK A^n edit mask is a picture ot now the output data is to

look.

First, the decimal data rriust De moved to an aipnanument field because the output tieid will contain non-

numeric characters and an edit mask can be specified only as part of an assignment statement

In the following example the data m the decima: field RATE is moved to the output alphanumeric tieid

ARATE As pan of that assignment statement an edit mask is specified as an alphanumeric ute^a'

separated from the source field RATE Dy a comma

ARATE = RATE $$$$X XX

Each time tne program outputs a 'ecord 'o i^e prmt tiie trie data m ARATE is formatted according to tn^s

edit mask Each $ and each X can De 'epiaced Dy a digit moved from RATE mto ARATE When tne data is

moved, the symbols $ and X are replaced by digits with replacement beginning on the right

For example the following table shows several examples of what the result would be or data moved 'rom

RATE to ARATE using $$$$X XX

If RATE contains; ARATE will contain:

2345

1000

34

12345

123456

S23 45

$10 00

SO 34

$123 45

$1234 56

$0 00

The X IS fixed, it is always replaced by a digit The dollar sign, however, floats, a maximum of one will

appear m the output Digits replace the dollar signs until all digits have been moved 'rom RATE mto

ARATE When all data is moved, one dollar sign will remain on the left to show that the output indicates

dollars

If the alphanumeric output field is too smaii to accommodate the maximum number o^ characters that

could be moved from the decimal field and the formatting characters, then some ot tne formatting

characters could be lost and/or data could be truncated on the left and lost RATE s field s>ie is six and

ARATE s field size is eight The fields are different sizes because allowance must be made for the

decimal point and dollar sign of which each occupies a character position m the alphanumeric output

field. ARATE. therefore, must have an edit mask of eight characters to be sure that a dollar sign will

always appear m the output

The following table shows several examples of what the result would be for data moved from RATE to

ARATE if both fields had a size of six characters and the edit mask was $$X XX

If RATE contains: ARATE will contain:

•

2345

1000

34

12345

123456

$23 45

$10 00

$0 34

123 45

234 56

$0 00

Assignment. f-ormaWng. ana Math 5-3

Study the shaded examples. Where the data is 1 2345, all of the characters were output because the edit

mask can accommodate up to five characters. The dollar sign, however, is lost because the left-most

dollar sign is replaced by the 1 . Where the data is 123456, the 1 is truncated and lost, because the mask
can accommodate only five of the characters.

There are other symbols and options available with edit masks; for a complete discussion of this topic,

see the DIBOL-83 Language Reference Manual.

5.2 INTEGER ARITHMETIC

DIBOL-83 processes all numeric data as integer data. Legal DIBOL-83 numeric data consists of the

integers through 9. Integers do not include decimal points, implied or otherwise.

DIBOL-83 can perform arithmetic using the following operators:

-- addition

In the following program salary is calculated and the result is formatted so as to indicate the actual sa'ary

in dollars and cents.

RECORD
SALARY.
AMOUNT,
HRRATE,
HRSWKD,

WORKER
D12
A12

D4,1235

D4.3555

PROG
OPEN (I.O.TT:)

SALARY - (HRRATE * HRSWKD)#2
AMOUNT = SALARY. $ XX. XX
WRITES (1,AMOUNT)
CLOSE 1

END

Salary carried out to 8 places.

Field for calculated result.

Hourly rate carried to 2 decimal places

Hours worked carried to 2 decimal places

Open channel 1 to the terminal.

Calculate the wages and round oft

Place the result in AMOUNT
Write out the contents of AMOUNT

Notice that AMOUNT is a i A (alphanumeric) field Only alphanumeric fields can be output to a terminal

Other formatting techniques are described in the DIBOL-83 Language Referuncb Manual

5.3 OPERATOR PRECEDENCE

Like other languages DIBOL-83 maintains operator precedence, i e , operators are processed from left to

hght with the exception that multiplication and division are done before addition and subtraction

Operations within parentheses are done first. The following exc nples illustrate how precedence affects

the outcome of a mathematical operation

For 6-1-4-2 the result is 8

For 6*4-2 the result is 22

For 6 * (4 - 2) the result is 12

For 8/4 - 2 the result is

For 8/(4 - 2) the result is 4

These examples do not include all the DIBOL-83 operators and illustrate only a few instances where one
operator (for example, parentheses) can affect a mathematical operation Refer to the DIBOL-83

Language Reference Manual for the complete table on operator precedence

5.4 INCR STATEMENT

It is often necessary to use a counter when doing various types of programming tasks. These tasks can

be best served via the INCR statement. The INCR statement increments the value in a decimal field

(serving as a counter) by one.

In the following example the field COUNT is incremented by 1 each time the statement is executed The
first time the statement is executed the value of count is incremented from to 1 , the second time from 1

to 2, etc,

INCR COUNT

An assignment statement is required to increment a decimal field by more than 1 For example. COUNT
= COUNT -»- 2.

Assignment. Formatting, and Math 5-5

CHAPTER 6

SUBROUTINES

There are two types of subroutines; internal and external This chapter will explain the differences

between the two and will explain how they are used within a DIBOL-83 program.

6.1 INTERNAL SUBROUTINES

Internal subroutines are units of DIBOL code, present within the program, and used repeatedly

throughout the program. An internal subroutine allows lines to be referenced as a unit so that the lines do
not have to be repeated within the program each time they are needed. The calling of the subroutine has

the same effect as repeating the lines of code m the subroutine The CALL statem.ent transfers program

control to an internal subroutine. When the subroutine executes the RETURN statement, control is

returned to the statement logically following the CALL.

In the following example the CALL statement calls the PROFIT subroutine to perform a function that will

need to be repealed throughout the program At the end of the subroutine PROFIT the RETURN
statement returns program control to the line beginning with the WRITES statement At the end of the

subroutine TAX, the RETURN statement returns program control to the line which reads PAT=PBT-
TAX.

CALL PROFIT
WRITES (6,PR0FIT)

CLOSE 6

STOP

;Output profit

iCiose the file

iSubroutme to calculate profit

PROFIT, PBT= PRICE-COST
CALL TAX
PAT=PBT-TAX
RETURN

iCompute pre-tax profit

;Get the tax

;Compute post-tax profit

-.Subroutine to calculate tax

TAX, TAX=PBT8
IF TAX. GT.MAX TAX = MAX
RETURN

:Compute the tax

6.2 EXTERNAL SUBROUTINES

External subroutines are units of code which are not contained m the program These subroutines may
be used repeatedly throughout the program via an XCALL statement This procedure eliminates the need

to repeat the .ines of code wherever they are needed

6-1

Arguments in the main program may be passed to subroutmes, The size of the arguments are specified

in the calling program. Also, when passing arguments the argument definitions within the subroutine

must correspond in both number and data type with the arguments specified in the XCALL statement in

the calling program. The first argument definition specified in the subroutine refers to the first data item

specified in the XCALL statement, the second argument definition specified in the subroutine refers to

the second XCALL argument, etc. These rules are explained in detail in the DIBOL-83 Language
Reference Manual.

XCALL transfers control to a subroutine that is external to the calling routine

The format for the XCALL is:

XCALL name (ary[,...|)

The name refers to the name of the subroutine being called and arg refers to the alpha field, alpha literal,

decimal field, decimal literal, expression, or record which contains the subroutine arguments.

The external subroutine is compiled separately, but linked to the calling routine DIBOL-83 supplies an
external subroutine library which contains many useful subroutines External subroutines may be user-

wntten and compiled using the SUBROUTINE statement

6.2.1 Universal External Subroutines

DIGITAL supplies an external subroutine lit -y with all of its DIBOL-83 implementations This library.

known as the Universal External Subroutine Library (UESL) contains many useful subroutines which

provide similar capabilities under each operating system These subroutines are described m the

DIBOL-83 Language Reference Manual

The following example uses the UESL subroutine JBNO to illustrate how an external subroutine is used
JBNO returns the job number and the following program will display the job number

RECORD

PROC

fVISG

A1 1, ;job number
'

03 JOB,

OPEN (1,0. TT •)

XCALL JBNO (JOB)

WRITES d.MSG)
CLOSE 1

STOP

Job number

Open the terminal

Get)ob number
Display Job number 000"

Close the terminal

6-2 Subroutines

CHAPTER 7

ARRAYS AND SUBSTRINGS

This chapter introduces the concept of arrays and subscripting in DIBOL-83

7.1 DIBOL-83 ARRAYS

An array is a group of related fields that share the same data type, field size, and symbolic name (array

name) Arrays hold large areas of information from which you can use over and over again during

program execution The number of fields m the array is identified by the array field count The array field

count rs specified before the data type specification

The following example specifies an array of four fields, each field has the decimal data type (D) and a

field size of five NEWRTE therefore, is an array of four, five-character decimal fields

NEWRTE, 4D5

NOTE

The method for 'dentifymg specific fields in an

array is called array subscripting This is explained

later m this chapter

Arrays may contain initial values as do fields If lO initial value is specified by the programmer, each of

the fields m the array will contain spaces 'f the array is alphanumeric or zeros if the array is decimal If

initial values are to be programmer-specified, each field must have its value specified separately

In the following example the array NEWRTE has four fields Each fields initial value is specified by the

programmer The following table shows now the initial val-es correspond to the array s fields

NEWRTE. 4D5, 05000 05600.

06000 07000

NEWRIE

Where the programmer specifies initial values, fields may not be skipped I* the second field m an array is

to have an initial value specified, the first field must also have an initial value specified i* there were a

third field it could be lett unspecified, and it would contain the DIBOL-suppiied initial value tor its data

type For example consider the following array defmit on

ARRAY .3A5, ABCDE , FGHIJ

The array would contain the following

ARRAY VALUE

Field 1

Field 2

Field 3

ABCDE
FGHIJ

(5 blanks)

7.2 ARRAY SUBSCRIPTING

Array subscripting identifies specific fields withm an array Arrays are referenced m the Procedure

Division using the array name and a smgie subscript The subscript is specified n parentheses after the

array name and must be a decima' literal or a decimal field name The subscript s value determines

which field m the array is referenced

For example, if there were an array named COST containing three fields !*^e firs! field would be

referenced as C0ST(1) and tne second and t^i.rci fields as C0ST(2) and COSTiS) If no subscript is

specified, the first field is accessed, COST and COSTd) reference the same fieid COST therefore is

the array name and C0ST(1) C0ST(2) and C0STi3) are the names of fields m the array

RATE = NEWRTE(RATECD)

The example refers to array NEWRTE This example uses the decimal field RATECD as the subscript

NEWRTE contains four fields so RATECD should equal V 2, 3, or 4 A value of 1 m RATECD references

the first field in NEWRTE A value of 2 m RATECD references the second field, etc

The values m NEWRTE are programmer initialized If RATECD is 1 NEWRTE(RATECD) contains 05000,

if RATECD IS 2 NEWRTE(RATECD) contains 05500 etc

7.3 SUBSTRING SUBSCRIPTING

Substring subscripting is a method for directly referencing a specific substring residing withm a record or

field Subscripts are decimal values specified as literals or field names, which are enclosed m
parentheses following the subscripted field or name

The subscripts identify specific character positions m the record or field being subscripted The first

subscript specifies a substring s beginning character position The second subscript specifies the

substring s ending character position

A simple way of understanding substrings <s to thmK of thp alphabet In the following example the field

STRING contains the alphabet The subscripts are referencing beginning and ending character

positions

7-2 Arrays ana Substrings

STRING A26 ABCDEFGHIJKLMNOPQRSTUVWXYZ"

STRING(1.4) IS ABCD
STRING(5 5)is E

STRING(9.14) IS IJKLMN
STRING(25 26)is YZ'

In the following example the first subscript specifies the first character position m ANSWER idefmed m
the Data Division as A20) The second subscript specifies the third character position Tr»is reference

accesses positions 1 -3 m ANSWER positions ^-20 are ignored If the subscripts *vere 5 and 1 5 positions

5 through 15 inclusive would be accessed and all others would be ignored

READS (VANSWERd 3))

It only one specific position is to be referenced then tne number for that position s specified 'or both

subscripts

READS (1.ANSWER(M))

Arrays and Substrings 7 3

CHAPTER 8

INPUT/OUTPUT OPERATIONS

The purpose of this chapter is to familiarize you with the common record and file operations performed in

DIBOL-83. This information is presented in a general light and it is recommended that you familiarize

yourself with the file structures available with your system before reading this chapter.

The statements commonly used in record and file operations are OPEN, CLOSE, READ, READS.
WRITE, WRITES, STORE, and DELETE. These statements will be discussed in this chapter.

8.1 OPEN STATEMENT

The OPEN statement establishes a line of communication between a program and either a disk file or an

I/O device. OPEN may be followed by as many as three arguments.

The first argument specifies the channel number This number may be a literal or field name with a

decimal value that is system specific. The effect of this argument is to associate the channel number with

the file or device being opened. Other I/O statements use this association by referring to the opened file

or device with the channel number.

The second argument specifies the mode. The mode determines which I/O operations will be allowed

over the channel being opened. The mode is specified by one of a group of mode indicators, such as I for

input, O for output, U for update.

The third argument specifies the file or I/O device that is being opened. This argument may be an

alphanumeric record, field name, or literal.

In the following example OPEN opens the terminal for input and/or output. When the terminal is the

device being opened, either I or O may be specified. The examole opens channel one for output to the

terminal. The channel specification is the decimal literal 1. O specifies output mode. TT:* is an

alphanumeric literal which specifies the terminal.

0PEN(1,0,'TT:')

The following example for the OPEN statement opens channel two. In this example, one is the channel

for the terminal; the same number cannot be used more than once for concurrently opened files or

devices. Channel one can be used again in this program only if an intervening CLOSE statement

disassociates it from the terminal.

OPEN (2,0.FILNAM)

The mode indicator is O. This specifies that the file specified in the third argument will be opened for

output. Opening a file in this mode causes a new file to be created

The file specification argument (FILNAM) is the name of an alphanumeric field defined in the Data

Division. The desired file specification is entered into FILNAM, possibly by an initial value, or read from

the terminal. When the program terminates execution, that new file will reside on the system and contain

the program's output.

8-1

A second OPEN statement opens a channel to the line printer.

If the terminal channel was closed before this OPEN statement the channel number (1) associated with

the terminal is available for use. Output mode is specified and the device is the line printer (LP).

0PEN(1,0.'LP:')

8.1.1 Relative and Indexed Files

Records in a relative file each have an ordinal position within the file and may be accessed directly by

ttieir record numbers. The record number is the same as the ordinal position; the 10th reco.d is record

number 10.

When a relative file is created, it must oe identified as a relative file and the record size must be specified

The mode indicator is followed by a qualifier; the qualifier :R specifies a relative file Record size is

specified with a keyword argument, RECSIZ n The keyword RECSIZ is followed by a colon (:) and a

positive integer. The integer (n) indicates the record size.

In this example, the relative file is opened for access via channel rwo.

OPEN (2,0:R.R00MS DDF .RECSIZ:67)

Since the file is being created, output (O) mode is specified, and the :R specifies it will be a relative file

The third argument specifies that the file is tc be named ROOMS. DDF.

The fourth argument indicates that this file's record size is 67; each record written to ROOMS. DDF must

be 67 characters long. 67 is the collected field sizes of RECORD ROOM.

The OPEN statement can open an existing file for update. Update mode permits data to be added,

deleted, or modified.

In the following example a relative file is opened for update by specifying the letter U as the second
argument to OPEN and R (for relative file) as ;he submode.

OPEN (2, U:R. ROOMS.DDF)

In this next example the OPEN statement introduces Indexed files. Indexed files can be opened for input

and update only; the mode indicators are 11 for input and U:l for update.

This example opens the Indexed file RESERV DAT for update.

0PEN(2,U:I.RESERV.DAT')

Indexed files require much more information about the file before it can be created Because of thi

DIBOL does not allow the creation of Indexed files directly with the OPEN statement. Consult your

system's DIBOL User's Guide for information concerning the creation of indexed files on your particular

system.

o

•

•

8-2 Input/Output Operations

8.2 CLOSE STATEMENT

The CLOSE statement closes channels opened by an OPEN statennent. CLOSE completes ail pending

operations to the file or device being closed, and disassociates the channel number from the opened file

or device.

A single CLOSE statement can close only one channel. A separate CLOSE statement is required for

each channel to be closed. CLOSE is followed by a decimal field or literal which specifies the channel to

be closed. The value must be the same as was specified in the OPEN statement when the channel was
opened.

All open channels should be closed before program execution terminates. It is possible for data to be lost

or corrupted if the channel is not closed.

This next example closes channel one If processing were to continue, channel one could be used again

to refer to another device via another OPEN statement.

CLOSE 1

8.3 INDEXED VS. SEQUENTIAL

Files are Relative, Indexed, or Sequential READ and WRITE perform random access I/O and may be

used only on Indexed and Relative files READS and WRITES are used to read and output sequential

files.

8.4 READ AND WRITE STATEMENTS

READ is a random-access input statement It transfers the specified data record from an input file to a

record or field in the program READ may be used on either Relative or Indexed files READ is followed

by three arguments.

The first argument specifies the channel number: the second specifies the record or field to receive the

input. When accessing a Relative file the third argument is required to specify a record number The
record number may be either a decimal literal or field name. The value of the record number cannot be
less than 1 or greater than the total number of records in the file being accessed

READ (2.R00M,RECNUM)

In this example, READ reads input via channel 2 into the record ROOM. The third argument, RECNUM,
contains a value interpreted as the number of a record to be read into ROOM. If the value of RECNUM is

6. then the 6th record in the file will be read into ROOM.

The READ statement can also be used to read records from an Indexed file based upon a specified key

The first argument is the channel number associated with the file; the second argument specifies the

record area the record is to be read into, and the third argument specifies the name of the key field When
the READ statement executes, this argument must contain the same value as the value of the desired

record's key field

READ (2. RES, NAME)

In the example, RES is being read via channel 2 When READ is executed, the record whose key-field

value matches the data in NAME is read into RES If the field name contains JONES', READ will read

into RES the record where JONES is the value in the key field

Input/Outout Operations 8-3

WRITE is a random-access output statement. It transfers data from a field or record in the program to a

specified record in a file. It may also be used on either Relative or Indexed files WRITE is followed by

three arguments. The first argument specifies the channel number; the second argument specifies the

record to be written; and for Relative files, the third argument specifies the position in the file where the

record is to be written. This third argument may be either a decimal literal or a decimal field name where

the field's value is the record number. This argument allows access directly to any record in the filo by

specifying the record's number.

In the following example WRITE writes HEADER via channel 2 to record number 1 , the first record in the

file.

WRITE (2,HEADER. 1)

The WRITE statement, when used with an Indexed file, modifies existinc records and is followed by three

arguments. The first argument is the channel number; the second argument is the record name, and the

third argument specifies the key field in the record The value in the key field is used to write the modified

record back to the file.

The record must have previously been read with a READ statement

WRITE (2.RES.NAME)

In this example, WRITE is writing RES via channel 2 The key value used to determine the records place

in the file is contained in NAME.

8.5 READS AND WRITES STATEMENTS

The READS statement does sequential input It transfers the next available data record or field from an

input file or device to a record or field in the program.

READS is followed by two arguments The first argument may be either a decimal field or literal which

specifies the channel number over which the input will occur. This channel must have been opened

previously by an OPEN statement. The second argument specifies a record or field which is to receive

the data being input.

In this example, READS reads each record from the input file READS can detect when all records have

been read, but there must be provision to specify where to transfer control when READS has read the last

record. This can be handled with a third argument to READS

When a third argument is used with READS, the argument must be a statement label separated from the

second argument by a comma The statement label identifies where control is to be transferred when the

last record has been read

When READS has read the last record, control transfers to the statement identified by NOMORE

READS (2,CUSREC.N0I^0RE)

The WRITES statement writes an alphanumeric record, field, or literal via a specified channel to the next

available space in a file or to a device This is called sequential output. WRITES is followed by 2

arguments enclosed by parentheses

8-4 Input/Output Operations

The first argument specifies the channel number over which the output will occur The second argument

is the name of the alphanumeric record, field, or literal which contains the information to be output

In a sequential file opened for output, WRITES adds records to the file in sequence by writing them to the

end of the file. A pointer is maintained to the end of the file so WRITES will know where to add the next

record.

The following code writes three records to the file opened on channel 1

WRITES (1,REPLY)
WRITES (l.'This IS the first record)

WRITES (1,"This IS the second record)

WRITES (l/This IS the third record")

In this example, WRITES uses the channel (1) associated with the line printer so that the records written

by WRITES will be printed directly on the printer

WRITES (I.CUSREC)

8.6 STORE AND DELETE STATEMENTS

The STORE statement adds new records to indexed tiles STORE is followed by three arguments

The first argument specifies the channel number the second argument specifies the name of the record

to be written to the file; the third argument specifies the name of the key field m the record The value m
the key field is used to determine where the record will be stored m the tile

In the following example. STORE is writing the record RES via channel 2, and the key value is m the field

NAME If the value in NAME were JONES tor example, the record would be placed m the file afte^

records having names beginning with I and before records having names beginning with K

STORE (2, RES.NAME)

The DELETE statement removes records from an Indexed tile DELETE is followed by two arguments

The first argument specifies the channel number associated with the file the second argument specifies

the name of the key field For DELETE to execute, the record to be deleted must have been read with a

READ or READS statement, the record that is deleted is the one most recently read

IF (REPLY EQ Y) DELETE (2,NAME)

In this example, DELETE removes whichever record has the same value m its key field as is contained m
NAME.

8.7 TERMINAL I/O

DIBOL-83 IS an interactive language and thus terminal I/O is commonplace when using DIBOL-83 The

ACCEPT and DISPLAY statements are used for terminal character I/O READS and WRITES may also

be used for terminal I/O. their use is essentially similar to file I/O operations

Input/Output Operations 8-5

8.7.1 ACCEPT Statement

The ACCEPT statement reads single characters from an input device

ACCEPT IS followed by two arguments The first argument is the channel number (as specified m a

previous OPEN statement) associated with the device whore the character is being input, and the second

argument is the name of a field or record where the input character is lo be placed

In the following example ACCEPT reads the 'irst available character from the terminal input buffer into

the first character position of the field REPLY

ACCEPT (1.REPLY(1,1))

ACCEPT does not require a terminator, it is complete as soon as a character is read from the input butter

When accepting into an alphanumeric ^eid (or record), the character is moved to the leftmost character

position of the field according to the ru'es for moving alphanumeric data When accepting into a decimal

field the character is moved into the field according to the rules for decimal data

8.7.2 DISPLAY Statement

The DISPLAY statement performs output to C^iaracter-oriented devices, such as terminals and ime

printers Under certain conditions DISPLAY may aiso be us€>d to wnte files which can be printed at a later

time One or the most common uses of DISPLAY s to format output to a video terrrmai The examples m
this section use the American National Standards institute (ANSI) terminal control sequences

The first argument m the DISPLAY statement is a channel number (as specified m a previous OPEN
statement) which determines Ahef-e all output for that statement will occur

Subsequent arguments may be records fields, or literals of either data type If the data 'S alphanumeric,

the contents of a record field or literal are disp'ayed on the output device Decimal data however

whether specified as a literal or as a decimal field name is interpreted as a decimal code representing a

character in the cn^racter set

In the following example, the channel number is ^ The second argument is the decimal uterji 2 1 which is

the decimal code for the escape character Here trie escape character is part of an escape sequence

DISPLAY (1,27,[2J')

An escape sequence consists of an escape character followed by one of a group of unique function

codes The codes are terminal dependent and are not displayed but specify where output will occur on

the terminal screen or invoke certain control functions of the terminal

NOTE

Consult the users i}uide of your terminal to

determine which escape sequences and terminal

functions are avaiiab:e to you The escape

sequence used m the example is for a VT100
terminal

8-6 Input/Output Operations

The third argument m the example is the function code (2J This cooe oHows the escape criaracter

completing the escape sequence cedes may De specified as alphanumeric literals as m tn.s case or

may be the contents of a specified alpha field or record

This sequence specifies that the screen is to De cleared this DISPLAY statement inerefore ciears me
entire screen and consists only of the escape sequence itself

In the next example the second argument also specifies the escap*^ character (27) The third argument

(
(3,5H) completes the escape sequence The numbers 3 and 5 indicate ro^ and column respectively

This escape sequence positions f^e cursor to row 3 column 5 The specifications for row and coiun^n can

vary from 1 to the total number of rows or columns available on the terminal

DISPLAY (1,27 (3.5HENTREC i

The fourth argument is the alpnanumeric tieid ENTREC The data it contains s displayed at 'ow 3

column 5 on the terminal screen A fifth argument is an alphanumeric literal containing a space so tne

data in ENTREC will be displayed followed by a space

Input/Output Operations 8-7

APPENDIX A

DIBOL-83 CHARACTER SET

Table A-1 shows the DIBOL-83 Character Set. The DIBOL-83 Character Set contains 128 ASCII

characters. The tabic shows corresponding decimal codes. All characters may be used for data input

from the terminal and output to the terminal and printer. DIBOL-83 stores both alphanumeric and decimal

data in character code form.

•
A-1

GLOSSARY

alphanumeric

A character set that contains letters, digits, and other characters, such as punctuation marks.

alphabetic

A character set that contains only letters.

array

A DIBOL technique for specifying more than one field of the same length and type. The array 5D3
reserves space for five numeric fields, each to be three digits long. The array 2A10 describes two

alphanumeric rialds, each to be ten cnaracters long.

ASCII

American Standard Code for Information Interchange. This is one method of coding alphanumeric

characters.

binary operator

An operator, such as * or /, which acts upon two or more constants or variables (e.g., B*C).

branch

A change in the sequence of execution of DIBOL-83 program statements.

byte

A group of eight bits considered as a unit.

channel

A number used to associate an input/output statement with a spec' ed device.

character

A letter, digit, or other symbol used to control or to represent data. One character is equivalent to one
byte.

character string

A connected linear sequence of characters.

clear

Setting an alphanumeric field to spaces or a numeric field to zeros.

comments
Notes for people to read. They do n'>t affect program execution or size.

data

A representation of information in a manner suitable for communication, interpretation, or processing by

either people or machines. In DIBOL-83 systems, data is represented by characters.

DEC
Acronym for Digital Equipment Corporation.

Glossary-

1

decimal

Refers to a base ten number.

DIBOL-83
Digital's interactive Business Oriented Language is used to write business application programs It is

based on the 1983 Standard

direct access

The process of obtaining data from, or placing data into, a storage device where the availability of the

data requested is independent of the location of the data most recently obtained or placed m storage

dump
To copy the contents of all or part of storage usually from memory to external storage.

expressions

Variables, constants, or arithmetic expressions made up of variables, constants, and the operators -, -

,

-, , and /.,

fatal error

An error which terminates ppogram execution

field

A specified area in a data record used for alphanumeric or numeric data; cannot exceed the specified

character length.

file

A collection of records, treated as a logical unit.

file specification (filespec)

The general file name.

flowchart

A pictonal technique for analysis and solution of data flow and data processing problems. Symbols

represent operations, and connecting flowlmes show the direction of data flow.

Illegal character

A character that is not valid according to the DIBOL-83 design rules. ^

indexed files

Indexed files are Indexed Sequential Access Method files

input

Data flowing into the computer.

input/output

Either input or output, or both. I/O

jump
A departure from the normal sequence of executing instructions in a computer

2-Glossaiy

justify

The process of positioning data in a field whose size is larger than the data In alphanumeric fields, the

data IS lett-)ustified and any remaining positions are space-filled, m numeric fields, the digits are right

justified and any remaining positions to the let; are zero-filled

key

One or more fields within a record used to match or sort a file If a tile is to be arranged by customer

name, then the field that contains the customers names is the key field In a sort operation, the key fields

of two records are compared and the records are resequenced when necessary

keyword
A part of a command operand that consists of a specific character string

location

Any place where data may be stored

loop

A sequence of instructions that is executed repeatedly until a terminal condition prevails A commonly

used programming technique m processing data records

machine-level programming
Programming using a sequence of binary instructions in a form executable by (he computer

mass storage device

A device having large storage capacity

master file

A data file that is either relatively permanent or that is treated as an authority in a particular |ob

memory
The computer s primary internal storage.

merge
To combine records from two or more similarly ordered strings into another string that is arranged m the

same order The latter phases of a sort operation

mnemonic
Brief identifiers which are easy to remember Example ch

mode
A designation used m OPEN statements to indicate the purpose for which a file was opened or to indicate

the input/output device being used

nest

To embed subroutines, loops, or data m other subroutines or programs

object program

A file which is output by the compiler or assembler

output

Data flowing out of the computer

Glossary-3

parameter

A variable that is given a constant value for a specific purpose or process.

primary key

See key

random access

Same as to direct access.

RECORD
A statement that reserves memory

record redefinition

The technique of specifying several t fferent record formats for the same data Special rules apply

screen column number
The number which indicates the order of the vertical lines on the screen

screen line number
Tha number which indicates the order of the horizontal lines on th« screen

sequential operation

Operations performed, one after the other

serial access
The process of getting data from, or putting data mto. storage, where the access time is dependent upon
the location of the data most recently obtained or placed in storage

sign

Indicates whether a number is negative or positive

significant digit

A digit that is needed or recognized tor a specified purpose

source program
A program written in the DIBOL-83 language

statement

An instruction in a source program

string

A connected linear sequence of characters

subscript

A designation which clarifies the particular parts icharacters, values, records) withm a larger grouping or

array

syntax

The rules governing the structure of a language

system configuration

The combination of hardware and software that make up a usable computer system

4-Glossary

trappable error

An error condition which may be trapped

unary operator

An operator such as * or -. which acts upon only one vanaDle or constant (e g ,
A=^ -C)

variable

A quantity that can assume any one ot a set o? values

variable-length record

A tile in which the data records are not uniform m length Direct access to such records is not possible

verify

To determine if a transcription o* data has ^een accomplished accurately

zero fill

To fill the remaining character positions m a numeric field with zeros

zoned decimal

A contiguous sequence of up to 18 bytes interpreted as a string of decimal digits
(

i digit per byte) The

sign is stored as the high order bit m the low order byte

Glossary 5

INDEX

ACCEPT statement, 8-6

addition, 5-4

alphabetic character, 2-2, G-1

alphanumeric field, 2-3, 3-2, G-1

ampersand (&), 2-3

apostrophe ('), 3-3

array, 2-3, 7-1 , G-1

,

field count, 7-1

,

initial values, 7-1 , 7-2,

subscripting, 7-2

argument definition name, 3-3

argument definitions, 3-2

arguments, 2-1

ASCII, 2-1, G-1

assignment statement, 5-1 , 5-6

BEGIN-END blocks. 4-2

binary operator, G-1

branch, G-1 byte, G-1

data, G-1

Data Declaration, 3-1

Data Directives, 2-1

Data Division, 2-2, 3-1,3-4

Data Manipulation Statements. 2-1. 3-4

Data Specification Statements, 2-1

data type. 3-2

decimal. G-2

decimal characters. 2-2

decimal fields. 3-2

DELETE statement, 8-5

DIBOL-8, 1-1

DIBOL-11, 1-1

DIBOL-83, 1-2, G-2

DIBOL-83 Structured Constructs, 4-2

DIBOL Standards Organization (DSO). 1-2

direct access. G-2

disabling a listing (.NOLIST), 2-2

DISPLAY statement. 8-6

division. 5-4

DO-UNTIL statement. 4-2. 4-5,

flowchart. 4-6

CALL statement. 6-1

case-label, 4-8

channel, 2-3, G-1

Character Set, 2-1, A-1

character string, G-1

clear, G-1

CLOSE statement, 8-3

comma, 3-2

comments, 2-3, 2-4, G-1

COMMON statement, 3-1,

names, 3-1

Compiler Directives and Declarations, 2-1, 2-2

conditionally compiling statement, 2-2

Control Statements, 2-1, 3-4

COS-300, 1-1

COS-310, 1-1

COS-350, 1-1

CTS-300, 1-2

edit mask, 5-3

enabling a listing (.LIST). 2-2

ENDC, 2-2

expressions, G-2

external subroutine, 3-1, 3-2, 6-1

fatal error, G-2

field, G-2

field definitiops. 3-2

field size. 3-2

file. G-2

file operations, 7-1

file specification, G-1

flowchart, G-2

FOR statement. 4-2. 4-6.

flowchart. 4-7

formattmg decimal data. 5-3

Index-

1

INDEX (CONT.)

M

GOTO statement, 4-1

I

IF statement, 4-2, 4-3,

flowchart, 4-3

IFDEF, 2-2

.IFNDEF, 2-2

IF-THEN-ELSE statement, 4-2. 4-4,

flowchart, 4-4

illegal character, G-2

.INCLUDE statement. 2-2

INCR statenient, 5-5

indexed files, 8-2, 8-3, G-2

initial values, 3-2,

in arrays, 7-1, 7-2

Input/Output Operations, 8-1

Input/Output Statements, 2-1. 3-4

internal subroutine, 6-1

Intertask Communications Statements, 2-1, 3-4

integer arithmetic, 5-4

integer division, 5-4

jump, G-2

justify, G-3

justifying data, 5-2,

in alphanumeric fields, 5-2,

in decimal fields, 5-2

machine-level programming, G-3

mass-storage device, G-3

match expression, 4-8

minus sign (-), 3-2

mode indicator (in OPEN), 2-3, 8-1. G-3

moving data. 5-1.

from alphanumeric field to decimal field. 5-1

from decimal field to alphanumeric field, 5-1

multiplication, 5-4

N

key, G-3

keyword, 2-3. G-3

negative value, 3-2

nest, G-3

NOLIST. 2-2

OPEN statement. 8-1

operator precedence. 5-5

operators. 5-4

PAGE, 2-2

parentheses, 5-5

PDP-8A, 1-1

PDP-11, 1-1. 1-2

plus sign {--), 3-2

PROC, 2-2. 3-3

Procedure Division, 2-2. 3-3. 3-5

PROFESSIONAL 350, 1-2

PROFESSIONAL DIBOL. 1-2

Program control. 2-2. 4-1

program structure. 3-4

label name, 2-2

line continuation, 2-3

.LIST, 2-2

location, G-3

loop, G-3

qualifier (in OPEN), 8-2

quotation marks ("), 3-3

random access, G-4

READ statement. 8-3

READS statement, 8-4

2-lndex

INDEX (CONT.)

RECORD statement. 3-1

names, 3-1

record operations, 8-1

relational expressions, 4-1

relational operators, 4-1

relative files, 8-2

rounding operator (-), 5-4

RSTS/E DIBOL, 1-2

RS:)IBOL. 1-2

RSX-11M-PLUS, 1-3

semicolon (;), 2-3, 2-4

sequential files, 8-3

serial access, G-4

significant digit, G-4

source, 5-1

spaces, 3-3

statement label, 2-1, 4-2

STORE statement, 8-5

structured construct, 4-2, 4-3

structured programming, 4-2

subroutine, 2-1, 6-1,

external, 3-1, 6-1,

internal, 6-1

subroutine argument definitions, 3-3

SUBROUTINE statement. 3-1. 3-2

subscript, 2-3, 7-3, 6-4

subscfipting, 7-2

subs Irings, 7-1

substring subscripting, 7-2

subtraction, 5-4

terminal I/O, 8-5

.TITLE, 2-2

top-of-page command. 2-2

trappable error. 2-3, G-5

truncation, 5-1

U

unary operator, G-5

Universal External Subroutine Library (UESL).

6-2

USING statement. 4-2. 4-7.

flowchart, 4-8

variable. G-5

VAX DIBOL. 1-2

VAX-11. 1-2

W

WHILE statement. 4-2, 4-5,

flowchart, 4-5

WRITE statement. 8-4

WRITES statement. 8-4, 8-5

XCALL statement, 3-1, 6-2

zeros. 3-3

lndex-3

INTRODUCTION TO DIBOL-83

Order No AAP042B-TK
April 1984

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

3
U
«

o.
Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

I)
Assembly language programmer

()
Higher-level language progranuner

(I
Occasional programmer (experienced)

r~| User with little programming experience
[~~\ Student programmer

f~] Non-progr«unmer interested in computer concepts and capabilities

Neone. Date

Organization

Street

City State- .Zip Code.
or

Country

•Do Not Tear - Fold Her* and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 33 MAYNARD MASS

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION

Applied Commercial Engmeenng MK1 -2/H32

Continental Boulevard

Merrimack N H 03054

ATTN Documentation Supervisor

Do Not Tear - Fold Herv and Tape

No Postage

Necessary

it Mailed m the

United States

"1

J

i

