IAS/RSX
BASIC User’s Guide

Order No. DEC-11-LIBIA-B-D

dlilgliltall

First Printing, September 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or

reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (:) 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0S/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10
DECCOMM DECsystem-20 TYPESET-11

5/8215

PREFACE

CONTENTS

DOCUMENTATION CONVENTIONS

CHAPTER

CHAPTER

CHAPTER

CHAPTER

APPENDIX

INDEX

1

.
B WNNN

NN N

. .
N =

N N

GETTING STARTED WITH IAS/RSX BASIC

STARTING BASIC

Starting BASIC on IAS

Starting BASIC on RSX-11lD and RSX-11M
USING THE CTRL/C COMMAND TO STOP PROGRAMS

Using CTRL/C on IAS

Using CTRL/C on RSX-11D and RSX-11M
TERMINATING THE SESSION - THE BYE COMMAND
PRECISION OF STORED NUMBERS
SYSTEM DEPENDENT ERROR MESSAGES

FILES

FILE SPECIFICATION

THE OPEN STATEMENT = SYSTEM DEPENDENT
FEATURES

CHECKING FILES (CAT COMMAND)
EFFECT OF SUPERSEDING FILES

UTILITY FUNCTIONS

UTILITY FUNCTIONS AVAILABLE ON IAS/RSX BASIC
SETTING THE TERMINAL MARGIN (TTYSET FUNCTION)
CANCELING THE EFFECT OF CTRL/O - RCTRLO
FUNCTION
DISABLING CTRL/C FROM STOPPING BASIC
PROGRAMS (RCTRLC AND CTRLC FUNCTIONS)
TERMINATING YOUR PROGRAM (ABORT FUNCTION)
SYSTEM FUNCTIONS
Single Character Input (SYS(l) Function)
Terminating BASIC (SYS(4) Function)
Checking for CTRL/C (SYS(6) Function)

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC

INTRODUCTION TO ASSEMBLY LANGUAGE ROUTINES
DEFINING A ROUTINE - THE ROUTINE NAME POINTER
TABLE

COMMUNICATING BETWEEN THE ROUTINE AND BASIC
FORMAT OF THE ROUTINE

INCORPORATING THE ROUTINES INTO BASIC

CHANGES FROM IAS BASIC V01

SUMMARY OF TECHNICAL CHANGES
USING THE CONVERTING PROGRAM

iii

Page

vii

R e D
BB WWN NN

NN NN BONS bttt . s
BWN

.uoluw

O N O N ??wuww w
H S BWN H O H O OOURBARW N M

>
1

>
11
N =

Index-1

CONTENTS (Cont.)

TABLES
Page
TABLE 3~1 Summary of System Functions 3-5
A-1 Changes from IAS BASIC V0l A-1

iv

PREFACE

Most features of IAS/RSX BASIC are the same as those in other versions
of BASIC-11l. (DIGITAL's name for a family of BASICs for the PDP-11).
These features are described in the BASIC-11 Language Reference Manual
(DEC-11-LIBBB-A-D) . Please read the BASIC-11 Language Reference
Manual before reading this User's Guide.

This guide describes the system dependent features of IAS/RSX BASIC.
They are:

Procedure for starting BASIC

Effect of the CTRL/C key command

Accuracy of storing numbers

Format of error messages

Format of the file specification

Effects of parameters in the OPEN statement
Procedure for checking files

Effect of superseding files

Effects of the utility functions

Procedure for using assembly language routines
Procedure for terminating BASIC

This guide (except Chapter 4) should be read by and be available for
reference by all users of IAS/RSX BASIC. Chapter 4, the description
of writing assembly language routines should be read only by users who
are interfacing assembly language routines with BASIC.

This guide assumes that you are familiar with the use of and the login
procedure (if any) of your system. These are described in the
following manuals (for RSX-11D, RSX-11M, and IAS users respectively):

RSX-11D User's Guide (DEC-11-OXDUA-B-D)
RSX-11M Operator's Procedures Manual (DEC-11-OMOGA-B-D)
IAS User's Guide (DEC-11-OIUGA-A-D)

The IAS 1login procedure 1is summarized in this manual for your
convenience.

This guide (except Chapter 4) also assumes that BASIC has been
installed on your system. If BASIC has not been installed on your
system, see the IAS/RSX BASIC Installation Guide (DEC-11-LIBJA-B-D).

Chapter 4 assumes that you are an experienced MACRO-11 programmer and
that you will install BASIC once you have incorporated the routines
into BASIC.

AR Sa TN T Dy Y . Pilse |
R A SR P L R s e b G A o T s el G bl
B '. K " k i AL S 2 Y , ‘ q w! b A% .-<_-:. I

cadin] s (0 s e B SEE A e iale i, e s LR ks IR LNl AR |

H0A%389

snofatev 18dio nl szodd 25 omsee 203 s1s DI2AE xax\aax o ze3juiss} JaoM
. (LI-9G9 3 y0% 2)1248 3o ylims} s 101 amsn 2'JATIDIG) .II-DI2A8 1o

{sunsM eoneisisd spsupns.d [I-D¥2A8 o2 ni bsdiioesb 918 293ufsel sasdT .

sona19188 opsupne. LI-JLGAS ond bsel sassld . (U-A-BA8II~-L[-DEd)
.abiud a'veal eind? pnibssy sio0isd Isunsd

.D1248 %29\2A1 10 291uisel inebasqsh msJa\a srli sealydesd shiup 2idT
1838 yoddT

21248 pnidisda 103 sixubenord

brsmmos vad O\JITD edd 3o 99333

219dimuyn pnilods 1o YOBILODA

2epeaesm 10115 1o Ismiof

noi3ssiltioega 21iY a6l 30 3emy0d

Insmedstz WECO 243 ar 21siemsysq Y0 23093117
2alil pnidvsdo 103 31ubescyd

25, i1 paibeazeque 1o 39133

2noidsapd vaillspy od2 3o 2322315

asailucy spsuonsl vidmezze paley 103 21ubH550719
DIgAd pnitsaimIed 10l 9ywbeno1d

103 sldsiisve od bns vd beey ad pivoerdz (& ysigedd Igsoxe) sbhiup 2idT
notigitoesh add (b 1sdgsdd (DIBA8 NEA\RAL 1o 2182y ils vd son8isie
ofiw z1eau v yino bsex sd bluodzs eenliivol spswpnsi ylomséss paliiaw o

.DI288 Adiw 2aniduol spsupnsl yldmezes pnivsiisini sis

nipoi ed3d oas 1o sau ad2 diiw ysiiimel s1s woy Isdd zsmwess eblup alidT
st nl bediioesh sis, o2eaT .a9fays woy 0 {yns 1i) e1wdencig
c{viaviioegasy z1e8u 2ALI bas MLI-X2A .AlI-X28 103) zlsunsm paiwallol

{g~4-ADQX0~L1-020) sblub 23280 dli-X&
(I-B-ADOGHO-1L-D8a) I(sunsM 29185950149 3' 10357600 MLI-X

(A A~ADUI0~11-D8d) obiuo 2 1sel 2Al

1uoy"'1oi lspnsm 2i03 o3 besitsmmuz 3f 91wbenoixg nipol @AY sdT
cSoasinsvaon

nsad =28d OJI8AE Jadd =zsmuzas oeis (3 1oqaa 3genxe) sbivp 2idT
Jeoy o baiissuni need son esd OFSA4 3T .majeyz woy no bellajunt

. (Q=@=-ATH LI~ 1 ~DHa) sblua ne&13_&;39@5_2§§ﬁgjggghgg 943 8os .melavye

Bras vemmeiperg [[-O8DAM bnaﬂ!&toqxs s 975 poy Jady semuess & 1834sdD

2sntivos el be:szoqroanh sviﬂ goy sapc JI2A8 iisﬂnni Thiw poy 3sdd
~ .OIBAS o3ni

\

sl o

DOCUMENTATION CONVENTIONS

These are the documentation conventions which are used throughout this
manual.

The following symbols have special meaning.

Symbol Meaning

while pressing the CTRL key, type the letter indicated
after the slash.

Cer) Type the RETURN key

Type the ESCAPE key (ALTMODE on some terminals).

Type the RUBOUT key (DELETE on some terminals).

In addition, this manual uses certain conventions when describing the
format of statements, functions, and commands.

These are:

Convention Meaning
[jﬂ The enclosed elements are optional. For example:

[LEf]variable=expression

choice of one element

A among two or more
possibilities, for example:

——

THEN line number
GO TO line number

THEN statement
IF relational expression

\ 24 Preceding element can be repeated as indicated.
For example:

line number CLOSE#exprl,#expr2,...

specific format description
general meaning
for more information on these items.

applies.

Items in -Type these elements exactly as they appear in the
capital format, for example:
letters and
special LET
symbols RUN
#
Items in capital letters are called keywords.
Items in Replace these elements according to the
lower-case description provided in text. See below for list
letters of commonly used lower-case items.
This list describes some lower case items commonly used in format
descriptions. The general meaning of each item is given. Unless a

places restrictions on an item, its
See the BASIC-11 Language Reference Manual

vii

Lower-Case Abbreviation Meaning
item

expression exp Any valid BASIC-11
expression. It 1is always a
numeric expression unless the
description specifically
states that it can be a
numeric or string expression.
For example: (5*SIN(X))"Y

file specification A file specification in the
format described in Section
2.1

integer int Any positive integer number
constant or any positive
numeric constant that could
be an integer if a percent
sign was put after it. For
example: 5%, 3%, 2, 7

line number —t Any line number. For
example: 10, 100, 32767

string e Any string expression. For
example: "“ABC",
C$+SEGS (AS$,3,4)

variable var A floating point, integer or
string variable.

If there is more than one lower-case word in a format, the words are
numbered 1, 2, 3, etc. For example:

CLOSE #exprl, #expr2,f#expr3,...

Throughout this manual, the term BASIC means BASIC-11 or IAS/RSX
BASIC.

To differentiate between what BASIC prints and what you type, the user
type-in is printed in red ink. For example:

FUNNH

WHAT NUMBRERS? .10
THE S8UM I8 135

REATY

All user type-in is terminated by the RETURN key unless the text
indicates a different terminator.

viii

CHAPTER 1

GETTING STARTED WITH IAS/RSX BASIC

1.1 STARTING BASIC
You can use BASIC on an RSX-11lD (Resource Sharing Executive), RSX-11M,

or IAS (Interactive Applications System) system. You must login the
system (if your system has a login procedure) before starting BASIC.

1.1.1 Starting BASIC on IAS
The Program Development system (PDS) provides the standard 1IAS
interface to the computer. The installation's IAS system manager

determines who may use PDS and decides which terminals will support
it.

To invoke PDS, type CTRL/C. The system responds to CTRL/C by
displaying an identifying message, the current time and date, and the
PDS> prompt. Type the LOGIN command:

IA8 FROGRAM DEVELOFMENT SYSTEM VERSION 1.1
14106103 27 JUL~76

FOS: LOGIN
After you enter the LOGIN command, PDS prints
USERITO?

Type your user name

NOTE

The system manager assigns each user a
user name and a password, which are then
registered with IAS. If you do not have
a user name and a password consult your
system manager.

After you enter your user name, PDS prints

FASSWORDT
Type your password. PDS does not print the characters you type.

If the password given is incorrect, PDS prompts PASSWORD? again.

GETTING STARTED WITﬁ IAS/RSX BASIC

When you enter the correct password, IAS displays some identifying
information. For example:

USER R11 UIC C20021001 TTO7: TASK 102 143106349 27-JUL~76
IAS VOl1.1 A= JUN~-76 <8Y IS DR2:

R

The numbers enclosed in square brackets, in this example [200,100],
are the user file directory or ufd (see Section 2.1).

To start BASIC, type the BASIC command, which has no parameters. PDS
starts BASIC and BASIC prints an identifying message.

POS> BRASIC

TAS/REX BABIC V0201
REATY

The READY message indicates that BASIC 1is ready to accept program
lines, commands, or immediate mode statements.

1.1.2 Starting BASIC on RSX-11D and RSX-11M

To start BASIC on RSX-11D or RSX-11M, you must first invoke the MCR
(Monitor Control Routine). See the RSX-11D User's Guide or the
RSX-11M Operator's Procedures Manual for information on invoking MCR.
After MCR has printed the MCR> prompt, type:

(You can also abbreviate BASIC by just typing BAS.) BASIC then prints
an identifying message and the READY message:

TAS/REX RASIC VO2-01
READY

The READY message indicates that BASIC is ready to accept program
lines, commands, or immediate mode statements.

1.2 USING CTRL/C TO STOP BASIC PROGRAMS
When you want to stop execution of a BASIC program, use CTRL/C.

However, CTRL/C has a different effect on IAS systems than on RSX-11D
and RSX-11M systems.

1.2.1 Using CTRL/C on IAS

Oon IAS systems, typing CTRL/C causes BASIC to stop execution of the
program and print the STOP and READY messages:

STOP AT LINE XXXXX
READY

Where xxxxx is the line number of the last BASIC statement executed.
(If BASIC is not executing a program, it does not print AT LINE
XXXXX)

1=2

GETTING STARTED WITH IAS/RSX BASIC

1.2.2 Using CTRL/C on RSX-11D and RSX-11M

On RSX-11D and RSX-11M, typing CTRL/C causes the system to suspend
BASIC and return control to the MCR which prints its prompt message.
After typing CTRL/C, to return control to BASIC, type:

MOCR=ST0PCese)
BASIC then prints the STOP and READY messages:

STOP AT LINE XXXXX
READY

Where xxxxx is the line number of the last BASIC statement executed.
(If BASIC is not executing a program it does not print AT LINE XXXXX.)

There is an exception to the CTRL/C procedure for RSX-11D and RSX-11M.
If BASIC 1is executing an INPUT statement when you type CTRL/C, you
must also type the ESCAPE key. Then type STOP and the ESCAPE Kkey.
Instead of printing the STOP message, BASIC prints a question mark (?)
to request the original input. Type the ESCAPE key, which cancels the
request. Then BASIC prints the STOP and READY messages. An example
of this exception follows:

STOF AT LINE 100

wEADY

NOTE

If you type STOP(wr) instead of
STOP(sc), BASIC prints the 2?SYNTAX ERROR
message in response to anything that you
type subsequently. If this happens,
type the ESCAPE key as many times as it
is necessary for BASIC to respond with a
READY message (with no error message).

1.3 TERMINATING THE SESSION (BYE COMMAND)
To terminate a session with BASIC, use the BYE command. Simply type:
BYFE
This terminates BASIC and returns control to MCR (for RSX-11D and
RSX-11M systems) or to PDS (for IAS systems). If you logged in, you
must log out. The BYE command only terminates your session with
BASIC.
On IAS systems, to log out, type
FOS> LOGOUT

PDS prints a terminating message. After you enter the LOGOUT command,
you must type CTRL/C and the LOGIN command to use the terminal again.

GETTING STARTED WITH IAS/RSX BASIC

1.4 PRECISION OF STORED NUMBERS

IAS/RSX BASIC stores numbers to 7 digits of accuracy. Repeated
mathematical operations can magnify the imprecision. BASIC only
prints six digits unless you use the PRINT USING statement (see the
BASIC-11 Language Reference Manual). All BASIC functions maintain 7
digits of accuracy except the SIN and COS functions which have a
reduced accuracy of 5 1/2 digits in certain ranges.

1.5 SYSTEM DEPENDENT ERROR MESSAGES

IAS/RSX BASIC prints error messages in the 1long format (see the
BASIC-11 Language Reference Manual). The following 1lists error
messages with system dependent descriptions:

?CANNOT DELETE FILE

Attempt to delete file is not allowed by the file privilege
system.

?FILE PRIVILEGE VIOLATION
Access of file is not allowed by the file privilege system.

?FILE ALREADY EXISTS
NAME statement attempts to change a file to a new file
specification which is the same as an existing file (including
the version)

?NOT ENOUGH ROOM
This message is not produced by IAS/RSX BASIC. If there 1is not

enough room on a device, BASIC prints the ?CHANNEL I/O ERROR
message.

CHAPTER 2

FILES

2.1 FILE SPECIFICATION

IAS/RSX BASIC uses the same file specification format as the RSX-11D,
RSX-11M, and IAS systems. This section summarizes the file
specification and describes the default values used by IAS/RSX BASIC.
The format of the file specification is:

dev:[ufd]name.ext;ver

where:

dev: is a device name of the form XXnn: where XX is a
2-letter mnemonic for the device, and nn is the 1- or
2-digit unit number from 0 to 77.

[ufd] is the user file directory of the form [m,n] where m
and n are octal numbers in the range 1 to 377.

name is the name of the file, an alphanumeric character
string one to nine characters long. All alphabetic
characters must be upper-case letters.

.ext is the file extension, an alphanumeric string from one
to three characters long, beginning with a letter. The
extension usually identifies some aspect of the file
contents. All alphabetic characters must be upper-case
letters.

;ver is the version number, an octal number in the range 1

to 77777 used to differentiate among versions of the
same file.

If you do not specify any of the elements of the file specification,
IAS/RSX BASIC uses a default value:

The default device (dev:) is SYO0:.

The default user file directory ([ufd]) is the system's default
value.

The default name depends on how the file specification is being
used. If you do not specify the name in a SAVE, REPLACE, or
COMPILE command, BASIC assumes that the current program name is
the name. If you do not specify the name in an OLD or APPEND
command or a CHAIN or OVERLAY statement, BASIC assumes the name
NONAME . If you do not specify the name in any other command or
statement (UNSAVE command and KILL and NAME statements), BASIC
prints the ?ILLEGAL FILE SPECIFICATION message.

2=1

FILES

The default value for the extension (.ext) also depends on how
the file specification is being used. If you do not specify the
extension in a statement accessing a data file (OPEN, KILL, and
NAME), BASIC assumes the extension .DAT. If you do not specify
the extension in a RUN or OLD command or a CHAIN statement, BASIC
first sees if the specified file exists with the extension .BAC.
If that file exists, BASIC uses it. If the file does not exist,
BASIC assumes the extension .BAS and looks for that file. If you
do not specify the extension in the COMPILE command, BASIC
assumes the extension .BAC. If you do not specify the extension
in the SAVE, REPLACE, UNSAVE, APPEND, or CAT command or the
OVERLAY statement, BASIC assumes the extension .BAS.

The default version number is the highest existing version
number. However, when you are creating a file it assumes the
highest existing version number plus 1.

If you specify either a ufd, an extension, or a version, you must also
specify the file name.

If when creating a file with the SAVE command you specify a version
that exists, BASIC prints the ?USE REPLACE error message.

If you specify LP: or LPnn: as the device, BASIC always spools the
data to the 1line printer. (The data is first stored in a temporary
disk file, then the file is automatically printed on the line printer,
and, finally, the temporary file is deleted.) BASIC ignores any name,
extension, or version that you specify and creates a temporary file
with the current program name as the file name and .LST as the
extension. If there is no line printer spooler on your system or if
the spooler is not active, BASIC prints the ?ERROR CLOSING CHANNEL
message and you must exit from BASIC to transfer the .LST file to the
line printer.

Wild cards (*) can only be used in the CAT command (see section 2.3).

2.2 THE OPEN STATEMENT - SYSTEM DEPENDENT FEATURES

The format of the OPEN statement is:

OPEN string ﬁFOR INPUTTﬂ AS FILE [l]expr[DOUBLE BUF]LRECORDSIZE expr (i, MODE expr|j, FILESIZE expr]

FOR OUTPU
where:
exprl is the channel number of the file. It can be
any BASIC expression and have a value between
1 and 12.
DOUBLE BUF is ignored if specified.

+RECORDSIZE expr2 is ignored if specified.
,MODE expr3 is ignored if specified.
,FILESIZE expr4 is ignored if specified.
The above describes only the system-dependent features of the OPEN

statement. The other features of the OPEN statement are described in
the BASIC-11 Language Reference Manual.

2=2

FILES

2.3 LISTING FILE DIRECTORIES (CAT COMMAND)
Use the CAT (catalog) command to find out what files exist on your
system. You can list program files, data files, a specific file, all
files, or files in another user's ufd. The form of the command is:
CAT[file specification]
where file specification is in the format described in section 2.1.
You can use an asterisk (*) to replace any element in the file
specification except for the dev: or the [ufd]. This asterisk is
called a wild card specification and indicates that you want all files
that match the rest of the file specification ignoring the element(s)
replaced with the wild card.

BASIC assumes a wild card for the version unless you specify a
version.

BASIC assumes the extension .BAS if you do not specify any.
If you just type
CAT

BASIC lists all the BASIC programs in your ufd. This is equivalent to
typing

CAT X.BASHX
For example, to list all the BASIC programs in your area:, type:

CAT

RYECHK . RAS S 1 ODVRLY . BASF 3 RND. BAS 1
VADFNL . BABS 2 ARRAY 1 . BASS2 FARTL . BASS 2
FARTL.RAGF3 ARRA BASS 1 VADFNL . RASS 3

FROGL.BASE2
READY
And to list all the compiled BASIC programs in ufd [11,104], type:
CAT C133040% . RACHX
FROG. BACS L TIME « BACSH 1 TIME . BACS 2
DECODRE . BACH3
READY

And to list all versions of the data files with the name MONEY, type:

CAT MONEY . DAT X
MONEY .DIATS 1 MONEY «DAT 2
READY

NOTE
You cannot interrupt the CAT command

with CTRL/C. You must use CTRL/O to
terminate the listing of the files.

2=3

FILES

2.4 EFFECT OF SUPERSEDING FILES

If you create a new file with the same file specification as an exist-
ing file and do not specify the version, BASIC does not delete the old
file. 1Instead it creates a new file with a version number one greater
than the highest existing version of that file. If you create a new
file with an OPEN FOR OUTPUT statement or REPLACE command with the
same file specification and same version number as an existing file,
BASIC deletes the old file. 1If you attempt to do this with a SAVE
command, BASIC prints the ?USE REPLACE (?RPL) error message and does

not create a new file.

CHAPTER 3

UTILITY FUNCTIONS

3.1 UTILITY FUNCTIONS AVAILABLE ON IAS/RSX BASIC
IAS/RSX BAS has utility functions to:
® Change the terminal width (TTYSET)
® Cancel the effect of CTRL/O (RCTRLO)
® Disable CTRL/C (CTRLC and RCTRLC)
° Terminate your program (ABORT)
® Input a single character from your terminal (SYS)
® Terminate BASIC (SYS)

° Check if a CTRL/C has been typed (SYS)

3.2 SETTING THE TERMINAL MARGIN (TTYSET FUNCTION)

Use the TTYSET function to set your terminal's margin. BASIC prints
on a line until a number or string would extend past the margin you
set. BASIC then prints a return and line feed on the current line and
prints the string or number on the next line.

The format of the TTYSET function is:

[LEvaariable=TTYSET(255,expression)

where:

variable is the target variable and contains an undefined
value after the statement is executed.

255 may be either a numeric constant (as specified in
format) or an expression, but must have a value of
255 (for compatibility with other versions of
BASIC) .

expression determines the terminal margin. The margin is set

to the value of the expression minus 1. If the
expression equals 0, then there is no change from
the previous margin.

UTILITY FUNCTIONS

For example, to set BASIC to print to the full width of an LA36
DECwriter II (132 columns), type:

A=TTYSET(255,133)

To set BASIC to print to the full width of a VT50 display terminal (80
columns) , type:

A=TTYSET(255,81)
If you do not execute the TTYSET function, BASIC assumes a terminal
with 72 columns.

Ensure that the system's margin for your terminal is the same as or
greater than the margin you specify in TTYSET.

If the value of the expression is less than zero, one, or greater than
256, BASIC prints the ?ARGUMENT ERROR message. If the first argument
has a value other than 255, BASIC prints the same message.

3.3 CANCELING THE EFFECT OF CTRL/O (RCTRLO FUNCTION)

BASIC stops printing to the terminal when the CTRL/O key 1is typed;
however, the RCTRLO function causes BASIC to resume printing. Use the
RCTRLO function if you want to ensure that certain data is printed on
the terminal even if a CTRL/O has been typed.

The format of the function is:
(LET) variable=RCTRLO
where:

variable is the target variable and contains an undefined
value after the statement is executed.

Consider the following example:

[&THNH
1O REM FROGRAM TO INFUT DATA
20 REM FROM FILE AND PRINT SUM
30 OFEN "NUMBR" FOR INFUT AS FILE #1
40 FRINT "DATA IN FILED"
S0 IF END #1 THEN 100
&0 INFUT & 1D
70 PRINT I
80 T=T+h
RO GO TO 50
100 A=RCTRLO
110 FRINT
120 PRINT "SUM="3T

REALY

RUNNH

4
1é
147

26(cmu0) Type CTRL/O here
SUM= 4172

READY

3-2

UTILITY FUNCTIONS

3.4 DISABLING CTRL/C FROM STOPPING BASIC PROGRAMS (RCTRLC AND CTRLC
FUNCTIONS)

In certain situations you may not want to have your program
interrupted by the CTRL/C key command. The RCTRLC function disables
CTRL/C and prevents it from stopping the BASIC program. The CTRLC
function enables the CTRL/C key command.

The format of the functions are:
[LET)variable=RCTRLC
[@Efﬂvariab1e=CTRLC

where:

variable is the target variable and contains an undefined
value after the statement is executed.

After BASIC executes the RCTRLC function, typing CTRL/C on the
terminal does not stop the program. On RSX-11D and RSX-11M, typing
CTRL/C still suspends the task and returns control to MCR, and typing
STOP returns control to BASIC, but the program is not stopped.

After BASIC executes the CTRLC function, typing CTRL/C stops the
program. BASIC does not save any CTRL/C that is typed while CTRL/C is

disabled.

When BASIC prints the READY message, it automatically enables the
CTRL/C key command.

For example:

LISTNH

1000 REM DO NOT ALLOW INTERRUPTS
1010 A=RCTRL.C

1020 FPRINT "NO INTERRUFTS"

1030 I= 1 TO 1000 \ 8=8+1I \ NEXT I
1100 i NOW ALLOW INTERRUFTS

1110 A=CTRLC

1120 PRINT "INTERRUFTS OKAY"

1E30 FOR T = 1 TO 1000 N 8=8+41 N\ NEXT I
I2767 END

REATY

FUINNH

MC (Cese)

T ; ORAY
M @D

STOF AT LINE 1130

READY

For information on a system function which determines if CTRL/C has
been typed while CTRL/C is disabled, see section 3.6.3.

NOTE

Once CTRL/C 1is disabled it is not
possible to interrupt BASIC. Do not
disable CTRL/C until your program has
been thoroughly debugged.

3=3

UTILITY FUNCTIONS

3.5 TERMINATING YOUR PROGRAM (ABORT FUNCTION)

If you want a program to delete itself when it terminates, use the
ABORT function. The ABORT function is equivalent to an END statement
except that ABORT can optionally delete your program and change the
program name to NONAME (equivalent to the SCR command) .

The format of the ABORT function is:

[;Efﬂvariable=ABORT(expression)

where:
variable is the target variable and has an undefined value
after the statement is executed.
expression determines if the program is to be deleted. It

expression equals 0, BASIC does not delete the
program. If expression equals 1, BASIC deletes
it.

Consider the following examples:

Delete when done Do not delete when done

T LTST
ARORT - 21 -JUN-76é& 143152840 ARORT - 21-JUN~76 143154200

10 PRINT "123" 10 FRINT "123*"

20 A=ABORT L) 20 A=ARORT(O)

30 PRINT "456" 30 FPRINT "4%54"

READRY READY

F H FRUNNH

123 123

REALY READY

LEST LEST

MONAME 21-JUN~76 143153130 ARORT 21-JUN-76 14154230

10 FRINT "123"
20 A=ARORT(0Q)
READY 30 FRINT "456"

READY

3.6 SYSTEM FUNCTIONS

System functions perform several system-dependent operations. If you
want to use a program that contains system functions on another
system, you probably must change the program.

-

UTILITY FUNCTIONS

The formats of the system functions are:

[LEvaariable= SYS(expressionl[,expressionj])

where:
variable is the target variable.
expressionl determines the function to be performed.
expression2 is an optional argument used in some system

functions.

Table 3-1 summarizes the functions performed according to the
specified value of expressionl. Any value of expressionl other than
those specified causes BASIC to print the ?2ARGUMENT ERROR (?ARG)
message.

Table 3-1
Summary of System Functions

Value of Function Performed
expressionl
1 Single character input. Target variable contains the
ASCII value of the next character typed at the
terminal.
4 Terminates BASIC and returns control to system

(equivalent to the BYE command) .

6 Determines if CTRL/C nas been typed while CTRL/C is
disabled by RCTRLC function. Target variable equals 1
if CTRL/C has been typed and equals 0 if CTRL/C has not
veen typed.

3.6.1 Single Character Input (SYS(l) Function)

Use the single character input system function to process input one
character at a time. By using SYS(l), you can create an interactive
program where the user gets an instant response to each character
typed.

When BASIC is executing SYS(1l), it does not print on the terminal the
characters that are typed on the keyboard (printing typed characters
on the terminal is called echoing). Consequently, if you want the
user of the program to see what 1s typed, the program must print each
character that the user enters.

SYS(1l) returns the 7-bit ASCII value of any character typed on the
terminal except CTRL/C. (See the BASIC-11 Language Reference Manual
for a list of the ASCII values.) If CTRL/C 1is typed when BASIC 1is
executing SYS(1l) and CTRL/C is enabled, then BASIC prints the STOP and
READY messages (on IAS, RSX-11lD, and RSX-11M). 1If CTRL/C is disabled,
then BASIC continues executing SYS(1l) and waits for another character.
Typing CTRL/C while SYS(1l) is being executed never suspends BASIC and
returns control to MCR.

UTILITY FUNCTIONS

LISTNH
10 PRINT "TYFE A CHARACTER --"3

20 A=EYS(1)

30 PRINT CHR$(¢A) \ REM ECHD THE CHARACTER

A0 FRINT "THE ASCIT VALUE OF "3CHR$(A);" IS"3A
REALY

HUNNH

TYFE A CHARACTER =7

THE ASCII VALUE OF Z IS 90

FEALRY

3.6.2 Terminating BASIC (SYS(4) Function)

If you want to terminate BASIC from a BASIC program, use system
function SYS(4). It is equivalent in effect to the BYE Command.

For example:

10 FRINT *GOODRYE" Print message.
20 A=EYS4) Terminate BASIC and

return control to MCR.

3.6.3 Checking for CTRL/C (SYS(6) Function)

If you have disabled CTRL/C with the RCTRLC function and want to check
if a user has typed CTRL/C, use system function SYS(6). The function
returns a 1 if CTRL/C has been typed and a 0 if it has not been typed.

For example:

L. LS TMH

10 A=RCTRLE Disable CTRL/C.
30 R=3YB(4) Check for CTRL/C.
40 IF k=1 THEN 100 If it has been typed, go to 100.

50 PRINT "STILL EXECUTING"®
40 GO TO 30
100 PRINT "FROGRAM TERMINATING"

110 A=CTRILC Reenable CTRL/C.
120 A=ARDRT (1) Delete program and return to
READY.

STILL EXECUTING

ST LCEXECUTING

Type CTRL/C
MORBT ::'

STILL EXECUTING

FROGRAM TERMINATING

READY

e 4

CHAPTER 4

WRITING ASSEMBLY LANGUAGE ROUTINES FOR BASIC

4.1 INTRODUCTION TO ASSEMBLY LANGUAGE ROUTINES

To perform an operation that is beyond BASIC's capabilities, you must
write an assembly language routine that does what you want and then
add the routine to BASIC. For example, you can write routines to
perform mathematical operations, special device input and output, and
array manipulation. Once these routines are written and added to
BASIC, any BASIC programmer can execute or call the routine by means
of the CALL statement. (See the BASIC-11 Language Reference Manual
for a description of the CALL statement.)

An advantage of adding assembly language routines to BASIC is that a
programmer familiar only with BASIC can use routines written by an
assembly language programmer. For example, an assembly language
programmer. writes and adds to BASIC a routine which samples data from
a laboratory device. Then a BASIC programmer can read and analyze the
data without being aware of the details of the data transfer.

A second advantage is that programs using these routines can be
written, tested, and debugged much faster in BASIC than if all the
programming were done in assembly language. There are two reasons for
this:

1. BASIC is easier to program than assembly language, and

2. BASIC programs can be written, executed, and debugged with
one procedure but assembly language programs require several
different procedures (editing, assembling, task building or
linking, executing, and debugging).

There are four stages in adding a routine to BASIC:
1. Defining it in the routine name table
2. Passing arguments and results between the routine and BASIC

3. Writing the routine

4., 1Incorporating the routine in BASIC.

NOTE

This chapter assumes that you are an
experienced MACRO-11 programmer, and
that you are familiar with your
operating system and the operation of
its utility programs (editors, MACRO
assemblers, task builders or linkers,
etc.)

4-1

WRITING ASSEMBLY LANGUAGE ROUTINES FOR BASIC

Assembly language routines that use the FORTRAN IV call interface as
defined in IAS/RSX FORTRAN IV User's Guide (DEC-11-LMFUA-C-D) can be
called from either FORTRAN IV or IAS/RSX BASIC. However, these
routines must not access any routines or global 1locations in
FORTRAN IV itself.

4.2 DEFINING A ROUTINE - THE USER ROUTINE NAME POINTER TABLE

You must define each routine in the user routine name pointer table.
The table consists of a list of pointers. Each pointer specifies the
location of the routine name and the starting address of the routine.
The list of pointers is terminated by a pointer with a value of 0.

Each pointer specifies a 1location which contains the following
information in the order listed:

@ number of characters in name
° routine name
] starting address

In the IAS/RSX BASIC software kit, the file [11,104] CALLI.MAC
contains an empty routine table. You must edit CALLI.MAC and insert
the pointers to the routine names after FTBL:. After you add the
pointers to CALLI.MAC, it contains:

NOTE

The items printed in red in the 1listing
below indicate the entries that you
should edit into the existing file
CALLI.MAC.

.GLOBL FTABI,BKGI
.GLOBL RTI1NM,RT2NM
.GLOBL RT3NM,...,RTnNM
FTABI: .WORD FTBL
FTBL: .WORD RTINM
.WORD RT2NM
.WORD RT3NM

«.WORD RTnNM
.WORD 0

Where the pointers to the routine names are RTINM, RT2NM, RT3NM,...,
and RTnNM.

The pointers to the routine names must be declared globals unless the
routine names are in the same source file as the routine name pointer
table.

4-2

WRITING ASSEMBLY LANGUAGE ROUTINES FOR BASIC
It is convenient to put the routine name in the routine itself. The
beginning of each routine should contain:

.GLOBL RTINM
RTINM: .BYTE 15-08

0S$: .ASCII “routine name"
1$:

.BVEN

.WORD RT1ST
RT1ST: ;s START OF ROUTINE

where the "routine name" is the name the routine is called from BASIC
and RT1ST is the starting address of the routine.

An alternative method of arranging this data is to include the routine
name in the same source file as the routine name pointer table. 1In
this case you should declare the starting addresses as globals. This
method should be used for adding routines to BASIC originally written
for FORTRAN 1IV.

4.3 COMMUNICATING BETWEEN THE ROUTINE AND BASIC

When BASIC executes the CALL statement, it evaluates the arguments and
provides the routine with a list of pointers to evaluated arguments'
locations.

You must ensure that all BASIC programmers who use your routines have
the argument types 1in the order your routine expects by publicizing
the correct data type order. If a CALL statement has the wrong
argument types, the results are unpredictable.

When BASIC transfers control to the start of your routine, R5 points
to a location which has the constant 202 in the high order byte and
the number of arguments in the 1low order byte. Following this
location are pointers to the arguments in the CAUL statement. If an
argument is null (if there is no data item between the two commas),
the value of the pointer is -1.

The argument list format is:

RS —» 202 Number of Arguments

Pointer to first argument

Pointer to second argument

Pointer to last argument

BASIC uses standard PDP-11 l-word integers (2's complement integers)
and 2-word floating point numbers (1 sign bit, 8 bits of exponent, and
23 bits of mantissa). These correspond to FORTRAN IV's INTEGER*2 and
REAL*4 data types.

WRITING ASSEMBLY LANGUAGE ROUTINES FOR BASIC

Strings are stored as a series of ASCII characters. The pointer
points to the first character of the string. You must also have
another argument in the CALL statement which specifies the 1length of
the string. In the process of reading and, especially, writing a
string, you must ensure that the manipulations occur within the
characters of the string only.

If you want to use an array in an assembly language routine, the
dimensions of the array must be specified in one or two arguments.
The pointer points to the first element of the array, for example A(0)
or B%(0,0) and you must know the dimensions to access the elements of
the array. 1In BASIC, arrays are stored with the second subscript
varying fastest. (This 1is the opposite from FORTRAN IV.) You must
use the dimensions to calculate the offset of each element. In the
process of reading and, especially writing elements of an array, you
must ensure that the manipulations occur within the bounds of the
array.

4.4 FORMAT OF THE ROUTINE

The routine must start with the address you specified in the routine
name table. Use an RTS PC instruction to terminate your routine. You
may use the stack during your routine but you must leave it unchanged.
R4 contains the stack limit pointer. 1If you use the stack you should
ensure that the limit is not exceeded. RS5 points to the argument list
and should be left unchanged. For example:

.GLOBL RTINM
RTINM: .BYTE 1$-08%

0$: .ASCII "routine name"
1$:
.EVEN
.WORD RT1ST
RT1ST: é ; START OF ROUTINE
é s BODY OF ROUTINE
RTS PC

4.5 INCORPORATING THE ROUTINES INTO BASIC

You must first assemble your routines and CALLI.MAC. To assemble
CALLI.MAC, type the following command string in response to your
system's prompt:

MAC CALLI,CALLI/SP=[11,104]BMAC,ASSEM,CALLI

'Then concatenate CALLI.OBJ with the object modules from your assembly
language routines into a file named CALLI.OBJ.

At this point you must edit the .CMD or .ODL file in [11,104] which is
used to build BASIC (see the IAS/RSX BASIC Installation 3uide). You
must change in the file the text "CALLIN" to "CALLI" and "CALLSN" to
"CALLS". Once you make these edits, you can build BASIC as described
in the IAS/RSX BASIC Installation Guide.

——rr

APPENDIX A

CHANGES FROM IAS BASIC V01

A.1 SUMMARY OF TECHNICAL CHANGES

The following features are not in IAS BASIC VU1 but are in IAS/RSX
BASIC VO02.

° Integer data type
° Virtual array files

® Statements

CALL
DIM #

el Functions

ABORT
CTRLC
RCTRLC
RCTRLO
SYS
TTYSET

® Commands

CAT
COMPILE
DEL
RESEQ
SUB

Table A-1 describes the features which are in IAS BASIC V0l and are
changed in IAS/RSX BASIC V02.

Table A-1
Changes from IAS BASIC V0l

Type Name Change from IAS BASIC V01
Statements CHAIN Line number specification can be an
expression.
COMMON BASIC checks to see that COMMON statements

are in the same order in each subprogran.

DATA Unquoted strings are allowed and the DATA
statement cannot have any statements follow
it on the same line (multi-statement line).

A-1

CHANGES FROM IAS BASIC V01

Table A-1 (Cont.)
Changes from IAS BASIC V01

Type Name Change from IAS BASIC V01
Statements DEF If the function returns a string, the name
must end with -a dollar sign. If the

function returns an integer, the name must
end with a percent sign.

OPEN The FILESIZE specification is always
ignored.
Functions BIN Parentheses around arguments are required.
ocT Parentheses around arguments are required.
Commands LIST More than one line specification is allowed
but the -END 1line specification is not
allowed.

A.2 USING THE CONVERSION AID

IAS/RSX BASIC V02 includes a conversion aid to help you modify
programs written under IAS BASIC VUl. You should use the conversion
aid if you have programs that include any of the following:

e User-defined functions that return strings
e BIN or OCT functions without parentheses
e DATA statements on multi-statement lines

The conversion aid 1lists all occurrences in a BASIC program of
user-defined functions, BIN or OCT functions without parentheses, and
DATA statements that have other statements after them. You must keep
a record of these 1lines and read the program with the OLD command.
Then you must replace or edit with the SUB command the 1lines
containing the errors.

In addition to just listing the user-defined function names (FNs), the
conversion aid can change the FN names. If you specify that the aid
should change FN names, the aid requests if each ¥#N name should be
changed and, if so, what the new name is.

To use the conversion aid ensure that the file CONVRT.BAS (which is
provided in the IAS/RSX BASIC software kit) is in your area. If you
use the aid often, you should COMPILE the CONVRT progran (see the
BASIC-11 Language Reference Manual). Then start BASIC and run the
program CONVRT. When you respond to the conversion aid, type Y if you
want the feature, type N if you do not want the feature, and always
include an extension in file specifications. If you only type the
RETURN key in response to the output file specification, BASIC does
not create an output file - it only checks the input file.

CHANGES FROM IAS BASIC V01

' */j For example, if the file PROG2.BAS contains the following program

LISTNH

10 READ Re@oBeCoDBrES

20 DEF FNA(ASsBEsNoM)=SEGE(AS vy Lo NI HBEGH (BEy My LEN(REY D
20 DEF FNB(Xs Y Z)=X"Y+IKR

40 N=QCT 177 777"

5O D=0CT %)

&0 E=00T(ES)

70 IF LXE<N THEN 327467

8O PRINT FNADEESeAsC)

GO FRINT FNR(AyReC)

100 GO TO 32767

10000 DATA 4+2:354 N\ REM INITIALIZE VARS
FO010 NATA "1347"y "67266"

327467 END

READY

the conversion process would be:
RUN CONVRT
INPUT FILENAME? PROG2.RAS
OUTFUT FILENAME? FPROGZN.RAS
CHECK DATA (Y OR NO? Y
CHECK QOCT & RIN (Y OR NP Y

CHECK FN’8 (Y OR NP Y
CHANGE FN NAMES (Y OR NO7 Y

REFERENCE TO FNA2
20 LEF FNA(AS» RSN M) =SEGE(ASy Ty NI +EEGS (BEy My LEN(RS))

T8 CHANGE REQUIRED (Y OR NO7T Y
NEW NAME I8%7 FNZ$

REFERENCE-TO FNE:
30 DEF FNROX Y Z)=XTY4ZXR

18 CHANGE REQUIRED (Y OR N)T N

REFERENCE TO FNA3
B0 PRINT FNA(ISyE$»A»C)

REFERENCE TQ FNRES
PO FRINT FNRCAYRYC)

GOT/ZRIN WITHOUT FPARENTHESES?
AQ N=QCT"177 777"

DATA NOT LASTE
LOQO0 NATA 4»2+3+4 N REM INITIALIZE VARS.

CONVERSTION COMPLETE
ANOTHER CONVERSION (Y OR NO7T N

READY

CHANGES FROM IAS BASIC V01

G- FROGEN

READY

LISTNH

10 READN ReAyRyCoDbyES

20 DEF FNZ$(AE»BEy Ny M) =SEGE(AS» Ty NI FSECS (BSy My LENC(RS))
F0 DEF FNB(X»YsZ)=X"Y+ZXR

40 N=QCT"177 777"

90 E=QCT (%)

&0 E=QCT(E$)

70 ¥IF OXE«N THEN 327467

B8O PRINT FNZ$(DEyE$»A»C)

PO FPRINT FNR(A»E,D)

100 GO TO 32767

10000 DATA 42,394 N\ REM INITIALIZE VARS
10010 DATA "1347"y"672646"

32767 END

READY

SUER 40 P ER('E

40 N=0CT("177 777"
READY

HSUR 40 E"@"H>E2

40 N=QCT("177 777")

READY

You may have to make one other modification to your programs,
specifically changing the order of the elements in COMMON statements.
If you run your program and BASIC prints the ?2COMMON OUT OF ORDER
(?CO0) error message, you must change the order of the COMMON
statements in each subprogram so that they are the same as in the
first subprogran. S3ee the BASIC-11 Language Reference Manual for
information on the COMMON statement.

ABORT function, 3-4
Accuracy, digits of, 1-4

INDEX

Assembly language routines, 4-1 -

4-4
communicating with, 4-3, 4-4
defining, 4-2, 4-3
format of, 4-4
incorporating, 4-4
reasons for using, 4-1

BASIC termination, 3-6
BIN function, A-2

BYE command, 1-3

CALL statement, A-1
Canceling the effect of CTRL/O,
3-2
CAT command, 2-3, A-1l
CHAIN statement, A-1
Changes from IAS BASIC V@l, A-1
A-2
commands, A-1l, A-2
functions, A-1l, A-2
statements, A-1, A-2
Checking for CTRL/C, 3-6
Commands,
BYE, 1-3
CAT, A-1
changed, A-2
COMPILE, A-1l
DEL, A-1l
LIST, A-2
new, A-1l
RESEQ, A-1l
SUB, A-1l
COMMON statement, A-1l, A-4
Communicating between routines
and BASIC, 4-3 - 4-4
COMPILE command, A-1l
Conversion aid, A-2 - A-4
CTRL/C, checking for, 3-6
CTRLC function, 3-3, A-1
CTRL/C key, 1-2, 1-3, 3-3, 3-6
checking for, 3-6
disabling, 3-3
using, 1-2 - 1-3
CTRL/O key, 3-2
canceling the effect of, 3-2

DATA statement, A-1l, A-2
DEF statement, A-2

Index~1

Default device, 2-1

Default file name, 2-1

Default user file directory, 2-1

Default version number, 2-2

Defining assembly language
routines, 4-2, 4-3

DEL command, A-1l

Device, default, 2-1

Device name, 2-1

Digits of accuracy, 1-4

DIM # statement, A-2

Directories, listing file, 2-3

Disabling CTRL/C key, 3-3

Error messages, system dependent,

1-4
ESCAPE key, vii, 1-3
Expr, viii
Expression, viii

File directories, 2-3
File extension, 2-1
File specification, viii, 2-1
Filename, 2-1
Files, superseding, 2-4
Format assembly of language of
routines, 4-4
Functions,
ABORT, 3-4, A-1l
BIN, A-2
changed, A-2
CTRLC, 3-3, A-1
new, A-1l
RCTRLC, 3-3, A-1
RCTRLO, 3-2, A-1l
sys, 3-4 - 3-6, A-1
TTYSET, 3-1, 3-2, A-1l
user-defined, A-2
utility, 3-1 - 3-6

IAS BASIC V@1, changes from, A-1 -

A-2

IAS logout procedure, 1-3

IAS operating system, 1-1

Incorporating assembly language
routines, 4-4

Int, ‘viii

Integer data type, A-1l

Integer, viii

INDEX (Cont.)

Keys,
CTRL/C, 1-2, 1-3, 3-3, 3-6
CTRL/O, 3-2
ESCAPE, vii, 1-3
RETURN, vii, viii

Line number, viii

LIST command, A-2

Listing file directories, 2-3
Listing file names, 2-3
Logout procedure, IAS, 1-3

Messages, system dependent error,
1-4

Multi-statement lines with DATA
statements, A-2

New commands, A-1l
New functions, A-1
New statements, A-1l

OCT function, A-2

OPEN statement, 2-2, A-2

Operating system IAS, 1-1

Operating system RSX-11D, 1-
1-

1
Operating system RSX-11M, 1

Precision of numbers, 1l-4
Program termination, 1-3, 3-4

RCTRLC function, 3-3
RCTRLO function, 3-2
Red ink, viii

RESEQ command, A-1l
RETURN key, vii, viii

Routines, assembly language, 4-1 -

4-4
RSX-11D operating system, 1-1
RSX-11M operating system, 1-1

Semicolon in file specification,
2-1

Setting the terminal margin, 3-1

Single character input, 3=5

Specification, file, 2-1
Starting address of routines,
4-2 - 4-4

Starting BASIC on IAS, 1-1
Starting BASIC on RSX-11D, 1-2
Statements,

CALL, A-1l

CHAIN, A-1

changed, A-1, A-2

COMMON, A-1l

DATA, A-1l, A-2

DEF, A-2

DIM # r A‘l

new, A-l

OPEN, 2-2, A-2
String, viii
SUB command, A-1
Superseding files, 2-4
SYS functions, 3-4 - 3-6
System dependent error messages,
System dependent features in the

OPEN statement, 2-2

System functions, 3-4 - 3-6

Terminal margin, setting the, 3-1
Terminating BASIC, 1-3, 3-6
TTYSET function, 3-1, 3-2, A-1l
Type-in, user, viii

ufd, 2-1

User file directory, 2-1

User routine name pointer table,
4-2, 4-3

User type-in, viii

User-defined functions, A-2

Utility functions, 3-1 - 3-6

Var, viii

Variable, viii

Version number default, 2-2
Version number, 2-1
Virtual array files, A-1

Index~-2

